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Abstract. The escalating trends in energy consumption and the associated emissions of pollutants in the past century have led to energy depletion 
and environmental pollution. Achieving comprehensive sustainability requires the optimization of energy efficiency and the implementation of efficient 
energy management strategies. Artificial intelligence (AI), a prominent machine learning paradigm, has gained significant traction in control 
applications and found extensive utility in various energy-related domains. The utilization of AI techniques for addressing energy-related challenges 
is favored due to their aptitude for handling complex and nonlinear data structures. Based on the preliminary inquiries, it has been observed that 
predictive analytics, prominently driven by artificial neural network (ANN) algorithms, assumes a crucial position in energy management across 
various sectors. This paper presents a comprehensive bibliometric analysis to gain deeper insights into the progression of AI in energy research from 
2003 to 2023. AI models can be used to accurately predict energy consumption, load profiles, and resource planning, ensuring consistent performance 
and efficient resource utilization. This review article summarizes the existing literature on the implementation of AI in the development of energy 
management systems. Additionally, it explores the challenges and potential areas of research in applying ANN to energy system management. The 
study demonstrates that ANN can effectively address integration issues between energy and power systems, such as solar and wind forecasting, 
power system frequency analysis and control, and transient stability assessment. Based on the comprehensive state-of-the-art study, it can be inferred 
that the implementation of AI has consistently led to energy reductions exceeding 25%. Furthermore, this article discusses future research directions 
in this field.   
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1. Introduction 

Nowadays, the countries, scientists, and policymakers are 
paying much attention to energy sectors and the use of clean 
energy such as renewable energy, hydrogen, and bioenergy 
aiming to achieve the critical goals of decarbonization and 
climate change, as well as diversification of energy sources 
(Hoang et al., 2023a, 2023b; X. P. Nguyen et al., 2021; Pollet and 
Lamb, 2020). However, an emerging issue in using such energy 
sources is the management one. Throughout the evolution of 
energy management, significant attention has been directed 
toward investigating the application of predictive analytics 
(Tarasiuk et al., 2023). This recognition stems from its pivotal 
role in enhancing energy efficiency, integrating renewable 
energy sources, ensuring grid stability, enabling demand 
response programs, informing energy planning and policy 
formulation, and reducing costs for consumers (Nguyen et al., 
2024; Seutche et al., 2021). Researchers leverage advanced data 
analytics techniques, such as pattern analysis and forecasting 
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models, intending to optimize energy utilization, minimize 
waste, and accurately predict energy demand (Alsafasfeh, 2020; 
Anandika et al., 2023; Sarwosri et al., 2023). This empowers 
businesses, industries, and households to make data-informed 
decisions, implement energy conservation measures, and 
efficiently manage energy resources (Ramirez-Sanchez et al., 
2022). The integration of intermittent renewable energy sources 
poses challenges, and predictive analytics plays a crucial part in 
forecasting renewable energy generation to facilitate its 
seamless integration into the grid (Adhikari et al., 2024; Ugwu et 
al., 2022). Additionally, precise prediction of energy demand 
enables proactive measures for load balancing, demand 
response, and grid stability (Chandrasekaran et al., 2019; Wang 
et al., 2016). By providing valuable insights into energy patterns, 
researchers assist policymakers in formulating sustainable 
energy strategies, establishing targets for renewable energy 
adoption, and making informed decisions regarding 
infrastructure investments and energy transformation progress  
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(Hoang et al., 2021; Ilham et al., 2022). Ultimately, the objective 
of research in energy management with predictive analytics is 
to establish a more resilient, dependable, and cost-effective 
energy system to ensure a sustainable future. The global issue 
of energy scarcity is increasingly severe due to the emergence 
of the world's oil crisis and resource shortages (Kian and Lim, 
2023). In the next three decades, it is expected that the 
consumption of renewable energy in the world increase by 
147% (Statista, 2019). Interestingly, new worldwide investments 
in green energy were just about ten times higher in 2019 than 
those in 2004. Moreover, renewable energy has grown its share 
of worldwide energy production to 13.4% in 2019 from 5.2% in 
2007 (Statista, 2013). Speaking of all green energy sources, 
electricity's role has grown by a ratio of two to three than ever 
before, implying that every resource of the electrical system 
should be effectively exploited to benefit society (Lopes et al., 
2007; Nguyen et al., 2022). Energy demand that varies 
stochastically could create a mismatch between the demand 
and supply of energy, which leads to the instability of the 
system’s operation (Ullah and Baseer, 2022; Wattana and 
Aungyut, 2022). More interestingly, incentivization is known as 
a type of energy management method in which prosumers 
(known as the consumers that produce and use small-scale 
energy, so-called energy districts) are encouraged to plan their 
loads at specific time periods (demand-side management) 
(Lagouir et al., 2021; Lahlou et al., 2023). Accordingly, smart 
energy management is required to track and coordinate the 
capacities and requirements of all consumers, resources and 
suppliers, energy market players, infrastructure operators, as 
well as energy transformers (Li et al., 2023; Nižetić et al., 2023; 
Rowlands et al., 2011). Scientists have been studying ways to 
create a complete energy management model that helps not 
only the grid but also prosumers over the past several decades. 
Indeed, methods and optimization algorithms for managing 
energy are gradually integrated into the energy management 
model to provide dependable, clean, and cheap energy 
(Ağbulut, 2022a; Jawad et al., 2021; Li and Jayaweera, 2015). In 
power networks, optimization methods are used to manage the 
demand and supply of energy in order to meet economic load 
delivery, quality of service, and system reliability (Bakay and 
Ağbulut, 2021; Jawad et al., 2021). More significantly, an 
effective optimization method requires well-defined criteria, 
specifications, as well as system prerequisites. If there are any 
changes in the system specification, like changeable energy 
supply because of renewable sources of energy or modified 
requirements of prosumers, the optimization issue must be 
reformulated to accommodate the new parameters. In fact, 
important studies in the field of energy management related to 
prosumers and applications of smart grids have been carried out 
(Jadhav and Patne, 2017; Jawad et al., 2021; Li and Jayaweera, 
2015; Park et al., 2016). However, significant progress is 
required in energy-efficient algorithms, energy management 
models, energy estimation, transmission, and management 
(Ahmed et al., 2020a; Jadhav and Patne, 2017; Kucęba et al., 
2018; Park et al., 2016).   

Artificial intelligence (AI) including machine learning (ML) 
and combined algorithms can be utilized in many fields such as 
energy and fuels (Drzewiecki and Guziński, 2023; Goyal et al., 
2023; Sharma et al., 2023), education (Haque et al., 2024; Kim, 
2024; Kim et al., 2023), communication (Hu and Qin, 2017; 
Melinda et al., 2024; Rumapea et al., 2024), chemical 
engineering (Aniza et al., 2023; Dobbelaere et al., 2021), 
industry manufacturing (Chau et al., 2021; Lee et al., 2018), 
transportation and logistics (Hu, 2018; H. P. Nguyen et al., 2023; 
Radonjić et al., 2020; Witkowska and Rynkiewicz, 2018; Zaki, 
2024), medical (Haleem et al., 2019; Pang et al., 2023; Yunidar 

and Melinda, 2023), social study (Liu et al., 2023; Triandi et al., 
2023), environment (Biswas et al., 2023; Chaoraingern et al., 
2023; Domachowski, 2021; Vo et al., 2021), and economy 
(Furman and Seamans, 2019; Suvon et al., 2023) aiming to 
enhance management effectiveness. For energy area, AI could 
be used for forecasting energy production and demand 
prediction (Aguilar et al., 2021; Ahmad et al., 2021; Mosavi et al., 
2019), energy theft detection (Ahmad et al., 2021), demand side 
management (Antonopoulos et al., 2020), predictive 
maintenance and monitoring (H. P. Nguyen et al., 2021; 
Wedashwara et al., 2023), optimized energy operation (El-
Shafay et al., 2023; Goswami et al., 2022), energy pricing and 
energy-related emission prediction (Ağbulut, 2022b; Mosavi et 
al., 2019), weather phenomena prediction associated with 
forecast (Ihsan et al., 2023; Mosavi et al., 2019), energy 
management and waste-to-energy management (Abdallah et al., 
2020; Sharma et al., 2022a). It is noted that solar energy, wind 
power, hybrid energy, geothermal energy, hydrogen energy, 
bioenergy, biofuels, biomass, and ocean energy can all employ 
AI models (Ağbulut et al., 2021; Chen et al., 2021; W.-H. Chen et 
al., 2022b, 2022a; Jha et al., 2017; Tabanjat et al., 2018; Tuan 
Hoang et al., 2021). Besides, Support Vector Machines (SVMs), 
Artificial Neural Networks (ANNs), Ensemble, Wavelet Neural 
Networks (WNNs), SHapley Additive exPlanations, and 
Decision Trees are some examples of AI algorithms (de Ville, 
2013; Le et al., 2023; Li et al., 2023; V. G. Nguyen et al., 2023; 
Said et al., 2022; Sharma et al., 2022b; Veza et al., 2022a; Zhang 
et al., 2022). Moreover, in the smart grid setting, the algorithms 
are extensively employed for a variety of issues including 
energy reliability, prediction, and management. For instance, 
the day-ahead consumption of energy of air conditioners in the 
intelligent grid was forecasted in the research mentioned in 
(Chou et al., 2019a) aiming to evaluate the algorithms' efficacy. 
Moreover, the effectiveness of a hybrid SVM as well as ANN for 
protective network architecture and settings was investigated to 
guarantee the dependability of microgrids (Ahmed et al., 2020a; 
Lin et al., 2019). AI techniques hold the potential to be deployed 
across a broad spectrum of energy control tasks. The motivation 
behind this work is to segregate the findings documented in this 
field, contextualized within the framework of autonomic 
computing, with the ultimate goal of achieving optimal energy 
control. The primary objective of this article is to critically 
evaluate and assess the appropriateness of utilizing AI 
techniques in energy management, incorporating contemporary 
concepts like autonomous computing to effectively organize 
raw data. The sub-objectives include: 

