

Contents list available at CBIORE journal website

International Journal of Renewable Energy Development

Journal homepage: https://ijred.cbiore.id

Review Article

Nanotechnology-based biodiesel: A comprehensive review on production, and utilization in diesel engine as a substitute of diesel fuel

Thanh Tuan Le¹, Minh Ho Tran^{2,*}, Quang Chien Nguyen³, Huu Cuong Le⁴, Van Quy Nguyen^{4,*}, Dao Nam Cao⁵, Prabhu Paramasivam⁶

Abstract. As a sustainable replacement for fossil fuels, biodiesel is a game-changer in the energy sector. There is no strategy to minimize biodiesel's significance as a sustainable, clean fuel source in light of the increasing climate change and environmental sustainability concerns. Nevertheless, conventional biodiesel production methods often run into problems like inadequate conversion efficiency and inappropriate fuel properties, which impede their broad adoption. The revolutionary potential of nanotechnology to circumvent these limitations and revolutionize biodiesel consumption and production is explored in this review paper. There are new possibilities for improving biodiesel output and engine efficiency, thanks to nanotechnology, which can alter matter at the atomic and molecular levels. Using nano-catalysts, nano-emulsification processes, and nanoencapsulation procedures, researchers have made significant advances in improving biodiesel qualities such as stability, combustion efficiency, and viscosity. Through a comprehensive analysis of current literature and research data, this article elucidates the crucial role of nanotechnology in advancing biodiesel technology. By shedding light on the most current advancements, challenges, and potential future outcomes in nano-based biodiesel manufacturing and consumption, this review hopes to add to the growing corpus of knowledge in the field and inspire additional innovation. In conclusion, there is great hope for a sustainable energy future, increased economic growth, and reduced environmental impacts through the application of nanotechnology.

Keywords: Biodiesel; Alternative fuels; Sustainability; Circular economy; Nanotechnology; Engine performance; Emission characteristic

@ The author(s). Published by CBIORE. This is an open access article under the CC BY-SA license (http://creativecommons.org/licenses/by-sa/4.0/). Received: 16th January 2024; Revised: 1st March 2024; Accepted: 15th March 2024; Available online: 29th March 2024

1. Introduction

In addition to urbanization, choking emissions, population growth, and industrial development are all expanding rapidly (Minh Loy *et al.*, 2020; Sitompul and Sinaga, 2020). This is resulting in an urgent need for energy, which is another aspect of the continual expansion and development that is taking place (Aisman *et al.*, 2020; Ilham *et al.*, 2022; Villegas *et al.*, 2020). Coal, petroleum, and natural gas are examples of traditional energy sources that continue to meet the bulk of the world's energy needs (Bello and Solarin, 2022; Bortnowska, 2009). On the other hand, the influence that its utilization has on the environment cannot be ignored since the use of fossil fuel could release a large amount of CO₂ and greenhouse gas into the environment (Bakır *et al.*, 2022; Nguyen *et al.*, 2021). Hence, alternative sources of fuel and renewable energy are promoted (V. G. Nguyen *et al.*, 2023; Oladeji *et al.*, 2021; Soulayman and Ola,

2019). Due to this reason, the use of bioenergy is needed to achieve decarbonization and net zero emissions in the future at a more rapid pace (Desniorita *et al.*, 2019; Hasibuan *et al.*, 2020; Rahman *et al.*, 2023). This is to achieve sustainable development as well as other crucial worldwide recommendations for restoring environmental health (Chen *et al.*, 2022; Usman *et al.*, 2022).

Natural resources are utilized extensively in a variety of fields, including human life, science, and technology, all around the world. As a consequence of the increasing rate of industrialization and urbanization, it is anticipated that the total global energy consumption will increase by a substantive proportion in the upcoming decade (Elumalai *et al.*, 2021; Fernández *et al.*, 2020a; Jeyakumar *et al.*, 2020). Moreover, the accessibility of petroleum-derived fuel supplies is limited to select locations worldwide. Diesel fuel, gasoline, liquefied petroleum gas, and natural gas are among the fuels utilized in

¹Institute of Engineering, HUTECH University, Ho Chi Minh City, Viet Nam.

²Faculty of Automotive Engineering, Dong A University, Danang, Viet Nam.

³Vietnam Oil and Gas Group, Hanoi, Vietnam.

⁴Institute of Maritime, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam.

⁵PATET Research Group, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam.

⁶Centre of Research Impact and Outcome, Chitkara University, Rajpura- 140401, Punjab, India.

various types of transportation (Lamas et al., 2015; Serbin et al., 2022; Yang et al., 2019; Zhao et al., 2020). However, there has been a significant surge in the quantity of transportation means in recent years, increasing the demand for petroleum products (Lu et al., 2021; Marković et al., 2023). In addition, diesel engines dominate as the primary power source for commercial vehicles owing to their cost-effective operational expenses, superior fuel efficiency, extended lifespan, and dependable performance (Das et al., 2020; Minchev et al., 2023; Tran et al., 2023). Diesel engines emit lower levels of unburned hydrocarbons as well as carbon monoxide compared to gasoline engines (Hoang, 2019; Lilik and Boehman, 2011). Diesel engines, even though they generate power under accepted standards, are responsible for releasing a significant amount of particulate matter into the atmosphere (Semin et al., 2020; Stelmasiak et al., 2017; Wambui et al., 2023). Diesel automobiles are more economically feasible and have fewer adverse effects on the environment, but particulate matter has a significantly greater number of adverse effects, particularly adverse effects on human health (Hassan et al., 2021; Olszewski et al., 2023). Fossil fuels are considered nonrenewable because we cannot replace them at the same pace as we consume them (Manimaran et al., 2022; Venugopal et al., 2021). Furthermore, fluctuations in the price of oil, increased energy use, global warming brought on by emissions of greenhouse gases, pollution of the environment, and the rapid depletion of fossil fuel supplies, amongst others are also urgent issues (Kowalski and Tarelko, 2009a; Singh and Singh, 2012; Yoro and Daramola, 2020). All of these factors contribute to the essential requirement for clean and environmentally friendly fuels aiming to achieve the net-zero goals (Dong and Sharma, 2023; Nguyen and Le, 2023; V. N. Nguyen et al., 2023b; Zeńczak and Gromadzińska, 2020). Indeed, scientists are looking at many types of biofuels such as biodiesel (V. N. Nguyen et al., 2023a; Radhakrishnan Lawrence et al., 2022; Sharma et al., 2022), bio-alcohol (such as ethanol, methanol, propanol) (Labeckas et al., 2018; Truong et al., 2021; Veza et al., 2022), furan-based fuels (such as DMF, MF) (Hoang et al., 2022a; Hoang and Pham, 2021; Vuong et al., 2022), ether (including dimethyl ether and ethyl ether) (Changxiong et al., 2023; Doan et al., 2022; Wang and Yao, 2020), bio-oil (fuels originated from thermochemical conversion of biomass, scrap tire, plastic waste, municipal solid waste) (Kumaravel et al., 2016; Yaqoob et al., 2021), hydrogen (Fernández et al., 2020b; Hoang et al., 2023a), biogas (Bora et al., 2022; V. G. Bui et al., 2022; Chellapandi and Saranya, 2023), and syngas (Fiore et al., 2020; Huang et al., 2019) because they are considered as the great potential replacement for traditional fuels due to the current fuel

Taking into consideration the current circumstances, experts are concentrating their efforts on potential alternatives to fossil fuels. Their primary objective is to create technology that is both capable of self-regeneration and has no negative impact on the environment. Extensive research has demonstrated that biodiesel, bioethanol, and biogas are superior to fossil fuels in terms of energy production (Cherwoo et al., 2023; Nguyen et al., 2024; Priya et al., 2022). Biodiesel, which is also known as fatty acid methyl ester, has been utilized as a viable alternative to fossil fuels for a considerable amount of time (Jeyakumar et al., 2023; Raheman and Padhee, 2014; Yuvenda et al., 2022). Many benefits are associated with the use of biodiesel in comparison to diesel and gasoline, in which its biodegradability, high flash point, non-toxicity, and high cetane number are just a few of the features that it possesses regarding its properties (Karthickeyan et al., 2020; Tuan Hoang et al., 2021). When compared to diesel and gasoline, biofuel can generate a lower number of emissions that contribute to the

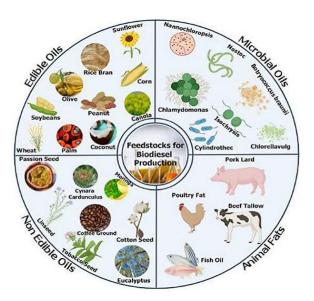


Fig 1. Biodiesel from different feedstock (Sales et al., 2022)

emission of greenhouse gases (Hanaki and Portugal-Pereira, 2018; Le et al., 2024). Not only does it decrease the amount of time that the ignition delay takes, but it also improves the efficiency of the combustion process, which in turn extends the life of the engine. However, biodiesel is found to cause deposit formation and corrosion to the mechanical part of engines (Hoang and Le, 2019; Nguyen and Vu, 2019), as well as poor atomization due to high kinematic viscosity (Hoang, 2021a; Hoang et al., 2022b). Biodiesel is often produced by utilizing a variety of feedstocks, including microalgae, animal fats, edible and inedible oils, and other substances (Arumugam and Ponnusami, 2019; Hoang et al., 2023b, 2021; Sharma and Sharma, 2021a, 2020; Ungwiwatkul and Chantarasiri, 2022). According to the recent findings the feedstock alone was responsible for 75% of the total cost of producing biodiesel. Different feedstocks used for biodiesel synthesis are depicted in Figure 1.

From Figure 1, it could be realized that selecting the appropriate feedstock before the beginning of production is critically important to cut down on the overall cost of producing biodiesel (Maheshwari et al., 2022). Consuming oil has the potential to serve as a feedstock for the production of biodiesel. The most significant concern, on the other hand, is that the price of food products can go up to an unsustainable level as a result of the rising cost of these feedstocks. This tragedy will have a disproportionately negative impact on countries whose economies are still in the formative stages of development. There were also several disadvantages, including the high cost of biodiesel, the negative impact on the environment, and the restricted land area for the cultivation of edible feedstock. As a result of this problem, tropical countries that are completely dependent on palm oil have seen deforestation. The generation of biodiesel using this technology is highly likely to contribute to climate change and to have adverse consequences on the plant and animal life that live in tropical regions. To address these concerns, researchers have developed advanced biofuels, which comprise biofuels of the second, third, and fourth generations. These more recent biofuels could be able to assist in alleviating some of the problems that are associated with the older ones (L. R. Kumar et al., 2021; Kumar and Aggarwal, 2024). Alternately, feedstocks that are obtained from crops that are not edible are said to be of the second generation. Different

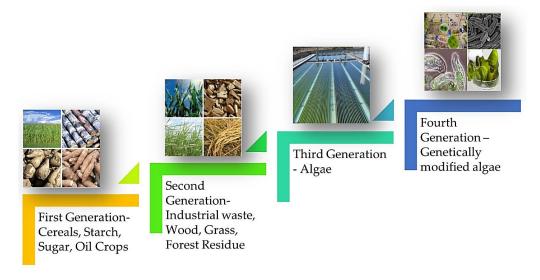


Fig 2. Different generation of biodiesel based on feedstock types (Khan et al., 2021)

generations of biodiesel are depicted in Figure 2.

The first-generation feedstocks are those that are produced from plants that can be consumed. To attain carbon neutrality, third-generation feedstocks are utilized. These feedstocks obtain their biomass through the collection and utilization of solar energy and carbon dioxide (CO2) and then proceed to transform it into fuel (Nanda et al., 2018; Rather and Bano, 2019). In contrast, the foundation of feedstocks for the fourth generation is comprised of solar energy and the capture and usage of carbon dioxide (Mustafa et al., 2020). When feedstocks with diverse chemical compositions are employed, it is much simpler to achieve the necessary yield after the reaction. The properties of biodiesel are determined by a considerable number of factors, such as the quantities, the chemical composition, and the sources of FFA feedstock (Vani et al., 2023; Yadav et al., 2021). To produce the vast majority of biodiesel and fatty acid methyl esters, transesterification of oils and fats with short-chain alcohols is the process used. The stoichiometric ratio of the reaction between triglycerides and alcohol is one to three. This ratio is observed during the process of transesterification. Following the completion of the procedure, one mole of glycerol and three moles of mono-alkyl ester (biodiesel) are produced as byproducts. Although it is sluggish and does not produce much, it is necessary to use a catalyst to make it more efficient (Mathew et al., 2021). This is achieved by reducing the activation energy while improving the response rate to attain equilibrium. Conventional catalysts, whether they are homogeneous or heterogeneous, as well as biocatalysts, are utilized in the manufacturing process of biodiesel for industrial purposes (Babatunde et al., 2022; Semwal et al., 2023). It is important to note that these catalysts have significant negative effects on the environment, the economy, and technology (Huang et al., 2018). In addition, the extraction of oil through transesterification often includes the consumption of a significant amount of solvent, which gives rise to a variety of concerns regarding the economy and the environment simultaneously. The production of biodiesel and oil have both been the subject of a significant amount of research, to find ways to make both processes more ecologically friendly and efficient (Di Serio et al., 2008; Thangaraj et al., 2019). The utilization of nanomaterials, which are small enough to be fewer than 100 nanometres in size, is one technique that might be taken to improve the oil processing efficiency during the synthesis of biodiesel (Esmaeili et al., 2021). Additionally, nanoparticles have the potential to assist in alleviating the environmental and economic issues that are generated by the solvents that are used to extract the oil (Bin Rashid, 2023; Pandit et al., 2023). Nanoparticles are exceptional catalysts that can boost the output and production rate of biodiesel during the transesterification process (Ahmed et al., 2023). Through the utilization of nanotechnology in the manufacture of biodiesel, Sustainable Development Goals (SDGs) 7 (clean and inexpensive energy), and Sustainable Development Goals 13 (climate action) are all connected with this particular application of nanotechnology (Bhattacharya and Seth, 2023; Guin et al., 2022). However, because this technology raises issues regarding its ramifications on the technological, economic, and ecological fronts, it is necessary to do further research and study on the subject.

Even though nanotechnology has been used in several biodiesel processes, there has not yet been a complete study that examines the benefits and drawbacks of nanomaterials in the essential oil extraction and transesterification steps (Hosseini, 2022). Moreover, numerous conversations have taken place on the behavior of nanoparticles when they are burned in biodiesel, there is still a dearth of detailed information regarding the behavior of these particles throughout the process of transesterification. The concerns regarding the potential adverse effects that nanoparticles could have on technology, the economy, and the environment have not been effectively addressed by the research that has been conducted in the past. During the process of fuel extraction, the exploitation of nanoparticles in biodiesel synthesis has also been underdiscussed in past review studies. A typical arrangement of its implementation is depicted in Figure 3.

The primary objective of this comprehensive review is to fill current knowledge gaps in the domain of nanoparticles blended biodiesel-powered engines. A comprehensive examination of various biodiesel production techniques was reviewed with special emphasis on the role of nanotechnology in biodiesel synthesis. The effects of adding the nanoparticles in different kinds of fuel blends concerning engine performance as well as emission characteristics were reviewed. The authors hope to get a complete grasp of the function of nanoparticles in improving engine performance and emission reduction. Furthermore, this research critically evaluates the obstacles and restrictions

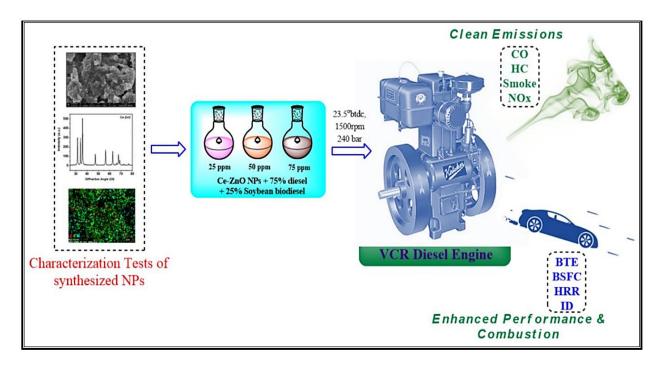


Fig 3. Application of nanoparticles blended fuel-powered engine (Hussain et al., 2020)

associated with using different nanoparticles across biodiesel manufacturing and their application for powering engines. Through this work, we hope to highlight both the benefits and limits of using nanotechnology for biodiesel synthesis, from feedstock processing to engine use.

2. Biodiesel production techniques

The production of biodiesel, which serves as a substitute for fossil fuels for engines and is produced from renewable feedstocks, involves the utilization of a wide variety of methods (Kolakoti et al., 2022; Siregar, 2015). As a potential solution to the issues of environmental degradation and rising emissions of greenhouse gases, biodiesel has recently come to the forefront of the discussion (Kalyani et al., 2023). Transesterification is a chemical reaction that involves the exchange of ester groups between an ester compound and an alcohol (Elma et al., 2017). This reaction is widely employed in a range of industrial processes, especially in the manufacturing of biodiesel and in organic synthesis. Transesterification is employed in biodiesel production to transform triglycerides, commonly found in vegetable oils or animal fats, into fatty acid methyl esters, which serve as the primary constituents of biodiesel (Hadiyanto et al.,2020). The process usually entails combining triglycerides with an alcohol (typically methanol or ethanol) in the presence of a catalyst (like sodium or potassium hydroxide) to generate biodiesel and glycerol as byproducts (Long et al., 2021; Salaheldeen et al., 2021). Transesterification is one of the timehonored processes that has been utilized in the manufacturing of biodiesel for a considerable amount of time (Silviana et al., 2022). The steps involved in this process involve mixing lipids derived from animals or vegetables with alcohol in the presence of a catalyst (Sharma and Sharma, 2022, 2021b). However, these technologies also come with a few drawbacks that should be considered. The advancements that have been made in the fields of biotechnology, chemistry, and engineering have made it possible to create new methods of producing biodiesel. These

methods are designed to be more inexpensive, ecologically friendly, and efficient. Several novel approaches, including enzymatic processes, microbial fermentation, nanotechnology, and others, are currently being investigated by scientists to find a solution to the challenges that are associated with the standard techniques of producing biodiesel (Lotti *et al.*, 2018; Rai *et al.*, 2016; Wang *et al.*, 2021). In addition, there is optimism that the incorporation of nanotechnology will be able to enhance the quality of biodiesel, reduce the amount of energy inputs, and improve the efficiency of conversion.

In this section, the various approaches being used for biodiesel synthesis including its fundamental principles, prospective uses, advantages, and downsides are presented. To shed light on the most recent advancements and inspire more innovation in the vital subject of renewable energy, the following are the main types of biodiesel synthesis methods:

${\it Transe sterification}$

- When making biodiesel, transesterification is the process of choice, as shown in Figure 4.
- This process requires a catalyst, like sodium hydroxide or potassium hydroxide, and an alcohol, usually methanol or ethanol, to react with triglycerides, which can be either animal-based or vegetable-based fats (MEHER et al., 2006; Yang et al., 2018).
- Fatty acid methyl esters (FAME), often known as biodiesel, and glycerol are the end products that break down the triglycerides (Akubude *et al.*, 2019).
- Through the process of the reaction, the triglycerides are broken down into fatty acid methyl esters (FAME), which are biodiesel, and glycerol is produced as a byproduct (Khoobbakht *et al.*, 2020).

Acid-catalyzed transesterification

 This process is similar to base-catalyzed transesterification but utilizes acid catalysts (such as

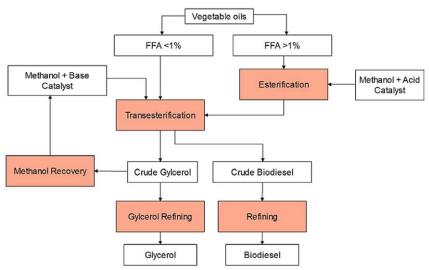


Fig 4. Transesterification process flow chart (Trirahayu et al., 2022)

hydrochloric acid or sulfuric acid) instead of base catalysts (Ataya et al., 2007).

- The temperatures and pressures at which it functions are often lower than those at which base-catalyzed techniques operate (Tran-Nguyen et al., 2020).
- Particularly well-suited for feedstocks of low quality that contain a high percentage of free fatty acids.

Transesterification via enzymatic processes

- This process utilizes lipase enzymes as a catalyst for the transesterification reaction to get the desired results (Moazeni et al., 2019).
- When compared to chemical catalysts, it operates under settings that are less severe, including lower temperatures and pressures (Kalita *et al.*, 2022).
- It has the potential to offer advantages in terms of selectivity, decreased energy usage, and less impact on the environment (Brask *et al.*, 2011).
- Nevertheless, because enzymes are so expensive, they often have a greater production cost than other products.

Fluid transesterification at supercritical temperatures:

- Utilizes supercritical fluids (such as supercritical methanol or supercritical ethanol) as both the solvent and the reactant in conjunction with the reaction (Reddy et al., 2018).
- Performs operations at high temperatures and pressures, often at a level that is higher than the fluid's critical threshold (Anitescu and Bruno, 2012).
- When compared to traditional methods, it provides higher conversion rates and faster reaction rates (Gumba *et al.*, 2016).
- Entails the utilization of specialist apparatus and the meticulous management of the operational circumstances.

Transesterification with the assistance of microwaves

• This method involves the application of microwave irradiation to speed up the transesterification reaction (Hassan and Smith, 2020).

