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Abstract.: Electric vehicles (EVs) are being introduced in Rwanda and becoming attractive for different reasons. For instance, these types of vehicles
can help decrease air pollution and noise emissions. In addition, it presents an alternative to combustion engines, given the increased price of fuel
resources in Rwanda and around the world. This paper presents a tool tailored to optimize the design of an electrical charging station serving small-
sized electric vehicles, utilizing the algorithm to assist in sizing stand-alone mopped charging stations. The developed tool is based on the toolbox
EventSim from MathWorks, which permits the combination of the simulation of discrete events (such as the arrival of customers at the station) with
continuous states (such as the simulation of the charging process). The required PV power was estimated by utilizing solar resources, for the location,
from renewables. Ninja. The number of customers arriving at the existing oil station is normalized to estimate the energy requirements of the mopped
fleet. A Poisson distribution was proposed to model the battery discharge upon arrival, and different related parameters were evaluated through a
sensitivity analysis to identify their effects on the performance of photovoltaic charging station. For the testing values, the station parameters were
changed by +25% to determine the impact of key design parameters on station performance, as well as other satisfaction measures such as average
waiting time and average queue length. With a 25% increase in photovoltaic panels, the blackout period decreases by 2.12%, while a 25% decrease
in photovoltaic panels causes an increase of 2.18% in the blackout period. Utilizing the energy management system (EMS), the waiting time was
reduced by 8%.
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1. Introduction alternative and help to reduce gas emission that contribute to

global warming; In addition, most of these charging stations are
using the swapping methods. Other benefits of electricity
generation from renewables include greater grid flexibility,
reduced grid congestion, and reduced input electricity price
(Huang et al, 2021) (Ciceu & Serban, 2022). Photovoltaic
charging stations combine photovoltaic (PV), battery energy
storage system (BESS), and charging stations; therefore, there is
a need to analyze charging stations that use solar energy to
introduce EVs green energy charging stations. Nevertheless, the
sizing of the stations must be done to provide good service to
customers such that EVs gain momentum in the communities,
while their cost must be optimized to guarantee an affordable
facility. For electric cars (EVs) to be successfully used in
Rwanda, solar charging station installation was determined to
be a prerequisite, and the government has implemented a
number of incentives to encourage EV usage (Rwanda EV
Charger Market 2022-2030 | September 2023 Updated, n.d.).
Motorcycle riders in rwanda, especially in Kigali, go around in
the city in their daily work; thus, the enhancement of public
charging stations is needed for those who use electrical motor

The development on power electronic systems and
microgrids has permitted solutions to energize areas in
developing countries. Productive use of energy has fostered the
energization of remote areas in developing countries with
difficult access to the main power electricity system. For
example, the project modularity grid developed a microgrid in
Rwanda to help local communities access electricity. Among the
different project targets, the productive use of energy is among
the priority lists. In this context, local communities are
upgrading their mobility systems (mostly based on fuel engines)
towards more sustainable vehicles, namely, electric vehicles
(EV)s (Gabbar et al., 2021)(Cabrera-Tobar et al., 2022). However
the increase in demand of recharging the EVs leads to the
congestion of few available charging stations (Li et al., 2020),
The sizing of the infrastructure for charging EVs is an important
aspect for the development of such areas to enhance the impact
of EVs on public transport (Raf, 2021). The electric power
charging stations in Rwanda are mostly dominated by grid
power yet the region has enough solar energy that can be
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cycles. The availability of electric charging stations affects EVs
users differently in terms of access charging cost, traveling cost,
waiting time, and charging time (Ahmad et al, 2022). The
increasing number of industries that use vehicles that depend
on fossil fuels has caused serious environmental
deterioration(Su et al., 2018)(Yang et al., 2021). The increasing
use of technology has increased the need to depend more on
energy. However, the shortage of fossil fuels has become a
constraint, and fossil fuel use leads to greenhouse gas (GHG)
emissions that contribute to acid rain, global warming, and other
long-term environmental problems (Shafig et al, 2022).This
global climate disorder causes a decrease in natural resources
such as solar, wind, and biomass, and is becoming rare on some
parts of the earth. Scientists are encouraging human beings to
utilize renewable energy sources for survival (Nishanthy et al.,
2022). Solar energy has garnered significant interest from
researchers worldwide owing to its clean, abundant, and free
nature. It is a renewable energy source with a vast potential and
a wide range of applications (Xu et al., 2017)(Ram et al., 2018).
This article focuses first on the development of a design tool for
charging stations serving small EVs, to optimize the energy.
Second, the developed model was used to simulate the demand
for solar fast-charging stations and analyze the effect of
variations in the main parameters on the performance of the
solar charging station. Solar resources have been modelled
using renewable. To fit the Poisson distribution to model the
customers' arrival, a popular time pattern of fuel station was
used. The normalized arrival per hour has been used as the
expected mean arrival per hour. The customers ‘arrival model
and battery discharge level model were used into a developed
Simulink model to analyze the sizing requirement of the
charging station utilizing a discrete event systems simulation
engine, available in MATLAB (SimEvents - MATLAB, n.d.) .
Development of an energy Management System (EMS) to
optimize the performance of the PV charging stations by
ensuring that the small EVs are charged efficiently.