• Examining the current state of AI adoption in the energy 
sector, 

• Identifying the challenges and opportunities of using AI 
for energy predictive analytics, 

• Discussing the potential benefits of AI for sustainability, 
• Proposing a roadmap for the future adoption of AI in the 

energy sector. 
 Consequently, this research paper significantly advances 

our comprehension of feasible AI-driven energy management 
techniques. In this paper, we make the following key 
contributions to the field of AI for energy management:  

✓ The paper discusses various applications of AI in 
energy management, including energy forecasting for demand 
and supply, demand response to manage energy demand, and 
the use of AI in managing smart grids to improve reliability, 
security, and efficiency. 

✓ The paper discusses the use of intelligent algorithms that 
mimic human communication, decision-making, and 
formal logical reasoning. It emphasizes the use of 
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mathematical rules based on degrees of membership 
and highlights the adaptability and learning capabilities 
of these algorithms. 

✓ The paper explores the use of ANNs in energy 
management systems. It provides an overview of the 
structure and functioning of ANNs, including neuron 
representation and activation functions. It emphasizes 
the importance of selecting appropriate input and output 
variables for ANNs. 

✓ The paper reviews the development of a forecast engine 
for estimating energy with heuristic and metaheuristic 
optimization paired with ANN. Additionally, the paper 
explores the influence of issue dimensions on the 
accuracy of the ANN model for solar power systems. 

2. Research methodology 

The primary objective of this literature review is to analyze 
the current state of the art in energy prediction and 
management and offer an extensive review of the extant 
literature. Computational prognostication plays a pivotal role in 
proficiently strategizing and optimizing the scheduling of the 
energy system. This study entails conducting a comparative 
analysis of diverse machine learning techniques applicable to 
the forecasting of time series data. 

Research Query 1: What are the current and emerging 
applications of artificial intelligence (AI) in energy management, 
and how can AI algorithms be utilized to optimize energy 
production, consumption, and distribution to address the 
challenges of energy scarcity and the transition toward 
renewable energy sources? 

Research Query 2: How can artificial neural networks (ANNs) 
be effectively utilized to optimize fuel economy and energy 
efficiency in vehicles, forecast solar power production, predict 
electricity demand, and optimize energy storage systems, while 
also improving the performance and accuracy of energy 
forecasting models, particularly SVM and its variants, for 
various applications in the energy management domain? 

Research Query 3: How can hybrid energy systems benefit 
from the optimized implementation of predictive control 
methods utilizing neural networks and fuzzy logic-based energy 
management systems, to achieve greater energy efficiency, user 
comfort, and effective power flow governance while adapting to 
changes in system configuration? 

To ensure comprehensive coverage of the relevant 
literature, the Scopus and Web of Science databases were 
searched. The outcomes of every query were organized based 
on their relevance and the initial 600 were subjected to manual 
scrutiny. Additionally, conference papers were disregarded 
search to concentrate on the most superior works. The search 
scope was confined to papers published from 2003 onwards. 
The literature exploration encompassed articles released 
between 2003 and 2024. This period was chosen to encompass 
the latest advancements in research while also acknowledging 

foundational studies that offer a historical framework for the 
field. The search strategy utilized a combination of relevant 
keywords and Boolean operators to retrieve articles that closely 
align with the research queries. The keywords were selected 
based on their relevance to the research area and their ability to 
capture the key concepts and themes within the field. Each of 
the queries was performed separately in each of the databases 
in the following Table 1. 

These articles underwent a systematic screening process to 
determine their eligibility for inclusion in the review paper. The 
paper selection process involved the application of predefined 
inclusion criteria. To be incorporated into the taxonomy, an 
article needed to present a machine learning (ML)-based 
solution that could be effectively employed for energy 
prediction. The selection criteria were as follows: 

• The ML solution proposed must have direct applicability 
for the implementation of energy predictive analytics. 

• Articles that merely discussed machine learning 
techniques in the literature review or future work 
section, without actually implementing a machine 
learning solution, were excluded from consideration. 

• Review papers were intentionally omitted, although 
pertinent review papers are referenced in Section 1. 

• Articles focusing on machine learning applications 
related to low-level energy management were not 
included in the selection process. 

• The taxonomy specifically concentrates on machine 
learning applications for energy optimization and 
modeling, deliberately excluding energy policies and 
regulations. 

• The taxonomy solely concentrates on the domains of 
analysis and planning, excluding considerations of 
demand-side management and supply-side 
management. 

3. Artificial intelligence 

Artificial Intelligence is characterized as the cognitive ability 
of an artificial agent to effectively traverse complex problem 
domains associated with a system conventionally attributed to 
a machine or a computational device (Bisri and Man, 2023; 
Luger, 2005). AI is an interdisciplinary field that integrates the 
paradigms of physiology and computer science wherein 
intelligence is conceptualized as the computational aspect of the 
capacity to effectively achieve objectives on a global scale 
(Kumar and Thakur, 2012), as shown in Fig. 1. 

Intelligent algorithms encompass a logical construct that 
comprehends values beyond the binary concepts of true and 
false (Hasnaoui et al., 2023). The purpose of augmenting 
intelligence is to emulate human capabilities for 
communication, rational decision-making, and application of 
common sense (DurakoviÄ‡ and Halilovic, 2023). Zadeh 
(Zadeh, 1965) defined intelligent algorithms as a collection of 
mathematical rules for representing knowledge determined 

Table 1 
Search Query Formulation 

Query Search keyword Scopus ScienceDirect IEEE Xplore 

Q1 “Energy” AND “Learning” 4890 2990 489 

Q2 “Residential Energy” AND “Learning” 887 686 103 

Q3 “Smart meter” AND “Artificial Neural Network” 591 340 87 

Q4 “Transport” AND “Artificial Neural Network” 520 119 96 

Q5 “Construction” AND “Artificial Neural Network” 479 98 79 
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based on the degrees of membership rather than the crisp 
membership in traditional binary logic (Natsheh, 2013). 
Intelligent algorithms can also be characterized as the 
computational process that autonomously generates the 
optimal results in response to varying inputs. Additionally, 
multiple smart programs collaborating can provide the AI with 
its adaptive capabilities. More remarkably, unlike a fixed 
mathematical formula, several of these algorithms depend on 
training and they could be updated to enhance their 
performance, whereas others can modify their actions 
depending on outputs and inputs, hence making them more 
broadly useful. This study presents a comprehensive depiction 
of the predominant intelligent models or algorithms that have 
been extensively utilized. The findings are derived from an 
extensive analysis of the academic literature, encompassing 581 
scholarly articles published within the period spanning from 
2017 to 2022. The research proceeded by selecting the most 
representative and recent algorithms in the state-of-the-art 
literature. Fuzzy logic (FL) and neural networks (NN) appear to 

be the most common methods. As shown in Fig. 2, a taxonomy 
of artificial intelligence (AI) for energy management is depicted. 

 
3.1. Artificial neural network for Energy Management and 
Forecasting 

It is noticeable that a multiprocessor processing system is a type 
of artificial neural network (ANN), and this system is made up 
of a series of very basic and highly linked processors known as 
neurons, which are similar to biological neurons in the human 
brain (Rangkuti et al., 2023; Razak Kaladgi et al., 2021). The 
flowchart illustrating the process of ANN development for 
testing and training is depicted in Fig. 3. 