- In comparison to more traditional heating processes, it provides the advantage of faster reaction times and higher yields (Nayak *et al.*, 2019).
- This allows for improved control over the parameters of the reaction, such as the temperature and the mixing (Mohamad Aziz *et al.*, 2021). Nevertheless, it might be necessary to optimize the parameters of the reaction and take into account the implications of scaling up.

Transesterification is a commonly employed and highly effective method for generating biodiesel from sustainable feedstocks. It provides numerous benefits, such as the use of sustainable resources, the decrease in greenhouse gas emissions, and the possibility of achieving energy self-sufficiency. It is crucial to fine-tune reaction conditions, carefully choose catalysts, and implement effective purification steps to achieve optimal yield and quality in biodiesel production. These techniques differ from one another in terms of their fundamentals, operating circumstances, advantages, and barriers to entry. The choice of process is determined by several distinct elements, including the properties of the feedstock, the desired product quality, the volume of production, and economic considerations.

3. Nanomaterials for biodiesel synthesis

Nanomaterials play a vital role in improving a variety of aspects of biodiesel production (Mandotra *et al.*, 2018). These improvements range from strengthening the fuel characteristics of biodiesel to further enhancing the productivity of the transesterification process (Balasubramanian *et al.*, 2020; Rai *et al.*, 2016). The nanoparticles employed as catalysts in biodiesel synthesis are termed nanocatalysts and help in improving the biodiesel yield. Nanocatalysts have a wide reaction area and strong catalytic activity, making them useful in overcoming mass transfer resistance, quick deactivation, and inefficiency. Overall, nanomaterials are important not only in the synthesis of alternative biodiesel, but also in the manufacturing of cellulosic fuels, renewable application of chemical products, and other bio-based goods via the adaptable bio-refinery platform (Ingle *et al.*, 2020).

Several approaches have been employed in this domain successfully for improvement including nanotechnology-based

transesterification, gasification, anaerobic digestion, pyrolysis, and hydrogenation to create fatty esters, biogas, and renewable HC. These approaches have been improved by integrating with nanotechnology, demonstrating cost-effectiveness efficiency. Nanotechnology especially has evoked widespread interest in the research community to employ nanomaterialbased catalysts to improve biodiesel production. It has been demonstrated that the creation of more efficient, cost-effective, long-lasting, and stable nano-catalysts results in enhanced quality of final product quality and yields (Nizami and Rehan, 2018). Recent research has demonstrated that immobilized lipase is also an ecologically friendly, cost-effective, and efficient biocatalyst for biodiesel generation. Nanomaterials are suited for biodiesel generation due to their catalytic activity, low mass transfer constraints, and ease of dispersion. For biodiesel synthesis, researchers have looked at nanostructured materials such as carbon nanotubes, nanofibers, and metal-organic frameworks, as well as typical nanomaterials such as nanosilicon, magnetic nanoparticles, and nano-metal particles. Because of their distinct features, nanomaterials have a wide range of uses and have become a part of our daily lives. Several parameters, including synthesis techniques, temperature, dispersion agent, surfactant, and so on, have a considerable influence on the quality and quantity of generated nanoparticles, as well as their attributes (Khan and Arasu, 2019; Yaqoob et al., 2020). The following is an in-depth summary of the nanomaterials that are typically utilized in the manufacturing of biodiesel:

Metal-based nanoparticles

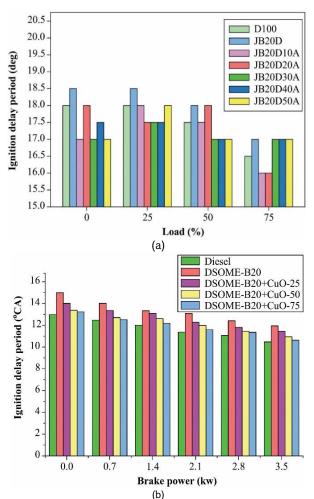
- Metal nanoparticles, especially those containing noble metals such as palladium, gold, and silver, have demonstrated promising catalytic activity in biodiesel generation.
- These nanoparticles work as highly efficient catalysts in the transesterification step, converting triglycerides into biodiesel and glycerol (Joshi et al., 2023).
- Palladium nanoparticles, for example, have shown outstanding catalytic activity and stability, resulting in increased conversion rates and biodiesel output (Chen et al. 2020)
- Gold and silver nanoparticles have also been studied for their catalytic characteristics, which show promise for improving reaction kinetics and selectivity in biodiesel production (Al-Zaban and Abd El-Aziz, 2024; Al-Zaban et al., 2022).

Metal oxide-based nanoparticles

- The multifunctional features of metal oxide nanoparticles, such as titanium dioxide (TiO₂) and zinc oxide (ZnO), have attracted a lot of attention in the field of biodiesel generation (Dasta *et al.*, 2022; Qamar *et al.*, 2023).
- These nanoparticles have the potential to function as catalysts or catalyst supports, which will result in the transesterification reaction being facilitated and the synthesis of biodiesel being promoted (Vasić et al., 2020)
- TiO₂ nanoparticles, in particular, have demonstrated remarkable catalytic activity in transesterification processes, which has led to improvements in conversion rates and the amount of biodiesel produced (Jan et al., 2022).

 There has also been research conducted on ZnO nanoparticles to investigate their catalytic capabilities and the possibility that they could improve the efficiency of biodiesel production efficiencies.

Carbon-based nanoparticles


- Carbon-based nanomaterials, such as carbon nanotubes (CNTs) and graphene, have unique features that can be used to increase biodiesel production and fuel quality (Bhagat et al., 2021).
- CNTs, with their large surface area and great mechanical strength, have been investigated as catalyst supports and additives in the production of biodiesel (Konwar et al., 2014). Functionalized CNTs have demonstrated good results in terms of reaction kinetics, catalyst stability, and biodiesel yield.
- Graphene, due to its two-dimensional structure and superior electrical and mechanical capabilities, has the potential to improve the reliability and efficiency of biodiesel fuel (Jume et al., 2020).
- Graphene-based nanocomposites have been studied as additives for improving the thermal stability, lubricity, as well as combustion properties of biodiesel.

In general, nanomaterials offer fascinating opportunities for improving biodiesel manufacturing procedures while simultaneously enhancing the quality and performance of biodiesel fuel. Research & development efforts that are now being conducted in this area have the potential to result in the creation of a biodiesel technology that is more efficient, environmentally friendly, and economically viable.

4. Effects of nanoparticles-blended biodiesel on engine performance

According to the findings of the research, nanoparticles greatly improve both the performance of engines and the temperatures of exhaust gases. It has been demonstrated that nanoparticles dispersed in diesel-biodiesel have the potential to atomize and eliminate obstructions, which can be used to optimize the air-fuel combination (EL-Seesy et al., 2020; Kegl et al., 2021). Indeed, each of these nanoparticles increases the surface area/volume, which results in improved combustion and a reduction in the amount of fuel that is consumed (Fayaz et al., 2021; Kumar et al., 2017a). Additionally, nanoparticles (NPs) have an impact on the temperature of the exhaust gas and the performance of the engine. Obviously, the addition of graphene oxide (GO) nanoparticles to diesel-biodiesel resulted in a significant increase in the braking power of the engine, as discovered by Hoseini et al. (Hoseini et al., 2020). This was attributed to the fact that GO NPs have a greater ratio of surface area vs volume, which led to the enhanced coefficient of heat transfer. This, in turn, results in higher in-cylinder pressures together with a faster rate of heat delivery. The Jatrophananoparticle blends led to lower EGT by as much as 27 %. One possible explanation for this is that the nanoparticles have enhanced capabilities for in-cylinder combustion and fuel-air mixing, both of which contribute to greater engine performance (Murugesan et al., 2022). In a study by Das et al. (Das et al., 2024) used a multi-cylinder engine powered by biodiesel-dieselnanoparticles to investigate its emission and performance. The synthesis of biodiesel from Nahar oil was carried out using two steps of transesterification. In this scenario, 30% Nahar bioidiesel-70% diesel was employed to power the test engine.

The various proportional of carbon nano tubes CNTs were introduced in the biodiesel-diesel blends. The results of the testing show that Nahar oil biodiesel and its mixtures with carbon nanotubes can replace diesel as fuel in diesel engines effectively. Recently, the research community has been concentrating on the dependability aspects of biofuels, as well as the strengthening of engine performance components and burning qualities, to reduce exhaust emissions from conventional diesel engines through the utilization of dieselbiodiesel fuel mixtures that are loaded with NPs (Basha et al., 2022; Nachippan et al., 2022; Pullagura et al., 2024). Recent research studies on the utilization of nano-sized metals, nonmetals, natural, and mixed elements in the fundamental fuel for diesel engines have been published in the academic literature (Jin and Wei, 2023; Yusof et al., 2020). Fuel modification is one of the most important techniques for enhancing performance and lowering exhaust emissions, according to a review that was conducted by Shaafi et al. (Shaafi et al., 2015). This is specifically in comparison to engine modification and post-discharge gas management, which are also essential approaches. This is accomplished by boosting surface area to volume fraction, thermal conductivity, and mass diffusivity when the nanoparticles are disseminated in a liquid medium. The usage of nanoparticles as additives in diesel fuel results in an improvement in thermophysical parameters (Bidir et al., 2021; Hatami et al., 2020; Murugesan et al., 2023). In the

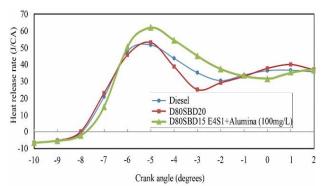


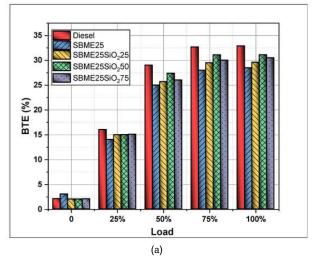
Fig 5. Effects of nanoparticles addition on ignition delay in case of (a) Alumina-based nanoparticles added to Jajoba biodiesel blends (El-Seesy *et al.*, 2018), (b) CuO-based nanoparticles added to Dairy scum biodiesel blends (Channappagoudra and Channappagoudra, 2021)

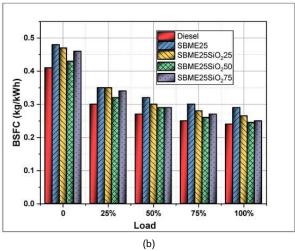
case of a specific CI engine, the combustion process usually involves a combination of premixed as well as diffusion burning (Hoang et al., 2022c; Sathish et al., 2023a). Various variables can influence the mechanics of these intricate phenomena, such as the selection of fuel, the time of injection, the pressure of intake, the temperature, the load on the engine, and the compression ratio (Abdullah et al., 2014; Calam et al., 2019; Nayak et al., 2022). The efficiency of the combustion process is the primary factor that determines the engine's overall performance and the pollutants produced by the exhaust (Balasubramanian et al., 2019). Ignition delay (ID) is a crucial measure of the time it takes for combustion to start. It serves as a key indicator of engine performance in terms of fuel economy and emissions. ID refers to the period that begins with the injection of fuel and concludes with the burning of fuel within the combustion chamber (Basha and Raja Gopal, 2012; Senthilraja et al., 2010). Both physical and chemical factors have the potential to impact ID. Prior studies indicate that shorter ID can result in improved combustion efficiency as it allows for a longer duration of preparing the fuelair combination (Basha and Anand, 2011; T. T. Bui et al., 2022; Venu and Madhavan, 2016).

The distribution of nanoparticles inside the fuel droplets facilitated greater absorption of radiative heat, resulting in an enhanced rate of evaporation (Küçükosman *et al.*, 2022). Furthermore, the increased oxygen content available also had a significant impact on the combustion of the fuel blends by improving the mixing of fuel, air, and nanoparticle oxides. El-Seesy *et al.* (El-Seesy *et al.*, 2018) showed that the addition of Al₂O₃ nanoparticles led to a decrease in ID. The authors highlighted that the rise in the surface-area-to-volume ratio and improved heat conductivity were the factors responsible for the heightened evaporation rate and decreased ID. Similar findings were also reported by other research studies (Huzayyin *et al.*, 2004; Venu and Madhavan, 2016). The effects of different nanoparticles on the ID in biodiesel-diesel blend powered engines are depicted in Figure 5.

Alumina (Al₂O₃) nanoparticles, when added to diesel or a mixture of diesel and biodiesel, can effectively decrease the ID due to their enhanced thermal conductivity and greater surfacearea-to-volume ratio. These improvements eventually result in an increased evaporation rate and reduced ID (Mostafa et al., 2023). Al₂O₃ nanoparticles, when combined with the base fuel, can enhance combustion quality and optimize heat transmission (El-Seesy et al., 2018)(Huzayyin et al., 2004). The Al₂O₃ nanoparticles added to the fuel mix exhibited a rapid increase in HRR at a crank angle position of 6.5° to 1° before reaching the top dead center position, despite its lower calorific value. The significant impact of Al₂O₃ nanoparticles on enhancing combustion quality is evident from the greater peak pressure and combustion rate observed in the case of D80SBD15E4S1 and Al₂O₃ nanoparticles fuel blend. For JB20D, the highest recorded gross heat release rate (HRR) was somewhat lower than that of pure diesel, as described in the reference (El-Seesy et al., 2018). The explanation for this phenomenon can be attributed to the blend's increased molecular weight and decreased laminarly burning speed (Huzayyin et al., 2004; Prabakaran and Udhoji, 2016). Shaafi et al. (Shaafi and Velraj, 2015) found that the combination of D80SBD15E4S1 and Al₂O₃ nanoparticles had the maximum heat release rate (HRR) at 62 J/CA. In comparison, plain diesel and B20 blend had HRR values of 51.60 J/CA and 53.12 J/CA, respectively. However, the use of Al₂O₃ nanoparticles in the JB20D fuel mixture was shown to elevate the overall heat release rate (HRR) beyond that of pure diesel. The Al₂O₃ nanoparticles have a greater surfacearea-to-volume ratio and improved ignition characteristics. This leads to a higher combustion quality, as evidenced by a

Fig 6. Effects of nanoparticle addition on HRR (Shaafi and Velraj, 2015)


reduction in ID and an increase in peak gross HRR compared to unaltered JB20D. The effects on HRR are depicted in Figure 6 from a study by Shaafi *et al.* (Shaafi and Velraj, 2015).


By adjusting the amount of ethanol, a pilot study that was conducted to investigate the impact of ethanol on an SC-4S diesel engine operating at variable speed while under full load discovered that raising the ethanol ratio led to an increase in the amount of hydrocarbon and carbon monoxide emissions, as well as the HRR and in-cylinder pressure. As well as shorter oxidation times and greater ignition delay, Mirzajanzadeh et al. (Madiwale et al., 2018) reported significant decreases in CO₂ and NO levels. Additionally, they reported increases in ignition delay. The quantity of oxygen is the most critical factor in significantly boosting the efficiency of combustion. Due to the higher oxygen content, biodiesel-alcohol produces higher quantities of nitrogen oxides (NOx), which can reach up to 22 percent, as a result of the higher combustion temperature. When compared to diesel fuel, it reduces carbon monoxide emissions by as much as 33 percent, the formation of hydrocarbons by 90 percent, and particulate matter emissions by about 76 percent (Bidir et al., 2021; Jiaqiang et al., 2017).

The exhaust gas temperature (EGT) is a vital parameter used to determine the combustion temperature inside the engine cylinder (Atasoy et al., 2022). Prabakaran et al. (Prabakaran and Udhoji, 2016) found that ZnO nanoparticles demonstrated higher catalytic activity, leading to an increase in the average combustion temperature due to improved combustion acceleration. The graph clearly showed an upward trend in EGT levels when the engine load reached or exceeded 50% for the ethanol/biodiesel blend with nanoparticles, as opposed to the unmodified version. Similarly, EL-Seesy et al. (EL-Seesy and Hassan, 2019) noted a reduction in EGT when JME40B was mixed with nanoparticles. By leveraging the higher cetane number of biodiesel and the surface-area-to-volume ratio of MNP, the addition of nanoparticles has the potential to improve the combustion efficiency of the base fuels. Hence, the increased interaction between the air and fuel in the combustion chamber resulted in a higher combustion acceleration rate [14]. El-Seesy et al. (El-Seesy et al., 2018) noted a reduction in the exhaust gas temperature upon the initial addition of Al2O3 nanoparticles to JB20D, irrespective of the engine's operational circumstances. An inverse relationship was noted between higher levels of nanoparticle concentration and a decrease in EGT. However, this relationship was only statistically significant until a certain threshold of nanoparticle concentration was reached. Upon exceeding this limit, EGT was observed to increase again. As previously mentioned, the inclusion of Al₂O₃ nanoparticles resulted in reduced BSFC values. The main factor behind the decrease in EGT was resulting in a decrease in

energy content (Shaafi and Velraj, 2015). The effects of nanoparticles on BTE and BSFC are depicted in Figure 7.

In a study by Kumar et al., (Kumar et al., 2017a), the investigators explored the variance of BTE with different concentrations of CeO2 nanoparticles. By adding cerium oxide nanoparticles to diesel, the BTE increased by 6%. Ceria nanoparticles convert into an oxygen buffer, releasing and storing oxygen in response to oxygen partial pressure. As a result, its addition to fuel promotes longer and more efficient burning than base fuel. CeO2 may efficiently transition from a +4-valence state to a +3-valence state using low-energy processes. Increasing the treatment amount of CeO2 nanoparticles above 35 ppm led to a modest drop in effectiveness. Higher loads result in the most effective nanoparticle dosing to diesel. Basha (Sadhik Basha, 2018) in another study used CNTs and di-ethyl ether blended with diesel to test the performance of a diesel engine. The 91% Jatropha biodiesel + 9% water (JME5W) mixture increased the volume of the fuel-air mixture, resulting in greater peak pressure and higher fuel consumption owing to longer ignition delay. It is also deduced that additive blended biodiesel emulsion fuels had higher BTE than pure diesel, plain biodiesel, and JME5W fuel. The use of additives such as CNT and DEE in emulsion fuel has increased combustion. The blend having CNTs with biodieselwater emulsion fuel outperformed plain biodiesel emulsion fuel owing to the superior burning properties of the CNTs included

Fig 7. (a) Influences of SiO₂ NPs on BTE (Gavhane *et al.*, 2021); (b) Influences of SiO₂ NPs on BSFC (Gavhane *et al.*, 2021)

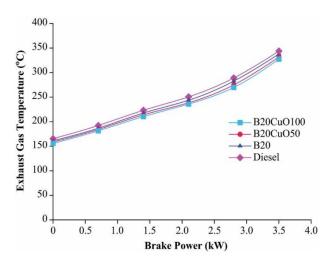


Fig 8. Effects of adding nanoparticles on EGT (Perumal and Ilangkumaran, 2018)

in the fuel (Atarod *et al.*, 2021). The addition of CNTs in the JME5W fuel increased combustion and, as a result, collected less fuel (due to shorter ignition delay), resulting in lower fuel consumption than pure JME5W fuel. However, the test fuel sample 91% Jatropha Methyl Esters+5% Water+50 ppm CNT+50 ml DEE showed significantly better performance characteristics. This might be attributed to the presence of CNT and DEE in the biodiesel emulsion fuel. Both additives (CNT and DEE) enhanced combustion properties due to secondary atomization and micro-explosion effects.

The combustion, performance, and emission characteristics of the fuel blend samples were investigated by Kalaimurugan et al. (Kalaimurugan et al., 2023) through the utilization of experimentally derived criteria such as cloud point, viscosity, calorific value, density, and pour point. They did not make any modifications to the engines. Exhaust emissions, smoke opacity, BSFC, BTE, HC, CO NOx, and other metrics were used to assess the engine's performance. Adding a biodiesel mixture containing CuO2 nanoparticles to an existing CI engine enhanced combustion, significantly increased performance characteristics, and reduced exhaust pollutants (Fayad et al., 2022). On the other hand, in light of the growing concern regarding nanoparticle exposure, it is of the utmost importance to conduct a comprehensive investigation into the potential health and environmental implications of introducing CuO2 nanoparticles into diesel-powered engines. Recently other studies in this domain reported similar results (Mofijur et al., 2024). The influences of nanoparticles on EGT are depicted in Figure 8.

