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Abstract. To tackle the challenges associated with variability and uncertainty in distributed power generation, as well as the complexities of solving 
high-dimensional energy management mathematical models in mi-crogrid energy optimization, a microgrid energy optimization management method 
is proposed based on an improved soft actor-critic algorithm. In the proposed method, the improved soft actor-critic algorithm employs an entropy-
based objective function to encourage target exploration without assigning signifi-cantly higher probabilities to any part of the action space, which 
can simplify the analysis process of distributed power generation variability and uncertainty while effectively mitigating the convergence fragility 
issues in solving the high-dimensional mathematical model of microgrid energy management. The effectiveness of the proposed method is validated 
through a case study analysis of microgrid energy op-timization management. The results revealed an increase of 51.20%, 52.38%, 13.43%, 16.50%, 
58.26%, and 36.33% in the total profits of a microgrid compared with the Deep Q-network algorithm, the state-action-reward-state-action algorithm, 
the proximal policy optimization algorithm, the ant-colony based algorithm, a microgrid energy optimization management strategy based on the 
genetic algorithm and the fuzzy inference system, and the theoretical retailer stragety, respectively. Additionally, com-pared with other methods and 
strategies, the proposed method can learn more optimal microgrid energy management behaviors and anticipate fluctuations in electricity prices and 
demand.  
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1. Introduction 

Energy supply and management have always been one of 
the significant challenges faced by modern society. With the 
rapid development of renewable energy and the widespread 
adoption of distributed energy sources, microgrids (MGs) has 
garnered extensive attention as an emerging paradigm in energy 
systems (Saeed et al, 2023; Kheiter et al, 2022). MGs, often 
incorporating renewable energy sources and energy storage, 
have emerged as viable solutions to address the chal-lenges of 
conventional centralized power systems (Ahmad et al, 2023; 
Mostefa et al, 2023). MGs, decentralized energy systems that can 
operate independently or in conjunction with the main grid, also 
offer a promising avenue for enhancing energy efficiency, 
resilience, and sustainability, which makes them well-suited for 
supporting peak load management on the main power grid 
(Mostefa et al, 2023; Lagouir et al, 2021). 

Efficient energy management is critical for the seamless 
functioning of MGs, especially in the context of increasing 
renewable energy penetration (Alzahrani et al, 2023; Shezan et 
al, 2023). Energy optimization not only ensures the reliable and 
stable operation of MGs but also contributes to cost reduction, 
environmental sustainability, and grid resilience. In traditional 
power systems, centralized energy management and control 
strategies are typically sufficient to meet the re-quirements for 
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their efficient operation (Tajjour et al, 2023; Dey et al, 2023). 
However, in MGs, due to the constraints imposed by diverse 
energy resources and constantly changing power demands, 
traditional energy optimization manage-ment methods are no 
longer applicable (Alamir et al, 2023; Zhang et al, 2023). 
Therefore, as the complexity of MG sys-tems grows, the need 
for intelligent and adaptive algorithms becomes paramount to 
address the intricacies associated with energy generation, 
storage, and consumption (Jahani et al, 2023; El Bourakadi et al, 
2022). 

Hou et al. (2023) focused on a proactive energy management 
and collaborative optimization method using mul-ti-stakeholder 
game used for a community MGs with multiple renewable 
energy sources. Simulation results demonstrated that this 
approach can effectively enhance the economic viability of 
electricity consumption for users and the on-site in-tegration 
capacity of renewable energy. Gao et al. (2023) developed a 
remote island MG energy management strategy based on 
master-slave games. The economic and practical efficiency of 
this strategy was validated through simulation examples. 
Leonori et al. (2020) introduced a MG energy optimization 
management strategy based on genetic algorithms. The 
effectiveness of the model and algorithm was verified through a 
small-scale MG case study. The case study results indicated that 
the model achieved optimal energy management for the MG. 
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Datta et al. (2023) presented an energy man-agement scheme for 
multi-MG systems, encompassing distributed resource 
scheduling, renewable energy integration, and plug-in electric 
vehicle penetration. The presented method was validated on a 
test system comprising residential, com-mercial, and industrial 
MGs, with simulation results confirming its effectiveness. Alamir 
et al. (2023b) developed an improved version of the artificial 
rabbit optimization algorithm, enhanced with quantum 
mechanics and the Monte Carlo method for optimal MG energy 
scheduling. Simulation results affirmed the effectiveness of the 
developed approach in reducing operation costs and 
maximizing energy usage efficiency. Rodriguez et al. (2023) 
outlined a MG energy man-agement system utilizing fuzzy logic 
control. Simulation results demonstrated that the developed 
method efficiently harnessed available solar energy resources 
while extending batteries’ life through the efficiently control of 
their over-charging and deep discharging. 

While the aforementioned studies have achieved 
commendable results in MG energy management, they 
necessitate a comprehensive understanding of the dynamic 
current and subsequent states of the MG. In recent years, 
reinforcement learning (RL) has garnered extensive research 
interest as a machine learning method and has shown 
remarkable success in addressing complex control issues 
(Ibrahim et al, 2023; Cavus et al, 2023). The soft actor-critic (SAC) 
algorithm, rooted in RL, has demonstrated remarkable success 
in optimizing complex systems (Kim et al, 2023; Dong et al, 
2024). Originally designed for robotic control tasks, SAC has 
shown versatility and adaptability, making it an attractive 
candidate for ap-plication in MG energy management (Bao et al, 
2023; Topa et al, 2021).  

