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Abstract.: Electric vehicles (EVs) are being introduced in Rwanda and becoming attractive for different reasons. For instance, these types of vehicles 
can help decrease air pollution and noise emissions. In addition, it presents an alternative to combustion engines, given the increased price of fuel 
resources in Rwanda and around the world. This paper presents a tool tailored to optimize the design of an electrical charging station serving small-
sized electric vehicles, utilizing the algorithm to assist in sizing stand-alone mopped charging stations. The developed tool is based on the toolbox 
EventSim from MathWorks, which permits the combination of the simulation of discrete events (such as the arrival of customers at the station) with 
continuous states (such as the simulation of the charging process). The required PV power was estimated by utilizing solar resources, for the location, 
from renewables. Ninja. The number of customers arriving at the existing oil station is normalized to estimate the energy requirements of the mopped 
fleet. A Poisson distribution was proposed to model the battery discharge upon arrival, and different related parameters were evaluated through a 
sensitivity analysis to identify their effects on the performance of photovoltaic charging station. For the testing values, the station parameters were 
changed by ±25% to determine the impact of key design parameters on station performance, as well as other satisfaction measures such as average 
waiting time and average queue length. With a 25% increase in photovoltaic panels, the blackout period decreases by 2.12%, while a 25% decrease 
in photovoltaic panels causes an increase of 2.18% in the blackout period. Utilizing the energy management system (EMS), the waiting time was 
reduced by 8%.   
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1. Introduction  

 The development on power electronic systems and 
microgrids has permitted solutions to energize areas in 
developing countries. Productive use of energy has fostered the 
energization of remote areas in developing countries with 
difficult access to the main power electricity system. For 
example, the project modularity grid developed a microgrid in 
Rwanda to help local communities access electricity. Among the 
different project targets, the productive use of energy is among 
the priority lists. In this context, local communities are 
upgrading their mobility systems (mostly based on fuel engines) 
towards more sustainable vehicles, namely, electric vehicles 
(EV)s (Gabbar et al., 2021)(Cabrera-Tobar et al., 2022). However 
the increase in demand of recharging the EVs leads to the 
congestion of few available charging stations (Li et al., 2020), 
The sizing of the infrastructure for charging EVs is an important 
aspect for the development of such areas to enhance the impact 
of EVs on public transport (Raf, 2021). The electric power 
charging stations in Rwanda are mostly dominated by grid 
power yet the region has enough solar energy that can be 
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alternative and help to reduce gas emission that contribute to 
global warming; In addition, most of these charging stations are 
using the swapping methods. Other benefits of electricity 
generation from renewables include greater grid flexibility, 
reduced grid congestion, and reduced input electricity price 
(Huang et al., 2021) (Ciceu & Serban, 2022). Photovoltaic 
charging stations combine photovoltaic (PV), battery energy 
storage system (BESS), and charging stations; therefore, there is 
a need to analyze charging stations that use solar energy to 
introduce EVs green energy charging stations. Nevertheless, the 
sizing of the stations must be done to provide good service to 
customers such that EVs gain momentum in the communities, 
while their cost must be optimized to guarantee an affordable 
facility. For electric cars (EVs) to be successfully used in 
Rwanda, solar charging station installation was determined to 
be a prerequisite, and the government has implemented a 
number of incentives to encourage EV usage (Rwanda EV 
Charger Market 2022-2030 | September 2023 Updated, n.d.). 
Motorcycle riders in rwanda, especially in Kigali, go around in 
the city in their daily work; thus, the enhancement of public 
charging stations is needed for those who use electrical motor 
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cycles. The availability of electric charging stations affects EVs 
users differently in terms of access charging cost, traveling cost, 
waiting time, and charging time (Ahmad et al., 2022). The 
increasing number of industries that use vehicles that depend 
on fossil fuels has caused serious environmental 
deterioration(Su et al., 2018)(Yang et al., 2021). The increasing 
use of technology has increased the need to depend more on 
energy. However, the shortage of fossil fuels has become a 
constraint, and fossil fuel use leads to greenhouse gas (GHG) 
emissions that contribute to acid rain, global warming, and other 
long-term environmental problems (Shafiq et al., 2022).This 
global climate disorder causes a decrease in natural resources 
such as solar, wind, and biomass, and is  becoming rare on some 
parts of the earth. Scientists are encouraging human beings to 
utilize renewable energy sources for survival (Nishanthy et al., 
2022). Solar energy has garnered significant interest from 
researchers worldwide owing to its clean, abundant, and free 
nature. It is a renewable energy source with a vast potential and 
a wide range of applications (Xu et al., 2017)(Ram et al., 2018). 
This article focuses first on the development of a design tool for 
charging stations serving small EVs, to optimize the energy. 
Second, the developed model was used to simulate the demand 
for solar fast-charging stations and analyze the effect of 
variations in the main parameters on the performance of the 
solar charging station. Solar resources have been modelled 
using renewable. To fit the Poisson distribution to model the 
customers' arrival, a popular time pattern of fuel station was 
used. The normalized arrival per hour has been used as the 
expected mean arrival per hour. The customers ‘arrival model 
and battery discharge level model were used into a developed 
Simulink model to analyze the sizing requirement of the 
charging station utilizing a discrete event systems simulation 
engine, available in MATLAB (SimEvents - MATLAB, n.d.) . 
Development of an energy Management System (EMS) to 
optimize the performance of the PV charging stations by 
ensuring that the small EVs are charged efficiently. 

