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Abstract. This paper presents an integrated framework designed for capacity planning of grid-connected nanogrid, a small solar and energy storage
system that can provide kilowatt-level services to individual buildings. This framework comprehensively evaluates nanogrid cost-effectiveness,
sustainability, and reliability, employing a multi-faceted techno-enviro-economic assessment approach. Traditional nanogrid capacity planning often
prioritizes peak load requirements, which may lack optimality owing to occasional peak load occurrences. Conversely, optimizing solely for base load
requirements might also fall short of effectiveness, compromising reliability and sustainability objectives. The proposed framework employs a three-
step, integrated process for nanogrid (NG) capacity planning. Firstly, the Planner module identifies optimal asset sizing considering a two-day look-
ahead logic. Then, the Operator module serves as a digital twin for the system, conducting hourly calculations over a short-term horizon. Lastly, the
Evaluator module evaluates technical, environmental, and economic metrics for each solution, assessing the effectiveness of asset-sizing decisions. A
simulated case study has demonstrated the effectiveness of the proposed framework. The technical assessment revealed that a PV size of 24 kW and
a storage capacity of 91 kWh led to the most reliable solution, with a probability of local sufficiency of 95 percent. Furthermore, the environmental
assessment showcased a renewable fraction of 94% with a PV size of 26 kW and a storage of 85 kWh. Economically, the analysis identified that a PV
size of 12 kW and a storage size of 24 kWh led to the minimum total cost. In contrast, a PV size of 26 kW and a storage size of 85 kWh yielded a total
operating savings of $4,801.
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1. Introduction the microgrid and the utility become feasible, allowing the

microgrid's power output to deviate from local demand
requirements. Conversely, during islanded operation, wherein
the microgrid operates independently from the utility grid, local
power generation and Battery Energy Storage Systems (BESS)
must sufficiently meet the demand, given the unavailability of
the utility grid. (Lagouir et al., 2021) . Microgrids encompass
diverse hybrid energy resources, particularly renewables like
solar PV and wind, and distributed generation, such as diesel
generators and energy storage (Khamharnphol et al., 2023).

The scale of assets within a microgrid fluctuates according
to the specific application, encompassing settings ranging from
a campus or village to the expansive dimensions of an island or
urban municipality. (Bhagavathy & Pillai, 2018; Bin et al., 2022;
Obara et al.,, 2018). However, the smallest microgrid, NG , is a
single building at the kW level and can operate either in grid-
connected or isolated mode by following the local energy
demand and generation availability (Kempener et al., 2015).
NGs, commonly situated in residential dwellings, rural locales,
or small-scale industrial settings, manage loads below 20 kW.
They primarily leverage clean energy sources, including fuel
cells, solar arrays, and wind turbines (Sayed et al., 2023; Teleke
etal, 2014).

As per the Lawrence Berkeley National Laboratory, an NG
must include at least one load or sink of power—which could be

The aging electrical power system infrastructure suffers
from several challenges, leading to high power losses and
eventually decreasing efficiency (Elsayed et al., 2019). The cost
of rebuilding infrastructure is so high that non-traditional
approaches to address the challenges are needed (Afzal et al.,
2020). Therefore, distributed generation (DG) emerges as a
promising concept. DG involves setting up smaller generators
near consumers, offering benefits for the environment,
economy, and technology, especially within distribution
networks (Nguyen et al, 2018). Furthermore, utilities can
control these generators for better operational reliability
(Kanakadhurga & Prabaharan, 2022). This control enables quick
adaptations to fluctuations in demand or supply, strengthening
the grid's dependability.

Incorporating DG into consumer premises signifies the
emergence of a novel power system paradigm known as a
microgrid (MG). According to the International Council on
Large Electric Systems (CIGRE) (Marnay et al., 2015), the
microgrid is an electrical distribution system with
interconnected loads and distributed energy sources, such as
DG, that function as a single controllable entity. It can operate
in grid-connected or isolated mode (Jiayi et al., 2008). In the
grid-connected mode, bi-directional energy exchanges between
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energy storage—and at least one external connection point
(Nordman et al,, 2012). An NG, in comparison to a microgrid,
encounters fewer technical and regulatory obstacles,
contributing to their substantial deployment (Werth et al., 2015).