To address the challenges present in the aforementioned 
researches, this paper introduces an energy optimization 
management approach based on an improved SAC algorithm. 
The main contributions of this research is summarized as 
follows. By incorporating entropy into the objective func-tion, 
the algorithm strikes a delicate balance between exploration and 
exploitation. Unlike traditional methods that assign high 
probabilities to certain actions, the entropy-based approach 
maintains a level of uncertainty, allowing the algorithm to 
explore a broader action range. This innovative strategy 
enhances the adaptability of the improved SAC algorithm, 
making it particularly well-suited for dynamic environments 
where the optimal action may change over time. The 
incorporation of entropy not only fosters exploration but also 
contributes to the robustness and versatility of the algorithm in 
real-world applications. Furthermore, the significant 
breakthrough of the proposed method also lies in its ability to 

effectively address the challenges associated with MG energy 
management. The inherent variability and uncertainty of DGs 
pose formidable obstacles to achieving reliable and efficient 
energy management. The conventional mathematical models 
used in MG energy management often suffer from convergence 
brittleness, making them less adaptive to dynamic operating 
conditions. Through the application of the proposed method, 
these challenges are mitigated. The algorithm demonstrates a 
remarkable capacity to handle variability and uncertainty, 
providing a more resilient and robust solution to the intricacies 
of MG energy management. This breakthrough not only 
improves the stability of MG operations but also opens up new 
possibil-ities for the integration of renewable energy sources. In 
addition, in the realm of electricity price prediction for MGs, the 
proposed method presents a noteworthy departure from 
conventional approaches. Unlike methods that require an 
exhaus-tive understanding of MG dynamics for accurate 
predictions, the proposed approach takes a more streamlined 
and efficient route. The necessity for a comprehensive solution 
to MG dynamics is alleviated, streamlining the prediction 
process. This not only reduces the computational complexity 
associated with forecasting purchase and sale prices but also 
enhances the applicability of the method to a wider range of 
scenarios. By focusing on key features and leveraging the 
inherent adapt-ability of the SAC algorithm, the proposed 
approach achieves accurate and efficient electricity price 
predictions without the need for an overly intricate 
understanding of MG dynamics. This innovation marks a 
significant advancement in the field of MGd energy economics, 
making it more accessible and practical for real-world 
implementation. 

The aim of this research is to effectively optimize energy 
management within MGs and enhance the reliability and 
economic efficiency of MG energy management, during tackling 
the challenges associated with variability and uncertainty in 
distributed power generation, as well as the complexities of 
solving high-dimensional energy management mathematical 
models in microgrid energy optimization.  

 
 

2. Energy management method of microgrid based on an 
improved soft actor-critic algorithm 

2.1 Microgrid architecture and configuration 

The schematic diagram of a MG under investigation, 
situated in the local area, is depicted in Fig. 1. This MG 
configuration encompasses several integral components: 
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Fig. 1 Microgrid schematic diagram. 
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distributed generators (DGs), energy storage systems (ESSs), 
temperature control loads (TCLs), and residential loads.  

The analyzed MG in Figure 1 is interconnected with 
various DGs, including a diesel generator, four photovoltaic 
generator systems (PVs), four wind turbines (WTs), and three 
battery energy storage systems (BESSs). In Fig. 1, a single diesel 
generator with a maximum capacity of 20 kW is considered in 
the energy optimization model of MG. The parameter values 
associated with DGs are presented in Table 1. 

2.2 Energy network components 

The MG is interconnected with the distribution network 
(DN), facilitating the continuous exchange of electrical energy 
within the electricity market through the distribution network. 
Effective bidirectional communication, established between 
each component within the MG and the energy management 
system (EMS) is utilized to enable the exchange of vital 
information, including electricity pricing, battery 
charging/discharging status, and power generation statistic data 
(Zhang et al, 2021). The EMS efficiently utilizes smart agents to 
relay control signals to the various components, manage on/off 
operations for TCLs, charge/discharge procedures for ESSs, and 
send or receive control signals of purchasing/selling energy 
from/for the DN. 

2.2.1. Energy storage systems 

ESSs play a pivotal role in modern energy management, 
providing a mean to store and release energy when needed. 
These systems contribute to grid stability, enable the integration 
of renewable energy sources, and enhance the overall reliability 
of energy supply. The ESSs studied in the MG under 
investigation refer to the community-level ESSs rather than 
individual residential battery ESSs. The capacity of an ESS 
utilized is designed to meet a minimum of 2 hours' worth of 
energy demands for all users within the MG. At each time step 
𝑡, the dynamic variation in energy within an ESS is modeled as 
follows 

1 c

d

t
t t t

D
B B C


−= + −                                         (1) 

where 𝐵𝑡 ∈ [0, 𝐵𝑚𝑎𝑥] represents the energy stored by the 
analyzed ESS at a given time step 𝑡. 𝐵𝑚𝑎𝑥 stands for the 
maximum capacity of the analyzed ESS. 𝜂𝑐 ∈ [0,1] and 𝐶𝑡 ∈
[0, 𝐶𝑚𝑎𝑥] represent the charging efficiency and power of the 
analyzed ESS, respectively. 𝜂𝑑 ∈ [0,1] and 𝐷𝑡 ∈ [0, 𝐷𝑚𝑎𝑥] 
denote the discharging efficiency and power of the analyzed ESS 
respectively. 𝐶𝑚𝑎𝑥 and 𝐷𝑚𝑎𝑥 represent the upper limits of 𝐶𝑡 and 
𝐷𝑡, respectively. The state of charge  (SOC) of the analyzed ESS 
is defined as follows: 

BSC,

max 

t
t

B
B

B
=                                          (2) 

ESSs examine their discharging conditions and release 
available electrical energy. If the ESSs cannot fully supply the 
requested electrical energy as per EMS's request, the remaining 
amount is automatically provided by the DN. 