In (Wu et al., 2023)(Hussain et al., 2020), a Monte Carlo 
simulation tool was used to predict the charging demand, 
stationary energy storage system sizing,  and vehicles arrival at 
a fast charging station, the simulation results  indicated that the 
presented methodology can approximate real-world extreme 
fast charging demand. However, it was recommended to extend 
the methodology by considering the transportation dynamics 
because the EVs’ charging load depends on drivers’ behaviors. 
An agent-based simulation program was created to examine the 
daily charging demand patterns of electric vehicles at charging 
stations, using empirical mobility data. The waiting period was 
examined over the course of a week, and the simulation findings 
showed that, for the majority of those weeks, there was very 
little waiting. It was decided to add more charging stations 
because Friday afternoon's extreme (up to an hour) wait time 
was most likely caused by long-distance commutes, holidays, 
and leisure travel (Jochem et al., 2016). Under the suggested 
demand-side management of the EVs approach, EVs were able 
to charge at low tariff rates (Selim et al., 2021). Self-
consumption-sufficiency balance (SCSB) was used to simulate a 
number of scenarios regarding the number of EV charging ports 
to balance self-consumption (SC) and self-sufficiency (SS). The 
results demonstrated that SCSB performance tended to be 
greater with a larger combined photovoltaic–electric car size 
(Fachrizal et al., 2022).  Jayasankar Nishanthy et al. have used 
sensitivity analysis to design charging station for different 
region here the parameters such as solar global horizontal 
irradiation, temperature, and wind velocity were the parameters 
to be variated. It was found that these variables are proportional 
to the high cost of the nominal rate of interest for one of the 

three chosen regions to be analyzed, and it was shown that 
modifications are needed in the combination of solar 
photovoltaic and wind turbine ratings(Nishanthy et al., 2022). 
The modulated Poisson process was used to determine when 
each vehicle will arrive at a charging station, and it was found 
that the combination of renewable energy and storage systems 
provides a good cost efficiency solution (Domínguez-Navarro et 
al., 2019). Energy management system have been developed by 
means of python  for electrical  vehicle  PV charging station , the 
results showed that the management can successfully reduce 
the energy taken from grid and maximize the use of local 
produced solar energy sources (Ciceu & Serban, 2022). 
Intermittent energy sources, such as wind and sun, require 
precise forecasting, and the developed quadratic price function 
has shown that an EV can enjoy a higher charging rate only by 
paying more, whereas others charge slowly at lower prices to 
avoid congestion (Kabir et al., 2020). The most recent studies 
considered the estimated average driving distance to model the 
charging demand, for this work the number of customers who 
have visited the charging station for service were considered, 
using the transportation dynamic of cell battery. Utilizing the 
SimEvent toolbox in Matlab to develop a hybrid discrete-event 
model to emulate the discrete arrival of customers and the 
continuous dynamics of electric charging.  As a result, this work 
presents the design of simulation platform that can be 
customized to assess the needs and performance of a small-
vehicle charging platform.  
   

2. Modelling the demand and resource 
 

This section presents the approach used to model the arrival of 
customers at the charging station and the solar resource of the 
chosen location to emulate a photovoltaic (PV) plant. The 
irradiance data for a specific location were obtained from 
(Renewables.Ninja, n.d.).  