There is a large and multifaceted impact that nanoparticles have on the performance of engines and the characteristics that are associated with them, such as braking power, brake-specific fuel consumption (BSFC), and brake thermal efficiency (BTE). The combustion of engines, the efficiency with which fuel is used, and the reduction of pollution are all significantly influenced by nanoparticles due to their distinctive characteristics, which include a high surface area-to-volume ratio. It has been demonstrated that the use of nanoparticles such as Al_2O_3 and CeO_2 in fuel blends, such as mixtures of biodiesel, diesel, and nanoparticles, can increase the brake power (Venu *et al.*, 2021; Venu and Appavu, 2020; Yusuf *et al.*, 2022b). The majority of this improvement was owed to improved combustion properties and higher chemical reactivity that nanoparticles provide. One of the most important

indicators of fuel economy is the BSFC, which is affected by nanoparticles. Even though diesel fuel typically has a higher BSFC than biodiesel due to the latter's lower heating value, the introduction of NPs into the fuel can enhance its lower heating values, hence lowering the BSFC as well as indicating an increase in fuel efficiency. In addition, the utilization of nanoparticles enhances BTE. By enabling finer fuel atomization, nanoparticles like titanium dioxide and aluminum oxide (Al₂O₃) contribute to an increase in combustion efficiency. This, in turn, leads to a more complete burning process. Not only does this strengthen BTE, but it also reduces the amount of harmful contaminants (Jit Sarma et al., 2023; Singh Pali et al., 2023). The utilization of ZnO nanoparticles in CI engines is a prevalent method owing to its capacity to mitigate engine wear and protect against corrosion. The manufacturing of ZnO nanoparticles is characterized by their antioxidant property and may be achieved through a straightforward and cost-effective technique. The augmentation of ZnO nanoparticles in CI fuel has culminated in improved combustion characteristics, as indicated by the greater BTE (Hussain Vali et al., 2022; Ooi et

Furthermore, the incorporation of water molecules in the fuel emulsion enhanced the effective blending of fuel and air particles, leading to accelerated evaporation of the mixture. The higher surface-area-to-volume ratio in the case of nanoparticles might potentially enhance the evaporation and atomization of fuel droplets (Kannaiyan et al., 2019; Kannaiyan and Sadr, 2017). Moreover, these nanoparticles have demonstrated the ability to assimilate hydrogen atoms from water molecules, hence enabling enhanced combustion efficiency (Soukht Saraee et al., 2016). Nanoparticles were employed to increase the surfacearea-to-volume ratio, facilitating a more effective blending of air and fuels in blends of biodiesel with elevated viscosity, hence leading to improved BTE (Selvaganapthy et al., 2013). Nevertheless, the BTE levels were lower compared to those of regular diesel. Moreover, the BTE values observed in these fuel blends exhibited a favorable correlation with the quantity of CuO nanoparticles utilized in the investigations. Greater concentrations of nanoparticles enhanced the accessibility of active contact surfaces and amplified the catalytic influence of the nanoparticles. Utilizing CuO nanoparticles enables an accelerated and elevated heat release rate (HRR) while concurrently augmenting oxygen concentration, hence facilitating the combustion process (Annamalai et al., 2016; Tamilvanan et al., 2019). Increasing fuel economy while simultaneously lowering emissions is a difficult balance that must be maintained. Different nanoparticles have different effects on emissions, even though they improve engine performance and efficiency. To give an example, the combination of SiO₂ nanoparticles with biodiesel has the potential to reduce emissions, but it may also increase levels of NOx. There is a wide range of effects that nanoparticles can have on the efficiency of the engine. The BTE of diesel-ethanol fuel is improved by CeO2 to a moderate degree, whereas the BTE of TiO2 is significantly improved and emissions are reduced. There is a possibility that the usage of biodiesel that is composed entirely of particles will result in higher particle emissions. Diesel, on the other hand, typically has a lower BSFC and a greater BTE, but it is less conducive to environmental preservation (Sathish et al., 2023a).

The introduction of nanoparticles with engine fuels is an intriguing strategy with the possibility to enhance engine performance while also reducing emissions (Pandian *et al.*, 2017; Saxena *et al.*, 2017). However, the outcomes are significantly influenced by many factors, including nanoparticle types, the

 Table 1

 Performance characteristics of engine running on nanoparticles-based biodiesel

dictingness characteristics of crighter tanning on marcha and	willing on manopaines	pasca pioaicsei			
Biodiesel types	Nanoparticles type	Nanoparticles dosage	BTE	Fuel consumption	Ref
25% Pongamia biodiesel/75% diesel fuel	Al_2O_3	50-100 ppm	$\uparrow 1.91\%$ for 50 ppm of $Al_2O_3, \uparrow 2.7\%$ for 100 ppm of Al_2O_3	\downarrow 0.015 kg/kWh 50 ppm of Al ₂ O ₃ , \downarrow 0.025 kg/kWh for 100 ppm of Al ₂ O ₃	(Sivakumar <i>et al.</i> , 2018)
20%Jatropha biodiese1/80% diesel fuel		50 mg/1	↑15%	† 12%	(El-Seesy <i>et al.</i> , 2018)
10% Waste cooking oil/ 90% diesel fuel	MgO	30ppm	↑4.8% compared to B10;	\uparrow 2.64% compared to B10	(Ranjan <i>et al.</i> , 2018)
Calophyllum Inophyllum biodiesel	ZnO	100 ppm	↑4.7% for 100 ppm ZnO	↑0.025 kg/kWh for 100 ppm ZnO	(Ashok <i>et al.</i> , 2017)
30% Catopnynum Inophyllum diesel/50% diesel firel	CeO_2	40 ppm	$\uparrow 2\%$ for 40 ppm CeO $_2$	\downarrow for 40 ppm CeO $_2$	(Vairamuthu et al., 2016)
20% of Calophyllum Inophyllum biodiesel/80% diesel fuel	${ m TiO_2}$	40ppm	↑3.1%	\rightarrow	(Praveen <i>et al.</i> , 2018)
25% Neem oil biodiesel/75% diesel fuel	NiO	100 ppm	†31.8% with 100 ppm NiO;	\rightarrow	(Srinidhi et al., 2019)
20% <i>Ricinus communis</i> biodiesel/80% diesel fuel	Sr@ZnO	e0 ppm	↑45.36%	_21.47%	(Soudagar et al., 2021)
20% jojoba biodiesel/80% diesel	CuO	75 ppm	↑ 4.94%	↓13.17%	(Rastogi <i>et al.</i> , 2021)
30% waste cooking oil biodiesel/70% diesel	$Fe-CeO_2$	mdd 06	←	\rightarrow	(Hawi et al., 2019)
5% Waste cooking oil/95% diesel	$\mathrm{Fe}_2\mathrm{O}_3$	100 ppm	←	\rightarrow	(Jumaa and Mashkour, 2021)
Waste orange peel oil biodiesel	${ m TiO_2}$	50 ppm	↓4.5 %	↑0.045 kg/kWh	(A. M. Kumar <i>et al.</i> , 2020)
20% Mahua biodiesel/ 80% diesel	ZnO	30 ppm	↑3%	↓35 g/kWh	(Soudagar et al., 2020)
20% Pongamia biodiesel/80% diesel	Ag-doped ZnO	25mg	\8%	↓ 0.09 kg/kWh	(Sam Sukumar <i>et al.</i> , 2020)
25% Soybean biodiesel/75% diesel	Cu-ZnO	75 ppm	↑ 11.5%	↓14.8%	(Gavhane <i>et al.</i> , 2020)
Jatropha biodiesel	Al_2O_3/CeO_2	100 ppm	↑3 %	%9↑	(Hossain and Hussain, 2019)
10% Aloe vera biodiesel/90% diesel	Al ₂ O ₃	30 ppm	↑3%	↓0.12 kg/kWh	(Prabu <i>et al.</i> , 2019)

fuel that serves as the foundation, the design of the engine, and the operating conditions (Bitire *et al.*, 2023; Yusof *et al.*, 2020). Each type of nanoparticle has its own set of benefits and drawbacks that are distinct from the others. It is necessary to

conduct additional in-depth studies to ascertain the optimal equilibrium between nanoparticle type, fuel mixture, and engine settings to maximize either the performance or the environmental benefits (Bidir *et al.*, 2021; Kumar *et al.*, 2017b).

Furthermore, to fully achieve the potential of nanoparticle-enhanced fuels, any possible negative consequences must be addressed and mitigated, particularly those impacts that are related to emissions. Concentrating on environmentally friendly and sustainable methods of producing nanoparticles may increase the environmental benefits offered by the technology as scientific research continues to advance (El-Adawy *et al.*, 2023; Kohli *et al.*, 2023; Sathish *et al.*, 2023b). In general, the effect of nanoparticles on engine performance can be given in Table 1.

5. Effects of nanoparticles-blended biodiesel on engine emission

In the last several decades, scientists have come to a unanimous conclusion: nano-additives are to blame for the shift in our energy consumption habits. Diesel engines have discovered extensive use for diesel-biodiesel fuel blends that contain nanoparticles. Nanoparticles significantly alter fuels' physical characteristics, such as their thermal conductivity and heat transfer rate, by acting as a catalyst and an effective secondary energy transporter (Manigandan et al., 2020; Radhakrishnan et al., 2018). Premixing in combustion also resulted in more dominating reaction rates owing to a quicker oxidation process and a higher surface volume ratio, either of which improved fuel combustion efficiency (Hosseini et al., 2017). Fuel consumption is reduced with the same amount of engine brake power, higher operating pressure, and enhanced heat release rates compared to diesel fuel, with no discernible effect on engine emission features (Kishore and Gugulothu, 2022). Experiments have shown that adding nanoparticles to fuel used for diesel engines reduces chemical reaction time even further, which in turn shortens the ignition delay period and ultimately results in fewer pollutants (Feroskhan et al., 2019;

Ganesan *et al.*, 2020). The size of the nanoparticles and the extra concentration of fuel are also major factors in the significant reduction of engine emissions.

Regardless, this isn't the only thing that matters; additional elements include oxygen availability, combustion temperature, response time, and their local complex interface, among others. The effects of TiO₂ nanoparticles on engine emission are depicted in Figure 9 (Mujtaba et al., 2020). The use of nanoparticles in biodiesel-diesel blends has emerged as a potentially fruitful technique for improving the efficiency in lowering the emissions of diesel engines. This novel strategy makes use of the unique qualities of nanoparticles to maximize the characteristics of fuel and the kinetics of combustion. The employment of dispersed nanoparticles in biodiesel-diesel mixes improved the fuel atomization, increased the surface area for combustion, and reduced the generation of pollutants (Karthikeyan et al., 2016). The combustion kinetics are altered as a result of the interaction between nanoparticles and fuel molecules, this results in a more complete oxidation of fuel and a reduction in emissions of hazardous pollutants such as nitrogen oxides (NOx), particulate matter (PM), and carbon monoxide (CO) (Debbarma and Misra, 2018; M. V. Kumar et al., 2019). Investigating the amount of carbon monoxide that is emitted in the exhaust of a diesel engine can be of use in determining the degree to which incomplete combustion takes place during the combustion cycle.

The introduction of CNT led to a considerable reduction in NOx emissions. The study attributed this to the water-emulsified CNT's capacity to swiftly absorb heat during combustion, resulting in a rapid fall in in-chamber temperature and lower NOx levels (Ghojel *et al.*, 2006). The Al_2O_3 nano additive considerably increased NOx levels, probably due to an increase in the in-cylinder pressure and temperature from rapid

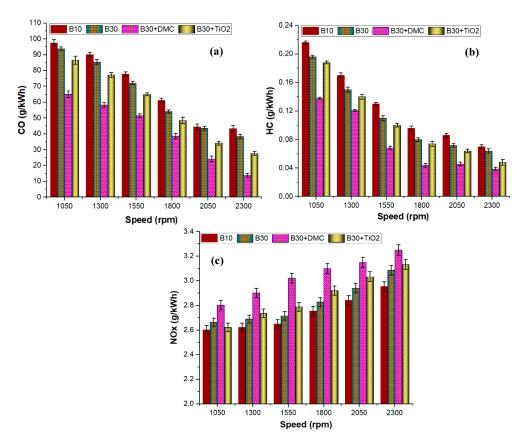
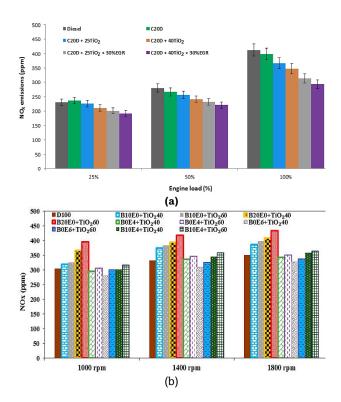



Fig 9. Influence of TiO2 nanoparticles on (a) CO (b) HC (c) NOx emissions (Mujtaba et al., 2020)

Fig 10. (a) - Effects of TiO_2 nanoparticles and EGR on NO_x emission (Fayad *et al.*, 2023); (b) - Effects of TiO_2 - 40 and 60 ppm nanoparticles on NO_x emission (Mobasheri *et al.*, 2023)

fuel burning. The increasing chamber temperature resulted in greater NOx production (Barboza et al., 2023; Gupta et al., 2024). It has also been demonstrated by chemical equilibrium tests that a significant amount of nitrogen oxides is produced at the last stage of the combustion process (Kowalski and Tarelko, 2009b). Furthermore, it has been demonstrated that rich fuel-air mixtures produce a lower quantity of these oxides compared to lean fuel-air mixtures. The burning of biodiesel fuel results in the production of more nitrogen oxides (NOx) than diesel fuel does. This is because biodiesel fuel contains a higher quantity of oxygen. As a result of this highly oxygenated biodiesel's ability to burn more efficiently and produce more heat, the temperatures inside the cylinder are improved. Furthermore, for the reason that biodiesel has a larger bulk modulus, sophisticated fuel injection was utilized, which resulted in an even greater increase in NOx emissions (Chandrasekaran et al., 2016; Manimaran et al., 2023; Shelare et al., 2023).

Fayad et al. (Fayad et al., 2023) used TiO2 nanoparticles with a higher rate of exhaust recirculation (EGR) to improve the combustion performance and reduce emission from a common rail direst injection (CRDi) engine. Figure 10a depicts the NOx emissions levels vs engine loads generated from EGR and the incorporation of TiO2 concentrations into castor oil blends. The overall trend across all fuels reveals that NO_X emissions increased with higher engine loads compared to medium and reduced engine loads owing to a rise in combustion temperature within the combustion chamber. In comparison to the other evaluated fuels, the castor oil mix produces slightly greater NOX emissions during low-load burning. In contrast, introducing TiO₂ nanoparticles resulted in a significant 13.42% decrease in NO_x when compared to the fuel without nanoparticles. This is due to a reduced level of active radicals, which increases the capacity to limit NOx generation. Similar results were reported by Mobasheri *et al.* (Mobasheri *et al.*, 2023) as depicted in Figure 10b.

CO emissions are significant since they represent lost chemical energy that cannot be used in the engine. In diesel engines, incomplete combustion is typically brought on by a lack of combustion time, which is required for the oxidation of carbon monoxide into carbon dioxide, an insufficient amount of oxygen, and an insufficient amount of fuel-air mixing in the combustion area (Aalam and Saravanan, 2017; Khan et al., 2020). Evidence demonstrated that elevated concentrations of CuO nanoparticles significantly decreased carbon monoxide emissions (Naik and Kumar, 2018). The enhanced catalytic efficacy of these nanoparticles, uniformly dispersed throughout the liquid fuel, permitted the proper amalgamation of air and fuel, resulting in an overall enhancement of the combustion process (Prabakaran et al., 2017; Yusuf et al., 2022a). Fuel quality, engine load, spray characteristics, and air-fuel ratio are all important elements in CO generation (Flamarz Al-Arkawazi, 2019; Hoang et al., 2018). CO emissions are created by the incomplete oxidation of carbon atoms in the combustion chamber's rich mixture sections at temperatures less than 1180°C (Deheri et al., 2020; Sarıdemir et al., 2024). In a study by Zhang et al. (Zhang et al., 2022) it was reported that hydrogen incorporated with nanoparticles results in a decrease in CO levels. Because the quantity of biofuel utilized raises the oxygen concentration, this is the case. The oxygen content of the biofuel, the addition of nanoparticles to reduce viscosity, and the supply of hydrogen to increase diffusivity and flame speed all contribute to an increased rate of pure combustion with no unburned fuel (Ettefaghi et al., 2018). The unburned fuel components are also contributing to CO emissions. Moreover, the absence of a carbon structure in hydrogen leads to reduced CO₂ emissions. TiO2's substantial energy surface area is an additional prerequisite for complete combustion. However, as velocity increased, so did carbon monoxide emissions. Due to the partial combustion of the mixture in the combustion chamber, carbon monoxide (CO) emissions are generated. However, the addition of alumina nanoparticles to diesel fuel helps decrease these emissions. The concentration of CO emissions is shown to decrease as the dosage of nanoparticles increases. Alumina nanoparticles are evenly distributed owing to their catalytic activity, resulting in improved contact between air and fuel, as well as combustion (Soudagar et al., 2018; Soukht Saraee et al., 2016).

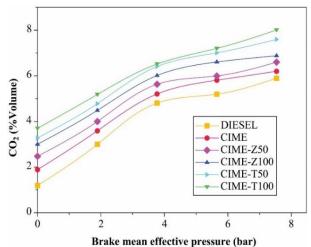
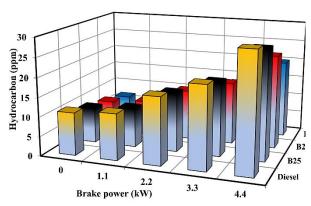
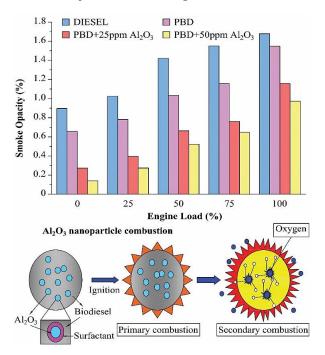



Fig 11. Effects of TiO₂ nanoparticle addition on CO₂ emission (Nanthagopal *et al.*, 2017)


Fig 12. Effects of Al_2O_3 nanoparticle addition on HC emission (S. S. Kumar *et al.*, 2021)

CO2 emissions in a CI engine indicate that the test fuel has been thoroughly burned. There was a link between engine load and CO2 emissions for all evaluated fuels. Because of its increased oxygen content, biodiesel was shown to emit more CO2, as shown in Figure 11. The use of CuO nanoparticles in blended fuels leads to a higher oxygen availability as well as a surface area-to-volume ratio. This, in turn, improves the oxidation of carbon monoxide (CO) and hydrocarbons (HC), resulting in greater temperatures in the combustion chamber and improved combustion efficiency. CuO Nano addition increases CO2 emissions somewhat when compared to JB20 gasoline. The event is the outcome of an enhanced combustion process triggered by Nano additions. This process maintains an equilibrium between CO and CO2 emissions since an increase in CO2 emissions causes a reduction in CO emissions (Rastogi et al., 2021; Venu et al., 2022).

Hydrocarbon (HC) emissions are always referred to as unburned HC since they are the product of incomplete combustion (Balasubramanian et al., 2022). The presence of HC emissions in exhaust fumes is generated by insufficient oxygen atoms in fuels and high ignition temperatures (Dehhaghi et al., 2021; Gharehghani et al., 2019). These produce non-oxidized and/or semi-oxidized casings for testing fuels. In such cases, HC production begins to increase. It was noticed that HC fluctuated with engine speed. At all engine speeds, 1000-CuO and 2000-CuO produce fewer HC emissions than diesel fuel. It is clear that the oxygen content increased with the addition of metal-oxide nanoparticles to the mixture; hence, HC is larger for DF under all conditions (Ağbulut et al., 2021; S. Kumar et al., 2020). In a similar study by Kumar T et al. (Deepak Kumar et al., 2020) it was reported that at higher loads ZnO nanoparticles helped in the reduction of HC emission. The catalytic impact of nano-additives improves the process of combustion, resulting in reduced HC concentrations. The use of ZnO nanoparticles minimizes CO emission generation owing to the catalyst throughout combustion, the increased surface area, and the quicker combustion rate. Furthermore, it was proven that augmenting the dose of ZnO nanoparticles in the diesel-water emulsion resulted in a proportional decrease in HC emissions. The secondary atomization of nano-additives, together with improved fuel-air blending and increased reactivity, speeds up the oxidation of HC, resulting in reduced HC emissions. Nanomaterials enhance combustion efficiency by incorporation of oxygen molecules (Dhahad and Chaichan, 2020; Gad et al., 2023). Kumar et al. (S. S. Kumar et al., 2021) reported that the fuel quality, spray actions, and air-fuel ratio are the most important parameters influencing HC emissions; HC emissions are produced owing to the lack of oxygen present

during combustion. Figure 12 depicts the change in HC emissions with braking power for diesel, biodiesel blends, and nanoparticle combinations. The graph shows that at peak load, the HC emission for the B25 is 28 ppm, whereas the diesel emission is 32 ppm. The inclusion of an additional O₂ molecule in the chemical structure improves oxidation, which leads to enhanced combustion and fewer HC emissions. For tested fuels, HC emissions ranged from 7 to 32 ppm between no load and peak load. From no load to peak load, diesel HC emissions vary from 11 to 32 ppm, whereas B25 emissions range from 9 to 28 ppm. The application of 25 and 50 ppm of alumina nanoparticles reduces B25 HC emissions from 8 to 24 ppm and 7 to 20 ppm, respectively. Alumina nanoparticles acted as oxidation catalysts, which increased HC oxidation and reduced HC emission.

Smoke formation is observed in the fuel-rich zone during the burning process, indicating advanced timing during full engine load (Adam et al., 2017; Debbarma and Misra, 2017). Scientists have highlighted the positive impacts of adding nanoparticles in reducing smoke generation and improving combustion properties (Attia et al., 2014; Ramakrishnan et al., 2019). This is attributed to the enhanced catalytic activity and increased surface-area-to-volume ratio of the nanoparticles (Murugan et al., 2022; Suhel et al., 2021). Utilizing nanoparticles enhances the oxygen content in nano-fuel mixes, facilitating complete combustion while decreasing smoke emissions. Significantly, there was a reduction in smoke emissions seen when burning a fuel mixture that included nanoparticles (Shrivastava et al., 2018; Srinivasan et al., 2021). The engine's improved emissions performance is attributed to its enhanced ignition characteristics, decreased ignition delay, and accelerated evaporation rate (Le et al., 2023, 2021). As stated by Balaji et al. (Balaji and Cheralathan, 2017), the use of Al₂O₃ nanoparticle fuel additives led to reduced smoke emissions at all engine loads. The researchers discovered that using neem oil biodiesel with a concentration of 200ppm of Al₂O₃ and neem oil biodiesel with a concentration of 300ppm of Al₂O₃ resulted in a reduction in smoke intensity by 3.11%, 8.58%, and 5.84%, respectively. The data were compared to the burning of undiluted biodiesel at

Figure 13. Effects of nanoparticle addition on smoke opacity (Venu and Appavu, 2020)

maximum engine load. The enhanced combustion of the uniform fuel-air mixture led to reduced smoke emissions. Moreover, the utilization of Al_2O_3 nanoparticles has been discovered to enhance emissions performance, and the combustion of fuel has been enhanced due to the improved surface-area-to-volume ratio of the nanoparticle fuel additives, as shown in Figure 13 (Venu and Appavu, 2020).