2.2.2. Distributed generators 

DGs are small-scale power generation sources that are 
decentralized and located close to the end-users or within the 
DN. Unlike traditional centralized power plants, DGs contribute 
to local generation and can operate independently or in 
conjunction with the main grid. These systems offer various 
benefits, including improved grid resilience, increased energy 
efficiency, and support for renewable energy integration. The 
MG is equipped with DGs capable of producing varying amounts 
of electrical energy based on weather conditions. The utilized 
DGs does not rely on a generative model analysis but rather 
employs actual distributed generation data, such as wind power 
data obtained from NREL. DGs share real-time generation data 
with EMS (𝐺𝑡) and can directly supply power to the local grid. 

2.2.3. Distribution network 

When DGs’ supply falls shortly, the DN can promptly 
provide electrical energy to the MG. When there is an excess of 
electrical energy, the DN can also accept surplus electrical 
energy from the MG. The energy transactions between the DN 
and DGs are carried out in real-time by adjusting the fluctuations 
in electrical energy pricing in the electricity market, where the 
upward and downward price adjustments are denoted as 𝐾𝑡

𝑢 and 

𝐾𝑡
𝑑, respectively. 

To establish the priority power source during electricity 
supply shortages and the priority discharge source during 
electricity surpluses, EMS exclusively manages the electrical 
switches of the DN. Following 𝑡, the EMS of a DG receives 
information regarding the amount of electricity (𝐸𝑡) to be 
purchased or sold to the DN. A positive value of 𝐸𝑡 indicates 
purchasing electrical energy from the market, while a negative 
value of 𝐸𝑡 signifies selling electrical energy to the market. 

2.2.4. Temperature control loads 

TCLs refer to systems or devices that are designed to 
regulate and maintain a specific temperature within a given 
space. These loads are prevalent in various sectors, including 
residential, commercial, and industrial settings, and they play a 
crucial role in ensuring comfort, preserving products, and 
supporting industrial processes. TCLs adhere to the principle of 
heat conservation. TCLs can serve as a significant source of 
flexibility in energy provision. TCLs can be directly controlled at 
𝑡 by the agents, and the energy cost incurred by users to 
maintain indoor comfort is accounted for 𝐶gen. The controller for 

TCLs receives on/off operation signals from the agents. The 
TCL controllers perform on/off operations by examining 
temperature constraints and based on the following conditions. 

max
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where 𝑎𝑏,𝑡
𝑖  represents the on/off operation command given by a 

TCL controller. 𝑎𝑡
𝑖  denotes on/off operation command when 

min max

i i i

tT T T  . 𝑇𝑡
𝑖 is the operating temperature of the analyzed 

Table 1  
Parameters of DGs. 

DGs Diesel generator PV WT BESS 

Parameters 

Maximum generation 
power=20 kW 
Minimum generation 
power=4 kW 

Maximum generation 
power=10kW 

Maximum generation 
power=10kW 

Capacity=10kWh 
Maximum discharging power=10kW 
Maximum charging power=10kW 
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TCL (heat pump, water heater, refrigerator, etc.) 𝑖 at the time 
step 𝑡, or the indoor temperature in the room where the TCL (air 

conditioner) 𝑖 is located at the time step 𝑡. 𝑇𝑚𝑎𝑥
𝑖  and 𝑇𝑚𝑖𝑛

𝑖  
respectively stand for the maximum and minimum temperatures 
determined by users. The research conducted primarily focuses 
on air conditioner-type TCLs, and the dynamic temperature 
variation process in the room where the analyzed TCL is located 
is modeled as follows: 

( ) ( )0

m, tcl ,

a m

1 1i i i i i i i

t t t t t b ti i
T T T T T L u q
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where 𝑇𝑡
𝑖 represents the indoor temperature. 𝑇𝑚,𝑡

𝑖  is the 

temperature of the TCL's output air, 𝑇𝑡
0 is the outdoor 

temperature, 𝐶𝑎
𝑖  and 𝐶𝑚

𝑖  represent the thermal mass of the air 
and building materials, respectively. 𝑞𝑖 denotes an 

uncontrollable heat load within the analyzed building. 𝐿tcl
𝑖  

represents the TCL’s rated output power. 

2.2.5. Residential loads 

The analyzed residential loads represent household 
electricity demands that cannot be directly controlled within the 
MG. The analyzed residential loads exhibit daily fluctuations, 
with their variable energy consumption influenced by electricity 

pricing. The modeling of electricity load 𝐿𝑡
𝑗
 in household 𝑗 over 

time step 𝑡 is as follows: 

b, SL, PB,

j

t t t

j

t

jL L S S= − +                                    (6) 

SL, b,t t

j
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where 𝐿𝑏,𝑡>0 represents the daily baseline load power (Nakabi 

et al, 2019). The sensitivity parameter 𝛽𝑖 (where 𝛽𝑖∈[0,1]) 
indicates the proportion of load power variation relative to the 

price fluctuation magnitude. 𝑆SL,𝑡
𝑖  is the transferred loads, and 𝛿𝑡 

is the change in electricity pricing at the time step 𝑡 compared 

to the previous moment. 𝑆SL,𝑡
𝑖  is a positive value for high 

electricity prices (𝛿𝑡>0) and a negative value for low electricity 

prices (𝛿𝑡<0). 𝑆PB,𝑡
𝑖  corresponds to the load amount transferred 

from the previous time period to the current one. For a given 
time, positively transferred load charges must operate after a 
certain time delay, while negatively transferred load charges will 
be retained in the subsequent time steps. 