In (Wu et al.,, 2023)(Hussain et al., 2020), a Monte Carlo
simulation tool was used to predict the charging demand,
stationary energy storage system sizing, and vehicles arrival at
a fast charging station, the simulation results indicated that the
presented methodology can approximate real-world extreme
fast charging demand. However, it was recommended to extend
the methodology by considering the transportation dynamics
because the EVs’ charging load depends on drivers’ behaviors.
An agent-based simulation program was created to examine the
daily charging demand patterns of electric vehicles at charging
stations, using empirical mobility data. The waiting period was
examined over the course of a week, and the simulation findings
showed that, for the majority of those weeks, there was very
little waiting. It was decided to add more charging stations
because Friday afternoon's extreme (up to an hour) wait time
was most likely caused by long-distance commutes, holidays,
and leisure travel (Jochem et al, 2016). Under the suggested
demand-side management of the EVs approach, EVs were able
to charge at low tariff rates (Selim et al, 2021). Self-
consumption-sufficiency balance (SCSB) was used to simulate a
number of scenarios regarding the number of EV charging ports
to balance self-consumption (SC) and self-sufficiency (SS). The
results demonstrated that SCSB performance tended to be
greater with a larger combined photovoltaic—electric car size
(Fachrizal et al., 2022). Jayasankar Nishanthy et al. have used
sensitivity analysis to design charging station for different
region here the parameters such as solar global horizontal
irradiation, temperature, and wind velocity were the parameters
to be variated. It was found that these variables are proportional
to the high cost of the nominal rate of interest for one of the
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three chosen regions to be analyzed, and it was shown that
modifications are needed in the combination of solar
photovoltaic and wind turbine ratings(Nishanthy et al., 2022).
The modulated Poisson process was used to determine when
each vehicle will arrive at a charging station, and it was found
that the combination of renewable energy and storage systems
provides a good cost efficiency solution (Dominguez-Navarro et
al., 2019). Energy management system have been developed by
means of python for electrical vehicle PV charging station , the
results showed that the management can successfully reduce
the energy taken from grid and maximize the use of local
produced solar energy sources (Ciceu & Serban, 2022).
Intermittent energy sources, such as wind and sun, require
precise forecasting, and the developed quadratic price function
has shown that an EV can enjoy a higher charging rate only by
paying more, whereas others charge slowly at lower prices to
avoid congestion (Kabir et al., 2020). The most recent studies
considered the estimated average driving distance to model the
charging demand, for this work the number of customers who
have visited the charging station for service were considered,
using the transportation dynamic of cell battery. Utilizing the
SimEvent toolbox in Matlab to develop a hybrid discrete-event
model to emulate the discrete arrival of customers and the
continuous dynamics of electric charging. As a result, this work
presents the design of simulation platform that can be
customized to assess the needs and performance of a small-
vehicle charging platform.

2. Modelling the demand and resource

This section presents the approach used to model the arrival of
customers at the charging station and the solar resource of the
chosen location to emulate a photovoltaic (PV) plant. The
irradiance data for a specific location were obtained from
(Renewables.Ninja, n.d.).