The city of Kigali (Rwanda) was chosen for this study. The 
webpage provides irradiance data on an hourly basis, and these 
data can be adjusted for different tilt and azimuth angles of the 
panels. The irradiance panels are considered to lie at an 
approximately tilted angle of 170(Wenham et al.,2007,p.22) (Solar 
Panel Angle: How to Calculate Solar Panel Tilt Angle?, n.d.) (Ajao 
et al., 2013). The average daily irradiances for Kigali are 
provided in Figure 1 for the year 2020. Based on this data, the 
days with the highest and lowest irradiance can be obtained, 
which correspond to days 8 and 246, respectively (see Fig 2).  

 
Fig.1 Average irradiance at Kigali per day 
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2.1  Modelling the charging demand 

This section describes the modelling of the charging demand 
and shows the development of a charging design tool that 
focuses on a simulation model capable of emulating the 
behavior of the charging station. It is assumed that the arrival of 
customers to charge the batteries at the station follows a certain 
pattern, although their arrival times must be randomized. 
Therefore, a probability model that counts random events in a 
given time interval was considered. For this purpose, the 
Poisson distribution, which is often used in the modelling of 
customers’ arrival, was used (Parkin and Marlin, 2011). The 
Poisson probability density function is defined as in (1): 

          𝒇(𝒙) =
𝛌𝒙

𝒙!
𝒆−𝛌                                                    (1)                                                                                                                                  

where 𝒙 is the expected number of random events and λ is the 
expected mean (μ) of the density function (in this study, lambda 
represents the average discharge of the battery). Similarly, the 

standard deviation (σ) is √𝛌 .  

2.2  Modelling the average arrival of customers 
 
To fit the Poisson distribution to generate a randomized arrival 
of customers at the charging station, a popular time pattern of a 
fuel station in Kigali was considered for a simulation of 24 hours, 

the arrival of customers over a day at the station. The number 
of customers who visited the station is shown on an hourly basis. 
The number of customers was normalized to define the 
percentage of customers arriving each hour. Here, the peak 
demand considered was six customers.  The expected average 
charges per hour can be defined and the average arrival of 
customers per hour is rounded to the nearest integer. The found 
data were used to fit density distribution in (1), to generate a 
randomized pattern of customer arrival at the charging station.  
The level of usage was determined based on the site data. The 
normalized arrival per hour was used as the expected mean 
arrival per hour (λ), and a randomized distribution pattern was 
generated for each time of day. Figure 3 shows the distribution 
pattern for one day; here, the Poisson inverse cumulative 
distribution function was used with a percentile of 0.8(Poisson 
Inverse Cumulative Distribution Function - MATLAB Poissinv, 
n.d.), and the data shown in figure3, have been used to model 
the emulation of customer arrival at the charging station over 
the desired period of time. The average arrival of customers was 
then multiplied by the average energy required by each 
customer. The average energy is calculated based on the 
estimated battery operating voltage (which is considered 
constant) and the average depth of discharge of the vehicle at 
the arrival time.  
 

3. Modelling the level of battery discharge at arrival 

Besides the number of customers arriving at each time of 
the day, it is important to model the level of discharge of the 
battery at the arrival time, which is normally between 0 and 1 
(Antarasee et al., 2023)(Ikram et al., n.d.). A normal probability 
function can be used to define the distribution of the amount of 
energy remaining in the battery. Based on the estimation of the 
charging requirements listed in Table 1, The Total Energy for 
the full battery is 2.88 kWh.  The average discharge (λ) of the 
batteries on arrival was taken as 36%, which is equal to 1.0368 
kWh, and the standard deviation (σ) considered is 1.0182 kWh. 

Nevertheless, the normal distribution needs to be 
truncated based on the physical operating limits of the battery, 
the following assumption is made: The EV arrives with the 
following range of discharge: the minimum discharge of the 
battery is 30%=0.864 kWh, the maximum discharge of the 
battery before returning to the charging station is 80 
%=2.304kWh. Then, the probability density and cumulative 
density functions of the charging state distribution upon arrival 

 
(a)                                                                                                (b) 

Fig. 2. (a) Minimum and (b) maximum irradiance days over the year. 