2.3. Energy management objective 

The goal of energy optimization management in MGs is to 
identify the optimal strategy 𝜋∗ that satisfies the following 
conditions. 

 * max max t tJ J E r s
 

= = ∣                                    (8) 

where 𝐽𝜋 represents the expected total profit for MG under a 
given control strategy 𝜋 ∗. 𝐸{𝑅𝑡 ∣ 𝑠𝑡} denotes the average value 
of 𝑟𝑡 under a certain state 𝑠𝑡. 

In the training process of a RL algorithm, four elements are 
primarily employed: the state space 𝑆, the action space 𝐴, the 
state transition probabilities 𝑝, and the value function 𝑟 (Homod 
et al, 2022; Moos et al, 2022). During the learning process, the 
agent interacts with the system and an operation is carried out 
at 𝑎𝑡 ∈ 𝐴 ⊆ ℝ𝑛𝐴 , where 𝑎𝑡 represents the action executed at 
time step 𝑡. Subsequently, the system is transitioned from 𝑠𝑡 ∈
𝑆 ⊆ ℝ𝑛𝑆 to its subsequent state 𝑠𝑡+1 

(Du et al, 2022; Shavandi et 
al, 2022). 

Assuming for a given strategy 𝜋, the value function over a 
certain time interval (𝑉𝜋(𝑠𝑡)) depends on the sequence of state 

transitions (𝑇(𝑠, 𝑎, 𝑠 ′) = 𝑝(𝑠𝑡+1 = 𝑠 ′ ∣ 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎)). The 

discounted sum of future profits generated is represented as 
(Singh et al, 2023; Tian et al, 2023) 

2

1 2 3t t t tR r r r + + += + + +  

The value function of the expected state discounted under the 
strategy 𝜋 in the given state 𝑠𝑡 is described as (Park et al, 2022; 
Zhu et al, 2022) 

( )   ( ) 1E Et t t t tV s R s r V s

    += = +∣                               (9) 

where 𝛾 ∈ (0,1] is the discount factor that weights future profits. 
𝑉∗(𝑠𝑡) is used to represent the maximum discounted profit that 
the agent obtains when execute the optimal strategy starting 
from a state 𝑠𝑡. From this, it can be seen that (Alavizadeh et al, 
2022; Kosuru et al, 2022) 

( )* argmax tV s



 =                                       (10) 

Meanwhile, 𝑄 expresses the expected returns of choosing an 
action to be operated in 𝑠𝑡 and following the subsequent 
decision 𝜋 thereafter. 

( ) ( )1,t t t tQ s a r V s  += +                                    (11) 

2.4. The optimization technique 

The soft actor-critic (SAC) algorithm, based on the 
maximum entropy RL framework, is considered as a non-policy 
algorithm (Sun et al, 2022). It is capable of handling continuous 
action spaces, thus enhancing its applicability to various control 
problems. The action-critic architecture is employed by SAC 
(Zheng et al, 2023) . 

The action-critic architecture employs two distinct deep 
neural networks to approximate the function 𝑄 and the state 
value function 𝑉 (Zheng et al, 2023) . The actor maps the current 
state to what it deems the optimal action, while the critic 
evaluates actions by computing the value function. The SAC 
algorithm operates within the maximum entropy RL framework, 
aiming to maximize the expected reward and entropy, which is 
to  

( )
0

argmax E
T

t

t t

t

J r H 

 


 
=

 
= + 

 
                                 (12) 

where 𝐻𝜋 represents the Shannon entropy term, indicating the 
agent's uncertainty when taking random actions.   is the 

regularization coefficient, signifying the importance of the 
entropy term on the rewards. Generally, when considering 
traditional reinforcement learning algorithms, 𝛼 is set to zero. 
Maximizing this objective function ensures that the agent is 
explicitly encouraged to explore new strategies while also 
preventing it from making suboptimal actions (Xu et al, 2022). 

In the context of the studied method for performing energy 
optimization in MGs, SAC algorithm primarily utilizes three 
network functions. These are the state value function 𝑉 
parameterized by 𝛹, the smoothing function 𝑄 parameterized by 
𝜃, and the policy function 𝜋 parameterized by 𝛹 (Huang et al, 
2021). 

Firstly, the state value function is trained by minimizing the 
following error (Tightiz et al, 2023). 

( ) ( )(( ( )))
21

( ) E , log
2t tV s t a t t t tJ E V s Q s a a s

    
 
 


− −

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That is, the training of the state value function V  involves 

minimizing the squared difference between the predicted value 
of the function 𝑄 and its expected predicted value, along with 
maximizing the entropy of the policy function 𝜋 (measured by 
the negative logarithm of the policy function) to the greatest 
extent possible. To train the approximate function for the policy 
𝜋, the following error is minimized (Hu et al, 2022). 

( )
( )( )

( )
KL

exp
( )

t

t

s t

t

Q s
J E D s

Z s



 



 
  
 =  

    

‖                              (14) 

where the term 𝐷KL is the Kullback-Leibler divergence. By 
seeking the minimum value of the above objective function, it 
ensures that the policy function's distribution becomes more 
similar to the exponential distribution form of normalized 
function 𝑄 by normalization function 𝑍. 