To enhance the sustainability of energy generation and to
provide flexibility for the next generation of power system
infrastructure, renewable energy resources (Ahmed & Demirci,
2022; Khalid et al., 2016) and energy storage (Denholm & Hand,
2011) are considered the assets in an NG. Renewable energy
sources enhance sustainability; however, due to their
intermittency and variability, they pose reliability challenges,
and thus, a trade-off between sustainability and reliability should
be navigated.

The optimization of asset sizing for a reliable and sustainable
NG assumes paramount importance in achieving optimal self-
sufficiency, offering grid relief, and ensuring cost-effectiveness.
Consequently, potential challenges arising from integrating
renewables can be mitigated (Ahmed, 2023; Bandyopadhyay et
al., 2020). In the design procedure of a PV-based microgrid or
an NG, the optimal sizing of their components ensures the
optimal utilization of the available solar energy and associated
storage devices (Mathew et al, 2022). Optimal BESS sizing
improves reliability and resilience (Xie et al., 2019). An optimal
hybrid sizing can be considered in profitability analysis for off-
grid microgrids, such as in the mining industry (Ellabban &
Alassi, 2021).

Several papers have studied the microgrid and NG from
technical and operational (Dali et al, 2010; Mahmoodi et al.,
2013), environmental (Gildenhuys et al.,, 2019; Zachar et al.,
2014), and economic (Jha et al, 2016; Nayak et al, 2019)
perspectives. The authors (Babacan et al, 2017) presented a
convex optimization-based ESS scheduling algorithm that
minimizes the monthly bills. In addition, a new concept of a
supply charge is introduced to encourage consumers to store
the surplus solar energy that can potentially cause reverse
power flow in the grid. Notably, (Bouchekara et al, 2021)
introduced a design for hybrid NG for a camp located in Saudi
Arabia's Western region. The method considers two conflicting
objectives in the optimization problem: the loss of power supply
probability and energy cost. Using four variants of Particle
Swarm Optimization (PSO), four algorithms are combined for
various NG elements, achieving a solution that balances cost-
effectiveness and reliability. A techno-economic approach is
proposed by the authors (Dahiru and Tan, 2020) to optimize NG
size in tropical regions of the Amazon. The method considers
multiple renewables to achieve lower levelized energy costs, net
present costs, and low per capita energy consumption. The
authors (Ban et al., 2019) modeled off-grid NG sizing by Mixed
Integer Linear Programming (MILP) and solved it using robust
optimization. The optimization model minimizes investment
costs of solar PV and battery systems in the NG. The reliability
is ensured by energy storage from periods of high PV output
and utilizing it in periods of power shortage.

Most microgrid/NG planning and operations studies have
concentrated on singular dimensions such as technical
feasibility, economic viability, or environmental sustainability.
The contribution of this paper; however, is to adopt an
integrated framework that combines technical, environmental,
and financial considerations. By incorporating sustainability,
cost-effectiveness, and reliability elements, this study provides
a holistic understanding of NG within a comprehensive
landscape, departing from the limited scope of prior research
endeavors. The framework is composed of three essential
modules: Planner, Operator, and Evaluator, collectively interact
to offer a comprehensive techno-enviro-economic assessment.
A comprehensive list of technical, economic, and environmental
metrics is also given for other researchers to follow.
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Fig 1. Proposed Nanogrid Architecture

2. Methodology

The proposed methodology for capacity planning of NGs
comprises a three-step framework acting as a multi-level
program. These three modules are the Planner, Operator, and
Evaluator. The three steps form a comprehensive decision
support framework, ensuring a balanced consideration of
technical, environmental, and financial metrics.

. Planner: This module calculates the daily optimal
capacities of the BESS and PV system, considering a 2-day
look-ahead. After running this for a year, we get 365 daily
optimal capacity solutions.

. Operator: This module takes each of the 365 daily optimal
capacity solutions from the Planner module, assumes it as
the fixed capacity for the entire year, and calculates the
optimal dispatch of BESS and PV based on the annual
data.

. Evaluator: This module evaluates each of the 365 solutions
from the Operator module based on 15 different metrics,
which cover technical, environmental, and financial
factors. It does not provide a single best solution but
presents the results for each metric for every solution. The
customer can then select the solution that best meets their
specific requirements.

The proposed methodology presents a systematic and

adaptable framework for NG capacity planning. While it might

not guarantee a single optimal solution, it offers a robust and
practical approach tailored to the complexities of several real-
world scenarios. This methodology will undergo testing using
an AC NG architecture, as depicted in Figure 1, similar to the

AC NG architecture introduced by (Santoro et al., 2023).