 
Fig. 3 Illustration of the 24-hours pattern of customer arrivals 
based on Poisson distribution. 
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are shown in Figure 4, where the red dotted line shows the 
truncated data used for the analysis.  

The modelling of the customer arrival rate presented in 
section 2.2 and the modelling of the battery discharge discussed 
in Section 3 are combined to generate the data to be fed into the 
simulation model, and these data will be used to simulate the 
sizing requirements of the charging station.  

4. Preliminary data estimation of energy requirements 

 
The sizing of the PV plant is based on the solar irradiance data 
and the modules of choice, as well as the energy requirements 
for the charging station. Thus, the preliminary sizing of the 
system is based on certain assumptions regarding the charging 
demand. The preliminary data considered for estimating PV 
plant requirements are summarized in Table 1. The peak power 
of the PV generator (Ppv) (Omar & Mahmoud, 2019)(Ibrik, 
2020) is obtained as in (2):  

Ppv =
𝐸𝑑

ɳ𝑠×𝑃𝑆𝐻
                                                                 (2)  

Where: 𝑬𝒅 is daily energy consumed of the charging station 
(kWh/day), ɳ𝒔  the efficiency of the system components, 𝑃𝑆𝐻 
the peak sun hours  

Considering the outlined parameter values, the obtained 
Watt peak (Wp) is 164, Refer to the calculated peak power of 
needed panel and Based data-sheet information in(Energy & 
Europe, n.d.), PV generator with a peak power of 235Wp is 
selected to secure continuous power availability. The following 
data are the other main information required for the sizing and 
modelling of the PV plant based on the data sheet: 

• PV panel max. power: 235 W. 
• PV panel useful area: 1.64 m2. 

• Module efficiency:14.9 %. 

Based on the rated power of the chosen PV panels and the 
energy used by the charging station during the day, the number 
of required PV panels was calculated using MATLAB 
(https://www.leonics.com). The found number of PV panels(n) 
required to power the charging station is 166 from this number 
sensitivity analysis was performed to examine its effect on the 
performance of electrical vehicle charging station. The PV plant 
is modelled in the simulation platform based on the sizing 
requirements specified above. The battery storage system (BSS) 
should be large enough to store sufficient energy to operate the 
PV station at night and the cloud days. The required storage was 
sized by using equation (3) (Omar & Mahmoud, 2019); Where 
0.85 is battery loss and 0.7 is depth of discharge, the considered 
days the system to operate where there is no power produced 
by PV panels are 2 days, the calculated value is 43kWh.    

𝐵𝑆𝑆 =
Total watt−hours per day∗Day of autonomy 

0.85∗0.5∗12
                 (3)                                                                    

5. Waiting time and waiting queue Generation 

This section clearly explains how the emulation of the customer 
arrival waiting time and queuing time was generated, to 
overcome the uncertainty issues of traffic conditions and 
dynamically arriving charging requests(Lee et al., 2020).The 
emulation of customer arrivals at the charging station was based 
on the probability distribution presented in Section 2.2. The data 
generated regarding the usage of the fuel station and customer 
arrivals were randomized on a second-by-second basis to 
generate the customer arrival pattern (see Figure 5). These data 
are fed to the entity generator, which creates discrete events 
each time a new customer is generated by the arrival pattern. 
To feed the entity generator block, the customer pattern must 
be converted into intervals of successive events. A flowchart for 
waiting time and queue generation is shown in Figure 5, and the 
procedures are as follows: 

• Step 1. Vehicle arrives: An electric vehicle arrives at a 
station seeking charging. A popular time pattern of the 
fuel station was used, and by utilizing the Poisson 
distribution, a random arrival of customers was 
generated, which was then randomized on a second-by-
second basis to generate the customer arrival pattern 
(discrete event creations). 

• Step 2.  EV battery discharge generation: The entity 
generation block generates and associates a randomized 
deep discharge of the EV battery for each customer. 
(Randomized EV battery Discharge generation) 

• Step 3. Waiting queue generation: This block manages 
the queue of customers and permits the visualization of 
metrics, such as the average waiting time or queue. 

• Step 4. Availability check charger: 
• Charger available: If a charger is available, proceed to       

the next step. No charger available: The vehicle enters 
the waiting queue. 