To improve the performance of the SAC algorithm and 
minimize this objective, reparameterization is employed using 
𝑎𝑡 = 𝑓𝜙(𝜖𝑡; 𝑠𝑡). This technique is used to ensure that the policy 

sampling process is a differentiable one. The parameterized 
policy can be represented as follows (Xiong et al, 2023): 

𝐽𝜋(𝜙) = 𝐸𝑠𝑡,𝜖𝑡
[𝑙𝑔 𝜋𝜙 (𝑓𝜙(𝜖𝑡 , 𝑠𝑡) ∣ 𝑠𝑡) − 𝑄𝜃(𝑠𝑡, 𝑓𝜙(𝜖𝑡 , 𝑠𝑡) ∣

𝑠𝑡)]

         

(15) 

Since the normalization function 𝑍 is independent of the 
parameter 𝜙, it is discarded. The unbiased estimate of the 
gradient for the aforementioned objective is as follows: 

( ) ( ) ( )( ) ( )ˆ ( ) lg lg , ,
t tt t a t t a t t t tJ a s a s Q s a f s         = +  − ∣ ∣ ò      

         (16) 

2.5. Simulation test configuration 

The proposed energy management method was 
implemented using the OpenAI Gym tool in a MG operational 
environment described in the second section (Huang et al, 2022). 
The MG energy management process was run for a total of 10 
days within the constructed MG operational environment. This 
process was divided into multiple stages, with each stage lasting 
for one day. During each stage, one day was randomly selected 
from the dataset of 10 days. Each time step 𝑡 represents an hour, 
resulting in 24 time steps per day. 

Initially, the current state of the MG is determined based 
on the average power consumption state of the TCLs (𝑆SoC), the 
charging/discharging status (𝐵BSC,𝑡) of the ESSs, the utility meter 

state (𝐶𝑡
𝑏), temperature (𝑇𝑡

𝑖), generated power (𝐺𝑡), electricity 
price (𝐾𝑡) in the power market, time step 𝑡, and the current load 
value (𝐿𝑏,𝑡). These variables are organized using a vector 

representation. 

SoC, BSC,t ,, , , , , , ,b

t t t t t t b ts S B C T G K L t =                                   (17) 

Next, a reward function 𝑟𝑡 is designed to maximize the economic 
profit of the MG. The reward function 𝑟𝑡 represents the operating 
profit margin, which is the income obtained from selling 
electrical energy to users and the DN minus the costs associated 
with DN generated, purchased, and transmitted power. The 
reward function tr  is defined as follows: 

I, cost,t t tr C C= −                                         (18) 

I, gen TCL ,

oad TCL 

i i i b V

t t t b t t tC P L C L u K E= − + 
s sL

                               (19) 

( )
imp exp cost, tr tr

a C V

t t t tC K C E C E= + +                                (20) 

where 𝐾𝑡
𝑎 and 𝐾𝑡

𝑏 are the up- and down-regulation rates 
respectively, which are the rates for selling electrical energy to 
and buying electrical energy from the DN, respectively. 𝐺𝑡, 𝐸𝑡

𝑉, 
and 𝐸𝑡

𝐶 represent the amount of electrical energy generated, sold 
to and purchased from the DN, respectively. 𝐶gen is the energy 

generation cost charged to customers with controlled loads. 𝑢𝑏,𝑡
𝑖  

is the binary variable corresponding to the on or off actions for 
the TCLs. 𝐶trimp

 and 𝐶trexp 
 are the costs associated with importing 

and exporting electrical energy to the distribution network, 
respectively. 

To evaluate the effectiveness of the proposed method, it 
was compared with two energy management methods: 

i) Strategy 1: A MG energy optimization management 
strategy based on the genetic algorithm and the fuzzy 
inference system (Leonori et al, 2020). Leonori et al. (2020) 
proved that this strategy is capable of obtaining optimal 
information regarding electricity generation, electricity 
consumption, electricity prices, and temperature. The 
model of Strategy 1 involves the integration of a Microgrid 
(MG) energy optimization management strategy utilizing 
both genetic algorithms and fuzzy inference systems (FIS). 
Here's a breakdown of the model: 1) Hierarchical Genetic 
Algorithm (GA) and Fuzzy Inference System (FIS): The 
Energy Management System (EMS) of Strategy 1 is 
synthesized through a hierarchical genetic algorithm and 
fuzzy inference system (FIS). This hybrid approach 
combines the optimization capabilities of genetic 
algorithms with the decision-making flexibility of fuzzy 
logic, 2) Fuzzy Inference System (FIS) Design: The FIS is 
responsible for defining the consequent part of each rule, 
tuning the membership functions (MFs) position and 
shape, setting the rule weights, and eliminating input MFs 
deemed ineffective. This ensures that the FIS accurately 
captures the system's behavior and effectively guides 
decision-making, 3) Optimization Parameters Setting: 
Once the EMS of Strategy 1 is designed and its 
optimization parameters are set, the model proceeds to 
implement various strategies for tuning the FIS 
parameters. This iterative process allows for refinement 
and optimization of the FIS to enhance its performance in 
managing MG energy, 4) Tuning FIS Parameters: Different 
strategies are employed to tune the FIS parameters, which 
may include adjusting the shape and position of 
membership functions, optimizing rule weights, and 
removing redundant input membership functions. These 
strategies aim to improve the accuracy and efficiency of 
the FIS in making energy management decisions. In 
summary, the model utilizes a hybrid approach combining 
genetic algorithms and fuzzy inference systems to develop 
an Energy Management System for a Microgrid. The FIS 
plays a central role in decision-making, with its parameters 
optimized through iterative tuning processes to enhance 
the overall performance of the energy optimization 
strategy. 