The city of Kigali (Rwanda) was chosen for this study. The
webpage provides irradiance data on an hourly basis, and these
data can be adjusted for different tilt and azimuth angles of the
panels. The irradiance panels are considered to lie at an
approximately tilted angle of 170(Wenham et al.,2007,p.22) (Solar
Panel Angle: How to Calculate Solar Panel Tilt Angle?, n.d.) (Ajao
et al, 2013). The average daily irradiances for Kigali are
provided in Figure 1 for the year 2020. Based on this data, the
days with the highest and lowest irradiance can be obtained,
which correspond to days 8 and 246, respectively (see Fig 2).

imadiance (year 2020}
T

Fig.1 Average irradiance at Kigali per day
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Fig. 2. (a) Minimum and (b) maximum irradiance days over the year.

2.1 Modelling the charging demand

This section describes the modelling of the charging demand
and shows the development of a charging design tool that
focuses on a simulation model capable of emulating the
behavior of the charging station. It is assumed that the arrival of
customers to charge the batteries at the station follows a certain
pattern, although their arrival times must be randomized.
Therefore, a probability model that counts random events in a
given time interval was considered. For this purpose, the
Poisson distribution, which is often used in the modelling of
customers’ arrival, was used (Parkin and Marlin, 2011). The
Poisson probability density function is defined as in (1):

o
f)=Se (1)
where x is the expected number of random events and A is the
expected mean (u) of the density function (in this study, lambda
represents the average discharge of the battery). Similarly, the
standard deviation (o) is VA .

2.2 Modelling the average arrival of customers
To fit the Poisson distribution to generate a randomized arrival

of customers at the charging station, a popular time pattern of a
fuel station in Kigali was considered for a simulation of 24 hours,

N 00 ©

[e)]

O R, N WA~OUV

11 13 15 17 19 21 23

1 3 5
Time (h)

Fig. 3 Illustration of the 24-hours pattern of customer arrivals
based on Poisson distribution.

customer arrivals per hour

7 9

the arrival of customers over a day at the station. The number
of customers who visited the station is shown on an hourly basis.
The number of customers was normalized to define the
percentage of customers arriving each hour. Here, the peak
demand considered was six customers. The expected average
charges per hour can be defined and the average arrival of
customers per hour is rounded to the nearest integer. The found
data were used to fit density distribution in (1), to generate a
randomized pattern of customer arrival at the charging station.
The level of usage was determined based on the site data. The
normalized arrival per hour was used as the expected mean
arrival per hour (A), and a randomized distribution pattern was
generated for each time of day. Figure 3 shows the distribution
pattern for one day; here, the Poisson inverse cumulative
distribution function was used with a percentile of 0.8(Poisson
Inverse Cumulative Distribution Function - MATLAB Poissinv,
n.d.), and the data shown in figure3, have been used to model
the emulation of customer arrival at the charging station over
the desired period of time. The average arrival of customers was
then multiplied by the average energy required by each
customer. The average energy is calculated based on the
estimated battery operating voltage (which is considered
constant) and the average depth of discharge of the vehicle at
the arrival time.

3. Modelling the level of battery discharge at arrival

Besides the number of customers arriving at each time of
the day, it is important to model the level of discharge of the
battery at the arrival time, which is normally between 0 and 1
(Antarasee et al., 2023)(Ikram et al., n.d.). A normal probability
function can be used to define the distribution of the amount of
energy remaining in the battery. Based on the estimation of the
charging requirements listed in Table 1, The Total Energy for
the full battery is 2.88 kWh. The average discharge (1) of the
batteries on arrival was taken as 36%, which is equal to 1.0368
kWh, and the standard deviation (o) considered is 1.0182 kWh.

Nevertheless, the normal distribution needs to be
truncated based on the physical operating limits of the battery,
the following assumption is made: The EV arrives with the
following range of discharge: the minimum discharge of the
battery is 30%=0.864 kWh, the maximum discharge of the
battery before returning to the charging station is 80
%=2.304kWh. Then, the probability density and cumulative
density functions of the charging state distribution upon arrival
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Table 1
Estimation of charging requirements.
Parameters Value
Average charging cycles per day 70
Estimated battery capacity 40 Ah
Estimated battery voltage 72V
Av. discharge of batteries on arrival 36%
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Fig. 4 Cdf of battery discharge at arrival.

are shown in Figure 4, where the red dotted line shows the
truncated data used for the analysis.