PBD with a 25 ppm Al_2O_3 concentration consistently yielded reduced smoke opacity and particulate matter levels across all load settings. Kalaimurugan *et al.* (Kalaimurugan *et al.*, 2020) discovered that the combustion of biodiesel blends with additional CeO_2 resulted in lower levels of smoke opacity compared to B20. Consequently, the introduction of ceria nanoparticles led to a reduction in smoke emissions by

Table 2Emission characteristics of engine running on nanoparticles-based biodiesel

Emission characteristics	Nanoparticles	Nanoparticles	Engine emissions				D-f
Fuel types	type	dosage	СО	НС	NOx	PM/Smoke	Ref
25% Pongamia biodiesel/75% diesel fuel	Al_2O_3	100 ppm	↓ 0.9 %vol	↓21 ppm	↑270 ppm	↓23 HSU	(Sivakumar <i>et al.</i> , 2018)
10% Waste cooking oil/90% diesel fuel	MgO	30 ppm	↓ 5.88%	↓ 22.52%	↓ 4.06%	↓ 1.59%	(Ranjan <i>et al.</i> , 2018)
20% jojoba biodiesel/80% diesel fuel	Al_2O_3	40 mg/l	↓70%	↓60%	↓ 60%	↓20%	(El-Seesy <i>et al.</i> , 2018)
Calophyllum Inophyllum biodiesel	ZnO	100 ppm	↓max. 18.4% ↓60.07%	↓13%	↓ 12.6%	↓	(Ashok <i>et al</i> ., 2017)
20% canola oil biodiesel/80% diesel fuel	Pd and Fe	25 ppm	for Pd and ↓57.89% for Fe	-	↑7.02% for Pd ↓4.84% for Fe	↓22.04% for Pd, ↓ 24.27% for Fe	(Keskin <i>et al.</i> , 2018)
20% of Calophyllum Inophyllum biodiesel/80% diesel fuel	TiO ₂	40ppm	↓23%	↓12%	↑ 63 ppm	\downarrow	(Praveen <i>et al.</i> , 2018)
Manhua oil biodiesel	TiO_2	200 ppm	↓ 9.3%	↓ 3.8%	↓ 6.6%	↓ 2.7%	(Pandian <i>et al.</i> , 2017)
B10 (10% waste cooking oil+ 90% diesel fuel)	Al_2O_3 , TiO_2 , SiO_2	100 ppm	\downarrow	\downarrow 80.98% for SiO ₂	\downarrow	-	(Ağbulut <i>et al</i> ., 2020)
25% Neem oil biodiesel/75% diesel fuel	NiO	100 ppm	\downarrow	↓11%	↑6.1%	-	(Srinidhi <i>et al.</i> , 2019)
20% neochloris overabundant algae oil/80% diesel fuel	CeO₂	25, 50, 75, 100 ppm	\downarrow	\downarrow	1	\downarrow	(Kalaimurugan <i>et</i> al., 2020)
20% palm biodiesel/80% diesel fuel	Fe	50, 75 ppm	↓ 56%	\downarrow	↓ 4%	-	(Debbarma and Misra, 2017)
20% waste cooking oil biodiesel/80% diesel	TiO_2	0.01% by mass	↓ 10.83%	↓ 6.33%	↑ 6.95%	↓ 3.71%	(Örs <i>et al.</i> , 2018)
10% corn oil/ 90% diesel)	CeO_2	50 ppm	↓16.6%	↓13.63%	↑ 5.8%	-	(P et al., 2021)
10% Karanja biodiesel/90% diesel	TiO_2	80 mg	↓21.52%	↓18.47%	↓1.54%	-	(Parida <i>et al.</i> , 2020)
Palm oil biodiesel	Ag_2O	10 ppm	↓ 30.55%	↓25%	↓30.3%	↓25%	(Devarajan <i>et al.</i> , 2018)
Mahua oil biodiesel	CuO	100 ppm	↓4.9%	↓ 5.6%	↓3.9%	↓2.8%	(Devarajan <i>et al.</i> , 2019)
20% algae biodiesel/80% diesel	RuO_2	100 ppm.	↓ 22.9%	↓32.5%	↑11.3%	↓ 4.4%	(Kalaimurugan <i>et</i> al., 2019)
Jatropha biodiesel	Al_2O_3	150 mg/L	↓ 22.5%;	↓19%;	↓5.9%;	↓13.5%;	(Shrivastava et al., 2018)
20% corn oil/70% neat diesel 80% Diesel/20%	TiO_2 and ZnO .	50, 100 ppm.	↓ 39%	↓39%	↓10%	↓13%;	(Manigandan <i>et</i> al., 2020)
poultry litter biodiesel	Ce ₂ O	80 ppm	-	↓20%	↓23%	↓14%	(S. Kumar <i>et al.</i> , 2019)
80% diesel/20% Botryococcus braunii algae biodiesel	CuO_2	100 ppm.	\downarrow	\downarrow	↑	1	(Dharmaprabhak aran et al., 2020)
75% diesel/25% soybean biodiesel in diesel)	Ce-ZnO	50 ppm	↓30%	↓21.5 %	†11.46%	↓18.7%	(Hussain <i>et al</i> ., 2020)

decreasing the time it takes for ignition to occur and enhancing the quality of combustion (Hoang, 2021b). Sajeevan *et al.* (Sajeevan and Sajith, 2013) employed a TPR analysis method to examine the impact of Zr-Ce-O nanoparticles on fuel combustion and soot emissions in their study on catalysis. Upon reaching temperatures ranging from 300 to 400°C, the researchers observed that the nanoparticles supplied sufficient oxygen to facilitate the oxidation of the soot particles at high temperatures. Therefore, they observed a decrease in soot emissions ranging from 3.5% to 26.3% in comparison to conventional diesel. In general, the effect of nanoparticles on engine performance can be given in **Table 2**.

6. Challenges and future perspectives

During this phase of our exploration into the domain of nano-based biodiesel production and consumption, it is of the utmost importance to recognize the obstacles that are now being faced and to envisage the prospects that will pave the way for improvements in this sector. In my capacity as your professor, I will elaborate on the difficulties and constraints that are now being faced, as well as the possibilities for more research and development, as well as the opportunity for the commercialization and expansion of nano-enhanced biodiesel technology.

6.1. Currently existing obstacles and restrictions

Efficient use of resources: The high cost of nanomaterials and production procedures remains a significant obstacle, even though nano-based approaches have proven promising outcomes. Therefore, to address this difficulty, developing novel techniques that can cut manufacturing costs without sacrificing quality or efficiency is necessary (Zhong *et al.*, 2020).

Scalability and Production Scale-Up: Although research conducted in the laboratory has yielded positive results, the process of scaling up nano-enhanced biodiesel production methods for use in commercial applications presents several daunting hurdles. To satisfy the demand for nano-enhanced biodiesel on a wider scale, it is necessary to make considerable efforts to create production procedures that are both scalable and cost-effective.

Impact on the Environment: The environmental repercussions of nanomaterial production, as well as their long-term consequences on ecosystems and human health, call for a comprehensive evaluation and the development of mitigating solutions (Bin Rashid, 2023). To assure the environmental sustainability of nano-based biodiesel technologies, it is essential to use environmentally friendly synthesis processes and sustainable manufacturing practices respectively.

6.2. Further research and development opportunities

The Optimization of Nanomaterials: Ongoing research efforts are required to optimize the design and synthesis of nanomaterials that are specifically specialized for specific uses in the manufacturing of biodiesel materials. The investigation of innovative nanocatalysts, nanocomposites, and nanocarriers offers the potential to improve the level of efficiency and selectivity of the processes involved in the production of biodiesel.

Process Integration and Engineering: The integration of nanotechnology with other fields of study, such as biotechnology, chemical engineering, and materials science, has the potential to generate synergistic advantages and novel solutions. The development of integrated processes and nanomaterials with multiple functions has the potential to result in biodiesel manufacturing methods that are more efficient and environmentally friendly.

Characterization and Evaluation of Performance To evaluate the performance and stability of nano-enhanced biodiesel fuels, it is necessary to employ comprehensive characterization methodologies. To gain a better understanding of the physicochemical parameters and combustion behavior of nano-enhanced biodiesel, advanced analytical approaches such as spectroscopic, microscopic, and rheological techniques can be utilized.

5.3. Potential commercialization and scaling-up

There is a possibility of commercialization, scaling up, market penetration, and adoption. Efforts to raise awareness and encourage market acceptance of nano-enhanced biodiesel are becoming increasingly important as the technologies behind these fuels advance. To support the commercialization and widespread acceptance of nano-enhanced biodiesel technology, it is vital to collaborate with industry stakeholders, legislators, and regulatory bodies.

Establishing infrastructure and supply chains for the manufacturing, distribution, and storage of nano-enhanced biodiesel fuels is essential for assuring market readiness and scalability. This is because the infrastructure is essential for the development of the infrastructure. Accelerating the process of commercialization and enabling extensive market penetration may be accomplished through investments in the construction of infrastructure and other forms of logistical assistance.

The policies, incentives, and regulations that are implemented by the government play a crucial part in encouraging innovation and providing financial incentives for investments in nano-enhanced biodiesel technology. To fully realize the promise of nano-enhanced biodiesel technologies, it is necessary to have policy frameworks that encourage research and development, provide incentives for adoption, and guarantee environmental sustainability.

In summary, to successfully navigate the hurdles and seize the potential in the production and consumption of nano-based biodiesel, it is necessary to engage in collaborative efforts across several disciplines, conduct new research, and form strategic alliances. We can pave the road for a future that is sustainable, efficient, and commercially viable for nano-enhanced biodiesel technologies if we overcome these problems and embrace the possibilities that lie ahead.

7. Conclusions

The present review provides a comprehensive analysis of nano-additives and their impact as a blended additive in biodiesel-powered engines. Utilizing nanoparticles in liquid fuel offers numerous benefits, such as reduced exhaust emissions and improved performance. Here are the key findings from the comprehensive literature study, along with a suggestion for future research on nanoparticles as a potential additive for CI engines:

It has been shown that the inclusion of metallic additives in diesel-biodiesel blends can effectively reduce exhaust emissions, including HC and CO. Thanks to the improved combustion properties of biodiesel fuel with NP additives, enhanced ignition is achieved.

- Research on incorporating different NPs into biodiesel feedstocks is limited. Numerous studies have investigated the combination of metallic nanoparticles.
- A comparative analysis of nanoparticles and diesel/biodiesel blends, along with the optimization of NP dosage rate, is required.
- Metallic and CNT nano-additives improved engine performance and decreased pollutants. Observations have shown that the addition of TiO2 additives greatly enhances engine power.
- Using metal-based nanoparticles has shown promising results in reducing ignition delay duration, improving the lower heating value, and accelerating the rate of oxidation. This leads to a more efficient and cleaner combustion process.

It is important to establish the appropriate dosage and assess the compatibility of nanoparticles in the fuel blend over time. In addition, it is crucial to find an affordable way to produce nanoparticles and tackle the potential health and environmental issues associated with human consumption of these particles.

References

- Aalam, C.S., Saravanan, C.G., 2017. Effects of nano metal oxide blended Mahua biodiesel on CRDI diesel engine. *Ain Shams Eng. J.* https://doi.org/10.1016/j.asej.2015.09.013
- Abdullah, N.R., Shahruddin, N.S., Mamat, R., Ihsan Mamat, A.M., Zulkifli, A., 2014. Effects of Air Intake Pressure on the Engine Performance, Fuel Economy and Exhaust Emissions of A Small Gasoline Engine. *J. Mech. Eng. Sci.* 6, 949–958. https://doi.org/10.15282/jmes.6.2014.21.0091
- Adam, A., Ramlan, N.A., Jaharudin, N.F., Hamzah, H., Othman, M.F., Mrwan, A.A.G., 2017. Analysis of combustion characteristics, engine performance and exhaust emissions of diesel engine fueled with upgraded waste source fuel. *Int. J. Hydrogen Energy* 42, 17993–18004. https://doi.org/10.1016/j.ijhydene.2017.04.021
- Ağbulut, Ü., Karagöz, M., Sarıdemir, S., Öztürk, A., 2020. Impact of various metal-oxide based nanoparticles and biodiesel blends on the combustion, performance, emission, vibration and noise characteristics of a CI engine. *Fuel* 270, 117521.
- Ağbulut, Ü., Sarıdemir, S., Rajak, U., Polat, F., Afzal, A., Verma, T.N., 2021. Effects of high-dosage copper oxide nanoparticles addition in diesel fuel on engine characteristics. *Energy* 229, 120611. https://doi.org/10.1016/j.energy.2021.120611
- Ahmed, S.F., Debnath, J.C., Mehejabin, F., Islam, N., Tripura, R., Mofijur, M., Hoang, A.T., Rasuld, M.G., Dai-Viet N. Vo, 2023. Utilization of nanomaterials in accelerating the production process of sustainable biofuels. Sustain. *Energy Technol. Assessments* 55, 102894. https://doi.org/10.1016/j.seta.2022.102894
- Aisman, Santosa, Hadiguna, R.A., Nazir, N., 2020. Design of Sustainable Agricultural-Based Biomass Electrification Model in the Islands Area: Prospect of Bamboo Biomass. *Int. J. Adv. Sci. Eng. Inf. Technol.* 10, 2145–2151. https://doi.org/10.18517/ijaseit.10.5.13421
- Akubude, V.C., Nwaigwe, K.N., Dintwa, E., 2019. Production of biodiesel from microalgae via nanocatalyzed transesterification process: A review. Mater. Sci. Energy Technol. 2, 216–225.
- Al-Zaban, M.I., Abd El-Aziz, A.R.M., 2024. Production of biodiesel from A spergillus terreus KC462061 using gold-silver nanocatalyst. *Green Chem. Lett. Rev.* 17. https://doi.org/10.1080/17518253.2023.2295503
- Al-Zaban, M.I., AlHarbi, M.A., Mahmoud, M.A., Bahatheq, A.M., 2022. Production of biodiesel from oleaginous fungal lipid using highly catalytic bimetallic gold-silver core-shell nanoparticle. *J. Appl. Microbiol.* 132, 381–389. https://doi.org/10.1111/jam.15176

- Anitescu, G., Bruno, T.J., 2012. Fluid properties needed in supercritical transesterification of triglyceride feedstocks to biodiesel fuels for efficient and clean combustion A review. *J. Supercrit. Fluids* 63, 133–149. https://doi.org/10.1016/j.supflu.2011.11.020
- Annamalai, M., Dhinesh, B., Nanthagopal, K., SivaramaKrishnan, P., Isaac JoshuaRamesh Lalvani, J., Parthasarathy, M., Annamalai, K., 2016. An assessment on performance, combustion and emission behavior of a diesel engine powered by ceria nanoparticle blended emulsified biofuel. *Energy Convers. Manag.* https://doi.org/10.1016/j.enconman.2016.06.062
- Arumugam, A., Ponnusami, V., 2019. Biodiesel production from Calophyllum inophyllum oil a potential non-edible feedstock: An overview. *Renew. Energy* 131, 459–471.
- Ashok, B., Nanthagopal, K., Mohan, A., Johny, A., Tamilarasu, A., 2017.

 Comparative analysis on the effect of zinc oxide and ethanox as additives with biodiesel in CI engine. *Energy*. https://doi.org/10.1016/j.energy.2017.09.021
- Atarod, P., Khlaife, E., Aghbashlo, M., Tabatabaei, M., Hoang, A.T., Mobli, H., Nadian, M.H., Hosseinzadeh-Bandbafha, H., Mohammadi, P., Roodbar Shojaei, T., Mahian, O., Gu, H., Peng, W., Lam, S.S., 2021. Soft computing-based modeling and emission control/reduction of a diesel engine fueled with carbon nanoparticle-dosed water/diesel emulsion fuel. *J. Hazard. Mater.* 407, 124369. https://doi.org/10.1016/j.jhazmat.2020.124369
- Atasoy, V.E., Suzer, A.E., Ekici, S., 2022. A Comparative Analysis of Exhaust Gas Temperature Based on Machine Learning Models for Aviation Applications. *J. Energy Resour. Technol.* 144. https://doi.org/10.1115/1.4052771
- Ataya, F., Dubé, M.A., Ternan, M., 2007. Acid-Catalyzed Transesterification of Canola Oil to Biodiesel under Single- and Two-Phase Reaction Conditions. *Energy & Fuels* 21, 2450–2459. https://doi.org/10.1021/ef0701440
- Attia, A.M.A., El-Seesy, A.I., El-Batsh, H.M., Shehata, M.S., 2014. Effects of Alumina Nanoparticles Additives Into Jojoba Methyl Ester-Diesel Mixture on Diesel Engine Performance, in: Volume 6B: Energy. American Society of Mechanical Engineers. https://doi.org/10.1115/IMECE2014-39988
- Babatunde, K.A., Salam, K.K., Aworanti, O.A., Olu-Arotiowa, O.A., Alagbe, S.O., Oluwole, T.D., 2022. Transesterification of castor oil: neuro-fuzzy modelling, uncertainty quantification and optimization study. Syst. Microbiol. *Biomanufacturing*. https://doi.org/10.1007/s43393-022-00120-9
- Bakır, H., Ağbulut, Ü., Gürel, A.E., Yıldız, G., Güvenç, U., Soudagar, M.E.M., Hoang, A.T., Deepanraj, B., Saini, G., Afzal, A., 2022. Forecasting of future greenhouse gas emission trajectory for India using energy and economic indexes with various metaheuristic algorithms. *J. Clean. Prod.* 360, 131946. https://doi.org/10.1016/j.jclepro.2022.131946
- Balaji, G., Cheralathan, M., 2017. Influence of alumina oxide nanoparticles on the performance and emissions in a methyl ester of neem oil fuelled direct injection Diesel engine. Therm. Sci. 21, 499–510.
- Balasubramanian, D., Kamaraj, S., Krishnamoorthy, R., 2020. Synthesis of Biodiesel from Waste Cooking Oil by Alkali Doped Calcinated Waste Egg Shell Powder Catalyst and Optimization of Process Parameters to Improve Biodiesel Conversion. WCX SAE World Congress Experience. https://doi.org/10.4271/2020-01-0341
- Balasubramanian, D., Papla Venugopal, I., Viswanathan, K., 2019. Characteristics Investigation on Di Diesel Engine with Nano-Particles as an Additive in Lemon Grass Oil. https://doi.org/10.4271/2019-28-0081
- Balasubramanian, D., Wongwuttanasatian, T., Venugopal, I.P., Rajarajan, A., 2022. Exploration of combustion behavior in a compression ignition engine fuelled with low-viscous Pimpinella anisum and waste cooking oil biodiesel blends. *J. Clean. Prod.* 331, 129999.
- Barboza, A.B. V., Dinesha, P., Rosen, M.A., 2023. Effect of green fuel and green lubricant with metallic nanoparticles on emissions of HC, CO, NOx, and smoke for a compression ignition engine. *Environ. Sci. Pollut. Res.* 30, 91344–91354. https://doi.org/10.1007/s11356-023-28645-z
- Basha, J.S., Al Balushi, M., Soudagar, M.E.M., Safaei, M.R., Mujtaba, M.A., Khan, T.M.Y., Hossain, N., Elfasakhany, A., 2022. Applications of nano-additives in internal combustion engines: a

- critical review. J. Therm. Anal. Calorim. 147, 9383-9403.
- Basha, J.S., Anand, R., 2011. Effects of alumina nanoparticles blended jatropha biodiesel fuel on working characteristics of a diesel engine. Int. J. Ind. Engg. Tech 53–62.
- Basha, S.A., Raja Gopal, K., 2012. A review of the effects of catalyst and additive on biodiesel production, performance, combustion and emission characteristics. *Renew. Sustain. Energy Rev.* 16, 711–717. https://doi.org/10.1016/j.rser.2011.08.036
- Bello, M.O., Solarin, S.A., 2022. Searching for sustainable electricity generation: The possibility of substituting coal and natural gas with clean energy. *Energy Environ.* 33, 64–84. https://doi.org/10.1177/0958305X20985253
- Bhagat, R., Panakkal, H., Gupta, I., Ingle, A.P., 2021. Carbon-Based Nanocatalysts in Biodiesel Production, in: Nano- and Biocatalysts for Biodiesel Production. Wiley, pp. 157–181. https://doi.org/10.1002/9781119729969.ch7
- Bhattacharya, S., Seth, A., 2023. Application of Nanotechnology for Eco-Friendly and Sustainable Economic Development, in: Diversity and Applications of New Age Nanoparticles. IGI Global, pp. 1– 24
- Bidir, M.G., Millerjothi, N.K., Adaramola, M.S., Hagos, F.Y., 2021. The role of nanoparticles on biofuel production and as an additive in ternary blend fuelled diesel engine: A review. *Energy Reports* 7, 3614–3627. https://doi.org/10.1016/j.egyr.2021.05.084
- Bin Rashid, A., 2023. Utilization of nanotechnology and nanomaterials in biodiesel production and property enhancement. *J. Nanomater.* 2023, 1–14.
- Bitire, S.O., Nwanna, E.C., Jen, T.-C., 2023. The impact of CuO nanoparticles as fuel additives in biodiesel-blend fuelled diesel engine: A review. *Energy Environ*. 34, 2259–2289.
- Bora, B.J., Dai Tran, T., Prasad Shadangi, K., Sharma, P., Said, Z., Kalita, P., Buradi, A., Nhanh Nguyen, V., Niyas, H., Tuan Pham, M., Thanh Nguyen Le, C., Dung Tran, V., Phuong Nguyen, X., 2022. Improving combustion and emission characteristics of a biogas/biodiesel-powered dual-fuel diesel engine through tradeoff analysis of operation parameters using response surface methodology. Sustain. Energy Technol. Assessments 53, 102455. https://doi.org/10.1016/j.seta.2022.102455
- Bortnowska, M., 2009. Development of new technologies for shipping natural gas by sea. *Polish Marit. Res.* 16, 70–78. https://doi.org/10.2478/v10012-008-0036-2
- Brask, J., Damstrup, M.L., Nielsen, P.M., Holm, H.C., Maes, J., De Greyt, W., 2011. Combining Enzymatic Esterification with Conventional Alkaline Transesterification in an Integrated Biodiesel Process. *Appl. Biochem. Biotechnol.* 163, 918–927. https://doi.org/10.1007/s12010-010-9095-9
- Bui, T.T., Luu, H.Q., Hoang, A.T., Konur, O., Huu, T., Pham, M.T., 2022.