As shown in Fig 2, the methodology starts with importing
input data and assumptions. Input data include energy prices,
demand, solar PV generation profile, BESS and solar PV asset
parameters. The Planner is a linear programming problem that
finds the optimal sizes of BESS in MWh and solar PV in KWp.
Later, the Operator is a mixed-integer programming problem
that finds the hourly optimal dispatch of the assets. In the last
phase, the Evaluator uses the outputs of previous modules and
calculates several technical, economic, and financial metrics.
The resultant metrics are a decision support mechanism for the
desirable NG capacity.

2.1 Planner module

The Planner module operates as the first stage of the
proposed decision support framework. The Planner module
aims to calculate the daily optimal capacities of the BESS and
PV system for each day of the year. To maintain the simplicity
and clarity of the module, the time value of money and costs
related to managing and sustaining the investment over the
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Fig 3. Nanogrid Capacity Sizing Strategy

project's lifetime have not been considered. The planning
modules typically minimize the cost of purchasing (fixed cost)
and operating (variable cost) the assets while still meeting the
supply and demand balance. To do this, an LP problem is
developed to determine the optimal size of the PV panels and
BESS for a given load profile and set of constraints. Capacity
optimization problems inspire the proposed model, but it
contains differences. One of the differences is the optimization
window of the problem. Generally, capacity optimization
problems consider an hourly demand profile for a year to find
the optimal sizes; however, the Planner module searches for the
optimal size of assets for each day in a year while considering
the look-ahead logic. Look-ahead logic is a strategy that allows
the model to consider not only the conditions of the current day
but also anticipate the general trends for the next two days. This
is done by considering 72 hours of data for each iteration: 24
hours for the current day and 48 hours for the next two days.
This means that when determining the optimal capacities for the
current day, the model already knows the conditions expected
for the next two days, as shown in Fig 3. This will enable the
BESS to be optimized to handle future events.

The second difference is in how the overnight cost of assets
is considered in the Planner module. Generally, the annuity of
investment is used in capacity optimization models in the
literature; however, due to the daily basis approach adopted in
this study, the overnight cost of assets is assumed to be in per
diem for a given expected lifetime of the asset.

The Planner module is developed in the standard form of
linear programming (LP). Once the optimal capacities for the
current day are determined, the model rolls forward to the next
day, bringing in new data for the look-ahead period and
repeating the optimization process. This sequence is carried out
for an entire year, resulting in a set of 365 daily optimal capacity
solutions, as shown in Figure 4, which illustrates the flowchart
of the Planner.

The LP program minimizes the per diem total cost,
comprised of BESS overnight cost, PV overnight cost, and
import cost (generally the cost of energy received from the grid)

2Day Lookahead Logic
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\
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Fig 4. 2-Day Lookahead Logic Concept
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as in Equation (1). In addition, a set of constraints must be
satisfied on an hourly interval. Equation (2) initializes the state
of energy (SoE) in BESS as a 3 percent of its entire energy
capacity. Equation (3) maintains the supply-demand balance on
an hourly basis throughout the optimization horizon (24 hours
plus look-ahead). Solar production, battery discharge, and
imported power from the grid on the left-hand side of the
equation should be balanced with the sum of the demand and
the BESS charging energy. The SoE is defined in Equation (4) as
a difference equation by accumulating the energy charged at
time t on top of the SoE at time t-1 and subtracting discharge
energy at time t. Equation (5) is a box constraint to limit the SoE
so that it does not exceed the total BESS energy capacity.
Equations (6) and (7) limit the BESS charging power so that it
does not exceed the available empty capacity in BESS and the
maximum charging capacity assumed by the user. Similarly, the
BESS discharge capability is limited in Equations (8) and (9) to
not exceed the available energy already accumulated in BESS
and to respect the maximum discharging capacity assumed by
the user. Finally, Equation (10) ensures that the hourly import
energy from the grid does not exceed the grid import capability
assumed by the user (generally the contract capacity).