The modelling of the customer arrival rate presented in
section 2.2 and the modelling of the battery discharge discussed
in Section 3 are combined to generate the data to be fed into the
simulation model, and these data will be used to simulate the
sizing requirements of the charging station.

4. Preliminary data estimation of energy requirements

The sizing of the PV plant is based on the solar irradiance data
and the modules of choice, as well as the energy requirements
for the charging station. Thus, the preliminary sizing of the
system is based on certain assumptions regarding the charging
demand. The preliminary data considered for estimating PV
plant requirements are summarized in Table 1. The peak power
of the PV generator (Ppv) (Omar & Mahmoud, 2019)(Ibrik,
2020) is obtained as in (2):

Eq

va = nsXPSH (2)

Where: E; is daily energy consumed of the charging station
(kWh/day), ns the efficiency of the system components, PSH
the peak sun hours
Considering the outlined parameter values, the obtained

Watt peak (Wy) is 164, Refer to the calculated peak power of
needed panel and Based data-sheet information in(Energy &
Europe, n.d.), PV generator with a peak power of 235Wp is
selected to secure continuous power availability. The following
data are the other main information required for the sizing and
modelling of the PV plant based on the data sheet:

e PV panel max. power: 235 W.

e PV panel useful area: 1.64 m?.
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e Module efficiency:14.9 %.

Based on the rated power of the chosen PV panels and the
energy used by the charging station during the day, the number
of required PV panels was calculated using MATLAB
(https://www.leonics.com). The found number of PV panels(n)
required to power the charging station is 166 from this number
sensitivity analysis was performed to examine its effect on the
performance of electrical vehicle charging station. The PV plant
is modelled in the simulation platform based on the sizing
requirements specified above. The battery storage system (BSS)
should be large enough to store sufficient energy to operate the
PV station at night and the cloud days. The required storage was
sized by using equation (3) (Omar & Mahmoud, 2019); Where
0.85 is battery loss and 0.7 is depth of discharge, the considered
days the system to operate where there is no power produced
by PV panels are 2 days, the calculated value is 43kWh.

__ Total watt—hours per day*Day of autonomy (3)
- 0.85%0.5%12

BSS

5. Waiting time and waiting queue Generation

This section clearly explains how the emulation of the customer
arrival waiting time and queuing time was generated, to
overcome the uncertainty issues of traffic conditions and
dynamically arriving charging requests(Lee et al, 2020).The
emulation of customer arrivals at the charging station was based
on the probability distribution presented in Section 2.2. The data
generated regarding the usage of the fuel station and customer
arrivals were randomized on a second-by-second basis to
generate the customer arrival pattern (see Figure 5). These data
are fed to the entity generator, which creates discrete events
each time a new customer is generated by the arrival pattern.
To feed the entity generator block, the customer pattern must
be converted into intervals of successive events. A flowchart for
waiting time and queue generation is shown in Figure 5, and the
procedures are as follows:

e Step 1. Vehicle arrives: An electric vehicle arrives at a
station seeking charging. A popular time pattern of the
fuel station was used, and by utilizing the Poisson
distribution, a random arrival of customers was
generated, which was then randomized on a second-by-
second basis to generate the customer arrival pattern
(discrete event creations).

e Step 2. EV battery discharge generation: The entity
generation block generates and associates a randomized
deep discharge of the EV battery for each customer.
(Randomized EV battery Discharge generation)

e Step 3. Waiting queue generation: This block manages
the queue of customers and permits the visualization of
metrics, such as the average waiting time or queue.

e  Step 4. Availability check charger:

e Charger available: If a charger is available, proceed to
the next step. No charger available: The vehicle enters
the waiting queue.

e Step 5. Charger selection (Charging profile selection):
Permits to remove one of the entities associated to a
customer, which then permits to enter one of the
customers of the waiting queue to the EV charging setup

e Step 6. Charge initiation: The charging process begins

ISSN: 2252-4940/© 2024. The Author(s). Published by CBIORE
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Charge initiation Charge completicn

Vehicle departure

Fig.5 Flowchart for the waiting time and queue generation process at an EV

based on the selected profile and the vehicle
specifications.

e Step 7. Charge completion (entities released): The
charging process is completed when the battery reaches
a desired level. The entities are released from the
selected chargers, which are customers leaving the
charging station after refilling their EV.

e Step 8. Vehicle departure: The vehicle departs from the
station, freeing the charger for the next vehicle.