 A review on ignition delay times of 2,5-Dimethylfuran. *Energy Sources, Part A Recover. Util. Environ. Eff.* 44, 7160–7175. https://doi.org/10.1080/15567036.2020.1860163
- Bui, V.G., Tu Bui, T.M., Ong, H.C., Nižetić, S., Bui, V.H., Xuan Nguyen, T.T., Atabani, A.E., Štěpanec, L., Phu Pham, L.H., Hoang, A.T., 2022. Optimizing operation parameters of a spark-ignition engine fueled with biogas-hydrogen blend integrated into biomass-solar hybrid renewable energy system. *Energy* 252, 124052. https://doi.org/10.1016/j.energy.2022.124052
- Calam, A., Solmaz, H., Yılmaz, E., İçingür, Y., 2019. Investigation of effect of compression ratio on combustion and exhaust emissions in A HCCI engine. *Energy* 168, 1208–1216. https://doi.org/10.1016/j.energy.2018.12.023
- Chandrasekaran, V., Arthanarisamy, M., Nachiappan, P., Dhanakotti, S., Moorthy, B., 2016. The role of nano additives for biodiesel and diesel blended transportation fuels. *Transp. Res. Part D Transp. Environ.* 46, 145–156. https://doi.org/10.1016/j.trd.2016.03.015
- Changxiong, L., Hu, Y., Yang, Z., Guo, H., 2023. Experimental Study of Fuel Combustion and Emission Characteristics of Marine Diesel Engines Using Advanced Fuels. *Polish Marit. Res.* 30, 48–58. https://doi.org/10.2478/pomr-2023-0038
- Channappagoudra, M., Channappagoudra, M., 2021. Effect of copper oxide nanoadditive on diesel engine performance operated with dairy scum biodiesel Effect of copper oxide nanoadditive on diesel engine performance operated with dairy scum biodiesel.

 Int. J. Ambient Energy 42, 530–539. https://doi.org/10.1080/01430750.2018.1557553

- Chellapandi, P., Saranya, S., 2023. Biogas starter from genome-scale data for methanogenic bioprocessing of protein waste. Syst. Microbiol. *Biomanufacturing*. https://doi.org/10.1007/s43393-023-00191-2
- Chen, L., Msigwa, G., Yang, M., Osman, A.I., Fawzy, S., Rooney, D.W., Yap, P.-S., 2022. Strategies to achieve a carbon neutral society: a review. *Environ. Chem. Lett.* 20, 2277–2310. https://doi.org/10.1007/s10311-022-01435-8
- Chen, S.-Y., Chang, A., Rungsi, A.N., Attanatho, L., Chang, C.-L., Pan, J.-H., Suemanotham, A., Mochizuki, T., Takagi, H., Yang, C.-M., Luengnaruemitchai, A., Chou, H.-H., 2020. Superficial Pd nanoparticles supported on carbonaceous SBA-15 as efficient hydrotreating catalyst for upgrading biodiesel fuel. *Appl. Catal. A Gen.* 602, 117707. https://doi.org/10.1016/j.apcata.2020.117707
- Cherwoo, L., Gupta, I., Flora, G., Verma, R., Kapil, M., Arya, S.K., Ravindran, B., Khoo, K.S., Bhatia, S.K., Chang, S.W., Ngamcharussrivichai, C., Ashokkumar, V., 2023. Biofuels an alternative to traditional fossil fuels: A comprehensive review. Sustain. Energy Technol. Assessments 60, 103503. https://doi.org/10.1016/j.seta.2023.103503
- Das, A., Gajghate, S.S., Das, S., Ghatak, M. Das, 2024. An Experimental Investigation on Performances and Emission Characteristics in a Multi-Cylinder Diesel Engine Using Nahar Oil Biodiesel Blended With Carbon Nano Tube. *Heat Transf. Eng.* 1–12.
- Das, S., Kashyap, D., Kalita, P., Kulkarni, V., Itaya, Y., 2020. Clean gaseous fuel application in diesel engine: A sustainable option for rural electrification in India. *Renew. Sustain. Energy Rev.* https://doi.org/10.1016/j.rser.2019.109485
- Dasta, P., Pratap Singh, Atul, Pratap Singh, Ashish, 2022. Zinc oxide nanoparticle as a heterogeneous catalyst in generation of biodiesel. *Mater. Today Proc.* 52, 751–757. https://doi.org/10.1016/j.matpr.2021.10.143
- Debbarma, S., Misra, R.D., 2018. Effects of iron nanoparticle fuel additive on the performance and exhaust emissions of a compression ignition engine fueled with diesel and biodiesel. *J. Therm. Sci. Eng. Appl.* https://doi.org/10.1115/1.4038708
- Debbarma, S., Misra, R.D., 2017. Effects of Iron Nanoparticles Blended Biodiesel on the Performance and Emission Characteristics of a Diesel Engine. *J. Energy Resour. Technol.* 139. https://doi.org/10.1115/1.4036543
- Deepak Kumar, T., Sameer Hussain, S., Ramesha, D.K., 2020. Effect of a zinc oxide nanoparticle fuel additive on the performance and emission characteristics of a CI engine fuelled with cotton seed biodiesel blends. *Mater. Today Proc.* 26, 2374–2378. https://doi.org/10.1016/j.matpr.2020.02.509
- Deheri, C., Acharya, S.K., Thatoi, D.N., Mohanty, A.P., 2020. A review on performance of biogas and hydrogen on diesel engine in dual fuel mode. *Fuel* 260, 116337. https://doi.org/10.1016/j.fuel.2019.116337
- Dehhaghi, M., Kazemi Shariat Panahi, H., Aghbashlo, M., Lam, S.S., Tabatabaei, M., 2021. The effects of nanoadditives on the performance and emission characteristics of spark-ignition gasoline engines: A critical review with a focus on health impacts. *Energy* 225, 120259. https://doi.org/10.1016/j.energy.2021.120259
- Desniorita, Nazir, N., Novelina, Sayuti, K., 2019. Sustainable design of biorefinery processes on cocoa pod: Optimization of pectin extraction process with variations of pH, temperature, and time. *Int. J. Adv. Sci. Eng. Inf. Technol.* 9, 2104–2113. https://doi.org/10.18517/jjaseit.9.6.10670
- Devarajan, Y., Mahalingam, A., Munuswamy, D.B., Arunkumar, T., 2018. Combustion, performance, and emission study of a research diesel engine fueled with palm oil biodiesel and its additive. *Energy & Fuels* 32, 8447–8452.
- Devarajan, Y., Nagappan, B., Subbiah, G., 2019. A comprehensive study on emission and performance characteristics of a diesel engine fueled with nanoparticle-blended biodiesel. *Environ. Sci. Pollut. Res.* 26, 10662–10672.
- Dhahad, H.A., Chaichan, M.T., 2020. The impact of adding nano-Al2O3 and nano-ZnO to Iraqi diesel fuel in terms of compression ignition engines' performance and emitted pollutants. *Therm. Sci. Eng. Prog.* 18, 100535. https://doi.org/10.1016/j.tsep.2020.100535

- Dharmaprabhakaran, T., Karthikeyan, S., Periyasamy, M., Mahendran, G., 2020. Emission analysis of CuO2 nanoparticle addition with blend of Botryococcus braunii algae biodiesel on CI engine. Mater. Today Proc. 33, 2897–2900. https://doi.org/10.1016/j.matpr.2020.02.781
- Di Serio, M., Tesser, R., Pengmei, L., Santacesaria, E., 2008. Heterogeneous catalysts for biodiesel production. Energy & Fuels 22, 207–217.
- Doan, Q.B., Nguyen, X.P., Dong, T.M.H., Pham, M.T., Le, T.S., 2022.
 Performance and emission characteristics of diesel engine using ether additives: A review. Int. J. Renew. Energy Dev. 11, 255–274
- Dong, V.H., Sharma, P., 2023. Optimized conversion of waste vegetable oil to biofuel with Meta heuristic methods and design of experiments. J. Emerg. Sci. Eng. 1, 22–28. https://doi.org/10.61435/jese.2023.4
- El-Adawy, M., Ismael, M.A., Dalha, I.B., Aziz, A.R.A., El Maghlany, W., 2023. Unveiling the status of emulsified water-in-diesel and nanoparticles on diesel engine attributes. Case Stud. Therm. Eng. 44, 102824. https://doi.org/10.1016/j.csite.2023.102824
- El-Seesy, A.I., Attia, A.M.A., El-Batsh, H.M., 2018. The effect of Aluminum oxide nanoparticles addition with Jojoba methyl ester-diesel fuel blend on a diesel engine performance, combustion and emission characteristics. Fuel 224, 147–166. https://doi.org/10.1016/j.fuel.2018.03.076
- EL-Seesy, A.I., Hassan, H., 2019. Investigation of the effect of adding graphene oxide, graphene nanoplatelet, and multiwalled carbon nanotube additives with n-butanol-Jatropha methyl ester on a diesel engine performance. Renew. Energy 132, 558–574. https://doi.org/10.1016/j.renene.2018.08.026
- EL-Seesy, A.I., Hassan, H., He, Z., Ookawara, S., 2020. Improving diesel engine performance using carbon nanomaterials, in: Carbon Nanomaterials for Agri-Food and Environmental Applications. Elsevier, pp. 77–103.
- Elma, M., Suhendra, S.A., Wahyuddin, W., Saputri, W., Utami, S.A.A., 2017. Optimum Ratio Between Waste Cooking Oil and Coconut Oilas Raw Material for Biodiesel Production. Int. J. Adv. Sci. Eng. Inf. Technol. 7, 1227–1233.
- Elumalai, P. V., Dhinesh, B., Jayakar, J., Nambiraj, M., Hariharan, V., 2021. Effects of antioxidants to reduce the harmful pollutants from diesel engine using preheated palm oil-diesel blend. J. Therm. Anal. Calorim. https://doi.org/10.1007/s10973-021-10652-2
- Esmaeili, H., Nourafkan, E., Nakisa, M., Ahmed, W., 2021. Application of nanotechnology for biofuel production, in: Emerging Nanotechnologies for Renewable Energy. Elsevier, pp. 149–172. https://doi.org/10.1016/B978-0-12-821346-9.00005-5
- Ettefaghi, E., Ghobadian, B., Rashidi, A., Najafi, G., Khoshtaghaza, M.H., Rashtchi, M., Sadeghian, S., 2018. A novel bio-nano emulsion fuel based on biodegradable nanoparticles to improve diesel engines performance and reduce exhaust emissions. Renew. Energy. https://doi.org/10.1016/j.renene.2018.01.086
- Fayad, M.A., Abed, A.M., Omran, S.H., Jaber, A.A., Radhi, A.A., Dhahad, H.A., Chaichan, M.T., Yusaf, T., 2022. Influence of Renewable Fuels and Nanoparticles Additives on Engine Performance and Soot Nanoparticles Characteristics. Int. J. Renew. Energy Dev. 11, 1068–1077. https://doi.org/10.14710/ijred.2022.45294
- Fayad, M.A., Sobhi, M., Chaichan, M.T., Badawy, T., Abdul-Lateef, W.E., Dhahad, H.A., Yusaf, T., Isahak, W.N.R.W., Takriff, M.S., Al-Amiery, A.A., 2023. Reducing soot nanoparticles and NOX emissions in CRDI diesel engine by incorporating TiO2 nanoadditives into biodiesel blends and using high rate of EGR. Energies 16, 3921.
- Fayaz, H., Mujtaba, M.A., Soudagar, M.E.M., Razzaq, L., Nawaz, S., Nawaz, M.A., Farooq, M., Afzal, A., Ahmed, W., Khan, T.M.Y., Bashir, S., Yaqoob, H., EL-Seesy, A.I., Wageh, S., Al-Ghamdi, A., Elfasakhany, A., 2021. Collective effect of ternary nano fuel blends on the diesel engine performance and emissions characteristics. Fuel 293, 120420. https://doi.org/10.1016/j.fuel.2021.120420
- Fernández, I.A., Gómez, M.R., Gómez, J.R., López-González, L.M., 2020a. Generation of H 2 on Board Lng Vessels for Consumption in the Propulsion System. Polish Marit. Res. 27, 83–95. https://doi.org/10.2478/pomr-2020-0009

- Fernández, I.A., Gómez, M.R., Gómez, J.R., López-González, L.M., 2020b. Generation of H2 on Board Lng Vessels for Consumption in the Propulsion System. Polish Marit. Res. 27, 83–95. https://doi.org/10.2478/pomr-2020-0009
- Feroskhan, M., Ismail, S., Gosavi, S., Tankhiwale, P., Khan, Y., 2019.

 Optimization of performance and emissions in a biogas—diesel dual fuel engine with cerium oxide nanoparticle addition. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. https://doi.org/10.1177/0954407018764165
- Fiore, M., Magi, V., Viggiano, A., 2020. Internal combustion engines powered by syngas: A review. Appl. Energy 276, 115415. https://doi.org/10.1016/j.apenergy.2020.115415
- Flamarz Al-Arkawazi, S.A., 2019. The gasoline fuel quality impact on fuel consumption, air-fuel ratio (AFR), lambda (λ) and exhaust emissions of gasoline-fueled vehicles. Cogent Eng. 6, 1616866. https://doi.org/10.1080/23311916.2019.1616866
- Gad, M.S., Ağbulut, Ü., Afzal, A., Panchal, H., Jayaraj, S., Qasem, N.A., El-Shafay, A.S., 2023. A comprehensive review on the usage of the nano-sized particles along with diesel/biofuel blends and their impacts on engine behaviors. Fuel 339, 127364. https://doi.org/10.1016/j.fuel.2022.127364
- Ganesan, S., Padmanabhan, S., Mahalingam, S., Shanjeevi, C., 2020. Environmental impact of VCR diesel engine characteristics using blends of cottonseed oil with nano additives. Energy Sources, Part A Recover. Util. Environ. Eff. 42, 761–772. https://doi.org/10.1080/15567036.2019.1602196
- Gavhane, R.S., Kate, A.M., Pawar, A., Soudagar, M.E.M., Fayaz, H., 2020. Effect of Soybean biodiesel and Copper coated Zinc oxide Nanoparticles on Enhancement of Diesel Engine Characteristics. Energy Sources, Part A Recover. Util. Environ. Eff. https://doi.org/10.1080/15567036.2020.1856237
- Gavhane, R.S., Kate, A.M., Soudagar, M.E.M., Wakchaure, V.D., Balgude, S., Rizwanul Fattah, I.M., Nik-Ghazali, N.-N., Fayaz, H., Khan, T.M.Y., Mujtaba, M.A., Kumar, R., Shahabuddin, M., 2021. Influence of Silica Nano-Additives on Performance and Emission Characteristics of Soybean Biodiesel Fuelled Diesel Engine. Energies 14, 1489. https://doi.org/10.3390/en14051489
- Gharehghani, A., Asiaei, S., Khalife, E., Najafi, B., Tabatabaei, M., 2019.
 Simultaneous reduction of CO and NOx emissions as well as fuel consumption by using water and nano particles in Diesel—Biodiesel blend. J. Clean. Prod. https://doi.org/10.1016/j.jclepro.2018.10.338
- Ghojel, J., Honnery, D., Al-Khaleefi, K., 2006. Performance, emissions and heat release characteristics of direct injection diesel engine operating on diesel oil emulsion. Appl. Therm. Eng. 26, 2132– 2141. https://doi.org/10.1016/j.applthermaleng.2006.04.014
- Guin, M., Kundu, T., Singh, R., 2022. Applications of Nanotechnology in Biofuel Production, in: Bio-Clean Energy Technologies Volume 2. Springer, pp. 297–332.
- Gumba, R.E., Saallah, S., Misson, M., Ongkudon, C.M., Anton, A., 2016. Green biodiesel production: a review on feedstock, catalyst, monolithic reactor, and supercritical fluid technology. Biofuel Res. J. 3, 431–447. https://doi.org/10.18331/BRJ2016.3.3.3
- Gupta, A., Kumar, R., Maurya, A., Ahmadi, M.H., Ongar, B., Yegzekova, A., Sharma, J.P., Kanchan, S., Shelare, S., 2024. A comparative study of the impact on combustion and emission characteristics of nanoparticle-based fuel additives in the internal combustion engine. Energy Sci. Eng. 12, 284–303. https://doi.org/10.1002/ese3.1614
- Hadiyanto, H., Aini, A. P., Widayat, W., Kusmiyati, K., Budiman, A., & Roesyadi, A. (2020). Multi-Feedstocks Biodiesel Production from Esterification of Calophyllum inophyllum Oil, Castor Oil, Palm Oil and Waste Cooking Oil. *International Journal of Renewable Energy Development*, 9(1), 119-123. https://doi.org/10.14710/ijred.9.1.119-123
- Hanaki, K., Portugal-Pereira, J., 2018. The effect of biofuel production on greenhouse gas emission reductions. Biofuels Sustain. Holist. Perspect. policy-making 53–71.
- Hasibuan, S., Adiyatna, H., Widowati, I., Kandasamy, J., 2020. Feasibility Analysis of Compact-Mobile Biomass Pallet Technology as Renewable Fuel for Small and Medium Industries. Int. J. Adv. Sci. Eng. Inf. Technol. 10, 2484–2490. https://doi.org/10.18517/ijaseit.10.6.13775
- Hassan, A., Ilyas, S.Z., Agathopoulos, S., Hussain, S.M., Jalil, A., Ahmed,