In addition, Fig. 4a illustrates the fundamental model of a 
solitary neuron. The bias b has an impact on the activation 
function f by shifting it to the left or right, based on whether it is 
negative or positive. More interestingly, a collection of 
activation functions can be used to select the activation function 
f (as a sigmoid function, hard limit function, and piecewise-linear 

 

Fig. 1. Generalized learning process of artificial intelligence 

 

 

Fig. 2. Survey taxonomy 
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function). Also, Fig. 4b depicted some of the most common 
activation functions (Natsheh, 2013). Researchers have also 
investigated ANNs aiming to build energy management 
systems. In general, choosing output and input variables for an 
ANN has a large impact on the performance and the utilization 
or generalization of the network (Al Sasongko et al., 2022; 
Rudzki et al., 2022; Zheng Chen et al., 2014). It is noticed that 
the ECMS, an instantaneous optimization algorithms' 
representative, is considered the most potential online EMS and 
is currently widely applied in the real world (Kommuri et al., 
2020; Wang and Huang, 2020). The process of converting fuel 
to electricity is carried out by adding an equivalent factor (or EF 
for short) which calculates the electrical energy cost as a fuel 
consumption's equivalent quantity. Hence, to achieve optimum 
energy savings, it is suggested that the EF should be a variable 
number that is dynamically tuned based on real-time powertrain 
activities. As a result, several EF estimates approaches have 
been developed to adaptively control EF while taking into 
account the vehicle state and driving circumstances. In the case 
of HEV applications, it is assumed that the equivalent factor is 
adjusted based on factors relating to the battery state of charge 
(SOC) at each instant, to prevent excessive SOC variation from 
the intended constant. More remarkably, to assure the vehicle's 
charge-sustaining capability, a tangent-shape function of the 
SOC deviation, for example, was used to rectify the EF (Tian et 
al., 2019). In addition, planning the SOC reference trajectory 
could be enhanced by including more factors on top of the travel 
distance (e.g. expected demand for power or future average 
speed) (Tian et al., 2018). Furthermore, ANNs including neuro-
fuzzy systems and recurrent neural networks (RNN) can be 
utilized to produce the SOC reference trajectory depending on 
driving data (Han et al., 2020; Montazeri-Gh and Pourbafarani, 
2017). Besides, the SOC reference generator promoted by NN 
makes use of NN's exceptional learning capabilities, allowing full 
utilization of implicit information from optimum SOC reference 
trajectories of distinct driving cycles. To get rid of the twofold 
faults that cause sub-optimum performance, the EF online 
estimating technique should intelligently manage the EF with no 
assistance of the SOC reference trajectory, while also ensuring 
that the SOC could end at the target value and the optimum fuel 
economy. Indeed, the ideal scenario mentioned above can be 
realized by utilizing the NN-improved equivalent consumption 

minimum strategy (ECMS) driven by data. In an experiment of 
Xie et al. (Xie et al., 2018), an equivalent consumption minimal 
technique driven by data, employing an ANN to compute the 
equivalent factor was described. Accordingly, the NN was 
trained with the use of speed profiles in the real world. Based on 
the results, the suggested data-driven equivalent consumption 
minimal technique outperformed global optimization 
approaches such as Pontryagin's minimal principle and dynamic 
programming approaches in terms of fuel economy. Apart from 
that, the computing time of the suggested technique in 
comparison to the total journey duration suggested a high 
potential for developing a time-conscious energy control 
technique. Also, the obtained findings indicated that the 
suggested equivalent consumption minimal method using ANN 
created the same fuel economy as global optimization 
approaches like the PMP and DP techniques, and it 
considerably lowered total energy consumption expense by 
24.9%, 17.7%, 29.6%, and 28.7%, for initial SOC levels of 0.65, 
0.85, 0.35, and 0.45, in turn in comparison with the charge-
sustaining and charge-depleting (CD-CS) approach based on 
rules (Xie et al., 2018).  

 

3.1.1. Neural networks for energy optimization: Distributed energy 
resources 

Apart from that, Chen et al. [54] presented a novel intelligent 
technique that uses dual neural networks (NNs) to adaptively 
adjust the equivalent factor to achieve near-optimum fuel 
economy. The technique does not require the charge reference 
state, and it uses a Bayesian regularization NN to forecast the 
near-optimum equivalent factor online, while a backpropagation 
NN is used to predict the on/off state of the engine to improve 
the forecast quality. Fig. 4c summarizes the design process 
sketch and detailed ECMS architecture based on NN. According 
to the results of the control performance validation and testing, 
the suggested NN-based ECMS was observed to create 
equivalent fuel efficiency to the DP optimum solution. Besides, 
the suggested technique achieved an average fuel savings of 
96.82% of worldwide optimization outcomes overall validating 
driving cycles. Moreover, under WVUSUB_7 and CQ2_3, the 
proposed approach was projected to save 95.96% and 98.69% 

 

Fig. 3. Workflow for Development, Testing, and Training of ANNs 
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of gasoline in turn during driving cycles that have not been 
subjected to NN training (Z. Chen et al., 2022).  

In an alternative illustration, the estimation of projected 
power generation significantly influences the availability of 
excess energy for storage or commercialization, in addition to 
the potential insufficiency of energy requiring supplementation 
from the system. However, solar power generation exhibits 
sporadic patterns, rendering continual and precise prediction a 
laborious task. Consequently, this challenge serves as a driving 
force for researchers to explore the applications of NNs in 
energy forecasting. Additionally, the synergistic fusion of neural 
networks (NNs) with complementary algorithms represents an 
effective approach for enhancing predictive capabilities. By 
seamlessly combining the strengths and unique features of 
different algorithms, it is possible to enhance predictive 
performance and achieve more accurate and robust forecasts. 
This integration holds significant potential in optimizing 
predictions across diverse domains, ranging from energy 
forecasting to weather prediction, and opens up exciting 
possibilities for advancing the field of predictive analytics (Liu et 
al., 2017) and autoregressive moving average model (ARIMA) 
(Duan et al., 2021). More notably, an innovative technique was 
provided by Kevin et al. (Förderer et al., 2018) aiming to 
represent and communicate distributed energy resources' 
energy flexibility. In their experiment, the devices were 
combined with ANNs, operating as surrogate models. 
Moreover, the flexibility that was represented by an ANN could 
be determined by the state of the related devices and their 
surroundings, requiring just a little status update to be sent for a 
third party to design feasible load profiles. As a result, unlike 
other techniques, including support vector data description, 
novel ANNs were only required when there was a change in the 
device configuration (Förderer et al., 2018). In general, ANN 
could also be used to predict solar panel energy output (Eseye 
et al., 2018), electricity demand (Chiñas-Palacios et al., 2021a; 
M. Kim et al., 2019), and wind speed (T. Liu et al., 2018).  

It is not hard to see that one of the primary reasons for 

lowering the consumption of energy is the rise in power 
demand. Smys et al. (S et al., 2020) attempted to reduce the 
energy utilization of the street light system because of its 
inefficiency in managing and handling the power flow and 
considering current demands on the light intensity. Thus, the 
authors proposed a way of managing power to efficiently limit 
its consumption through the comparison between the light 
intensity and the weather conditions. In the suggested 
technique, ANNs were employed to govern the power of 
streetlights. Assessing the strategy produced findings resulting 
in improved power management and lower power use in street 
lighting (S et al., 2020). Huseyin et al. (Yavasoglu et al., 2020a) 
discovered that the power split in HESS could be improved by 
developing a convex optimization issue to achieve specific 
objectives, leading to a 5-year battery lifespan extension. 
However, due to the complexity and numerous variables 
involved, achieving convex optimization of complex systems 
can be challenging, and linearization is not suitable for all 
systems. Therefore, to address the challenge of multi-target 
energy management, an approach based on neural networks 
(NN) was devised and trained using outputs from convex 
optimization. The results from simulations demonstrated that 
the trained NN model successfully addressed the optimization 
problem in 92.5% of the cases where convex optimization was 
employed. (Yavasoglu et al., 2020a). Significantly, Yadav et al. 
(Yadav et al., 2015) compared various ANN models, including 
GRNN (known as generalized regression neural network), n-
ftool (so-called fitting tool), and RBFNN (radial basis function 
neural network), aiming to estimate the potential of solar power 
sources in India. Accordingly, the n-ftool was recognized for its 
ability to accurately estimate the target parameter in a variety 
of positions. Moreover, a forecast engine was created by 
Abedinia et al. (Abedinia et al., 2018) for estimating solar energy, 
based on a metaheuristic optimizer which is known as shark 
smell optimization paired with ANN. The researchers proposed 
this tool as it outperforms traditional predictors such as 
conventional GRNN, RBFNN, ANN, and their wavelet types 

 

Fig. 4. (a) – ANN structure; (b) - Activation functions used in ANN (Natsheh, 2013); (c) - Framework of ANN-ECMS (Z. Chen et al., 2022) 
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(normalized root mean square errors (RMSEs). In addition, Yaci 
et al. (Yaïci et al., 2017) illustrated the ANN efficacy in modeling 
solar power systems, and the influence of issue dimension 

(namely the number of inputs) on the accuracy. After the model 
was investigated with real-world data, it was concluded that 
accuracy decreased progressively as the size was reduced 
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(Moayedi and Mosavi, 2021). In general, features and gaps of 
the considered state-of-art approaches are given in Table 2. 