6. Charging Station

The charging station stage emulates the management of the
docking ports and injection of current into the EVs. The
converter-charging data block is a logic element that assigns a
customer that has just arrived at a free dock. Likewise, prior to
the arrival of a customer, this block frees a docking station when
a flag signal is generated open at the completion of charging an
EV. Each customer arriving at the plant is then associated with
the battery discharge level, which determines the initial SOC of
the battery.

Energy from E55
[P_ess)

The converter charging data system generates auxiliary
variables that are assigned 1 for docking stations that are
charging and 0 for those that are free. These variables are then
multiplied by the charging rate of each of the docking stations.
Note that during the CC stage, the charging rate is one, although
this rate is curtailed when the charging process enters the CV
stage (see Figure 6). Finally, the flowchart in Figure 6
corresponds to a logic element to prevent the charging process
from entering a limit cycle, and it should be noted that the
charging process is deactivated when the energy available from
the PV panels and the ESS is lower than the demand at the
station.

7. Description of the EMS algorithm

As a developing country, Rwanda is committed to promoting
sustainable transportation. Reducing greenhouse gas emissions
and the country's dependence on imported fossil fuels, which
accounts for the majority of the country's foreign exchange

Energy from PV EY Station dermand

panels [P_pv]

(P_demand}

P_pv+P_ass

Stop naw
charging

'_pv +P_pss >=
P_demand

{ontinua
charging

sly check if P_pv -
bove P demand,

Fig.6 Flowchart to Avoid Limit Cycle in EV Charging with Lowered PV/ESS Energy
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spending, are key elements of the plan. The government
introduced several incentives to promote EVs. Electric vehicles,
spare parts, batteries, and charging station equipment are
exempt from import tax, special consumption tax, and
VAT(Rwanda EV Charger Market 2022-2030 | September 2023
Updated, n.d.). There is greater emphasis on ensuring that the
electricity used to charge electric vehicles, such as e-bikes,
electric automobiles, and electric buses, is also sustainable(Ram
et al., 2018). Thus, the design of the battery management
system plays a significant role in battery life preservation and
performance development of EVs because it is crucial to ensure
that the battery being used is as reliable as fossil fuel(Ikram et
al., n.d.). This section describes the Energy Management
System (EMS) algorithm, which is used to optimize the
performance of the charging station given a set of system
parameters (e.g., number of PV panels, size of the ESS) to
reduce the waiting time of customers to improve satisfaction
metrics.

The EMS algorithm is based on the hourly energy balance.
Based on the information on the PV resource, the estimation of
the demand (based on the expected number of customers in the
following hour), and the information available regarding the
energy available in the ESS, the EMS decides how to curtail the
charging process of the docking station. The curtailment is
based on the charging process of the lithium cells, because
during the CC stage, the cells refill quickly, but the charging
speed is reduced during the CV stage. The SOC value at which
the charging speed decreases is estimated to be 95 % (Volume
IT Equivalent-Circuit Methods, 2020). Then, the EMS evaluates
the energy balance (4) and determines whether the charging
process should be cut-off before the SOC reaches 100%.

Energy balance =E + L

PV predicied Demand ( )

£58 Predicied

'A\’aiulubh’
If the energy balance is positive, the energy demand for the
following hour is expected to be lower than the energy
generated from the PV panels and the energy available in the
ESS. Under this scenario, SOC charging is maintained at 100 %,
and the plant operates normally. However, if the energy
balance is negative (e.g., the expected demand is larger than the
energy from the PV and ESS), the charging process is curtailed.
To do so, the charging process is stopped at 95% of SOC.