ii) Strategy 2: Theoretical retailers. These retailers purchase an 
exact amount of electrical energy in a day-ahead electricity 
market and sell it to a simulated user group at market 
prices. The model of strategy 2 involves several key 
components: 1) Theoretical Retailers: The model features 
theoretical retailers as virtual entities within the simulation 
framework. These retailers do not physically exist but are 
instead conceptual representations used to simulate the 
behavior of actual market participants, 2) Procurement 
Process: Within the model, theoretical retailers engage in 
the process of purchasing a predetermined quantity of 
electrical energy. This procurement occurs in the day-



Z.Yu et al Int. J. Renew. Energy Dev 2024, 13(2), 329-339 

| 334 

 

ISSN: 2252-4940/© 2024. The Author(s). Published by CBIORE 

ahead electricity market, where transactions for future 
delivery are conducted based on forecasted demand and 
supply conditions, 3) Exact Quantity Procurement: The 
model specifies that theoretical retailers procure an exact 
amount of electrical energy. This suggests a precise 
allocation of resources, indicating a predetermined 
quantity agreed upon by the retailers based on their 
anticipated demand or contractual obligations, 4) Day-
Ahead Electricity Market: The procurement process takes 
place within the day-ahead electricity market, a segment 
of the wholesale electricity market where buyers and 
sellers trade electricity contracts for delivery on the 
following day. This market allows participants to plan and 
secure their energy needs in advance, 5) Energy 
Distribution to Simulated User Group: After procuring 
electrical energy, theoretical retailers distribute it to a 
simulated user group. This user group represents 
consumers or end-users within the simulation environment 
and serves as the recipient of the electricity supplied by the 
retailers, 6) Pricing Mechanism: The electrical energy is 
sold to the simulated user group at market prices. This 
implies that the pricing mechanism within the simulation 
model is based on prevailing market conditions, reflecting 
the supply-demand dynamics and pricing signals observed 
in real-world electricity markets, 7) Overall, the model 
simulates the behavior of theoretical retailers in procuring 
electrical energy from the day-ahead electricity market 
and subsequently distributing it to a simulated user group, 
all while adhering to market prices. 

These comparisons were made to assess the performance of the 
proposed method relative to these alternative energy 
management strategies. To compare the performance of the 
proposed method with other DL approaches, the energy 
management results of the proposed method were also 
compared with two other DL algorithms utilized for energy 
optimization management of MG: the Deep Q-network (DQN) 
algorithm (Alabdullah et al, 2022) and the state-action-reward-
state-action (SARSA) algorithm (Nakabi et al, 2021). This 
comparison was conducted to evaluate how the proposed 
method fares relative to these other DL algorithms in MG energy 
management. To further verify the effectiveness of the proposed 
method, the energy management results of the proposed 
method were compared with two latest energy optimization 
management methods for MGs: the proximal policy optimization 
algorithm (PPO) (Guo et al, 2022) and the ant-colony based 
algorithm (ACO) (Suresh et al, 2023).  

The proposed energy optimization management method 
for MGs is simulated, tested, and analyzed according to the 
defined energy management objective. The data used to verify 

the effectiveness of the proposed method is collecting from a 
MG power by a subsidiary of the Southern Power Grid 
Company. The data collected from June 1 2023 to July 30 2023. 
The simulation test platform used is a computer equipped with 
an Intel Core i5@2.30GHz processor, 8GB RAM, and 1TB hard 
disk space. The analysis of the designed energy optimization 
management model is performed using MATLAB software, with 
Gurobi selected as the solver. To obtain average values for the 
test results, each simulation test is repeated 30 times and each 
result represents the average of these repeated tests. 

 
3. Simulation results and analysis 

3.1 Energy optimization effect comparison with two strategies and 
three DL algorithms 

3.1.1 Total profit analysis 

The proposed method, DQN, SARSA, Strategy 1, and 
Strategy 2 were tested on the MG depicted in Fig. 1, and the 
daily average profit data for 10 days, from day 50 to day 59, were 
recorded. The comparative analysis of estimated daily earnings 
from employing various energy management methods over a 
span of ten consecutive days is depicted in Fig. 2. The total profit 
histograms and statistical values for 10 days for the proposed 
method, DQN, SARSA, Strategy 1, and Strategy 2 are shown in 
Fig. 3, respectively. 

As presented in Fig. 3, a visual representation highlights 
the noteworthy success of the proposed method in terms of 
average profitability when compared to prominent alternatives 
such as DQN, SARSA, Strategy 1, and even the retailer strategy 
(Strategy 2). The compelling evidence from this figure 
underscores the superior financial outcomes achieved through 
the application of the proposed method.  

Notably, the proposed method consistently outshines its 
counterparts, namely DQN, SARSA, Strategy 1, and Strategy 2, 
showcasing its sustained advantage in profitability. This 
temporal perspective provides a robust understanding of the 
method's performance over an extended period. While Strategy 
1 exhibits commendable results in the domain of MG energy 
management, its efficacy is contingent upon a comprehensive 
comprehension of both current and subsequent states within the 
network dynamics. This nuanced requirement sets it apart as a 
strategy demanding a deeper understanding of the intricacies 
associated with the MG, underlining the unique strengths of the 
proposed method in offering superior profitability without the 
need for an exhaustive understanding of the network dynamics. 