According to the majority of the research, buildings in 
affluent nations contribute 20-40% of the world's energy 
consumption (Pérez-Lombard et al., 2008). Buildings utilize 
energy throughout their life cycle; however, 80-90% of that 
energy is spent during the operating period (Atmaca and 
Atmaca, 2015; Praseeda et al., 2016; Ramesh et al., 2010; 
Whitehead et al., 2015). As a result, building energy 
management systems (BEMS) plays a critical part in this sector 
(Doukas et al., 2007). Indeed, BEMS has contributed to 
continuously managing the energy of the building (Doukas et al., 
2007), making buildings smarter through real-time automated 
control and monitoring (Xiao and Fan, 2014), as well as 
optimizing energy consumption (Gangolells et al., 2016). 
Therefore, Marcel et al. (Macarulla et al., 2017) outlined the 
approach for the implementation of a predictive control method 
in a commercial BEMS applied in boilers in buildings, and the 
obtained results were also described. The suggested control is 
according to a NN which starts the boiler daily at the optimal 
moment, depending on the surrounding environment, intending 
to attain thermal comfort levels when a working day begins. In 
particular, the training patterns were created using testing data 
collected from two heating seasons. After that, a variety of NN 
structures were examined and the optimal one was utilized to 
build and apply the predictive control approach in the current 
BEMS. Ultimately, a set of KPIs was employed to evaluate the 
effectiveness of the control plan. The block diagram of the NN 
implemented in the BEMS was illustrated in Fig. 5. Apart from 
that, the Tw, Te, and Ti values were normalized using input 
boxes. The control method was evaluated for one heating 
season, and the advantages of the suggested control technique 
were assessed using a set of primary performance parameters. 
According to the findings, predictive control being utilized in a 
BEMS for boilers in the building could lower the energy needed 
for heating the building by roughly 20% while maintaining 
comfort for the users (Macarulla et al., 2017). 

3.2. Fuzzy logic for energy management through intelligent systems in 
hybrid energy and microgrid systems 

It is obvious that the exploitation of renewable sources of 
energy has enormous promise for various applications, and off-
grid stand-alone systems particularly bring several advantages. 

The entire system is known as a HES (hybrid energy system) 
since it combines at least one renewable resource with one extra 
resource and one storage factor. Additionally, a proper EMS 
must be created to govern the power flow among the parts of a 
HES. The EMS is often a centralized controller which controls 
all of the components. As a result, the hybridization level of the 
HES increases the complication of building an EMS. 
Furthermore, if there is any change in the configuration of HES, 
such as when one component withdraws due to a defect or 
maintenance, the central controller is incapable of adjusting its 
reaction. Apart from that, in case a new factor is introduced to 
an EMS with a central controller, it is necessary to modify the 
EMS. Thus, it is intriguing to determine a dependable, flexible, 
scalable, and open EMS. More noticeably, a novel method for 
HES based on multiagent system technology (MAS) was 
developed by Jérémy et al. (Lagorse et al., 2009), in which HES 
was viewed as a collection of autonomous entities that 
collaborated rather than a global system to govern. According 
to the above-mentioned key characteristics, intelligent element 
and MASs technology is predicted to fundamentally transform 
how complicated, open, and distributed systems are designed 
and deployed. Because of the dispersed, open, and complicated 
features of HES, MAS technology seems to be a suitable answer 
for energy management in HES. Additionally, an HES may be 
considered a collection of "intelligent" and autonomous factors 
that can adapt to situations in their environment using an agent-
based method (Lagorse et al., 2009). Roiné et al. (Roiné et al., 
2014) described an EMS in which the FLC analyses the 
evolution of pricing over a single day, the production, the 
demand for energy, and the time of day to provide an 
economical grid. Besides, scenarios with more degrees of 
freedom were also taken into account in other works, in which 
the EMS governs distinct storage factors, controllable, or even 
a combination of both factors mentioned above aiming to 
conduct demand side management and DR approaches 
(Pascual et al., 2014; Tascikaraoglu et al., 2014; Wang et al., 
2014). In this scenario, the control systems utilized are often 
complex, such as MPC (Model Predictive Control), and 
encompass both production and demand prediction (Prodan 
and Zio, 2014)(Bruni et al., 2015). Barricarte et al. (Barricarte et 
al., 2011) proposed an EMS design based on heuristic 
knowledge of the wanted micro-grid behavior, in which the 
amount of power attributed to the storage system and the grid 
is calculated using adjustable analytical expressions related to 
the power balance between production and consumption, along 
with the battery SOC serving as major variables. The 
aforementioned heuristic knowledge suggested employing FLC 
to build the EMS for the instance under investigation, because 
this technique readily incorporates the user's experience instead 
of utilizing a system's mathematical model (Fossati et al., 2015; 
Mohamed and Mohammed, 2013; Passino et al., 1998). 
Furthermore, using the identical input variables (Barricarte et al., 
2011), the researchers showed that the FLC creation with only 
25 rules moderately enhanced battery SOC as well as the grid 
power profile achieved in (Aviles et al., 2012)(Barricarte et al., 
2011)(Arcos-Aviles et al., 2018). More importantly, Diego et al. 
(Arcos-Aviles et al., 2018) designed a minimal complexity FLC 
with just 25 rules to be incorporated in an energy management 
system, applied in a home grid-connected micro-grid with 
renewable sources of energy and storage ability. The major 
purpose of this design is in order to retain the battery state of 
charge in safe limits while minimizing the fluctuations of the grid 
power profile. It is noted that rather than relying on predictions, 
the suggested methodology employed not only the battery state 
of charge but also the microgrid energy rate of change for 

 

Fig. 5. Diagram of implemented neural network applied to 
building energy management systems (Macarulla et al., 2017) 
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raising, reducing, or maintaining the power absorbed or 
delivered by the mains. 

3.2.1. Comparative analysis of microgrid energy management 
Strategies 

Bogaraj et al. (Bogaraj and Kanakaraj, 2016) showed an 
energy management system for microgrid systems based on 
intelligent multi-agent systems. This system maintains the 
balance of power between sources of energy and loads by 
utilizing forecasts of PV production, load demand, and wind 
production to provide the needed load. In addition, another 
MAS was presented by (Aung et al., 2010), applied in a microgrid 
system aiming to obtain optimal dispersed source utilization 
with the highest level of output from renewable sources and the 
lowest diesel use. Furthermore, Boudoudouh et al. suggested a 
multi-agent system for microgrid energy management, 
described in (Boudoudouh and Maâroufi, 2018). The 
simulations were carried out with the help of Java Agent 
Development and MATLAB-Simulink tools. This model's 
dependability was proven by meeting needs like autonomy and 
adaptability in a way that any modifications would not break the 
entire control method system. Aside from that, Logenthiran et 
al. (Logenthiran et al., 2012) studied a multi-agent system 
towards the microgrid's real-time operation, proposing an 
operational approach concentrated on production scheduling 
and demand-side control. The research described above also 
highlighted the usefulness of multi-agent systems when applied 
in microgrids. Notably, in this study, the MAS technique was 
employed to create an energy control system for microgrid 
systems that is based on the maximizing of renewable 
resources, and the bidirectional DC or DC converter was 
handled by ANN controllers. Besides, Aiman et al. (Albarakati et 
al., 2021) suggested an EMS based on maximizing energy 
exploitation from renewable sources by operating them in 
Maximum Power Point Tracking conditions. Furthermore, the 
stored energy was managed by applying ANN controllers to 
optimize battery discharging and charging. The primary goal of 
this system is so as to retain the balance of power in the 
microgrid as well as to give a flexible and configurable control 
for various situations with all variation types (Albarakati et al., 
2021). 