Minimize ((E * 0C®) xaf) + ((S*0C%))*a’)+ T.p; *
gr * At (1)
subject to

eg=[F*E
St+dt+gt=lt + Ct

=1 @)
vtefl,..,T} 3)
er = er_q + U Cr. At —ﬁ.At Ve (2T @
Ha
0<e <E
0<c¢<E—e_4
0<c, <y*E
0<d,<e4
0<d, <y+E
0<g: =G

,vte{l,..,T} (5)
vte{2,..,T} (6)
,Vvte{l,..,T} @)
,Vte{2,..,T} (8)
,vte{l,..,T} 9)
,Vte{l,..,T} (10)
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2.2 Operator Module

In the second step, the Operator module takes each of the
365 daily optimal capacity solutions provided by the Planner
module and treats them as fixed capacities for the entire year.
Using the annual data, the Operator module calculates the
optimal dispatch of BESS and PV for each solution while
minimizing the total energy cost purchased from the grid. The
problem is formulated as a mixed-integer linear programming
(MILP) problem, solved hourly over a 72-hour planning horizon
(24 hours as an optimization window with a 2-day look-ahead
logic).

The inputs to the Operator module are the capacity solutions
for the BESS and PV, as shown in Figure 5, and the load profile
for the NG. The model considers factors such as the energy
storage system's efficiency, the energy cost from the grid, and
limits on the charging and discharging rates of the battery. The
state of energy (SoE) maintains its continuity from day to day
throughout the horizon, in which the initial hour dispatch of each
day depends on the previous day’s last hour SoE. The algorithm
runs for 365 different capacity cases and provides hourly
dispatch results for annual operations.

The Operator module minimizes the import cost while
respecting a set of constraints. The objective function is the
minimization of the energy cost from the grid as given in Eq.
(11). Equations (2-6), (8), and (10), as discussed in the Planner
module above, are included. Additionally, Equations (12) and
(13) are included to limit the charging and discharging
capabilities and to prevent simultaneous charging/discharging
occurrences.

Minimize ¥, p; * g; (11)
subject to
2-6),(8),(10)
0<c¢ <y*Exu ,Vt (12)

0<d;<y*E+x(1-u,) ,Vt (13)
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2.3 Evaluator module

Technical, economic, and financial evaluations are also
crucial for an informed decision leading to a plausible capacity-
sizing solution. The Evaluator calculates a series of metrics,
inspired by Refs (Wang et al., 2013) and (Sambaiah, 2018) to
evaluate the performance of each solution. The flowchart of the
Evaluator is presented in Fig 6.

The definition, unit, and mathematical formula of these
metrics are elaborated in Table 1. The NG Evaluation process
explained above leads to the optimal NG capacity planning and
operation solutions, provides a multi-perspective analysis of any
NG capacity solution, and decides on the optimal size that fulfils
the reliability, cost-effectiveness, renewable integration, self-
sustainability, and many other requirements. Each metric can be
given a certain weight to identify its importance from the user's
perspective, and the performance comparison between the
solutions can be conducted accordingly. Metrics used in the NG
Evaluator are of different weights and can be adjusted by the
user to prioritize specific metrics and ignore others if needed.