As shown in Fig. 3, only the total profit and the daily 
benefits of strategy 1 is close to the proposed method. In order 
to further analyze the advantages of the proposed method, in the 
following analysis, the following MG energy optimization 

50,00

100,00

150,00

-100,00

-50,00

0,00

50 51 52 53 54 55 56 57 58 59 days

P
ro

fi
ts

 (
y

u
a
n
×
1
0
4
)

DQN

SARSA

The proposed method

Strategy 1

Strategy 2

 

Fig. 2 Daily benefits from running different energy management methods or strategies. 

 

https://www.baidu.com/link?url=VLnKv4bD3d4Ewu-HllSo5LgoJvudvyktAqq3GHvA0ryPTz2CiGD5LQFzoQ772128rybf38t9tSTlmniY14BXiwSEPENQCcGccr4b2teKnAa&wd=&eqid=8644889200a47c2e0000000365c776eb


Z.Yu et al Int. J. Renew. Energy Dev 2024, 13(2), 329-339 

| 335 

 

ISSN: 2252-4940/© 2024. The Author(s). Published by CBIORE 

management effects of the proposed method is only compared 
with that of Strategy 1. 

3.1.2 TCL energy distribution and ESS charging status 

In Fig. 4(a) and Fig. 4(b), the dynamic interplay between 
TCL energy distribution and the status of ESSs during charging 
and discharging cycles is meticulously illustrated for both the 
proposed method and Strategy 1. These visual representations 
provide valuable insights into the operational intricacies of the 
MG under the influence of these two distinct energy 
management approaches. Examining Fig. 4, a striking 
resemblance in behaviors becomes apparent on the 50th day of 
the MG energy management simulation. This noteworthy 
observation underscores the similarity in outcomes between the 
proposed method and Strategy 1. The synchronized patterns in 
TCL energy distribution and ESS charging/discharging status 
hint at the comparable effectiveness of both strategies in 
optimizing MG operations on this specific day. This convergence 
of results highlights a key aspect of the proposed method – its 

capacity to achieve performance akin to the more complex 
Strategy 1. This similarity in behavior signifies the robustness of 
the proposed method in delivering outcomes on par with a 
strategy that, as mentioned earlier, necessitates a 
comprehensive understanding of the network dynamics. The 
visual evidence in Fig. 4 serves as a compelling testament to the 
efficacy and reliability of the proposed method in MG energy 
management. 

The nuanced disparity between the utilization of the 
proposed method and Strategy 1 becomes apparent in their 
respective energy allocation strategies. Notably, the proposed 
method strategically directs a greater accumulation of energy 
within the TCLs, emphasizing its commitment to leveraging this 
resource for optimized MG performance. In contrast, Strategy 1 
adopts a divergent approach, allocating a larger share of the 
available energy to the ESSs, indicating a preference for storing 
energy within these systems. 

Furthermore, a shared characteristic emerges between the 
proposed method and Strategy 1. Both strategies exhibit a 
proactive stance in deciding to store a substantial amount of 
electrical energy during periods characterized by abundant 
renewable energy generation and a lack of peak demand. This 
commonality underscores the importance of aligning energy 
storage decisions with favorable conditions, showcasing a 
strategic awareness of optimizing resource utilization. 

In essence, the proposed method's emphasis on TCL 
energy accumulation and Strategy 1's inclination towards ESS 
energy allocation highlight the distinct yet equally effective 
paths these strategies take in responding to the dynamic energy 
landscape. The shared commitment to capitalize on renewable 
energy surpluses accentuates the sophistication embedded in 
their decision-making processes, contributing to the overall 
efficacy of MG energy management. 

3.1.3 The complexities of electricity prices and demand dynamics 

Fig. 5 provides a visual narrative of the electricity 
transactions with the DN under both Strategy 1 and the 
proposed method. The power curve of renewable energy 
generation, showcasing the potential for both storage and sale 
to the DN, is also depicted in this comprehensive illustration. 

A discernible trend emerges from the analysis of Fig. 5: the 
proposed method exhibits superior performance in energy 
scheduling compared to Strategy 1. This is evident even on days 
marked by substantial fluctuations in electricity generation and 
consumption. The visual representation underscores the 
capability of the proposed method to adapt and optimize MG 
energy management behaviors, outshining Strategy 1 in its 
capacity to navigate the complexities of electricity prices and 
demand dynamics. 
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Fig. 3 Total profit histograms for 10 days after running the proposed method, DQN, SARSA, Strategy 1, and Strategy 2. 
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Fig. 4 TCL energy distribution and ESS charging status. (a) The 
proposed method; (b) Strategy 1. 
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The significance of this superiority lies in the proposed 
method's ability to learn and anticipate fluctuations in electricity 

prices and demand. By doing so, it positions itself as a more 
adaptive and forward-thinking solution for MG energy 
optimization. This adaptability is crucial in real-world scenarios 
where the energy landscape is characterized by variability, 
allowing the proposed method to make more informed and 
strategic decisions in response to changing conditions. Fig. 5 
serves as compelling visual evidence of the proposed method's 
prowess in achieving optimal energy scheduling outcomes, even 
in the face of challenging fluctuations in the MG's energy 
dynamics. 

Indeed, In the intricate landscape of MG energy 
optimization management, Strategy 1 distinguishes itself by 
relying on a comprehensive understanding of the MG dynamics. 
This thorough comprehension empowers Strategy 1 to delve 
into the intricate details, predicting not only the purchase and 
sale prices of electricity but also the availability of these critical 
resources. This requirement for an extensive solution 
underscores the complexity and depth of Strategy 1's decision-
making process, as it navigates the nuances of market dynamics 
and resource availability. 