In fact, because of the intermittent and stochastic 
character of deeply penetrated renewable sources of energy and 
demand, efficient multi-energy management in a microgrid is 
considered a difficult issue. Thus, to tackle this hindrance, it is 
necessary for the energy management system to frequently 
employ day-ahead energy planning based on prediction and 
real-time energy distribution for successfully coordinating the 

operation of dispatchable elements, such as thermal units and 
energy storage based on battery. Also, an adaptive optimum 
energy management solution based on fuzzy logic was provided 
by Dong et al. (Dong et al., 2021) for adaptively developing 
suitable future fuzzy rules for dispatching energy in real-time in 
the context of operational uncertainty. It is noted that real-time 
energy distribution depending on optimum fuzzy logic rules 
established may then be conducted to fulfill different 
operational objectives, such as minimum cost of operation and 
lowest power fluctuation. The suggested technique was 
thoroughly tested in simulation trials against two current 
methods, including the dispatch technique based on online rule 
and the offline scheduling approach based on meta-heuristic 
optimization (Dong and Sharma, 2023). According to the 
numerical findings, the presented energy management 
approach was proved to outperform others (Dong et al., 2021). 
More remarkably, Deepak et al. (Jain et al., 2022) created energy 
management based on fuzzy logic and FLEM-TFP for smart 
transport systems using Cyber-Physical Systems. The presented 
FLEM-TFP system consists of two major processes, including 
Traffic Flow forecast and energy management. More 
interestingly, the engine torque required is also computed using 
an ANFIS (known as adaptive neuro-fuzzy inference system) 
model based on a variety of measurements. Furthermore, in 
intelligent transportation systems, an SFO-based FWNN 
technique is utilized to predict traffic flow. The trials revealed 
that ANFIS-FFA has brought good results, with an average TFC 
obtained being 25.98, which is significantly lower than the 
values achieved by the other approaches. In addition, it is clear 
to see from afore-mentioned data that the proposed method 
could increase not only energy efficacy but also total fuel 
economy. In the future, the provided model might be used to 
create methods for providing dynamic resources in an 
intelligent transport systems environment for Cyber-Physical 
Systems (Jain et al., 2022). The tabulation of Table 3 presents a 
comprehensive comparative analysis of the features examined 
by the prior scholarly review articles. 

3.3. Support vector machine (SVM) in energy regulation 

Support vector machine (SVM) has been employed as an 
artificial intelligence model and is a well-known supervised 
machine learning approach to classify (Novitasari et al., 
2023)(Kusnawi et al., 2023). Also, it is applicable to not only 
classification but also regression difficulties. Indeed, the core 
idea of SVM is to transfer input characteristics to a higher-
dimensional plane (Karaağaç et al., 2021). More notably, the 
kernel function simplifies the learning process by transferring 
non-separable data in input data space to data that can be 

Table 3 
Comparative analysis of intelligent energy prediction surveys 

Literature 
Energy 

efficiency 
Energy demand 

prediction 
Data-Driven 

methodologies 
Energy 

modeling 
Control 

mechanisms 
Energy 

management 

(Khan et al., 2020) x - -  - - 
(Tabanjat et al., 2018) - - - - - x 
(Tascikaraoglu et al., 2014) - x x - - x 
(Pascual et al., 2014) - x - - x x 
(Prodan and Zio, 2014)  x x x x x 
(Bruni et al., 2015) - x - - x x 
(Paudel et al., 2017) x - x x - - 
(Zendehboudi et al., 2018) - x - x - - 
(Sameti et al., 2017) - - x - - - 
(Houssein, 2019) - - x x - - 
(Runge and Zmeureanu, 2019) x - - x - x 
(Elsheikh et al., 2019) - - - x - x 
This review strategy x x x x x x 
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separated in a higher dimensional one (Ağbulut et al., 2020; 
Paudel et al., 2017). Moreover, SVM is regarded as among the 
finest machine learning techniques for both regression and 
classification, according to some statistical learning theories 
(Gao et al., 2003; Yuan et al., 2010). When the results of SVM 
were compared to those of other strong data-driven empirical 
techniques like ARIMA, RBF, MLP, and IIR-LRNN, the SVR 
results were observed to exceed or be equivalent to those of 
other learning machines (Erfianto and Rahmatsyah, 2022; 
Moura et al., 2011; Said et al., 2023). Additionally, SVR is thought 
to function well for time series analysis because of better 
generalizability and the capability of ensuring a global minimum 
for certain training data (Fuadi et al., 2021; Wu et al., 2004). 

For the link between the variable and the goal value, Sai et 
al. (Sai et al., 2020) employed an SVM with enhanced fitting and 
inserted the fitting forecast model into the response surface 
approach. Following collaborative analysis, the model was fed 
into a non-dominated sorting genetic algorithm-II. In addition, 
following the optimization operation, the optimum working 
conditions for enhancing the operating efficacy of the solar 
membrane distillation system were obtained, allowing open-pit 
mine prosumers to conduct smart management of producing, 
storing, and consuming solar energy at the same time (Sai et al., 
2020). In a study by Azam et al. (Fuadi et al., 2021), electricity 
usage was forecasted as part of the intelligent power grid 
development and electrification network information 
enhancement with the goal of performing energy management. 
Also, an SVM was utilized in the research to estimate electrical 
loads and compare the results to measurable electrical loads. In 
comparison with industrial, commercial, or residential electrical 
loads, laboratory electrical loads had unique features. Besides, 
RMSE was used for result prediction at various levels of trust or 
accuracy. The attained prediction technique had MSE = 0.14, 
MAE = 0.21, and RMSE = 0.37, indicating that SVM might be a 
useful tool for managing energy (Fuadi et al., 2021). It is noted 
that the microgrid dispatch's optimization is obtained by using 
data from renewable energy generation and load predictions in 
microgrids. Consequently, energy forecasting is critical in the 
electrical industry. Also, accurate prediction of power load is 
crucial for lowering the consumption of energy, decreasing 
power generating costs, and improving social and economic 
benefits (Khan et al., 2020). A number of approaches have been 
employed to forecast wind and solar energy supplies. In terms 
of predicting, the SVM modeling technique was demonstrated 
to have higher effectiveness compared to other modeling 
methods as the SVM is fast, simple to use, and gives accurate 
results. According to research based on significant analysis, 
SVM models can yield much greater accuracy in comparison 
with other models (Zendehboudi et al., 2018). Meanwhile, 
according to a study by Ehab et al. (Issa et al., 2022), SVR is a 
regression model utilized for optimizing. In fact, SVR is known 
as a form of SVM that could learn regression functions and is an 
SVM classification technique extension. Thus, Improving the 
accuracy of energy projections is necessary for the electrical 
grid to operate more effectively (Issa et al., 2022). More 
intriguing, the accuracy of SVM, a prominent machine-learning 
technique for simulating solar radiation was investigated and 
proved by Meenal and Selvakumar (Meenal and Selvakumar, 
2018). When used with an ideal set of data, the strategy 
mentioned above showed superiority over the empirical 
methods and ANN for this goal. Aside from that, Quej et al. (Quej 
et al., 2017) researched the capabilities of SVM, ANN, and 
ANFIS in replicating sun radiation daily, with average 
correlations of 0.689, 0.652, and 0.645 respectively for the top 
models, so the SVM has been considered the most trustworthy 

predictor (Moayedi and Mosavi, 2021). 