- S., Baqir, Y., 2021. Evaluation of adverse effects of particulate matter on human life. Heliyon 7, e05968. https://doi.org/10.1016/j.heliyon.2021.e05968
- Hassan, A.A., Smith, J.D., 2020. Investigation of microwave-assisted transesterification reactor of waste cooking oil. Renew. Energy 162, 1735–1746. https://doi.org/10.1016/j.renene.2020.09.123
- Hatami, M., Hasanpour, M., Jing, D., 2020. Recent developments of nanoparticles additives to the consumables liquids in internal combustion engines: Part I: Nano-fuels. J. Mol. Liq. 114250.
- Hawi, M., Elwardany, A., Ismail, M., Ahmed, M., 2019. Experimental investigation on performance of a compression ignition engine fueled with waste cooking oil biodiesel-diesel blend enhanced with iron-doped cerium oxide nanoparticles. *Energies* 12, 798.
- Hoang, A.T., 2021a. Prediction of the density and viscosity of biodiesel and the influence of biodiesel properties on a diesel engine fuel supply system. J. Mar. Eng. Technol. 20, 299–311. https://doi.org/10.1080/20464177.2018.1532734
- Hoang, A.T., 2021b. Combustion behavior, performance and emission characteristics of diesel engine fuelled with biodiesel containing cerium oxide nanoparticles: A review. *Fuel Process. Technol.* 218, 106840. https://doi.org/10.1016/j.fuproc.2021.106840
- Hoang, A.T., 2019. Experimental study on spray and emission characteristics of a diesel engine fueled with preheated bio-oils and diesel fuel. *Energy* 171, 795–808. https://doi.org/10.1016/j.energy.2019.01.076
- Hoang, A.T., Le, A.T., 2019. A review on deposit formation in the injector of diesel engines running on biodiesel. *Energy Sources*, Part A Recover. Util. Environ. Eff. 41, 584–599. https://doi.org/10.1080/15567036.2018.1520342
- Hoang, A.T., Noor, M.M., Pham, X.D., 2018. Comparative Analysis on Performance and Emission Characteristic of Diesel Engine Fueled with Heated Coconut Oil and Diesel Fuel. *Int. J. Automot. Mech. Eng.* 15, 5110–5125. https://doi.org/10.15282/ijame.15.1.2018.16.0395
- Hoang, A.T., Pandey, A., Huang, Z., Luque, R., Ng, K.H., Papadopoulos,
 A.M., Chen, W.-H., Rajamohan, S., Hadiyanto, H., Nguyen, X.P.,
 Pham, V.V., 2022a. Catalyst-Based Synthesis of 2,5Dimethylfuran from Carbohydrates as a Sustainable Biofuel
 Production Route. ACS Sustain. Chem. Eng. 10, 3079–3115.
 https://doi.org/10.1021/acssuschemeng.1c06363
- Hoang, A.T., Pandey, A., Martinez De Osés, F.J., Chen, W.-H., Said, Z., Ng, K.H., Ağbulut, Ü., Tarełko, W., Ölçer, A.I., Nguyen, X.P., 2023a. Technological solutions for boosting hydrogen role in decarbonization strategies and net-zero goals of world shipping: Challenges and perspectives. *Renew. Sustain. Energy Rev.* 188, 113790. https://doi.org/10.1016/j.rser.2023.113790
- Hoang, A.T., Pham, V.V., 2021. 2-Methylfuran (MF) as a potential biofuel: A thorough review on the production pathway from biomass, combustion progress, and application in engines. *Renew. Sustain. Energy Rev.* 148, 111265. https://doi.org/10.1016/j.rser.2021.111265
- Hoang, A.T., Sirohi, R., Pandey, A., Nižetić, S., Lam, S.S., Chen, W.-H., Luque, R., Thomas, S., Arıcı, M., Pham, V.V., 2023b. Biofuel production from microalgae: challenges and chances. *Phytochem. Rev.* 22, 1089–1126. https://doi.org/10.1007/s11101-022-09819-y
- Hoang, A.T., Tabatabaei, M., Aghbashlo, M., Carlucci, A.P., Ölçer, A.I., Le, A.T., Ghassemi, A., 2021. Rice bran oil-based biodiesel as a promising renewable fuel alternative to petrodiesel: A review. *Renew. Sustain. Energy Rev.* 135, 110204. https://doi.org/10.1016/j.rser.2020.110204
- Hoang, A.T., Tran, V.D., Dong, V.H., Le, A.T., 2022b. An experimental analysis on physical properties and spray characteristics of an ultrasound-assisted emulsion of ultra-low-sulphur diesel and Jatropha-based biodiesel. *J. Mar. Eng. Technol.* 21, 73–81. https://doi.org/10.1080/20464177.2019.1595355
- Hoang, A.T., Xuan Le, M., Nižetić, S., Huang, Z., Ağbulut, Ü., Veza, I., Said, Z., Tuan Le, A., Dung Tran, V., Phuong Nguyen, X., 2022c. Understanding behaviors of compression ignition engine running on metal nanoparticle additives-included fuels: A control comparison between biodiesel and diesel fuel. *Fuel* 326, 124981. https://doi.org/10.1016/j.fuel.2022.124981
- Hoseini, S.S., Najafi, G., Ghobadian, B., Ebadi, M.T., Mamat, R., Yusaf, T., 2020. Biodiesels from three feedstock: The effect of graphene

- oxide (GO) nanoparticles diesel engine parameters fuelled with biodiesel. *Renew. Energy* 145, 190–201. https://doi.org/10.1016/j.renene.2019.06.020
- Hossain, A., Hussain, A., 2019. Impact of Nanoadditives on the Performance and Combustion Characteristics of Neat Jatropha Biodiesel. *Energies* 12, 921. https://doi.org/10.3390/en12050921
- Hosseini, S.A., 2022. Nanocatalysts for biodiesel production. *Arab. J. Chem.* 15, 104152. https://doi.org/10.1016/j.arabjc.2022.104152
- Hosseini, S.H., Taghizadeh-Alisaraei, A., Ghobadian, B., Abbaszadeh-Mayvan, A., 2017. Performance and emission characteristics of a CI engine fuelled with carbon nanotubes and diesel-biodiesel blends. *Renew. Energy.* https://doi.org/10.1016/j.renene.2017.04.013
- Huang, G., Chen, F., Wei, D., Zhang, X., Chen, G., 2018. Biodiesel production by microalgal biotechnology, in: Renewable Energy. Routledge, p. Vol3_378-Vol3_395.
- Huang, Wan, Liu, Zhang, Ma, Zhang, Zhou, 2019. A Downdraft Fixed-Bed Biomass Gasification System with Integrated Products of Electricity, Heat, and Biochar: The Key Features and Initial Commercial Performance. *Energies* 12, 2979. https://doi.org/10.3390/en12152979
- Hussain, F., Soudagar, M.E.M., Afzal, A., Mujtaba, M.A., Rizwanul Fattah, I.M., Naik, B., Mulla, M.H., Badruddin, I.A., Yunus Khan, T.M., Raju, V.D., Gavhane, R.S., Ashrafur Rahman, S.M., 2020. Enhancement in combustion, performance, and emission characteristics of a diesel engine fueled with Ce-ZnO nanoparticle additive added to soybean biodiesel blends. *Energies* 13, 1–20. https://doi.org/10.3390/en13174578
- Hussain Vali, R., Hoang, A.T., Marouf Wani, M., Pali, H.S.,
 Balasubramanian, D., Arıcı, M., Said, Z., Nguyen, X.P., 2022.
 Optimization of variable compression ratio diesel engine fueled with Zinc oxide nanoparticles and biodiesel emulsion using response surface methodology. *Fuel* 323, 124290.
 https://doi.org/10.1016/j.fuel.2022.124290
- Huzayyin, A.S., Bawady, A.H., Rady, M.A., Dawood, A., 2004.
 Experimental evaluation of Diesel engine performance and emission using blends of jojoba oil and Diesel fuel. *Energy Convers. Manag.* 45, 2093–2112. https://doi.org/10.1016/j.enconman.2003.10.017
- Ilham, N.I., Hussin, M.Z., Dahlan, N.Y., Setiawan, E.A., 2022. Prospects and Challenges of Malaysia's Distributed Energy Resources in Business Models Towards Zero – Carbon Emission and Energy Security. Int. J. Renew. Energy Dev. 11, 1089–1100. https://doi.org/10.14710/ijred.2022.45662
- Ingle, A.P., Chandel, A.K., Philippini, R., Martiniano, S.E., da Silva, S.S., 2020. Advances in nanocatalysts mediated biodiesel production: a critical appraisal. Symmetry (Basel). 12, 256.
- Jan, H.A., Saqib, N.U., Khusro, A., Sahibzada, M.U.K., Rauf, M., Alghamdi, S., Almehmadi, M., Khandaker, M.U., Emran, T. Bin, Mohafez, H., 2022. Synthesis of biodiesel from Carthamus tinctorius L. oil using TiO2 nanoparticles as a catalyst. *J. King Saud Univ. Sci.* 34, 102317. https://doi.org/10.1016/j.jksus.2022.102317
- Jeyakumar, N., Balasubramanian, D., Sankaranarayanan, M., Karuppasamy, K., Wae-Hayee, M., Le, V.V., Tran, V.D., Hoang, A.T., 2023. Using Pithecellobium Dulce seed-derived biodiesel combined with Groundnut shell nanoparticles for diesel engines as a well-advised approach toward sustainable waste-to-energy management. Fuel 337, 127164. https://doi.org/10.1016/j.fuel.2022.127164
- Jeyakumar, N., Narayanasamy, B., Balasubramanian, D., Viswanathan, K., 2020. Characterization and effect of Moringa Oleifera Lam. antioxidant additive on the storage stability of Jatropha biodiesel. *Fuel* 281, 118614. https://doi.org/10.1016/j.fuel.2020.118614
- Jiaqiang, E., Pham, M., Zhao, D., Deng, Y., Le, D., Zuo, W., Zhu, H., Liu, T., Peng, Q., Zhang, Z., 2017. Effect of different technologies on combustion and emissions of the diesel engine fueled with biodiesel: A review. *Renew. Sustain. Energy Rev.* 80, 620–647.
- Jin, C., Wei, J., 2023. The combined effect of water and nanoparticles on diesel engine powered by biodiesel and its blends with diesel:

 A review. Fuel 343, 127940.

https://doi.org/10.1016/j.fuel.2023.127940

- Jit Sarma, C., Sharma, P., Bora, B.J., Bora, D.K., Senthilkumar, N., Balakrishnan, D., Ayesh, A.I., 2023. Improving the combustion and emission performance of a diesel engine powered with mahua biodiesel and TiO2 nanoparticles additive. Alexandria Eng. J. 72, 387–398. https://doi.org/10.1016/j.aej.2023.03.070
- Joshi, N.C., Gururani, P., Bhatnagar, P., Kumar, V., Vlaskin, M.S., 2023. Advances in Metal Oxide-based Nanocatalysts for Biodiesel Production: A Review. ChemBioEng Rev. 10, 258–271. https://doi.org/10.1002/cben.202200019
- Jumaa, H., Mashkour, M.A., 2021. Humidification Effect on the Performance and Emissions of (DI) Diesel Engine Running on Diesel Fuel with Biodiesel Blended Nano Additives. *Eng. Technol.* J. 39, 790–803.
- Jume, B.H., Gabris, M.A., Rashidi Nodeh, H., Rezania, S., Cho, J., 2020. Biodiesel production from waste cooking oil using a novel heterogeneous catalyst based on graphene oxide doped metal oxide nanoparticles. *Renew. Energy* 162, 2182–2189. https://doi.org/10.1016/j.renene.2020.10.046
- Kalaimurugan, K., Karthikeyan, S., Periyasamy, M., Mahendran, G., 2020. Emission analysis of CI engine with CeO2 nanoparticles added neochloris oleoabundans biodiesel-diesel fuel blends. *Mater. Today Proc.* 33, 2877–2881. https://doi.org/10.1016/j.matpr.2020.02.777
- Kalaimurugan, K., Karthikeyan, S., Periyasamy, M., Mahendran, G., Dharmaprabhakaran, T., 2023. Experimental studies on the influence of copper oxide nanoparticle on biodiesel-diesel fuel blend in CI engine. Energy Sources, Part A Recover. Util. Environ. Eff. 45, 8997–9012. https://doi.org/10.1080/15567036.2019.1679290
- Kalaimurugan, K., Karthikeyan, S., Periyasamy, M., Mahendran, G., Dharmaprabhakaran, T., 2019. Performance, emission and combustion characteristics of RuO2 nanoparticles addition with neochloris oleoabundans algae biodiesel on CI engine. *Energy Sources, Part A Recover. Util. Environ. Eff.* 00, 1–15. https://doi.org/10.1080/15567036.2019.1694102
- Kalita, P., Basumatary, B., Saikia, P., Das, B., Basumatary, S., 2022. Biodiesel as renewable biofuel produced via enzyme-based catalyzed transesterification. *Energy Nexus* 6, 100087. https://doi.org/10.1016/j.nexus.2022.100087
- Kalyani, T., Prasad, L.S.V., Kolakoti, A., 2023. Biodiesel Production from a Naturally Grown Green Algae Spirogyra Using Heterogeneous Catalyst: An Approach to RSM Optimization Technique. *Int. J. Renew. Energy Dev.* 12, 300–312. https://doi.org/10.14710/ijred.2023.50065
- Kannaiyan, K., Sadr, R., 2017. The effects of alumina nanoparticles as fuel additives on the spray characteristics of gas-to-liquid jet fuels. Exp. Therm. Fluid Sci. 87, 93–103.
- Kannaiyan, K., Sadr, R., Kumaravel, V., 2019. Application of nanoparticles in clean fuels. *Nanostructured Mater. Energy Relat.* Appl. 223–242.
- Karthickeyan, V., Ashok, B., Thiyagarajan, S., Nanthagopal, K., Geo, V.E., Dhinesh, B., 2020. Comparative analysis on the influence of antioxidants role with Pistacia khinjuk oil biodiesel to reduce emission in diesel engine. *Heat Mass Transf.* 56, 1275–1292. https://doi.org/10.1007/s00231-019-02797-6
- Karthikeyan, S., Elango, A., Prathima, A., 2016. The effect of cerium oxide additive on the performance and emission characteristics of a CI engine operated with rice bran biodiesel and its blends. Int. J. Green Energy. https://doi.org/10.1080/15435075.2014.952419
- Kegl, T., Kovač Kralj, A., Kegl, B., Kegl, M., 2021. Nanomaterials as fuel additives in diesel engines: A review of current state, opportunities, and challenges. *Prog. Energy Combust. Sci.* 83, 100897. https://doi.org/10.1016/j.pecs.2020.100897
- Keskin, A., Yaşar, A., Yıldızhan, Ş., Uludamar, E., Emen, F.M., Külcü, N., 2018. Evaluation of diesel fuel-biodiesel blends with palladium and acetylferrocene based additives in a diesel engine. *Fuel.* https://doi.org/10.1016/j.fuel.2017.11.154
- Khan, A.I., Arasu, A.V., 2019. A review of influence of nanoparticle synthesis and geometrical parameters on thermophysical properties and stability of nanofluids. *Therm. Sci. Eng. Prog.* 11, 334–364.
- Khan, N., Sudhakar, K., Mamat, R., 2021. Role of Biofuels in Energy

- Transition, Green Economy and Carbon Neutrality. Sustainability 13, 12374. https://doi.org/10.3390/su132212374
- Khan, S., Dewang, Y., Raghuwanshi, J., Shrivastava, A., Sharma, V., 2020. Nanoparticles as fuel additive for improving performance and reducing exhaust emissions of internal combustion engines. *Int. J. Environ. Anal. Chem.* 1–23. https://doi.org/10.1080/03067319.2020.1722810
- Khoobbakht, G., Kheiralipour, K., Rasouli, H., Rafiee, M., Hadipour, M., Karimi, M., 2020. Experimental exergy analysis of transesterification in biodiesel production. *Energy* 196, 117092. https://doi.org/10.1016/j.energy.2020.117092
- Kishore, N.P., Gugulothu, S.K., 2022. Effect of iron oxide nanoparticles blended concentration on performance, combustion and emission characteristics of crdi diesel engine running on mahua methyl ester biodiesel. *J. Inst. Eng. Ser. C* 103, 167–180.
- Kohli, S., Pavani Srikavya, B., Kishor Dhapekar, N., Tiwari, R., Kumar, R., Singh Yadav, A., Sharma, N., Sharma, A., 2023. Impact of nano materials on engine performance run on biofuels. *Mater. Today Proc.* https://doi.org/10.1016/j.matpr.2023.07.133
- Kolakoti, A., Setiyo, M., Rochman, M.L., 2022. A Green Heterogeneous Catalyst Production and Characterization for Biodiesel Production using RSM and ANN Approach. *Int. J. Renew. Energy Dev.* 11, 703–712.
- Konwar, L.J., Boro, J., Deka, D., 2014. Review on latest developments in biodiesel production using carbon-based catalysts. *Renew. Sustain. Energy Rev.* 29, 546–564. https://doi.org/10.1016/j.rser.2013.09.003
- Kowalski, J., Tarelko, W., 2009a. NOx emission from a two-stroke ship engine. Part 1: Modeling aspect. *Appl. Therm. Eng.* 29, 2153– 2159. https://doi.org/10.1016/j.applthermaleng.2008.06.032
- Kowalski, J., Tarelko, W., 2009b. NOx emission from a two-stroke ship engine: Part 2 – Laboratory test. Appl. Therm. Eng. 29, 2160– 2165. https://doi.org/10.1016/j.applthermaleng.2008.06.031
- Küçükosman, R., Yontar, A.A., Ocakoglu, K., 2022. Nanoparticle additive fuels: Atomization, combustion and fuel characteristics. J. Anal. Appl. Pyrolysis 165, 105575.
- Kumar, A.M., Kannan, M., Nataraj, G., 2020. A study on performance, emission and combustion characteristics of diesel engine powered by nano-emulsion of waste orange peel oil biodiesel. Renew. Energy 146, 1781–1795. https://doi.org/10.1016/j.renene.2019.06.168
- Kumar, L.R., Yellapu, S.K., Tyagi, R.D., Drogui, P., 2021. Biodiesel production from microbial lipid obtained by intermittent feeding of municipal sludge and treated crude glycerol. Syst. Microbiol. Biomanufacturing 1, 344–355. https://doi.org/10.1007/s43393-021-00030-2
- Kumar, M.V., Babu, A.V., Kumar, P.R., 2019. Influence of metal-based cerium oxide nanoparticle additive on performance, combustion, and emissions with biodiesel in diesel engine. *Environ. Sci. Pollut. Res.* https://doi.org/10.1007/s11356-018-04075-0
- Kumar, N., Aggarwal, N.K., 2024. A review on valorization, management, and applications of the hazardous weed Parthenium hysterophorus. Syst. Microbiol. Biomanufacturing. https://doi.org/10.1007/s43393-023-00226-8
- Kumar, S., Dinesha, P., Ajay, C.M., Kabbur, P., 2020. Combined effect of oxygenated liquid and metal oxide nanoparticle fuel additives on the combustion characteristics of a biodiesel engine operated with higher blend percentages. *Energy* 197, 117194. https://doi.org/10.1016/j.energy.2020.117194
- Kumar, S., Dinesha, P., Bran, I., 2017a. Influence of nanoparticles on the performance and emission characteristics of a biodiesel fuelled engine: An experimental analysis. *Energy* 140, 98–105. https://doi.org/10.1016/j.energy.2017.08.079
- Kumar, S., Dinesha, P., Bran, I., 2017b. Experimental investigation of the effects of nanoparticles as an additive in diesel and biodiesel fuelled engines: a review. *Biofuels*.
- Kumar, S., Dinesha, P., Rosen, M.A., 2019. Effect of injection pressure on the combustion, performance and emission characteristics of a biodiesel engine with cerium oxide nanoparticle additive. *Energy* 185, 1163–1173.
- Kumar, S.S., Rajan, K., Mohanavel, V., Ravichandran, M., Rajendran, P., Rashedi, A., Sharma, A., Khan, S.A., Afzal, A., 2021. Combustion, performance, and emission behaviors of biodiesel fueled diesel engine with the impact of alumina nanoparticle as an additive.

- Sustainability 13, 12103.
- Kumaravel, S.T., Murugesan, A., Kumaravel, A., 2016. Tyre pyrolysis oil as an alternative fuel for diesel engines A review. Renew. Sustain. Energy Rev. 60, 1678–1685. https://doi.org/10.1016/j.rser.2016.03.035
- Labeckas, G., Slavinskas, S., Rudnicki, J., Zadrąg, R., 2018. The Effect of Oxygenated Diesel-N-Butanol Fuel Blends on Combustion, Performance, and Exhaust Emissions of a Turbocharged CRDI Diesel Engine. Polish Marit. Res. 25, 108–120. https://doi.org/10.2478/pomr-2018-0013
- Lamas, M.I., C.G., R., J., T., J.D., R., 2015. Numerical Analysis of Emissions from Marine Engines Using Alternative Fuels. Polish Marit. Res. 22, 48–52. https://doi.org/10.1515/pomr-2015-0070
- Le, T.T., Kumar, R., Roy, M.K., Mishra, M.K., Mahto, P.K., Balasubramanian, D., Truong, T.H., Vu, M.T., 2024. An Experimental Assessment of Waste Transformer Oil and Palm Oil Biodiesel Blended with Diesel Fuel on A Single Cylinder Direct in Diesel Engine. Int. J. Adv. Sci. Eng. Inf. Technol. 14, 246–258. https://doi.org/10.18517/ijaseit.14.1.15998
- Le, T.T., Venugopal, I.P., Truong, T.H., Cao, D.N., Le, H.C., Nguyen, X.P., 2023. Effects of CeO2 nanoparticles on engine features, tribology behaviors, and environment. Energy Sources, Part A Recover. Util. Environ. Eff. 45, 8791–8822.
- Le, V.V., Hoang, A.T., Nizetić, S., Ölçer, A.I., 2021. Flame characteristics and ignition delay times of 2, 5-Dimethylfuran: A systematic review with comparative analysis. J. Energy Resour. Technol. 43, 1–16. https://doi.org/10.1115/1.4048673
- Lilik, G.K., Boehman, A.L., 2011. Advanced Diesel Combustion of a High Cetane Number Fuel with Low Hydrocarbon and Carbon Monoxide Emissions. Energy & Fuels 25, 1444–1456. https://doi.org/10.1021/ef101653h
- Long, F., Liu, W., Jiang, X., Zhai, Q., Cao, X., Jiang, J., Xu, J., 2021. State-of-the-art technologies for biofuel production from triglycerides: A review. Renew. Sustain. Energy Rev. 148, 111269. https://doi.org/10.1016/j.rser.2021.111269
- Lotti, M., Pleiss, J., Valero, F., Ferrer, P., 2018. Enzymatic production of biodiesel: strategies to overcome methanol inactivation. Biotechnol. J. 13, 1700155.
- Lu, J., Li, B., Li, H., Al-Barakani, A., 2021. Expansion of city scale, traffic modes, traffic congestion, and air pollution. Cities 108, 102974. https://doi.org/10.1016/j.cities.2020.102974
- Madiwale, S., Karthikeyan, A., Bhojwani, V., 2018. Properties investigation and performance analysis of a diesel engine fuelled with Jatropha, Soybean, Palm and Cottonseed biodiesel using Ethanol as an additive. Mater. Today Proc. 5, 657–664. https://doi.org/10.1016/j.matpr.2017.11.130
- Maheshwari, P., Haider, M.B., Yusuf, M., Klemeš, J.J., Bokhari, A., Beg, M., Al-Othman, A., Kumar, R., Jaiswal, A.K., 2022. A review on latest trends in cleaner biodiesel production: Role of feedstock, production methods, and catalysts. J. Clean. Prod. 355, 131588. https://doi.org/10.1016/j.jclepro.2022.131588
- Mandotra, S.K., Kumar, R., Upadhyay, S.K., Ramteke, P.W., 2018. Nanotechnology: a new tool for biofuel production. Green Nanotechnol. biofuel Prod. 17–28.
- Manigandan, S., Ponnusamy, V.K., Devi, P.B., Oke, S.A., Sohret, Y., Venkatesh, S., Vimal, M.R., Gunasekar, P., 2020. Effect of nanoparticles and hydrogen on combustion performance and exhaust emission of corn blended biodiesel in compression ignition engine with advanced timing. Int. J. Hydrogen Energy 45, 3327–3339. https://doi.org/10.1016/j.ijhydene.2019.11.172
- Manimaran, R., Mohanraj, T., Ashwin, R., 2023. Green synthesized nano-additive dosed biodiesel-diesel-water emulsion blends for CI engine application: Performance, combustion, emission, and exergy analysis. J. Clean. Prod. 413, 137497. https://doi.org/10.1016/j.jclepro.2023.137497
- Manimaran, R., Mohanraj, T., Venkatesan, M., Ganesan, R., Balasubramanian, D., 2022. A computational technique for prediction and optimization of VCR engine performance and emission parameters fuelled with Trichosanthes cucumerina biodiesel using RSM with desirability function approach. Energy 124293.
- Marković, M., Jurić, F., Šošić, D.P., Schmalhorst, C., Hoang, A.T., Vujanović, M., 2024. Numerical Assessment of Polyoxymethylene Dimethyl Ether (OME3) Injection Timing in