3. Case Study

The proposed modules were simulated in MATLAB using
YALMIP (Lofberg, 2004) and CPLEX. Hourly data on demand,
solar profile, and time of use electricity prices were extracted
(Energiedkonomik, 2020; Every et al, 2017; Pfenninger &
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Fig 7. Hourly demand and solar generation profiles
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Table 1
Technical, Economic, and Environmental Metrics Applied in the Evaluator Modules
Index Name Unit  Category Formula Description
ALSH  Annual Local- hour  Technical r The total annual number of hours the NG
Sufficiency Z LSH, obtains local sufficiency to cover hourly
Hours t=1 demand.
_{1ifg.=0
LSH, = {0 otherwise
9. is import energy at hour t
ALSO  Annual Local- Occu  Technical r The total annual number of occurrences
Sufficiency rrenc Z LSO, that the NG obtains local sufficiency
Occurrences e t=1 regardless of the duration
LSO,
_ (1 only 1st LSH, = 0 in successive ev
_{ 0 otherwise,
ADLS  Average hour  Technical >so DLSs, The annual average duration of Local
Duration of TALSO Sufficiency where the NG uses only local
Local DLS: Duration of Local Sufficiency resources to maintain supply-demand
Sufficiency so : Local Sufficiency Occurrence balance.
MDLS  Maximum hour  Technical max(DLS,) The annual Maximum duration of Local
Duration of Sufficiency
Local
Sufficiency
PGl Percentage of p.u Technical ALSH The fraction of time that the NG operates
Grid T in local sufficiency mode throughout the
Independence horizon of operations
PGD Percentage of p.u Technical 1—-PGI The fraction of time that the NG depends
Grid on the grid import fully or partially to
Dependency cover hourly demand
ALED  Annual Local kWh  Technical L The total annual energy that needs to be
Energy Iyr Z D, — G, imported from the grid to cover the
Deficiency t=1 required demand or to be cut in an off-grid
Where D, is demand at time t and application
G is the total generation at time t
ALDH  Annual Local- hour  Technical L The total annual number of hours the NG
Deficiency Z LDH, cannot obtain local sufficiency.
Hours t=1
_[{0ifg:=0
LbH, = {1 otherwise
LEED Local Expected kWh  Technical LEED = LED The average expected energy deficiency
Energy ~ ALDH per hour.
Deficiency
ADLD  Average hour  Technical Y40 DLDy, The annual average duration of Local
Duration of ALDO Deficiency.
Local DLS: Duration of Local Deficiency
Deficiency do : Local Deficiency Occurrence
RF Renewable p.u Environmental Yi-1(A, — C) * 100 The annual renewable production output
Fraction RF = T over total demand
where A4, is available solar at
time t, C; is the curtailed solar at time t
and D, is the demand at time t
REP Renewable p.u Environmental max ((4; — C;)) * 100 The maximum solar production capacity
Energy REP = Max( D) over the maximum demand power.
Penetration
REC Renewable kWh  Environmental T The excess annual renewable production is
Energy REC = Z(At —-U) to be curtailed.
Curtailment P
Where U, is utilized solar at times t
TOS Total $ Economic T The total Savings that the NG can achieve
Operational TOS = Z(GE 1) *a; on an annual basis
Savings =1
Where G, is the total generation,
I; is the imported energy from the grid,
and a; are TOU prices
TC Total Cost $ Economic TC=0C®+ 0Cs+IC Annual total cost

PV Overnight Cost
BESS Overnight Cost
Import Cost

Staffell, 2016), respectively and shown in Fig 7. TOU rates
change within a day, but they repeat their pattern daily. The
demand profile in kW shows higher amplitudes in summer than
in winter months. The solar profile is the hourly solar generation
inkWh. Additionally, the technical and financial parameters for

found..

the case studies are listed in Error! Reference source not

In Operator implementation, the Initial SoE on the first day
is chosen to be 60% of the BESS capacity at the beginning of
operations. The SoE at the end of each day of operation is used
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Table 2
Technical and Financial Assumptions

Definition Symbol Value Unit
Solar PV Overnight Cost ocs 550 $/kW
Solar PV Lifetime LTS 25 Years
1
PV Per Diem factor a’ [ p.u
LTS % 365
BESS Overnight Cost oce 450 $/kWh
BESS Lifetime LT® 15 Years
BESS Duration BSDU 4 Hours
Charging/discharging 1 p.u (Ratio
maximum ratio v BSDU Of E)
1
BESS Per Diem factor at _— p.u
LTe * 365
Maximum power drawn KW
from the grid (kW) G 10

as the initial SoE of the next day to achieve a continuous BESS
operation throughout the year.

4. Simulation Results and Discussion
4.1 Planner Simulations

The Planner module runs for 365 days on an hourly basis for
the given inputs with an optimization window of 24 hours and a
look-ahead logic of 2 days. In every figure below, the x-axis
denotes the identification number of a given day, beginning with
1, symbolizing January 1st, and culminating at 365, representing
December 31st. Fig 8 illustrates the fluctuating trends of optimal
BESS and PV sizes over a year, revealing distinct seasonal
patterns. The optimal BESS size escalates during summer
months due to higher solar generation levels that permit the
BESS to charge more energy and be ready for dispatch during
high-price periods. Similarly, the requirements for PV size also
surge in the summer due to high energy demand. Additionally,
there are notable spikes in the winter months of December and
January. They are strategic provisions to ensure adequate PV
capacity during periods of reduced solar availability. The
reasoning would be to maximize solar energy utilization and
minimize reliance on grid imports even during less sunny winter
days. The objective cost, on the other hand, largely shadows the
trends of BESS and PV sizing. During winter days, despite the
BESS size not being as high as on summer days, the objective
function still shows an increase due to more significant imports
from the grid where solar PV generation is not sufficiently
available.