In stark contrast, the proposed method takes a more 
streamlined approach by operating without these constraints. 
Unlike Strategy 1, the proposed method bypasses the need for 
an exhaustive solution to MG dynamics. This divergence in 
approach positions the proposed method as a more agile and 
adaptable solution, capable of optimizing energy management 
without the burden of predicting market prices or resource 
availability with the same level of granularity. 

This distinction not only highlights the operational 
variance between the two strategies but also underscores a key 
strength of the proposed method. Its ability to operate efficiently 
without the need for detailed predictions of market dynamics 
allows for a more flexible and practical application in real-world 
scenarios, where uncertainties and fluctuations are inherent. 
This characteristic sets the proposed method apart as a 
pragmatic and effective tool for MG energy optimization. 

3.2 Energy optimization effect comparison with two latest research 
works 

The proposed method, PPO, and ACO were tested on the 
MG depicted in Fig. 1, and the daily average profit data for 10 
days, from day 50 to day 59, were recorded. The total profit 
histograms and statistical values for 10 days for the proposed 
method, PPO, and ACO are presented in Tab. 2. The PPO 
utilizes historical data on energy consumption and renewable 
energy generation to continuously update the network and learn 
an optimal policy. To ensure efficient and stable action selection, 
a clipped surrogate loss function is employed in PPO. The ACO 
draws inspiration from ant foraging behavior to effectively 
explore the solution space and identify optimal configurations 
for energy distribution within a microgrid system. Through 
iterative exploration, solution construction, and pheromone-
based communication, ACO facilitates the discovery of high-
quality solutions that maximize energy efficiency while meeting 
predefined optimization objectives. 

The analysis presented in Table 2 unveils a significant 
breakthrough achieved by the proposed method, particularly 
evident in its substantial improvement in average profitability 
when contrasted with both PPO and ACO methodologies. This 
observation not only highlights the effectiveness of the proposed 
approach but also accentuates its capacity to deliver superior 
financial results in comparison to established techniques. By 
quantifying and juxtaposing the profitability metrics in a 
structured format, Table 2 offers a clear and objective 
assessment of the proposed method's performance, serving as a 
cornerstone for deeper analysis and interpretation. 
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Fig. 5 Electrical energy interacted with the main network. (a) 
Electrical energy interacting with the distribution network on day 
50 when the proposed method is adopted; (b) Electrical energy 
interacting with the distribution network on day 50 when strategy 
1 is adopted; (c) Electrical energy interacting with the distribution 
network on day 56 when the proposed method is adopted; (d) 
Electrical energy interacting with the distribution network on day 
56 when strategy 1 is adopted. 

 

(d) 

(c) 

(a) 

(b) 



Z.Yu et al Int. J. Renew. Energy Dev 2024, 13(2), 329-339 

| 337 

 

ISSN: 2252-4940/© 2024. The Author(s). Published by CBIORE 

Moreover, the insights gleaned from Table 2 provide 
compelling evidence that further reinforces the superior 
financial outcomes achieved through the application of the 
proposed method. The meticulous examination of the data 
presented in the table sheds light on the magnitude of the 
improvement in profitability, underscoring the tangible benefits 
brought about by adopting the proposed approach. This 
evidence not only bolsters the credibility of the findings but also 
serves to deepen our understanding of the underlying 
mechanisms driving the observed results. 

The combination of the findings from Table 2 and the 
subsequent analysis offers a comprehensive perspective on the 
remarkable success of the proposed method in enhancing 
profitability. By providing empirical evidence of its superiority 
over established methodologies such as PPO and ACO, the 
analysis reaffirms the efficacy of the proposed approach in 
achieving superior financial outcomes. This in-depth exploration 
not only enriches our understanding of the observed trends but 
also underscores the transformative potential of the proposed 
method in optimizing financial performance within the specified 
context. In summary, the proposed method consistently 
outshines its counterparts, namely DQN, SARSA, Strategy 1, 
Strategy 2, PPO, and ACO, as shown in Fig. 3 and Table 2.  
 

5. Conclusions 

A MG energy optimization management method is 
proposed based on an improved soft actor-critic (SAC) 
algorithm. To validate the effectiveness of the proposed 
approach, a comparison was conducted between the MG energy 
optimization management results achieved by the proposed 
method and those obtained through other energy optimization 
management methods or strategies. The comparative results 
reveal that the average profitability of the MG when 
implementing the proposed method surpasses those of the Deep 
Q-network DQN algorithm, the State-action-reward-state-action 
algorithm, the retailer strategy, the genetic algorithm, the 
proximal policy optimization algorithm, and the ant-colony 
based algorithm. Additionally, when employing the proposed 
method, the MG exhibits superior average profitability over a 
span of 10 days in comparison to other methods strategies. 
Although MG energy management performs well when Strategy 
1 is employed, it necessitates a thorough understanding of the 
current and subsequent network dynamics. Furthermore, in the 
MG energy management simulation on the 50th day, similar 
behaviors are observed between the results of MG energy 
optimization management when the proposed method and 
Strategy 1 are employed. However, Strategy 1 necessitates a 
comprehensive solution of the MG's dynamics, enabling it to 
predict the purchase and sale prices of electricity, as well as the 
availability of electrical energy, while the proposed method 
operates without such constraints. 
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