3.3.1. Comparison of SVMs and ANNs for energy forecasting 

Some professionals researched assessment rules, energy 
regulatory system model creation, system state forecast, and 
the right combination of the energy regulatory system and AI 
(Zhu et al., 2020)(Armin Razmjoo et al., 2019). Moreover, the 
energy regulating system's overall performance was measured 
by Yan et al. (Yan et al., 2020a) with the employment of an 
analytic data model. The purpose of applying this model was to 
investigate the link between the state change of a certain energy 
sort and the overall regulatory state. Ultimately, the design 
experiment validated the method's position in studying the 
energy regulation system's data perception (Yan et al., 2020b). 
Furthermore, based on data mining, the authors suggested an 
enhanced SVM method. It might considerably take advantage 
of sensing information acquired by intelligent devices based on 
the rough identification of the energy supervision system's data 
status. Zhu (Zhu, 2021) studied the e-commerce energy 
regulatory system model employing data mining and the SVM 
technique. The experimental study demonstrated that the 
updated SVM technique could achieve objective regulatory 
efficiency assessment based on data exploitation and might 
result in the best method depending on scenarios in the actual 
application phases of the energy supervision system. 
Accordingly, the performance was observed to be good, 
suggesting that the energy supervision system could achieve 
above 97%, which was greater than the majority of the most 
recent techniques (Zhu, 2021). Low-energy buildings have been 
viewed as a viable alternative for the construction environment 
in order to meet high energy efficacy criteria. Nevertheless, in 
comparison to traditional buildings, low energy buildings add a 
significant time constant, which slows down the heat transfer 
rate between the building interior and the outer environment 
and at the same time, adjusts the inside climate albeit rapid 
changes in climatic circumstances. As a result, Subodh et al. 
(Paudel et al., 2017) emphasized an AI model to estimate the 
energy usage of buildings with the use of SVM. According to the 
numerical findings, the "relevant data" modeling strategy, 
depending on limited representative data selection, predicted 
heating energy demand more accurately (R2 = 0.98; RMSE = 
3.4) compared to the "all data" modeling method (R2 = 0.93; 
RMSE = 7.1) (Paudel et al., 2017). In an investigation conducted 
by Sai et al. (Sai et al., 2020), an upgraded SVM was employed 
and the fitting prediction model was inserted into the response 
surface approach for the relation between the desired value and 
the variable. Interestingly, a set of optimum operating 
conditions for the solar membrane distillation system could be 
achieved after the optimization using SVM fitting as well as an 
NSGA-II multi-goal optimization technique. In particular, the 
cold-end cooling water flow was 194.14 L/h, the hot-end feed 
temperature was 65.76C, the membrane area was 0.03 m2 and 
the hot-end feed flow was 171.56 L/h. In addition, the 
researchers also discovered that the optimum operating 
conditions were gained after the operation of optimization 
aiming to promote the operating efficacy of the solar membrane 
distillation system, allowing open-pit mine consumers to 
smartly manage production, storage, and consumption of solar 
power at the same time (Sai et al., 2020). More noticeably, 
Kaytez et al. (Kaytez et al., 2015) examined regression analysis, 
SVM, and ANN forecasting accuracy for predicting the 
consumption of power in Turkey. It is noted that total power 
production, population, total number of customers, and installed 
capacity were utilized as inputs while total electricity 
consumption was employed as output, with the use of data 
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during the period of 1970-2009. When the findings were 
compared, the MAPE of the LS-SVM experiment results was 
1.004%, while 1.19% was attained for the ANN, and 3.34% for 
the statistical regression analysis model. Besides, Ogcu and 
Demirel et al. (Oğcu et al., 2012) predicted power consumption 
in Turkey using ANN and SVM, and they spent two years 
creating models based on monthly energy use data. The MAPE 
utilized by the SVM and ANN for the test set of data was 3.3 % 
and 3.9 %, in turn (M. Shao et al., 2020). Indeed, there is no 
intrinsic approach in SVMs and NNs for specifying the states 
and related methods. The above-mentioned factors could 
account for the reason why SVMs and NNs have been preferred 
for energy prediction rather than energy control. Furthermore, 
SVMs and NNs both contain numerical parameters that could 
be changed, which could influence how well they function. 
Attempting to manually modify the settings, on the other hand, 
is not practical. Significantly, iterative tuning of the model might 
be accomplished by the employment of optimization methods, 
including Cuckoo Search Algorithm (T. Liu et al., 2018), Particle 
Swarm Optimization and Grasshopper optimization algorithm 
(Chiñas-Palacios et al., 2021a; Eseye et al., 2018; Veza et al., 
2022b; Zhang et al., 2023), Genetic Algorithm (Sameti et al., 
2017), and Dragonfly Algorithm (Li et al., 2023; Zhang et al., 
2019). 

3.4. Reinforcement learning and metaheuristic algorithms 

Noticeably, a number of research have looked at real-time 
dispatch methods for energy management to deal with the 
effects of stochastic properties and forecast mistakes. Based on 
smart model-free learning approaches, the RBC 
(Venayagamoorthy et al., 2016; Yazdanian and Mehrizi-Sani, 
2014) was created for optimum management and control of the 
system. Interestingly, the Lyapunov optimization was employed 
in the online EMS with constraint relaxation in the investigations 
(Shi et al., 2017; Yan et al., 2019). The resolutions mentioned 
above frequently examine only the present operational states of 
the system and frequently simplify the operational requirements 
to facilitate real-time calculation. Hence, effective energy 
management is difficult to achieve over the long run. In addition, 
Markov decision processes (MDPs) may be in use for optimizing 
real-time energy dispatch. Based on the equation of Bellman for 
decomposing temporal dependency, DP and ADP (Zeng et al., 
2019) can be employed to handle such a stochastic sequential 
choice issue repeatedly. Besides, RL has recently been regarded 
as a potential technique for solving MDPs efficiently (W. Liu et 
al., 2018). In another study of Zhang and Sun (Zhang and Sun, 
2016), they created a consensus transfer Q-learning algorithm 
with the aim of energy dispatch which shared Q-value matrices 
and used previous information to accelerate algorithm 
convergence. For dynamic economic dispatch, (Dai et al., 2020) 
suggested an RL method in which state-action-value function 
approximation was integrated with multiplier distributed 
optimization based on splitting. Nonetheless, to prevent 
prohibitive computational complications because of the high-
dimensional state space, the aforementioned methods 
frequently need feature characterization and complex learning 
rules (Dong et al., 2021; Mnih et al., 2015). As reported, heuristics 
and Bayesian networks were also utilized to manage energy. 
Regarding heuristic algorithms, they are known as a form of 
algorithm based on the search that seeks the best solution to a 
specific issue (Desale et al., 2015). They have been utilized in the 
literature to optimize EV charging schedules (Vasant et al., 
2020), the energy consumption of cooling systems in a building 
(Ikeda and Nagai, 2021), trading portfolios for electricity 
markets (Faia et al., 2017), and energy resource utilization in a 

microgrid (Bukar et al., 2022). Indeed, heuristics are valuable 
because they can provide potential answers to issues for which 
there is no obvious answer (Ali et al., 2023). Moreover, some 
factors such as EV scheduling and the utilization of energy 
resources are affected by elements that are not always under 
control. As a result, Heuristics can present a viable solution that 
can be assessed. However, it might not be common since 
understanding the way to employ it in an energy management 
AI can be challenging. Whilst RL and FL algorithms instantly 
produce an action that can be employed immediately, heuristics 
search for resolutions (Li et al., 2023). 

Speaking of Bayesian Networks, they are graphs supporting 
the description of the possibilities of events happening based on 
the present state (Horný, 2014). In the document, Bayesian 
Networks have been utilized for user response prediction to 
demand side management measures (Z. Shao et al., 2020), for 
detecting prospective variations in electricity markets (Roje et 
al., 2017), and taking into consideration the uncertainty in 
energy usage and solar PV energy generation (Sun et al., 2020). 
It is not hard to see that Bayesian networks are valuable in 
managing energy because they are capable of quantifying 
uncertainty, as well as the production of renewable energy 
might be intermittent, and user schedules can alter. It is 
noticeable that Bayesian Networks can be unpopular since, like 
Heuristics, applying Bayesian Networks in an energy 
management AI could be difficult. The Bayesian Network 
provides a map of probabilities; however, how to teach an AI to 
assess those probabilities is such an issue (Li et al., 2023). 
Furthermore, metaheuristic algorithms have opened a new path 
for more powerful predicting models based on the skeleton of 
traditional tools such as ANFIS and ANN (Bakır et al., 2022). The 
methods mentioned above are commonly utilized for analyzing 
renewable energy (Corizzo et al., 2021; Houssein, 2019), such as 
solar energy (Bessa et al., 2015), wind power (Cavalcante et al., 
2017; Liu et al., 2019), and, more specifically, solar energy-
relevant simulations (Akhter et al., 2019; Elsheikh et al., 2019). 
More importantly, to avoid concerns such as local minima, such 
approaches (namely metaheuristic-based hybrids) give ideal 
parameters for the core prediction technique (Moayedi et al., 
2019). Several researchers studied hybrid metaheuristic 
techniques to improve algorithm performance. Several of the 
above-mentioned hybrid algorithms include the many-objective 
optimization model (Cao et al., 2020d, 2020a, 2020b, 2020c),  the 
whale optimization algorithm (Tu et al., 2021; Wang and Chen, 
2020), moth-flame optimization (Shan et al., 2021; Wang et al., 
2017; Xu et al., 2019), grey wolf optimization (Hu et al., 2021; 
Zhao et al., 2019), harris hawks optimization (Chen et al., 2020; 
Zhang et al., 2021), global numerical optimization, bacterial 
foraging optimization (Xu and Chen, 2014), Monarch Butterfly 
optimization (Bacanin et al., 2020), the grasshopper optimization 
algorithm (Yu et al., 2022), multiobjective 3-d topology 
optimization (Cao et al., 2020e), fruit fly optimization (Shen et al., 
2016), topology optimization (Fu et al., 2020), the fuzzy 
optimization method (Chen et al., 2019; Wasista et al., 2023), and 
data-driven robust optimization (Moayedi and Mosavi, 2021; Qu 
et al., 2021). 