• Step 5. Charger selection (Charging profile selection): 
Permits to remove one of the entities associated to a 
customer, which then permits to enter one of the 
customers of the waiting queue to the EV charging setup 

• Step 6. Charge initiation: The charging process begins 

Table 1 
Estimation of charging requirements.  

Parameters Value 

  
Average charging cycles per day 70 

Estimated battery capacity 40 Ah 

Estimated battery voltage 72V 
Av. discharge of batteries on arrival 36% 

 

 

 

Fig. 4 Cdf of battery discharge at arrival. 
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based on the selected profile and the vehicle 
specifications. 

• Step 7.  Charge completion (entities released): The 
charging process is completed when the battery reaches 
a desired level. The entities are released from the 
selected chargers, which are customers leaving the 
charging station after refilling their EV. 

• Step 8. Vehicle departure: The vehicle departs from the 
station, freeing the charger for the next vehicle. 

 
6. Charging Station 
 
The charging station stage emulates the management of the 
docking ports and injection of current into the EVs. The 
converter-charging data block is a logic element that assigns a 
customer that has just arrived at a free dock. Likewise, prior to 
the arrival of a customer, this block frees a docking station when 
a flag signal is generated open at the completion of charging an 
EV. Each customer arriving at the plant is then associated with 
the battery discharge level, which determines the initial SOC of 
the battery.  

The converter charging data system generates auxiliary 
variables that are assigned 1 for docking stations that are 
charging and 0 for those that are free. These variables are then 
multiplied by the charging rate of each of the docking stations. 
Note that during the CC stage, the charging rate is one, although 
this rate is curtailed when the charging process enters the CV 
stage (see Figure 6). Finally, the flowchart in Figure 6 
corresponds to a logic element to prevent the charging process 
from entering a limit cycle, and it should be noted that the 
charging process is deactivated when the energy available from 
the PV panels and the ESS is lower than the demand at the 
station. 
 
7. Description of the EMS algorithm 
 
As a developing country, Rwanda is committed to promoting 
sustainable transportation. Reducing greenhouse gas emissions 
and the country's dependence on imported fossil fuels, which 
accounts for the majority of the country's foreign exchange 

 
Fig.5 Flowchart for the waiting time and queue generation process at an EV  

 

 
Fig.6 Flowchart to Avoid Limit Cycle in EV Charging with Lowered PV/ESS Energy  
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spending, are key elements of the plan. The government 
introduced several incentives to promote EVs. Electric vehicles, 
spare parts, batteries, and charging station equipment are 
exempt from import tax, special consumption tax, and 
VAT(Rwanda EV Charger Market 2022-2030 | September 2023 
Updated, n.d.). There is greater emphasis on ensuring that the 
electricity used to charge electric vehicles, such as e-bikes, 
electric automobiles, and electric buses, is also sustainable(Ram 
et al., 2018).  Thus, the design of the battery management 
system plays a significant role in battery life preservation and 
performance development of EVs because it is crucial to ensure 
that the battery being used is as reliable as fossil fuel(Ikram et 
al., n.d.). This section describes the Energy Management 
System (EMS) algorithm, which is used to optimize the 
performance of the charging station given a set of system 
parameters (e.g., number of PV panels, size of the ESS) to 
reduce the waiting time of customers to improve satisfaction 
metrics. 

The EMS algorithm is based on the hourly energy balance. 
Based on the information on the PV resource, the estimation of 
the demand (based on the expected number of customers in the 
following hour), and the information available regarding the 
energy available in the ESS, the EMS decides how to curtail the 
charging process of the docking station. The curtailment is 
based on the charging process of the lithium cells, because 
during the CC stage, the cells refill quickly, but the charging 
speed is reduced during the CV stage. The SOC value at which 
the charging speed decreases is estimated to be 95 % (Volume 
II Equivalent-Circuit Methods, 2020). Then, the EMS evaluates 
the energy balance (4) and determines whether the charging 
process should be cut-off before the SOC reaches 100%.  
 

            (4)                        

 
If the energy balance is positive, the energy demand for the 
following hour is expected to be lower than the energy 
generated from the PV panels and the energy available in the 
ESS. Under this scenario, SOC charging is maintained at 100 %, 
and the plant   operates normally. However, if the energy 
balance is negative (e.g., the expected demand is larger than the 
energy from the PV and ESS), the charging process is curtailed. 
To do so, the charging process is stopped at 95% of SOC.   