8. Results and discussion

This section presents how the model can be used to assess
the sizing requirements of the charging stations. The simulated
PV charging station model was used to analyze the behavior of
the system under different operating conditions and design
parameters. The impact of the system performance under
different design parameters was studied by performing a
sensitivity analysis. The results obtained can be used to reduce
the construction cost of the plant and identify techniques for
optimizing the operation of the system. Initially, the calculated
number of PV panels was considered in the analysis, and the
simulation was evaluated for the same usage (and the same
solar resource) but considering variations of * 25% in the
calculated number of PV panels. Figure 7a illustrates the time
that the system experiences a blackout against the total time
that the charging is operating. Here, the term blackout refers to
the period when the station does not have sufficient energy to
supply charging demand. The total energy of the charging
station is a combination of the energy generated by the PV
panels and energy stored in the ESS. The information presented
in Figure 7a shows that the time in (%) the system is not able to
recharge EVs while there are customers waiting to do so, and it
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(a)Blackout periods for number of PV panels (ESS=33 kWh)
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Fig.7 System blackouts for different numbers of PV panels and
ESS size.

is clear that the number of PV panels affects the performance of
the charging system. The impact of increasing or reducing the
number of PV panels relative to the initial design choice (166
panels) is discussed here. Increasing the number of panels to
208 slightly affected the operation time, but this change
increased the cost of the charging station. However, a reduction
in the number of PV panels to 124 increases the blackouts
period.

The effect of battery size was analyzed with respect to the
system blackout (Figure7b), and it can be observed that the
reduction in the ESS size impacts the operating times that the
station can meet the demand, as the storage capacity sharply
reduces the blackout. In Figure 7b, 43 kWh storage capacity is
the size value; a value below the size value will increase the
blackout period, utilizing the storage capacity of 53 kWh, as well
other values above this value will cause excess unused energy
and will require a higher initial cost.

The other design parameter chosen to evaluate its impact
on system performance is the number of docking stations. The
increment in docking stations implies an increase in the cost of
the charging station, as shown in Figure 8a, which does not
permit a reduction in the average waiting time. Figure 8a shows
the average queue over the period of analysis (3months) for the
base case (5docking stations) and variations of 25 % (i.e., 4 and
6 docking stations). The results show that while the number of
docking ports increases from five to six, the queue size
increases. For both cases in Figure 8a and b, it is clear that the

(a)Average queue length vs docking stations

4(-25%) 5

Number of docking stations
(b)Average waiting time per year vs docking stations

[

o

[N ESS = 33 kWh
[ E£SS = 43 kWh
[CIESS = 53 kWh

Average queue
N

o

6(+25%)

400

<

£

(9}

£

=200 [N ESS = 33 kWh 7
2 I ESS = 43 kWh

] [JESS =53 kWh

= o0

4(-25%) 5
Number of docking stations

6(+25%)

Fig.8 Waiting time and queue vs. number of docking stations.
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Fig.9 Energy waste with different numbers of PV panels.

waiting time and waiting queues for the different scenarios are
reduced by increasing the size of the ESS. However, a reduction
in the number of docking stations would permit a decrease in
the cost of the entire facility but would impact the customer
satisfaction indices.

Another metric of interest for evaluating the effect of the

number of PV panels is the energy wasted, to determine how
this parameter impacts energy waste per year. The simulation
results for different numbers of PV panels for the two different
battery sizes are presented in Figure 9. In this case, the lower
the number of PV panels, the lower the energy waste.
Finally, the performance of the EMS was evaluated using
dynamic simulations with the same parameters described in the
previous sections. The simulation was run twice with the same
distribution of customer arrival and solar resources. In the first
simulation, the EVs were charged until the completion of the
charging process.

The second simulation was run by introducing the EMS
algorithm, which modifies the completion of the charging
process when the SOC of the vehicles reaches 95 %. Note that
this modification is only active for a few periods of time when it
is foreseen that the demand will be larger than the energy
available over the next hour. First, Figure 10 shows the
frequency of having outages due to running off of energy by
comparing two scenarios with and without EMS. With the
configuration of 166 PV panels and 33 kWh, 11.4 % of the
operating time of the station would not be able to meet the
demand. Nevertheless, the EMS algorithm achieves a reduction

Outages frequency

% of time out of operation

No EMS EMS

Fig 10. Comparison of outages frequency with and without EMS
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Fig 11. EMS for average waiting time and queue.

of nearly 3.23% by adjusting the final SOC of the vehicles during
the periods of the blackout forecast.