Int. J. Renew. Energy Dev 2024, 13(2),340-350
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A mixed illustration is given in Fig 9 to explain the changes
in BESS and solar PV capacities throughout the year. The BESS
energy capacity and solar PV capacity are shown using purple
and yellow circles, respectively. The size of each circle directly
corresponds to the capacity of the respective energy source: a
larger circle indicates a higher capacity. As observed in the
figure, the planner module has provided insights into the day-
to-day optimal capacities of the BESS and solar PV, considering
the changing demand and solar availability throughout the year.
However, the optimal capacities suggested for summer days
might be less effective during winter and vice versa. The
Operator module will serve a critical role in this regard. It
evaluates the impact of operating the system under a "fixed"
capacity, as determined by the Planner module for each day
over the entire year. Essentially, it answers the question: "What
if we had this fixed capacity of BESS and solar PV for an entire
year?". Therefore, combining the Planner and Operator
modules will provide a more comprehensive decision-making
tool that bridges the gap between daily optimal solutions and
their long-term implications.

4.2 Operator Simulations

The Operator module is simulated where the Initial SoE on
the first day is chosen to be 60% of the BESS capacity at the
beginning of operations. The SoE at the end of each day of
operation is used as the initial SOE of the next day to achieve a
continuous BESS operation throughout the year. The algorithm
runs for 365 different capacity cases released by the Planner and
provides hourly dispatch results for annual operations.

One capacity case, comprising a PV size of 12 kW and a
BESS size of 24 kWh, was chosen to present operational results.
The asset dispatch decisions for four consecutive days are
illustrated in Fig 10 (a) and (b) for winter and summer,
respectively. Throughout the year, the primary objective of the
NG is to achieve local energy self-sufficiency. This is managed
by harnessing solar power whenever it is plentiful or utilizing
energy stored in the BESS when solar production is insufficient
to meet the demand. Excess solar energy is stored in the BESS
during high solar production and low demand. This stored
energy is dispatched during high demand and low solar
production periods, effectively shifting renewable energy usage
to align better with demand patterns. However, once the BESS
reaches its maximum state of charge (SoC) at 100%, additional
solar production is inevitably curtailed, highlighting the trade-
off between storage capacity and renewable energy utilization.
During periods of high demand where solar production and
stored energy in the BESS are inadequate, the NG turns to grid
imports to meet its energy requirements.

Capacity Sizing Results
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Sizing Solutions for Daily Requirements of PV and BESS
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Fig 11 illustrates the operation cost savings by the 365 sizing
solutions received from the Planner. The cost savings differ
between the annual utility bill with and without the NG. As a
result, the higher the BESS and PV capacity, the higher the cost
savings. From the annual cost savings perspective, the highest
cost savings of ~$4,801 are achieved with the capacity solutions
of ~26kW PV and ~85kWh BESS.

Executing the Operator module enabled a comprehensive
understanding of how each 365 daily solution would perform
over the entire year. However, with such a multitude of potential
optimal solutions, determining the final system configuration
necessitates an informed decision-making criterion. The
transition from the Operator module to the Evaluator module
addresses this need. The Evaluator module significantly refines
decision-making, offering a multi-dimensional analysis of each

potential solution. Instead of favoring any metric, it provides a
diverse set of metrics to evaluate the performance of each
solution from different perspectives.

4.3 Evaluator Simulations

After the Planner and the Operator modules, the results of
the Evaluator module are presented in this section. To put a
perspective on two opposite sides of metrics, one for
sufficiency-related metrics and one for deficiency-related
metrics are examined. Figure 12 reports the correlations
between the proposed sufficiency metrics (TOS, RF, PGI) for
different cases. For example, Fig 12 (a) shows that as the NG
supplies more demand from the local generation (while PGI is
increasing), the import from the grid decreases; therefore, the
TOS increases. A similar correlation is observed between the

[ Available Solar

3
<

Supply Demand Balance on Typical Days with LA Logic
T T T =il T

H [ ¢ischarge
- Imports
Demand

Energy Generation (kvvh)
o o

BESS Disf

80 70 80 a0
Hour

w
(=1

(a) Winter Days
T

o

BESS Dispatch (kWh)
S

T T
I Charge

I discharge |

SoC

=)

50 60 70 80 20

_ [ Available Sclar

[l |EEEdscharge
V|p | imports
4 _ Demand

Energy Generation (kWWh)