3.4.1. Comparison of different meta-heuristic optimization algorithms 

In general, energy management in smart grids has common 
goals such as minimizing electricity expenses, maximizing user 
comfort, lowering PAR, integrating renewable sources of 
energy, and reducing aggregated power usage. A lot of demand-
side management approaches have recently been introduced to 
attain the aforementioned targets. Besides, non-integer linear 
programming, mixed integer linear programming, convex 
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programming, and mixed integer non-linear programming are 
in use for reducing costs and energy usage (Molderink et al., 
2009; Soares et al., 2011; Sousa et al., 2012; Tsui and Chan, 
2012). These systems, however, cannot manage huge quantities 
of equipment. Hence, distinct meta-heuristic optimization 
strategies can be utilized for managing energy in smart meters 
to address the shortcomings of the aforementioned 
methodologies. For instance, some researchers employed a 
genetic algorithm aiming to minimize power costs (Arabali et al., 
2013; Zhuang Zhao et al., 2013). In addition, demand response 
as well as ant colony optimization was utilized to cut down 
electricity bills and the use of aggregated power (Liu et al., 2011; 
Tang et al., 2014). It is obvious that the majority of energy is 
utilized in residential areas, and it is continually increasing, 
which has drawn the attention of scientists to household 
appliance scheduling. Zafar et al. (Zafar et al., 2017) assessed the 
performance of a home energy management system with the 
use of three meta-heuristic optimization approaches: harmony 
search algorithm, enhanced differential evolution, and bacterial 
foraging optimization, to minimize electricity expenses, 
consumption of energy, and lower peak to average proportion 
while maximizing the comfort of users. The findings of their 
simulation revealed that there is a trade-off between the 
expenses and the user's comfort. Also, the findings 
demonstrated that the harmony search algorithm outperformed 
other approaches in terms of costs (Zafar et al., 2017). In another 
study, Galván et al. (Galván et al., 2017) took advantage of a 
multi-objective PSO approach to optimize the SE modeling 
intervals, and they also created a nonlinear technique 
employing ANN, and their results indicated the PSO optimizer's 
great applicability for the given target. In addition, two 
metaheuristic approaches were utilized in an experiment by 
Zhao et al. (Zhao et al., 2020) to forecast the compressive 
strength of concrete, including shuffled complex evolution and 
teaching and learning based on optimization. Similarly, this 
technique was also effectively employed by Halabi et al. (Halabi 
et al., 2018), in conjunction with an ANFIS system to 
approximate solar radiation every month. Meanwhile, Vaisakh 
et al. (Vaisakh and Jayabarathi, 2022) proposed a mixture of two 
approaches for modifying the structure of different ANNs used 
in SIr forecasting, namely the grey wolf optimization and the 
deer hunting optimization algorithm. According to the results 
obtained, the introduced optimizer achieved promising 

enhancement. Furthermore, Louzazni et al. (Louzazni et al., 
2018) demonstrated the firefly algorithm's capability aiming to 
assess the photovoltaic system's parameters under various 
scenarios. In comparison to prior utilized metaheuristic 
algorithms, the firefly algorithm was reported to produce more 
trustworthy and valid results when adjusting photovoltaic 
parameters. More interestingly, Bechouat et al. (Bechouat et al., 
2017) proved the efficacy of the PSO and GA for the same target. 
Whereas, Abdalla et al. (Abdalla et al., 2019) effectively applied 
wind-driven optimization to the optimum power monitoring of 
photovoltaic systems (Moayedi and Mosavi, 2021). The major 
applications encompass load demand profiling, energy 
prediction, controlling techniques, state of charge in EVs, 
consumption minimum strategy, and charge-sustaining 
depleting approaches. The articles are classified and arranged 
based on these application scenarios of ANN, and an extensive 
comparative analysis of the features considered by these articles 
is presented in Fig. 6. 

The target of the agent in RL is to maximize or minimize a 
value.  This value might represent energy expenses or the 
consumption of energy in the context of energy management. 
An RL algorithm constantly alters its operations in response to 
environmental feedback. Besides, unsupervised learning (or UL 
for short) approaches are associated with recognizing important 
patterns in data and clustering them after that, based on the 
patterns identified above. Therefore, they are valuable in 
categorization difficulties. Since it is not easy to apply data 
clustering to energy management, unsupervised learning tends 
to be less common (Jo, 2021)(Li et al., 2023). Indeed, RL is a 
subfield of machine learning research in which an agent learns 
itself what behaviors to perform in a given environment to 
maximize the reward (Barrett and Linder, 2015). More 
interestingly, this is often related to a large amount of error and 
trial from an agent when it learns the greatest reward can be 
achieved from which actions. Apart from that, the algorithm is a 
general pseudocode that outlines the major phases of a normal 
RL algorithm (Mason and Grijalva, 2019). Notably, model-free 
and model-based RL algorithms are the two types of RL 
algorithms. Additionally, Dyna, Explicit-Explore-Exploit, 
Queue-Dyna, and Prioritized sweeping are examples of 
algorithms based on the model. Whereas, it is unnecessary for 
model-free techniques do create an environment model. Many 
commonly employed RL algorithms, such as SARSA and Q 
Learning, are known as model-free. In particular, Q Learning 
(Barrett and Linder, 2015) is considered among the most well-
known RL algorithms. Indeed, it is a model-free and off-policy 
reinforcement learning approach, in which off-policy agents 
learn the value of their policies independently of their actions 
(Barrett and Linder, 2015; Mason and Grijalva, 2019).  

3.4.2. Reinforcement learning techniques for intelligent energy 
management 

More importantly, the optimization framework depends on 
reinforcement learning using the Q-learning approach. This 
strategy motivates learning via the use of rewards or penalties 
based on a series of actions in response to setting dynamics 
(Panait and Luke, 2005; Sutton and Barto, 2018). Moreover, in a 
deterministic scenario, the approach can determine the most 
potential series of actions for a certain environment state, but in 
a stochastic one, it can account for the uncertainty in 
environment exploration (Panait and Luke, 2005). By 
decreasing power consumption, the Q-learning technique has 
been proven to obtain great performance in terms of managing 
the dynamic power of embedded systems (Prabha and Monie, 
2007; Tan et al., 2009). Furthermore, the method has also been 

 

Fig. 6. Segregation of articles based on the application scenario 
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used for creating a complete and advantageous demand 
response model for power pricing (Yousefi et al., 2011)(Mason 
and Grijalva, 2019). Particularly, a retail energy supplier utilizes 
Q-learning to establish appropriate real-time pricing while 
taking into account various factors like price limits and 
consumer replies. For intelligent energy management, the Q-
learning technique can be combined with other methods, 
including Metropolis Criterion-based fuzzy Q-learning (Li et al., 
2012), and genetic-based fuzzy Q-learning (Kuznetsova et al., 
2013; Xin et al., 2012). More interestingly, it was discovered that 
the combination technique outperformed either MPC or Q-
learning alone (Liu and Henze, 2006). Barrett et al. (Barrett and 
Linder, 2015) used Q-learning for the issue of HVAC control in 
conjunction with Bayesian Learning for predicting occupancy in 
2015. Based on the results, a 10% enhancement was observed 
in energy savings over a programmed control system. Besides, 
in 2017, deep NN and Deep RL were employed by Wei et al. 
(Wei et al., 2017), aiming to solve the HVAC control problem, 
and reported energy savings increases of 20-70% above 
standard Q-learning. Meanwhile, Chen et al. (Chen et al., 2018) 
used Q-learning to regulate the window systems and HVAC. As 
reported, the two buildings studied saved 13% and 23% on 
energy and reduced discomfort levels by 62% and 80%. Fitted 
Q Iteration was applied in an investigation by Reymond et al. 
(Reymond et al., 2018) in 2018 for learning to schedule a variety 
of domestic equipment, such as dishwashers, water heaters, and 
heat pumps. Their findings showed that autonomous learning 
outperformed the centralized learning method by 9.65%. As for 
managing residential batteries, Wei et al. (Wei et al., 2015) 
developed a dual iterative Q-learning technique, and in 
comparison with the baseline, a 32.16% reduction was observed 
in energy expenses. In addition, Guan et al. (Chenxiao Guan et 
al., 2015) employed temporal difference learning to aim to 
manage the battery energy storage with PV panels in the 
research in 2015. It is noted that temporal difference learning 
was found to reduce 59.8% of energy expenses. More 
remarkably, Rayati et al. (Rayati et al., 2015) applied Q-learning 
to residential energy management in the context of PV 
installation and energy storage. When determining the best 
control regime, this research took into account household 
comfort and CO2 emissions. According to the authors, maximal 
energy savings reached 40%, along with a 17% decrease in peak 
load, and a 50% reduction in CO2 societal expenses. Remani et 
al. (Remani et al., 2019) used Q-learning to schedule numerous 
household equipment like lights, dish washers, laundry dryers, 
and so on. Aside from that, the authors also constructed a 
demand response system based on price, in which a PV panel 
was incorporated, indicating a 15% reduction in daily energy 
expenditure. Wen et al. (Wen et al., 2015) suggested an energy 
management system for demand response for small buildings, 
allowing for automatic device scheduling to deal with variations 
in electricity prices. Furthermore, Mocanu et al. (Mocanu et al., 
2019) utilized DQL and DPG to improve the system of energy 
management for 10, 20, and 48 households in the 2018 research. 
In addition, this investigation looked into the employment of 
vehicles running on electricity, PV panels, and appliances in the 
building. As reported, DPG saved 27.4% on power and DQL 
saved 14.1%. Moreover, the researchers employed Q-learning 
to exploit the projected 65% potential energy savings for small 
houses through effective device scheduling, and they 
demonstrated enhancements according to the baseline. Also, 
inverse reinforcement learning was applied by Bazenkov et al. 
(Bazenkov and Goubko, 2018) to forecast consumer appliance 
consumption, and it was observed that IRL outperformed other 
machine learning approaches like random forest. In a study by 

Jiang et al., a hierarchical multi-agent Q-learning technique was 
implemented in a microgrid for responding to the dynamic 
demand as well as manage distributed energy sources (Jiang 
and Fei, 2015). According to this study, the entire community's 
energy expenses were reduced by 19%. 