The contribution of the EMS algorithm is also analyzed in
terms of the average waiting time and queue. These internal
metrics can be associated with customer satisfaction, and in
both cases, EMS activation reduces the values obtained without
it. First, figure 11a illustrates that the average queue without
EMS is above 4.7 customers on average, while the addition of
the EMS reduces the average queue by approximately 21 %.
Similarly, Figure11b shows the average waiting time and how
the time is reduced to approximately 1565.2 seconds, which is
approximately 8% when the EMS is used.

9. Critical appraisal

For a given charging station capacity estimation; The estimation
approach used in this paper for the charging requirements
shown in Table 1 was also used in (Dai et al., 2019) to meet the
power demand of electric vehicles. To calculate the number of
customers arriving each time, the normal probability function
was used to define the distribution of the amount of energy left
in the battery, which was also used in (Ding et al, 2021) to
obtain the optimal sizes of an energy buffer. The 25 per cent of
the number of PV panels was varied from the calculated value
to check its effect on the performance of the charging station. In
figure8, the photovoltaic panel increment of 25%, the 2.12% of
blackout period decreases while the decrement of 25% of the
photovoltaic panels, causes the increase of 2.18% blackout
period. It is clear that the change in the number of PV panels do
not improve this metric significantly. In addition, the increment
of Pv panels increases the cost of system; so, this information
supports the initial design choice and demonstrates that a
reduction of the number of Photovoltaic panels would have a
negative impact on the performance of the PV station while the
increment will cause the rise of the station cost. The considered
points also, is the energy wasted, the simulation results for the
different number of PV panels are also presented for two
different battery sizes in Figure 9. For instance, the results
shows that the number of panels selected (166) the energy
wasted decreases slightly to 10.66% when the storage size
changed from 33kWh to 43kWh. Nevertheless, the difference is
most noticeable when the number of PV panels is changed, here
for the ESS of 33kWh; when the number of Pv panels changes
from 124 to 166 the energy waste increase to 47.69 %, for
43kWh ESS by changing the same number of Pv panels the
waste energy increases to 55.84% from the previous one. Thus,

ISSN: 2252-4940/© 2024. The Author(s). Published by CBIORE



A. Ngendahayo etal

the lower the number of PV panels the lower the energy waste
for larger ESS for a chosen storage capacity , this is supported
by the research of Vinay Chamola and Biplab Sikdar, who used
multistate Markov model to estimate the optimal cost of the Pv
system; it was found that as the number of solar panels increases
the number of batteries should be reduced (Chamola & Sikdar,
2015). For the different charging sizes of the storage, the energy
waste reduces once the storage capacity increases. It was found
that the storage capacity variation positively reduces the
charging station’s blackout period; this is proven by the works
done by Vinay Chamola and Biplab Sikdar who proposed an
analytic model to evaluate the power blackout probability of a
solar powered base station, it was found that as the number of
batteries increases the power outage reduces(Chamola &
Sikdar, 2016). The number of dockings has not an effect on the
waiting time at the EVs charging station, what mater is the
storage capacity as the storage capacity increases the waiting
time reduces.

10. Conclusion

This paper presented the potential of the tool developed for
assessing the impact of the different design parameters of the
PV charging station. As an initial case, the design parameters of
the number of PV panels and size of the ESS. Simulations with
the same operating values were performed by adjusting the
design elements described. By running a sensitivity analysis on
these parameters, the impact on the system performance can be
observed. These results can be used to judge whether it is worth
increasing capital cost in the sizing of the station or, on the
contrary, their impact on the system is minimal and a larger
expenditure is not justified. It has been shown that decreasing
the number of PV is not recommendable because it increases
the outage times significantly, although this would permit better
use of solar resources. Similarly, it was shown that a reduction
in the ESS below the initial case (43 kWh) is not recommended
because it significantly increases the outage times to large
values. An increase in the size of the ESS has been shown to
reduce the outage times, as well as the energy waste, waiting
queue, and time. This is a possible parameter that should be
considered when comparing the implications of facility costs. It
has also been shown that increasing the number of charging
points is not recommended because it significantly increases the
waiting times and queues, which proves that the main
parameters to consider are the number of PV panels and energy
storage systems. Finally, an energy management system was
implemented, and it was found that by using EMS, the waiting
time was reduced by 8% and the outage time was reduced by
3.23%.
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