50 60 70 80 90

(b) Summer Days

T
[ Charge
I discharge [
SoC

BESS Dispatch (kWh)
S

80 20

50 60 70
Hour

Fig 10.Winter and Summer NG operational dispatch for four consecutive days

ISSN: 2252-4940/©2024. The Author(s). Published by CBIORE



A. El Sayed et al

Annual Savings vs PV and BESS Sizes

= 4800

5000 -, 4600

Qe
4 4400

4200

4000

Savings ($)

3800

w
a
8

3600

3000 -
3400

2500 .|
40

3200

3000
: ;. 60
10 - “ 20 4 2800
Solar Size (kW) 0 9
Energy Storage Size (kWh)

Fig 11. Cost savings versus solar size vs BESS size

PGI and RF in Fig 12 (b). A hundred percent of PGI means no
import from the grid to NG; hence, renewable generation has
only satisfied the annual demand, leading to 100% RF. Finally,
Figures 12 (c) and (d) show the NG sizes versus the RF; as the
PV and BESS sizes increase, the RF increases exponentially.
However, in some cases, especially in Figure 12 (c), some
outliners that do not follow the general relationship are
observed. For example, four cases have a PV size greater than
30 kW, and three have a corresponding RF value of 90%.
However, the fourth case gives relatively less RF (only %75)
even though it is associated with the largest PV size. This
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outliner can be justified by the size of the BESS of this particular
case since it is 40% less than that in the other 3 cases.

On the other hand, the correlations between deficiency
metrics (LEED, PGD) are depicted in Fig 13. The inverse
proportionality between LEED and TOS is observed in Fig 13
(a). It is also interesting to notice that even a minor LEED
increase significantly reduces TOS. Fig 13 (b) states that as the
average hourly expected energy deficiency increases (related to
the NG size), the NG becomes more dependent on the grid to
cover the load, increasing PGD exponentially. In contrast to
sufficiency metrics, the PGD decreases exponentially
concerning the increase in PV and BESS sizes, as shown in
Figures 13 (c) and (d). Additionally, it is observed that the
change in RF and PGD is more sensitive to the change in PV
size than the change in BESS size. The consumers can
determine the size of PV and BESS that meets their comfort by
weighing each metric concerning its importance.

4.4 Technical Assessment

In assessing 365 distinct sizing solutions based on the
technical metrics proposed within this study, the primary
objective was to evaluate each solution's capability to operate
independently from the main power grid. One sizing solution
was recorded as the best representation of local sufficiency,
featuring a photovoltaic (PV) size of 24 kW and a BESS capacity
of 91 kWh. This solution recorded a total annual cost of $3,570.
Notably, the critical technical metrics associated with this
solution are presented in Table 3. The analysis reveals a total
annual local sufficiency duration of 8,293 hours and occurred
130 times throughout the year. This means that the probability
of local sufficiency is up to 95 percent. Moreover, the average
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Table 3
Main Technical Metric Values

Metric Value PV Size BESS Size Total Cost

ALSH 8,293 (hours)

ALSO 130 (Occurrences)

ADLS 64 (hours) 24 (kW) 91 (kWh) 3,570 (%)

MDLS 2,918 (hours)

PGI 95 (Percentage)

duration of local sufficiency was 64 hours, with an exceptional
maximum duration of 2,918 hours. In contexts such as rural
areas, where continuous electricity supply may not be
guaranteed, there is a need to rely on local resources to mitigate
the impacts of blackouts. This solution is the most viable option
for ensuring reliability in such circumstances.

4.5 Environmental Assessment

Considering environmental metrics and interests, the two
relevant metrics are renewable fraction and renewable energy
penetration, as shown in Table 4. In the context of the optimized
sizing solution with the most favorable environmental metrics,
the PV size is 26 kW, the BESS size is 85 kWh, and the total cost
is $3,430. This sizing solution achieves an RF of 94%, indicating
a high proportion of renewable energy sources utilized, while
the REP is 224 percent. These metrics underscore the
environmental sustainability of the proposed solution,
enhancing renewable energy adoption.