- Compression Ignition Engine. Clean Technol. Environ. Policy. 26, 149–167. https://doi.org/10.1007/s10098-023-02619-8.
- Mathew, G.M., Raina, D., Narisetty, V., Kumar, V., Saran, S., Pugazhendi, A., Sindhu, R., Pandey, A., Binod, P., 2021. Recent advances in biodiesel production: challenges and solutions. Sci. Total Environ. 794, 148751.
- MEHER, L., VIDYASAGAR, D., NAIK, S., 2006. Technical aspects of biodiesel production by transesterification—a review. Renew. Sustain. Energy Rev. 10, 248–268. https://doi.org/10.1016/j.rser.2004.09.002.
- Minchev, D., Varbanets, R., Shumylo, O., Zalozh, V., Aleksandrovska, N., Bratchenko, P., Truong, T.H., 2023. Digital Twin Test-Bench Performance for Marine Diesel Engine Applications. Polish Marit. Res. 30, 81–91. https://doi.org/10.2478/pomr-2023-0061
- Minh Loy, A.C., Yusup, S., Chan, Y.H., Borhan, A., Lim, H.Y., Minh Loy, A.C., Yusup, S., Chan, Y.H., Borhan, A., Lim, H.Y., Shen How, B., Fui Chin, B.L., 2020. Optimization Study of Syngas Production from Catalytic Air Gasification of Rice Husk. Int. J. Adv. Sci. Eng. Inf. Technol. 10, 1784–1791. https://doi.org/10.18517/ijaseit.10.5.9906
- Moazeni, F., Chen, Y.-C., Zhang, G., 2019. Enzymatic transesterification for biodiesel production from used cooking oil, a review. J. Clean. Prod. 216, 117–128. https://doi.org/10.1016/j.jclepro.2019.01.181
- Mobasheri, R., Aitouche, A., Pourtaghi Yousefdeh, S., Zarenezhad Ashkezari, A., 2023. Assessing the Impact of Ethanol/Biodiesel/Diesel Blends and Nanoparticle Fuel Additives on Performance and Emissions in a DI Diesel Engine with EGR Integration: An Experimental Study. Processes 11, 1266.
- Mofijur, M., Ahmed, S.F., Ahmed, B., Mehnaz, T., Mehejabin, F., Shome,
 S., Almomani, F., Chowdhury, A.A., Kalam, M.A., Badruddin,
 I.A., Kamangar, S., 2024. Impact of nanoparticle-based fuel
 additives on biodiesel combustion: An analysis of fuel properties,
 engine performance, emissions, and combustion characteristics.
 Energy Convers. Manag. X 21, 100515.
 https://doi.org/10.1016/j.ecmx.2023.100515
- Mohamad Aziz, N.A., Yunus, R., Kania, D., Abd Hamid, H., 2021.

 Prospects and Challenges of Microwave-Combined Technology
 for Biodiesel and Biolubricant Production through a
 Transesterification: A Review. Molecules 26, 788.
 https://doi.org/10.3390/molecules26040788
- Mostafa, A., Mourad, M., Mustafa, A., Youssef, I., 2023. Influence of aluminum oxide nanoparticles addition with diesel fuel on emissions and performance of engine generator set using response surface methodology. Energy Convers. Manag. X 19, 100380
- Mujtaba, M.A., Masjuki, H.H., Kalam, M.A., Noor, F., Farooq, M., Ong, H.C., Gul, M., Soudagar, M.E.M., Bashir, S., Rizwanul Fattah, I.M., 2020. Effect of additivized biodiesel blends on diesel engine performance, emission, tribological characteristics, and lubricant tribology. Energies 13, 3375.
- Murugan, N., Venu, H., Jayaraman, J., Appavu, P., 2022. Emission and performance characteristics study on nanographene oxide additives doped palm oil methyl ester blend in a diesel engine. Int. J. Ambient Energy 43, 1304–1310.
- Murugesan, P., Elumalai, P.V., Balasubramanian, D., Padmanabhan, S.,
 Murugunachippan, N., Afzal, A., Sharma, P., Kiran, K., Femilda
 Josephin, J., Varuvel, E.G., Tuan Le, T., Truong, T.H., 2023.
 Exploration of low heat rejection engine characteristics powered
 with carbon nanotubes-added waste plastic pyrolysis oil. Process
 Saf. Environ. Prot. 176, 1101–1119.
 https://doi.org/10.1016/j.psep.2023.06.051.
- Murugesan, P., Hoang, A.T., Perumal Venkatesan, E., Santosh Kumar, D., Balasubramanian, D., Le, A.T., Pham, V.V., 2022. Role of hydrogen in improving performance and emission characteristics of homogeneous charge compression ignition engine fueled with graphite oxide nanoparticle-added microalgae biodiesel/diesel blends. Int. J. Hydrogen Energy 47, 37617–37634. https://doi.org/10.1016/j.ijhydene.2021.08.107
- Mustafa, A., Lougou, B.C., Shuai, Y., Wang, Z., Tan, H., 2020. Current technology development for CO2 utilization into solar fuels and chemicals: A review. J. Energy Chem. 49, 96–123.
- Nachippan, N.M., Parthasarathy, M., Elumalai, P.V., Backiyaraj, A.,

- Balasubramanian, D., Hoang, A.T., 2022. Experimental assessment on characteristics of premixed charge compression ignition engine fueled with multi-walled carbon nanotube-included Tamanu methyl ester. Fuel 323, 124415. https://doi.org/10.1016/j.fuel.2022.124415
- Naik, J.V., Kumar, K.K., 2018. Performance and emission characteristics of diesel engines with Al2O3 and CuO nanoparticles as additives. Int. J. Mech. Eng. Technol. 9, 791–798.
- Nanda, S., Rana, R., Sarangi, P.K., Dalai, A.K., Kozinski, J.A., 2018. A broad introduction to first-, second-, and third-generation biofuels, in: Recent Advancements in Biofuels and Bioenergy Utilization. Springer, pp. 1–25.
- Nanthagopal, K., Ashok, B., Tamilarasu, A., Johny, A., Mohan, A., 2017. Influence on the effect of zinc oxide and titanium dioxide nanoparticles as an additive with Calophyllum inophyllum methyl ester in a CI engine. Energy Convers. Manag. 146, 8–19. https://doi.org/10.1016/j.enconman.2017.05.021
- Nayak, S.K., Nižetić, S., Pham, V.V., Huang, Z., Ölçer, A.I., Bui, V.G., Wattanavichien, K., Hoang, A.T., 2022. Influence of injection timing on performance and combustion characteristics of compression ignition engine working on quaternary blends of diesel fuel, mixed biodiesel, and t-butyl peroxide. J. Clean. Prod. 333, 130160. https://doi.org/10.1016/j.jclepro.2021.130160
- Nayak, S.N., Bhasin, C.P., Nayak, M.G., 2019. A review on microwave-assisted transesterification processes using various catalytic and non-catalytic systems. Renew. Energy 143, 1366–1387. https://doi.org/10.1016/j.renene.2019.05.056
- Nguyen, T.B.N., Le, N.V.L., 2023. Biomass resources and thermal conversion biomass to biofuel for cleaner energy. A review. J. Emerg. Sci. Eng. 1, 6–13. https://doi.org/10.61435/jese.2023.2
- Nguyen, V.G., Pham, M.T., Le, N.V.L., Le, H.C., Truong, T.H., Cao, D.N., 2023. A comprehensive review on the use of biodiesel for diesel engines. Int. J. Renew. Energy Dev. 12, 720–740. https://doi.org/10.14710/ijred.2023.54612
- Nguyen, V.G., Tran, M.H., Paramasivam, P., Le, H.C., Nguyen, D.T., 2024. Biomass: A Versatile Resource for Biofuel, Industrial, and Environmental Solution. Int. J. Adv. Sci. Eng. Inf. Technol. 14, 268–286. https://doi.org/10.18517/ijaseit.14.1.17489
- Nguyen, V.N., Nayak, B., Singh, T.J., Nayak, S.K., Cao, D.N., Le, H.C., Nguyen, X.P., 2023a. Investigations on the performance, emission and combustion characteristics of a dual-fuel diesel engine fueled with induced bamboo leaf gaseous fuel and injected mixed biodiesel-diesel blends. Int. J. Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2023.06.074
- Nguyen, V.N., Rudzki, K., Marek, D., Pham, N.D.K., Pham, M.T., Nguyen, P.Q.P., Nguyen, X.P., 2023b. Understanding fuel saving and clean fuel strategies towards green maritime. Polish Marit. Res. 30, 146–164. https://doi.org/10.2478/pomr-2023-0030
- Nguyen, X.P., Hoang, A.T., Ölçer, A.İ., Huynh, T.T., 2021. Record decline in global CO2 emissions prompted by COVID-19 pandemic and its implications on future climate change policies. Energy Sources, Part A Recover. Util. Environ. Eff. 1–4. https://doi.org/10.1080/15567036.2021.1879969.
- Nguyen, X.P., Vu, H.N., 2019. Corrosion of the metal parts of diesel engines in biodiesel-based fuels. Int. J. Renew. Energy Dev. 8, 119–132. https://doi.org/10.14710/ijred.8.2.119-132.
- Nizami, A.-S., Rehan, M., 2018. Towards nanotechnology-based biofuel industry. Biofuel Res. J. 5, 798–799.
- Oladeji, A.S., Akorede, M.F., Aliyu, S., Mohammed, A.A., Salami, A.W., 2021. Simulation-Based Optimization of Hybrid Renewable Energy System for Off-grid Rural Electrification. Int. J. Renew. Energy Dev. 10. 667-686. https://doi.org/10.14710/ijred.2021.31316.
- Olszewski, W., Dzida, M., Nguyen, V.G., Cao, D.N., 2023. Reduction of CO 2 Emissions from Offshore Combined Cycle Diesel Engine-Steam Turbine Power Plant Powered by Alternative Fuels. Polish Marit. Res. 30, 71–80. https://doi.org/10.2478/pomr-2023-0040
- Ooi, J.B., Rajanren, J.R., Ismail, H.M., Swamy, V., Wang, X., 2017. Improving combustion characteristics of diesel and biodiesel droplets by graphite oxide addition for diesel engine applications. Int. J. Energy Res. 41, 2258–2267. https://doi.org/10.1002/er.3787.
- Örs, I., Sankoç, S., Atabani, A.E., Ünalan, S., Akansu, S.O., 2018. The effects on performance, combustion and emission characteristics

- of DICI engine fuelled with TiO2 nanoparticles addition in diesel/biodiesel/n-butanol blends. Fuel 234, 177–188. https://doi.org/10.1016/j.fuel.2018.07.024.
- P, M., P, P., Sathyamurthy, R., 2021. Analysis on performance and emission characteristics of corn oil methyl ester blended with diesel and cerium oxide nanoparticle. Case Stud. Therm. Eng. 26, 101077.
 - https://doi.org/https://doi.org/10.1016/j.csite.2021.101077
- Pandian, A.K., Ramakrishnan, R.B.B., Devarajan, Y., 2017. Emission analysis on the effect of nanoparticles on neat biodiesel in unmodified diesel engine. Environ. Sci. Pollut. Res. 24, 23273– 23278. https://doi.org/10.1007/s11356-017-9973-6
- Pandit, C., Banerjee, S., Pandit, S., Lahiri, D., Kumar, V., Chaubey, K.K., Al-Balushi, R., Al-Bahry, S., Joshi, S.J., 2023. Recent advances and challenges in the utilization of nanomaterials in transesterification for biodiesel production. Heliyon.
- Parida, M.K., Mohapatra, P., Patro, S.S., Dash, S., 2020. Effect of TiO 2 nano-additive on performance and emission characteristics of direct injection compression ignition engine fueled with Karanja biodiesel blend. Energy Sources, Part A Recover. Util. Environ. Eff. 1–10. https://doi.org/10.1080/15567036.2020.1756991
- Perumal, V., Ilangkumaran, M., 2018. The influence of copper oxide nano particle added pongamia methyl ester biodiesel on the performance, combustion and emission of a diesel engine. Fuel 232, 791–802. https://doi.org/10.1016/j.fuel.2018.04.129
- Prabakaran, B., Udhoji, A., 2016. Experimental investigation into effects of addition of zinc oxide on performance, combustion and emission characteristics of diesel-biodiesel-ethanol blends in CI engine. Alexandria Eng. J. https://doi.org/10.1016/j.aej.2016.08.022
- Prabakaran, V., Mugunthan, V., Mohamed Yaseen Sharif K, S., Naveen Kumar, R., Nithish, K., 2017. Comparison of Performance, Combustion and Emission Parameter for Copper Oxide Nano Particles Blended with used Vegetable oil Biodiesel in an IC Engine. Int. J. Innov. Res. Sci. Eng. Technol. 6, 1–10.
- Prabu, A., Premkumar, I.J.I., Pradeep, A., 2019. An assessment on the nanoparticles-dispersed aloe vera biodiesel blends on the performance, combustion and emission characteristics of a DI diesel engine. Arab. J. Sci. Eng. 44, 7457–7463.
- Praveen, A., Lakshmi Narayana Rao, G., Balakrishna, B., 2018. Performance and emission characteristics of a diesel engine using Calophyllum Inophyllum biodiesel blends with TiO2 nanoadditives and EGR. Egypt. J. Pet. 27, 731–738. https://doi.org/10.1016/j.ejpe.2017.10.008
- Priya, Deora, P.S., Verma, Y., Muhal, R.A., Goswami, C., Singh, T., 2022.
 Biofuels: An alternative to conventional fuel and energy source.
 Mater. Today Proc. 48, 1178–1184.
 https://doi.org/10.1016/j.matpr.2021.08.227
- Pullagura, G., Bikkavolu, J.R., Vadapalli, S., Siva, P.V.V., Chebattina, K.R.R., Barik, D., Nayyar, A., Sharma, P., Bora, B.J., 2024. Amplifying performance attributes of biodiesel-diesel blends through hydrogen infusion and graphene oxide nanoparticles in a diesel engine. Clean Technol. Environ. Policy 1–23.
- Qamar, O.A., Jamil, F., Hussain, M., Bae, S., Inayat, A., Shah, N.S., Waris, A., Akhter, P., Kwon, E.E., Park, Y.-K., 2023. Advances in synthesis of TiO2 nanoparticles and their application to biodiesel production: A review. Chem. Eng. J. 460, 141734. https://doi.org/10.1016/j.cej.2023.141734
- Radhakrishnan Lawrence, K., Huang, Z., Nguyen, X.P., Balasubramanian, D., Gangula, V.R., Doddipalli, R.R., Le, V.V., Bharathy, S., Hoang, A.T., 2022. Exploration over combined impacts of modified piston bowl geometry and tert-butyl hydroquinone additive-included biodiesel/diesel blend on diesel engine behaviors. Fuel 322, 124206. https://doi.org/10.1016/j.fuel.2022.124206
- Radhakrishnan, S., Munuswamy, D.B., Devarajan, Y., Arunkumar, T., Mahalingam, A., 2018. Effect of nanoparticle on emission and performance characteristics of a diesel engine fueled with cashew nut shell biodiesel. Energy Sources, Part A Recover. Util. Environ. Eff. https://doi.org/10.1080/15567036.2018.1502848
- Raheman, H., Padhee, D., 2014. Combustion characteristics of diesel engine using producer gas and blends of Jatropha methyl ester with diesel in mixed fuel mode. Int. J. Renew. Energy Dev. 3, 228–235. https://doi.org/10.14710/ijred.3.3.228-235

- Rahman, S.A., Meryandini, A., Juanssilfero, A.B., Fahrurrozi, 2023.

 Cocoa Pod Husk (CPH) for Biomass on Bioethanol Production.

 Int. J. Adv. Sci. Eng. Inf. Technol. 13, 828–836.

 https://doi.org/10.18517/ijaseit.13.3.18794.
- Rai, M., dos Santos, J.C., Soler, M.F., Franco Marcelino, P.R., Brumano, L.P., Ingle, A.P., Gaikwad, S., Gade, A., da Silva, S.S., 2016. Strategic role of nanotechnology for production of bioethanol and biodiesel. Nanotechnol. Rev. 5, 231–250.
- Ramakrishnan, G., Krishnan, P., Rathinam, S., Thiyagu, R., Devarajan, Y., 2019. Role of nano-additive blended biodiesel on emission characteristics of the research diesel engine. https://doi.org/10.1080/15435075.2019.1577742 16, 435–441.
- Ranjan, A., Dawn, S.S., Jayaprabakar, J., Nirmala, N., Saikiran, K., Sai Sriram, S., 2018. Experimental investigation on effect of MgO nanoparticles on cold flow properties, performance, emission and combustion characteristics of waste cooking oil biodiesel. Fuel. https://doi.org/10.1016/j.fuel.2018.02.057.
- Rastogi, P.M., Sharma, A., Kumar, N., 2021. Effect of CuO nanoparticles concentration on the performance and emission characteristics of the diesel engine running on jojoba (Simmondsia Chinensis) biodiesel. Fuel 286, 119358. https://doi.org/10.1016/j.fuel.2020.119358.
- Rather, M.A., Bano, P., 2019. Third generation biofuels: a promising alternate energy source. Integr. Green Chem. Sustain. Eng. 1–21.
- Reddy, S.N., Nanda, S., Sarangi, P.K., 2018. Applications of Supercritical Fluids for Biodiesel Production, in: Recent Advancements in Biofuels and Bioenergy Utilization. Springer Singapore, Singapore, pp. 261–284. https://doi.org/10.1007/978-981-13-1307-3_11
- Sadhik Basha, J., 2018. Impact of Carbon Nanotubes and Di-Ethyl Ether as additives with biodiesel emulsion fuels in a diesel engine An experimental investigation. J. Energy Inst. https://doi.org/10.1016/j.joei.2016.11.006.
- Sajeevan, A.C., Sajith, V., 2013. A study on oxygen storage capacity of zirconium-cerium-oxide nanoparticles. Adv. Mater. Res. 685, 123–127.
- Salaheldeen, M., Mariod, A.A., Aroua, M.K., Rahman, S.M.A., Soudagar, M.E.M., Fattah, I.M.R., 2021. Current State and Perspectives on Transesterification of Triglycerides for Biodiesel Production. Catalysts 11, 1121. https://doi.org/10.3390/catal11091121
- Sales, M.B., Borges, P.T., Ribeiro Filho, M.N., Miranda da Silva, L.R., Castro, A.P., Sanders Lopes, A.A., Chaves de Lima, R.K., de Sousa Rios, M.A., Santos, J.C.S. dos, 2022. Sustainable Feedstocks and Challenges in Biodiesel Production: An Advanced Bibliometric Analysis. Bioengineering 9, 539. https://doi.org/10.3390/bioengineering9100539.
- Sam Sukumar, R., Maddula, M.R., Gopala Krishna, A., 2020. Experimental investigations with zinc oxide and silver doped zinc oxide nanoparticles for performance and emissions study of biodiesel blends in diesel engine. Int. J. Ambient Energy 1–9. https://doi.org/10.1080/01430750.2020.1795717.
- Sandemir, S., Polat, F., Ağbulut, Ü., 2024. Improvement of worsened diesel and waste biodiesel fuelled-engine characteristics with Hydrogen enrichment: A deep discussion on combustion, performance, and emission analyses. Process Saf. Environ. Prot. https://doi.org/10.1016/j.psep.2024.02.018.
- Sathish, T., Ağbulut, Ü., George, S.M., Ramesh, K., Saravanan, R., Roberts, K.L., Sharma, P., Asif, M., Hoang, A.T., 2023a. Waste to fuel: Synergetic effect of hybrid nanoparticle usage for the improvement of CI engine characteristics fuelled with waste fish oils. Energy 275, 127397. https://doi.org/10.1016/j.energy.2023.127397.
- Sathish, T., Ağbulut, Ü., Muthukumar, K., Saravanan, R., Alwetaishi, M., Shaik, S., Saleel, C.A., 2023b. Pore size variation of nano-porous material fixer on the engine bowl and its combined effects on hybrid nano-fuelled CI engine characteristics. Fuel 345, 128149. https://doi.org/10.1016/j.fuel.2023.128149.
- Saxena, V., Kumar, N., Saxena, V.K., 2017. A comprehensive review on combustion and stability aspects of metal nanoparticles and its additive effect on diesel and biodiesel fuelled CI engine. Renew. Sustain. Energy Rev. 70, 563–588.
- Selvaganapthy, A., Sundar, A., Kumaragurubaran, B., Gopal, P., 2013.
 An experimental investigation to study the effects of various nano particles with diesel on DI diesel engine. ARPN J. Sci.