8. Results and discussion  
 

This section presents how the model can be used to assess 
the sizing requirements of the charging stations. The simulated 
PV charging station model was used to analyze the behavior of 
the system under different operating conditions and design 
parameters. The impact of the system performance under 
different design parameters was studied by performing a 
sensitivity analysis. The results obtained can be used to reduce 
the construction cost of the plant and identify techniques for 
optimizing the operation of the system. Initially, the calculated 
number of PV panels was considered in the analysis, and the 
simulation was evaluated for the same usage (and the same 
solar resource) but considering variations of ± 25% in the 
calculated number of PV panels. Figure 7a illustrates the time 
that the system experiences a blackout against the total time 
that the charging is operating. Here, the term blackout refers to 
the period when the station does not have sufficient energy to 
supply charging demand. The total energy of the charging 
station is a combination of the energy generated by the PV 
panels and energy stored in the ESS.  The information presented 
in Figure 7a shows that the time in (%) the system is not able to 
recharge EVs while there are customers waiting to do so, and it 

is clear that the number of PV panels affects the performance of 
the charging system. The impact of increasing or reducing the 
number of PV panels relative to the initial design choice (166 
panels) is discussed here. Increasing the number of panels to 
208 slightly affected the operation time, but this change 
increased the cost of the charging station. However, a reduction 
in the number of PV panels to 124 increases the blackouts 
period.   

The effect of battery size was analyzed with respect to the 
system blackout (Figure7b), and it can be observed that the 
reduction in the ESS size impacts the operating times that the 
station can meet the demand, as the storage capacity sharply 
reduces the blackout. In Figure 7b, 43 kWh storage capacity is 
the size value; a value below the size value will increase the 
blackout period, utilizing the storage capacity of 53 kWh, as well 
other values above this value will cause excess unused energy 
and will require a higher initial cost.  

The other design parameter chosen to evaluate its impact 
on system performance is the number of docking stations. The 
increment in docking stations implies an increase in the cost of 
the charging station, as shown in Figure 8a, which does not 
permit a reduction in the average waiting time. Figure 8a shows 
the average queue over the period of analysis (3months) for the 
base case (5docking stations) and variations of 25 % (i.e., 4 and 
6 docking stations). The results show that while the number of 
docking ports increases from five to six, the queue size 
increases. For both cases in Figure 8a and b, it is clear that the 

 
Fig.7 System blackouts for different numbers of PV panels and 

ESS size. 

 

 

Fig.8 Waiting time and queue vs. number of docking stations.  
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waiting time and waiting queues for the different scenarios are 
reduced by increasing the size of the ESS. However, a reduction 
in the number of docking stations would permit a decrease in 
the cost of the entire facility but would impact the customer 
satisfaction indices. 

Another metric of interest for evaluating the effect of the 
number of PV panels is the energy wasted, to determine how 
this parameter impacts energy waste per year. The simulation 
results for different numbers of PV panels for the two different 
battery sizes are presented in Figure 9. In this case, the lower 
the number of PV panels, the lower the energy waste.  
Finally, the performance of the EMS was evaluated using 
dynamic simulations with the same parameters described in the 
previous sections. The simulation was run twice with the same 
distribution of customer arrival and solar resources. In the first 
simulation, the EVs were charged until the completion of the 
charging process.  

The second simulation was run by introducing the EMS 
algorithm, which modifies the completion of the charging 
process when the SOC of the vehicles reaches 95 %. Note that 
this modification is only active for a few periods of time when it 
is foreseen that the demand will be larger than the energy 
available over the next hour. First, Figure 10 shows the 
frequency of having outages due to running off of energy by 
comparing two scenarios with and without EMS. With the 
configuration of 166 PV panels and 33 kWh, 11.4 % of the 
operating time of the station would not be able to meet the 
demand. Nevertheless, the EMS algorithm achieves a reduction 

of nearly 3.23% by adjusting the final SOC of the vehicles during 
the periods of the blackout forecast. 

The contribution of the EMS algorithm is also analyzed in 
terms of the average waiting time and queue. These internal 
metrics can be associated with customer satisfaction, and in 
both cases, EMS activation reduces the values obtained without 
it. First, figure 11a illustrates that the average queue without 
EMS is above 4.7 customers on average, while the addition of 
the EMS reduces the average queue by approximately 21 %. 
Similarly, Figure11b shows the average waiting time and how 
the time is reduced to approximately 1565.2 seconds, which is 
approximately 8% when the EMS is used.  
 