4. Existing limitations and perspectives 

AI models offer numerous benefits, but they also have 
certain drawbacks. First, AI models and clever algorithms, like 
other models driven by data, perform poorly beyond their 
training range. Therefore, models are restricted to the value 
range encountered during training. As a result, these retraining 
strategies can support making sure that AI models efficiently 
adapt to novel data and circumstances (Barkah et al., 2023). 
Furthermore, AI models are black-box-based models 
themselves, so the internals are unknown. They may give a 
competent forecasting tool, but they lack comprehension of the 
fundamental characteristics of energy use as well as its 
behavior. More importantly, the employment of hybrid grey-box 
models is considered one way to address this. In the 
aforementioned models, AI models are often integrated with 
equations based on physics to maximize the benefits of both 
models while minimizing their drawbacks. Overfitting is another 
constraint that might impair the effectiveness of AI models as 
well as smart algorithms. Indeed, overfitting happens when a 
model learns too much noise from the training data. To 
overcome this challenge, there are several strategies both within 
and outside of training to boost generality. Moreover, models 
may be trained using a suitably large data collection concerning 
the quantity of inputs (MathWorks, n.d.). Although additional 
ways exist to assist in ensuring generality, the methods 
discussed above offer a concise summary of some possible 
approaches to tackle the specific problem. Furthermore, 
insufficient hyperparameter selection can result in models with 
poor performance in predicting and/or needing more time to 
generate estimation, which is another restriction of AI models. 
Regardless, in case the hyperparameters of AI models are 
properly adjusted, intelligent algorithms along with AI models 
can show great performance and short processing times. Hence, 
professionals are now required while building AI models (Runge 
and Zmeureanu, 2019). Furthermore, delays are thought to have 
a significant impact on system operation. Because latency 
propagates via a system, an EMS's response is restricted by the 
slowest connection in the system. Interestingly, while multi-
stage and hybrid AI models are effective and innovative, their 
real-time performance is questionable and needs research. It is 
suggested that researchers consider doing mock experiments 
with energy systems on a small scale to assess the effectiveness 
of the AI model when systems, controller software, and sensors 
from other energy resources are taken into account. Indeed, the 
simple and effective combination of AI could be a significant 
innovation of the concept. Experiment results that have been 
validated can guide the future of AI employment in the energy 
field. Although AI models have been evaluated in a confined 
setting, more research and effort are required when AI is 
gradually integrated into a wider system. This results in the core 
problem with Energy Management Systems, namely real-time 
operation (Li et al., 2023). However, there exist restraints to 
utilizing intelligent algorithms in energy management systems 
because the vast number of publications describe the 
employment of intelligent methods in simulated versions of 
energy management issues. It is noticeable that because 
intelligent algorithms are known as online learning algorithms, 
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they might be used in a physical-based energy management 
system with no need to learn in a simulated setting. Hence, 
intelligent algorithms must learn effective control policies, 
which reduce energy expenses through error and trial. Apart 
from that, for this purpose, accurate simulators are required for 
the intelligent algorithms agent to learn which rules are optimal 
through simulation. When the aforementioned pre-trained 
agents are deployed in physical systems, they can further 
improve their policies (Mason and Grijalva, 2019).   

Significantly, due to the increasing volume of data acquired 
by sensors in the future, it is essential to apply deep intelligent 
algorithm approaches aiming to build successful policies while 
dealing with settings with extremely huge state-action spaces. 
Besides, using various variants of classic intelligent algorithms 
can be a new pathway for future study in intelligent algorithms 
for the management of energy. Meanwhile, several energy 

management challenges can be multi-objective intelligent 
algorithm issues. Future studies may also investigate the use of 
meta-learning to overcome the challenges of intelligent 
algorithms in energy management. Furthermore, several future 
research questions have been raised, like how long the 
intelligent algorithm agent must spend relearning new policies 
in those situations. More interestingly, another possible future 
study topic can be experimentally comparing various algorithms 
as well as other control algorithms. Indeed, further studies might 
look towards merging several intelligent systems to control 
energy (Mason and Grijalva, 2019). Table 4 presents the 
tabulated results of identified constraints and potential 
solutions, along with key observations stemming from an 
extensive survey and Fig. 7 illustrates the present focus of 
research and the potential paths for future research in the field 
of AI for Energy Data Analytics. 

Table 4 
 Summary of identified constraints, solutions, and observations from the Intelligent Energy Prediction Survey 

Key Points Inferences 

AI Model Limitations 

• AI models and algorithms have limitations beyond their training range 

• These models are constrained by the value range encountered during training 

• Retraining strategies are used to ensure adaptability to novel data and circumstances 

• Hybrid grey-box models integrate AI models with physics-based equations to enhance understanding 

and performance. 

Black-Box Nature of AI 
Models 

• AI models are black-box-based and lack comprehension of fundamental energy use characteristics 

• Hybrid models combine AI and physics-based equations to maximize benefits while minimizing 

drawbacks 

• This approach enhances forecasting competence and improves understanding of energy behavior 

Overfitting Challenge 

• Overfitting occurs when a model learns noise from training data 

• Strategies within and outside training are used to address overfitting and boost generality 

• Adequate data collection and proper hyperparameter selection are crucial to ensuring model 

effectiveness 

Hyperparameter 
Selection 

• Poor hyperparameter selection can result in models with poor performance and longer processing times 

• Properly adjusted hyperparameters enable AI models and algorithms to achieve high performance and 

short processing times 

• More technicalities are required to build effective AI models. 

Real-Time Performance 

• Delays impact system operation, with an EMS's response limited by the slowest connection 

• Multi-stage and hybrid AI models are innovative but raise questions about real-time performance 

• Mock experiments with energy systems are suggested to assess AI model effectiveness in real-world 

scenarios. 

AI Integration into 
Energy Systems 

• AI models have been evaluated in confined settings, but more research is needed for gradual integration 

into wider systems 

• Challenges exist in utilizing intelligent algorithms due to the predominance of simulated versions in 

publications 

• Intelligent algorithms need to learn effective control policies through trial and error. 

Deep Intelligent 
Algorithm Approaches 

• Increasing sensor data volume calls for deep intelligent algorithms to develop successful policies in 

complex state-action spaces 

• Exploring variants of classic intelligent algorithms is a potential pathway for future research in energy 

management. 

Multi-Objective 
Intelligent Algorithm 
Issues 

• Some energy management challenges are multi-objective intelligent algorithm issues 

• Future studies could investigate the use of meta-learning to address intelligent algorithm challenges in 

energy management. 

Future Research 

• Future research could address the duration intelligent algorithm agents need to relearn new policies 

• Comparative studies of different algorithms and control methods could be valuable 

• Merging multiple intelligent systems for energy control is a potential research direction. 

 



T. T.Le et al Int. J. Renew. Energy Dev 2024, 13(2), 270-293 

| 284 

 

ISSN: 2252-4940/©2024. The Author(s). Published by CBIORE 

5. Conclusions and future directions in field 

In conclusion, the increasing demand for sustainability and 
concerns about energy exhaustion have made energy 
management a significant topic in this era of globalization and 
technological advancement. This paper has explored the 
applications of artificial intelligence (AI) in energy management, 
specifically focusing on areas such as demand response, smart 
grids, and energy forecasting. The use of intelligent algorithms 
and artificial neural networks (ANNs) in energy management 
systems has been discussed. The review emphasizes the 
importance of AI models in predicting energy consumption, 
load patterns, and resource planning to ensure consistent 
performance and efficient resource utilization. The 
implementation of AI in energy management has shown 
promising results, with reported energy savings of over 25%. 
However, it is important to acknowledge that training AI model 
requires large volumes of data, necessitating the utilization of 
big data systems and data mining techniques to identify new 
functions and associations that can enhance AI performance. 
Additionally, the integration of advanced digital technologies 
such as the Internet of Things and blockchain can further 
enhance intelligent energy management. As a future scope of 
this work, it is posited that the integration of multiple AI 
techniques to generate hybrid models has the potential to 
significantly improve prediction accuracy. The future 
investigations should focus on deep learning models, long-term 
prediction, component-based target variables, ensemble 
models, lighting models, grey-box models, automated 
architecture selection methods, and sliding window re-training. 

These directions have the potential to improve energy 
management models, enhance energy usage, contribute to data 
science, and facilitate big data analysis. 
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