- Technol. 3, 112-115.
- Semin, Bakar, R.A., RFC, L.P.A., 2020. Analysis of the Effect of Intake Valve Fin Adding of Dual Fuel Engine on the Performance-Based Experiment. Int. J. Adv. Sci. Eng. Inf. Technol. 10, 1939–1945. https://doi.org/10.18517/ijaseit.10.5.6632.
- Semwal, S., Raj, T., Patel, A.K., Arora, A.K., Badoni, R.P., Singhania, R.R., 2023. Synthesis of Ca–Fe-based heterogeneous catalyst from waste shells and their application for transesterification of Jatropha oil. Syst. Microbiol. Biomanufacturing 3, 681–692. https://doi.org/10.1007/s43393-022-00123-6.
- Senthilraja, S., Karthikeyan, M., Gangadevi, R., 2010. Nanofluid applications in future automobiles: comprehensive review of existing data. Nano-Micro Lett. 2, 306–310.
- Serbin, S., Burunsuz, K., Chen, D., Kowalski, J., 2022. Investigation of the Characteristics of a Low-Emission Gas Turbine Combustion Chamber Operating on a Mixture of Natural Gas and Hydrogen. Polish Marit. Res. 29, 64–76. https://doi.org/10.2478/pomr-2022-0018
- Shaafi, T., Sairam, K., Gopinath, A., Kumaresan, G., Velraj, R., 2015. Effect of dispersion of various nanoadditives on the performance and emission characteristics of a CI engine fuelled with diesel, biodiesel and blends—a review. Renew. Sustain. Energy Rev. 49, 563–573.
- Shaafi, T., Velraj, R., 2015. Influence of alumina nanoparticles, ethanol and isopropanol blend as additive with diesel–soybean biodiesel blend fuel: Combustion, engine performance and emissions. Renew. Energy 80, 655–663. https://doi.org/10.1016/j.renene.2015.02.042
- Sharma, P., Chhillar, A., Said, Z., Huang, Z., Nguyen, V.N., Nguyen, P.Q.P., Nguyen, X.P., 2022. Experimental investigations on efficiency and instability of combustion process in a diesel engine fueled with ternary blends of hydrogen peroxide additive/biodiesel/diesel. Energy Sources, Part A Recover. Util. Environ. Eff. 44, 5929–5950. https://doi.org/10.1080/15567036.2022.2091692
- Sharma, P., Sharma, A.K., 2022. Statistical and Continuous Wavelet Transformation-Based Analysis of Combustion Instabilities in a Biodiesel-Fueled Compression Ignition Engine. J. Energy Resour. Technol. 144. https://doi.org/10.1115/1.4051340.
- Sharma, P., Sharma, A.K., 2021a. AI-Based Prognostic Modeling and Performance Optimization of CI Engine Using Biodiesel-Diesel Blends. Int. J. Renew. Energy Resour. 11, 701–708.
- Sharma, P., Sharma, A.K., 2021b. Application of Response Surface Methodology for Optimization of Fuel Injection Parameters of a Dual Fuel Engine Fuelled with Producer Gas- Biodiesel blends. Energy Sources, Part A Recover. Util. Environ. Eff. 00, 1–18. https://doi.org/10.1080/15567036.2021.1892883.
- Sharma, P., Sharma, A.K., 2020. Experimental Evaluation of Thermal and Combustion Performance of a DI Diesel Engine Using Waste Cooking Oil Methyl Ester and Diesel Fuel Blends, in: Smart Innovation, Systems and Technologies. https://doi.org/10.1007/978-981-15-2647-3 50
- Shelare, S.D., Belkhode, P.N., Nikam, K.C., Jathar, L.D., Shahapurkar, K., Soudagar, M.E.M., Veza, I., Khan, T.M.Y., Kalam, M.A., Nizami, A.-S., Rehan, M., 2023. Biofuels for a sustainable future: Examining the role of nano-additives, economics, policy, internet of things, artificial intelligence and machine learning technology in biodiesel production. *Energy* 282, 128874. https://doi.org/10.1016/j.energy.2023.128874
- Shrivastava, N., Shrivastava, D., Shrivastava, V., 2018. Experimental investigation of performance and emission characteristics of diesel engine using Jatropha biodiesel with alumina nanoparticles. *Int. J. Green Energy* 15, 136–143. https://doi.org/10.1080/15435075.2018.1428807
- Silviana, S., Anggoro, D.D., Hadiyanto, H., Salsabila, C.A., Aprilio, K., Utami, A.W., Sa'adah, A.N., Dalanta, F., 2022. A Review on the Recent Breakthrough Methods and Influential Parameters in the Biodiesel Synthesis and Purification. *Int. J. Renew. Energy Dev.* 11, 1012–1036.
- Singh, B.R., Singh, O., 2012. Global trends of fossil fuel reserves and climate change in the 21st century. chapter.
- Singh Pali, H., Sharma, A., Kumar, M., Anand Annakodi, V., Nhanh Nguyen, V., Kumar Singh, N., Singh, Y., Balasubramanian, D., Deepanraj, B., Hai Truong, T., Quy Phong Nguyen, P., 2023.

- Enhancement of combustion characteristics of waste cooking oil biodiesel using TiO2 nanofluid blends through RSM. Fuel 331, 125681. https://doi.org/10.1016/j.fuel.2022.125681
- Siregar, K., 2015. Strategy to Reduce GHG Emission and Energy Consumption at Process Production of Biodiesel Using Catalyst From Crude Palm Oil (CPO) and Crude Jatropha Curcas Oil (CJCO) in Indonesia. Int. J. Adv. Sci. Eng. Inf. Technol. 5, 293–299.
- Sitompul, R.F., Sinaga, D.A.P., 2020. Sustainability Approach of Site Selection for Renewables Deployment in Indonesian Rural Electrical Grids. Int. J. Adv. Sci. Eng. Inf. Technol. 10, 2518–2525. https://doi.org/10.18517/ijaseit.10.6.13762.
- Sivakumar, M., Shanmuga Sundaram, N., Ramesh kumar, R., Syed Thasthagir, M.H., 2018. Effect of aluminium oxide nanoparticles blended pongamia methyl ester on performance, combustion and emission characteristics of diesel engine. Renew. Energy. https://doi.org/10.1016/j.renene.2017.10.002.
- Soudagar, M.E.M., Banapurmath, N.R., Afzal, A., Hossain, N., Abbas, M.M., Haniffa, M.A.C.M., Naik, B., Ahmed, W., Nizamuddin, S., Mubarak, N.M., 2020. Study of diesel engine characteristics by adding nanosized zinc oxide and diethyl ether additives in Mahua biodiesel–diesel fuel blend. Sci. Rep. 10, 1–17.
- Soudagar, M.E.M., Mujtaba, M.A., Safaei, M.R., Afzal, A., V, D.R., Ahmed, W., Banapurmath, N.R., Hossain, N., Bashir, S., Badruddin, I.A., Goodarzi, M., Shahapurkar, K., Taqui, S.N., 2021. Effect of Sr@ZnO nanoparticles and Ricinus communis biodiesel-diesel fuel blends on modified CRDI diesel engine characteristics. Energy 215, 119094. https://doi.org/10.1016/j.energy.2020.119094
- Soudagar, M.E.M., Nik-Ghazali, N.N., Abul Kalam, M., Badruddin, I.A., Banapurmath, N.R., Akram, N., 2018. The effect of nano-additives in diesel-biodiesel fuel blends: A comprehensive review on stability, engine performance and emission characteristics. Energy Convers. Manag. https://doi.org/10.1016/j.enconman.2018.10.019
- Soukht Saraee, H., Jafarmadar, S., Alizadeh-Haghighi, E., Ashrafi, S.J., 2016. Experimental investigation of pollution and fuel consumption on a CI engine operated on alumina nanoparticles-Diesel fuel with the aid of artificial neural network. Environ. Prog. Sustain. Energy 35, 540–546. https://doi.org/10.1002/ep.12233
- Soulayman, S., Ola, D., 2019. Synthesis parameters of biodiesel from frying oils wastes. Int. J. Renew. Energy Dev. 8, 33–39. https://doi.org/10.14710/ijred.8.1.33-39
- Srinidhi, C., Madhusudhan, A., Channapattana, S. V., 2019. Effect of NiO nanoparticles on performance and emission characteristics at various injection timings using biodiesel-diesel blends. Fuel 235, 185–193. https://doi.org/10.1016/j.fuel.2018.07.067
- Srinivasan, S.K., Kuppusamy, R., Krishnan, P., 2021. Effect of nanoparticle-blended biodiesel mixtures on diesel engine performance, emission, and combustion characteristics. Environ. Sci. Pollut. Res. 28, 39210–39226.
- Stelmasiak, Z., Larisch, J., Pielecha, J., Pietras, D., 2017. Particulate Matter Emission from Dual Fuel Diesel Engine Fuelled with Natural Gas. Polish Marit. Res. 24, 96–104. https://doi.org/10.1515/pomr-2017-0055
- Suhel, A., Abdul Rahim, N., Abdul Rahman, M.R., Bin Ahmad, K.A., 2021. Engine's behaviour on magnetite nanoparticles as additive and hydrogen addition of chicken fat methyl ester fuelled DICI engine: A dual fuel approach. Int. J. Hydrogen Energy 46, 14824–14843. https://doi.org/10.1016/j.ijhydene.2021.01.219
- Tamilvanan, A., Balamurugan, K., Vijayakumar, M., 2019. Effects of nano-copper additive on performance, combustion and emission characteristics of Calophyllum inophyllum biodiesel in CI engine. J. Therm. Anal. Calorim. 136, 317–330. https://doi.org/10.1007/s10973-018-7743-4
- Thangaraj, B., Solomon, P.R., Muniyandi, B., Ranganathan, S., Lin, L., 2019. Catalysis in biodiesel production—a review. Clean Energy 3, 2–23.
- Tran-Nguyen, P.L., Ong, L.K., Go, A.W., Ju, Y., Angkawijaya, A.E., 2020.

 Non-catalytic and heterogeneous acid/base-catalyzed biodiesel production: Recent and future developments. Asia-Pacific J. Chem. Eng. 15. https://doi.org/10.1002/apj.2490
- Tran, V.D., Sharma, P., Nguyen, L.H., 2023. Digital twins for internal combustion engines: A brief review. J. Emerg. Sci. Eng. 1, 29–35.

- https://doi.org/10.61435/jese.2023.5
- Trirahayu, D.A., Abidin, A.Z., Putra, R.P., Hidayat, A.S., Safitri, E., Perdana, M.I., 2022. Process Simulation and Design Considerations for Biodiesel Production from Rubber Seed Oil. Fuels 3, 563–579. https://doi.org/10.3390/fuels3040034
- Truong, T.T., Nguyen, X.P., Pham, V.V., Le, V.V., Le, A.T., Bui, V.T., 2021. Effect of alcohol additives on diesel engine performance: a review. Energy Sources, Part A Recover. Util. Environ. Eff. 1–25. https://doi.org/10.1080/15567036.2021.2011490
- Tuan Hoang, A., Nižetić, S., Chyuan Ong, H., Tarelko, W., Viet Pham,
 V., Hieu Le, T., Quang Chau, M., Phuong Nguyen, X., 2021. A
 review on application of artificial neural network (ANN) for performance and emission characteristics of diesel engine fueled with biodiesel-based fuels. Sustain. Energy Technol. Assessments
 47, 101416. https://doi.org/10.1016/j.seta.2021.101416
- Ungwiwatkul, S., Chantarasiri, A., 2022. Study on the Potential for Biodiesel Production of Microalgal Consortia from Brackish Water Environment in Rayong Province, Thailand. Int. J. Renew. Energy Dev. 11, 1060–1067.
- Usman, M., Cheng, S., Cross, J.S., 2022. Biomass Feedstocks for Liquid Biofuels Production in Hawaii & Tropical Islands: A Review. Int. J. Renew. Energy Dev. 11.
- Vairamuthu, G., Sundarapandian, S., Kailasanathan, C., Thangagiri, B., 2016. Experimental investigation on the effects of cerium oxide nanoparticle on Calophyllum inophyllum (Punnai) biodiesel blended with diesel fuel in DI diesel engine modified by nozzle geometry.

 J. Energy Inst. https://doi.org/10.1016/j.joei.2015.05.005
- Vani, M.V., Basha, P.O., Rajesh, N., Riazunnisa, K., 2023. Development of Chlorella pyrenoidosa EMS mutants with enhanced biomass and lipid content for biofuel production. Syst. Microbiol. Biomanufacturing 3, 693–701. https://doi.org/10.1007/s43393-022-00153-0
- Vasić, K., Hojnik Podrepšek, G., Knez, Ž., Leitgeb, M., 2020. Biodiesel Production Using Solid Acid Catalysts Based on Metal Oxides. Catalysts 10, 237. https://doi.org/10.3390/catal10020237
- Venu, H., Appavu, P., 2020. Al2O3 nano additives blended Polanga biodiesel as a potential alternative fuel for existing unmodified DI diesel engine. Fuel 279, 118518.
- Venu, H., Appavu, P., M, V.R., Jayaraman, J., 2022. Influence of nanoparticles on emission and performance characteristics of biodiesel-diesel blends in a DI diesel engine. Aust. J. Mech. Eng. 1–16. https://doi.org/10.1080/14484846.2022.2098574
- Venu, H., Madhavan, V., 2016. Effect of Al 2 O 3 nanoparticles in biodiesel-diesel-ethanol blends at various injection strategies: Performance, combustion and emission characteristics. Fuel 186, 176–189. https://doi.org/10.1016/j.fuel.2016.08.046
- Venu, H., Raju, V.D., Lingesan, S., Elahi M Soudagar, M., 2021. Influence of Al2O3nano additives in ternary fuel (diesel-biodiesel-ethanol) blends operated in a single cylinder diesel engine: Performance, combustion and emission characteristics. Energy 215, 119091. https://doi.org/10.1016/j.energy.2020.119091
- Venugopal, I.P., Balasubramanian, D., Rajarajan, A., 2021. Potential improvement in conventional diesel combustion mode on a common rail direct injection diesel engine with PODE/WCO blend as a high reactive fuel to achieve effective Soot-NOx tradeoff. J. Clean. Prod. 327, 129495. https://doi.org/10.1016/j.jclepro.2021.129495
- Veza, I., Karaoglan, A.D., Ileri, E., Kaulani, S.A., Tamaldin, N., Latiff, Z.A., Muhamad Said, M.F., Hoang, A.T., Yatish, K.V., Idris, M., 2022. Grasshopper optimization algorithm for diesel engine fuelled with ethanol-biodiesel-diesel blends. Case Stud. Therm. Eng. 31, 101817. https://doi.org/10.1016/j.csite.2022.101817
- Villegas, J.F., Ochoa, G.V., Chamorro, M.V., 2020. Statistical Wind Energy Analysis and Wind Persistence Assessment for Cordoba And Sucre Departments' Weather Stations in The Caribbean Region of Colombia. Int. J. Adv. Sci. Eng. Inf. Technol. 10, 1760– 1766. https://doi.org/10.18517/ijaseit.10.5.6567
- Vuong, H.L., Nguyen, D.C., Truong, T.H., Le, H.C., Nguyen, M.N., 2022.

 Laminar Flame Characteristics of 2,5-Dimethylfuran (DMF)
 Biofuel: A Comparative Review with Ethanol and Gasoline. Int.
 J. Renew. Energy Dev. 11, 237–254.
 https://doi.org/10.14710/ijred.2022.42611

- Wambui, T., Hawi, M., Njoka, F., Kamau, J., 2023. Performance enhancement and emissions reduction in a diesel engine using oleander and croton biodiesel doped with graphene nanoparticles. Int. J. Renew. Energy Dev. 12, 635–647. https://doi.org/10.14710/ijred.2023.51785
- Wang, H., Peng, X., Zhang, H., Yang, S., Li, H., 2021. Microorganismspromoted biodiesel production from biomass: A review. Energy Convers. Manag. X 12, 100137.
- Wang, S., Yao, L., 2020. Effect of Engine Speeds and Dimethyl Ether on Methyl Decanoate HCCI Combustion and Emission Characteristics Based on Low-Speed Two-Stroke Diesel Engine. Polish Marit. Res. 27, 85–95. https://doi.org/10.2478/pomr-2020-0030
- Yadav, B., Yellapu, S.K., Adjallé, K., Drogui, P., Tyagi, R.D., 2021. Comparative study on production and characterisation of extracellular polymeric substances (EPS) using activated sludge fortified with crude glycerol from different biodiesel companies. Syst. Microbiol. Biomanufacturing 1, 208–222. https://doi.org/10.1007/s43393-020-00017-5
- Yang, X.-X., Wang, Y.-T., Yang, Y.-T., Feng, E.-Z., Luo, J., Zhang, F., Yang, W.-J., Bao, G.-R., 2018. Catalytic transesterification to biodiesel at room temperature over several solid bases. Energy Convers. Manag. 164, 112–121. https://doi.org/10.1016/j.enconman.2018.02.085
- Yang, Z., Tan, Q., Geng, P., 2019. Combustion and Emissions Investigation on Low-Speed Two-Stroke Marine Diesel Engine with Low Sulfur Diesel Fuel. Polish Marit. Res. 26, 153–161. https://doi.org/10.2478/pomr-2019-0017
- Yaqoob, A.A., Umar, K., Ibrahim, M.N.M., 2020. Silver nanoparticles: various methods of synthesis, size affecting factors and their potential applications—a review. Appl. Nanosci. 10, 1369–1378.
- Yaqoob, H., Teoh, Y.H., Jamil, M.A., Gulzar, M., 2021. Potential of tire pyrolysis oil as an alternate fuel for diesel engines: A review. J. Energy Inst. 96, 205–221. https://doi.org/10.1016/j.joei.2021.03.002
- Yoro, K.O., Daramola, M.O., 2020. CO2 emission sources, greenhouse gases, and the global warming effect, in: Advances in Carbon Capture. Elsevier, pp. 3–28.
- Yusof, S.N.A., Sidik, N.A.C., Asako, Y., Japar, W.M.A.A., Mohamed, S.B.,

- Muhammad, N.M., 2020. A comprehensive review of the influences of nanoparticles as a fuel additive in an internal combustion engine (ICE). Nanotechnol. Rev. 9, 1326–1349. https://doi.org/10.1515/ntrev-2020-0104
- Yusuf, A.A., Ampah, J.D., Soudagar, M.E.M., Veza, I., Kingsley, U., Afrane, S., Jin, C., Liu, H., Elfasakhany, A., Buyondo, K.A., 2022a. Effects of hybrid nanoparticle additives in n-butanol/waste plastic oil/diesel blends on combustion, particulate and gaseous emissions from diesel engine evaluated with entropy-weighted PROMETHEE II and TOPSIS: Environmental and health risks of plastic wa. Energy Convers. Manag. 264, 115758.
- Yusuf, A.A., Dandakouta, H., Yahuza, I., Yusuf, D.A., Mujtaba, M.A., El-Shafay, A.S., Soudagar, M.E.M., 2022b. Effect of low CeO2 nanoparticles dosage in biodiesel-blends on combustion parameters and toxic pollutants from common-rail diesel engine. Atmos. Pollut. Res. 13, 101305. https://doi.org/10.1016/j.apr.2021.101305
- Yuvenda, D., Sudarmanta, B., Wahjudi, A., Hirowati, R.A., 2022. Effect of Adding Combustion Air on Emission in a Diesel Dual-Fuel Engine with Crude Palm Oil Biodiesel Compressed Natural Gas Fuels. Int. J. Renew. Energy Dev. 11, 871–877. https://doi.org/10.14710/ijred.2022.41275
- Zeńczak, W., Gromadzińska, A.K., 2020. Preliminary Analysis of the Use of Solid Biofuels in a Ship's Power System. Polish Marit. Res. 27, 67–79. https://doi.org/10.2478/pomr-2020-0067
- Zhang, X., Yang, R., Anburajan, P., Le, Q. Van, Alsehli, M., Xia, C., Brindhadevi, K., 2022. Assessment of hydrogen and nanoparticles blended biodiesel on the diesel engine performance and emission characteristics. Fuel 307, 121780. https://doi.org/10.1016/j.fuel.2021.121780
- Zhao, R., Xu, L., Su, X., Feng, S., Li, C., Tan, Q., Wang, Z., 2020. A Numerical and Experimental Study of Marine Hydrogen–Natural Gas–Diesel Tri–Fuel Engines. Polish Marit. Res. 27, 80–90. https://doi.org/10.2478/pomr-2020-0068
- Zhong, L., Feng, Y., Wang, G., Wang, Z., Bilal, M., Lv, H., Jia, S., Cui, J., 2020. Production and use of immobilized lipases in/on nanomaterials: A review from the waste to biodiesel production. Int. J. Biol. Macromol. 152, 207–222. https://doi.org/10.1016/j.ijbiomac.2020.02.258

© 2024. The Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-ShareAlike 4.0 (CC BY-SA) International License (http://creativecommons.org/licenses/by-sa/4.0/)