 
9. Critical appraisal  
 
For a given charging station capacity estimation; The estimation 
approach used in this paper for  the charging requirements 
shown in Table 1 was also used in (Dai et al., 2019) to meet the 
power demand of electric vehicles. To calculate the number of 
customers arriving each time, the normal  probability function 
was used to define the distribution of the amount of energy left 
in the battery, which was also used in (Ding et al., 2021) to 
obtain the optimal sizes of an energy buffer. The 25 per cent of 
the number of PV panels was varied from the calculated value 
to check its effect on the performance of the charging station. In 
figure8, the photovoltaic panel increment of 25%, the 2.12% of 
blackout period decreases while the decrement of 25% of the 
photovoltaic panels, causes the increase of 2.18% blackout 
period. It is clear that the change in the number of PV panels do 
not improve this metric significantly. In addition, the increment 
of Pv panels increases the cost of system; so, this information 
supports the initial design choice and demonstrates that a 
reduction of the number of Photovoltaic panels would have a 
negative impact on the performance of the PV station while the 
increment will cause the rise of the station cost.  The considered 
points also, is the energy wasted, the simulation results for the 
different number of PV panels are also presented for two 
different battery sizes in Figure 9. For instance, the results 
shows that the number of panels selected (166) the energy 
wasted decreases slightly to 10.66% when the storage size 
changed from 33kWh to 43kWh. Nevertheless, the difference is 
most noticeable when the number of PV panels is changed, here 
for the ESS of 33kWh; when the number of Pv panels changes 
from 124 to 166 the energy waste increase to 47.69 %, for 
43kWh ESS by changing the same number of Pv panels the 
waste energy increases to 55.84% from the previous one. Thus, 

 

Fig.9 Energy waste with different numbers of PV panels. 

 

 
Fig 10. Comparison of outages frequency with and without EMS 

 
Fig 11. EMS for average waiting time and queue. 
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the lower the number of PV panels the lower the energy waste 
for larger ESS for a chosen storage capacity , this is supported 
by the research of Vinay Chamola and Biplab Sikdar, who used 
multistate Markov model to estimate the optimal cost of the Pv 
system; it was found that as the number of solar panels increases 
the number of batteries should be reduced (Chamola & Sikdar, 
2015). For the different charging sizes of the storage, the energy 
waste reduces once the storage capacity increases. It was found 
that the storage capacity variation positively reduces the 
charging station’s blackout period; this is proven by the works 
done by Vinay Chamola and Biplab Sikdar who proposed an 
analytic model to evaluate the power blackout probability of a 
solar powered base station, it was found that as the number of 
batteries increases the power outage reduces(Chamola & 
Sikdar, 2016). The number of dockings has not an effect on the 
waiting time at the EVs charging station, what mater is the 
storage capacity as the storage capacity increases the waiting 
time reduces.  

10. Conclusion 

This paper presented the potential of the tool developed for 
assessing the impact of the different design parameters of the 
PV charging station. As an initial case, the design parameters of 
the number of PV panels and size of the ESS. Simulations with 
the same operating values were performed by adjusting the 
design elements described. By running a sensitivity analysis on 
these parameters, the impact on the system performance can be 
observed. These results can be used to judge whether it is worth 
increasing capital cost in the sizing of the station or, on the 
contrary, their impact on the system is minimal and a larger 
expenditure is not justified. It has been shown that decreasing 
the number of PV is not recommendable because it increases 
the outage times significantly, although this would permit better 
use of solar resources. Similarly, it was shown that a reduction 
in the ESS below the initial case (43 kWh) is not recommended 
because it significantly increases the outage times to large 
values. An increase in the size of the ESS has been shown to 
reduce the outage times, as well as the energy waste, waiting 
queue, and time. This is a possible parameter that should be 
considered when comparing the implications of facility costs. It 
has also been shown that increasing the number of charging 
points is not recommended because it significantly increases the 
waiting times and queues, which proves that the main 
parameters to consider are the number of PV panels and energy 
storage systems. Finally, an energy management system was 
implemented, and it was found that by using EMS, the waiting 
time was reduced by 8% and the outage time was reduced by 
3.23%. 
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