4.6 Economic Assessment

When assessing the economic aspects, the primary metrics
used are the total cost and Total Operating Savings shown in
Table 5. Among the presented sizing solutions, one stands out
economically, featuring a Total Cost of $2,085, with a PV size of
12 kW and a BESS size of 24 kWh. This solution demonstrates
a lower total cost compared to others. Conversely, while the
solution with a PV size of 26 kW and a BESS size of 85 kWh has
a higher Total Cost of $3,430, it yields substantial Total
Operating Savings of $4,801. It indicates minimal energy
purchasing was achieved, with a prevalence of renewable
resources known for cost-effectiveness. These economic
metrics offer valuable insights into the cost-effectiveness of each
solution, assisting stakeholders in the NG planning process.

Table 4
Main Environmental Metric Values
Metric Value PV Size  BESS Size Total Cost
RF 94 (%)
26 (kW) 85 (kWh) 3,430 ($)
REP 224 (%)
Table 5
Main Economic Metric Values
Metric Value PV Size BESS Size Total Cost
TC 2,085 ($) 12 (kW) 24 (kWh) 2085 (3)
TOS 4,801 ($) 26 (kW) 85 (kWh) 3,430 ($)

5. Conclusion

This work has proposed a comprehensive, three-step
framework acting as a multi-level program for optimizing
capacity planning of grid-connected NG. The framework
incorporates a lookahead logic-based approach with a short
optimization window, enabling effective utilization of renewable
energy resources and achieving local energy self-sufficiency.
The Planner module calculates the optimal sizes of the BESS
and PV system, with higher values observed during summer due
to increased demand and solar potential. On the other hand,
the Operator module imports each of the 365 daily optimal
capacity solutions from the Planner module, assumes it as the
fixed capacity for the entire year, and calculates the optimal
dispatch of BESS and PV for each capacity solution. One of the
key benefits of the proposed strategy is the ability to shift
renewable energy from high solar-low demand periods to low
solar-high demand periods, resulting in a more efficient use of
energy resources. By storing excess PV energy in the BESS, the
system can avoid importing energy from the grid during high-
price periods, leading to significant cost savings. The Evaluator
module considers various metrics related to reliability,
environmental impact, and the microgrid's or NG's financial
viability. These metrics include Annual Local-Sufficiency,
Renewable Fraction, Total Profit, and others. This multi-
perspective evaluation ensures that the sizing solutions
provided by the strategy can be reliably adopted, taking into
account various essential aspects. Furthermore, the proposed
framework is scalable and can be applied to larger microgrid
capacities beyond the kW range. It can be extended to analyze
microgrids with capacities reaching several MWs or even more,
making it a valuable tool for decision-makers and planners in
the energy sector. This research fills a critical gap in NG sizing
and operation under realistic conditions by proposing a
comprehensive framework that optimizes capacity planning.
The strategy's lookahead logic, combined with the multilevel
optimization approach, allows for advanced planning and
dispatch up to 2 days in advance, resulting in cost savings,
increased self-sufficiency, and more efficient use of renewable
energy resources. The wide range of evaluation criteria ensures
that the strategy's sizing solutions are reliable and can be
applied in real-world scenarios. Ultimately, the proposed
strategy has the potential to contribute to the global transition
towards 100% renewable targets, decentralized energy
networks, and enhanced reliability in the electricity sector.

As a future work, incorporating the physical network into
NG assessment offers a more comprehensive analysis, enabling
insights on optimal NG placement. The implications of NG
placement, such as network losses, voltage regulation, and
interaction with the central grid, were not within the scope of
the current research. However, they hold significant promise for
future investigations.

ISSN: 2252-4940/©2024. The Author(s). Published by CBIORE



A. El Sayed et al

Nomenclature
Parameters
t : Time in hour
B : BESS’s minimum SoE ratio
St : Hourly solar generation (kW)
Iy : Hourly Demand load (kW)
He Mo - Charging and Discharging efficiencies.
G : Maximum power drawn from the grid (kW)
Y : Charging and discharging maximum ratio
P : Hourly time of use Energy Prices
af : Per Diem factors for BESS considering lifetime
a’ : Per Diem factors for PV, considering lifetime

0C¢ :Total overnight cost for BESS
0CS :Total overnight cost for PV

E : Energy Storage Size of Operator model in kWh
S : Solar PV Size of Planner Operator in kW
Variables

gt : Hourly energy imported from the grid in kWh

ey : BESS state of energy (kWh)

d; : Hourly BESS discharge power (kW)

[ : Hourly BESS charge power (kW)

Ug : Binary variable, one if the battery is charging, and zero otherwise

EP : Energy Storage Size for Planner model (kWh)
N : Solar PV size for planner model (kW)
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