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Abstract. The combined thermal and photovoltaic technology in PV/T systems is considered as a greatly promising technology for smart buildings. 
Thus, investigations for enhancing the PV/T performance are still proceeding. This research presents an investigation for novel configurations of 
cooling jets for the PVT system. The linear and circular distribution for the inlet jets considering regular and irregular positioning for all the jets as 
new cooling configurations are implemented. Moreover, the proposed geometrical configurations are optemized regarding the performance to identify 
the most suitable configuration that achieves the optimum efficiency and temperature. Furthermore, a novel hybrid ANN model is presented for 
predicting the performance of the PVT systems. This model combines the multi-feedforward neural network (MFFNN) with an optimization technique 
called reptile search algorithm (RSA). The proposed model can process the studied parameters to predict the PVT performance parameters (top 
surface temperature, temperature un-uniformity, outlet temperature, and efficiencies). The proposed MFFNN-RSA model minimized the mean square 
error to less than 0.485710-3. The maximum temperature decrease achieved by the presented configuration reached 60.62K compared to the 
uncooled case, while the minimum temperature un-uniformity reached 1K and 6K for 400 and 1000 W/m2, respectively. The increase of the ambient 
temperature found to decrease the temperature un-uniformity in all the cases. The irregular jet with the linear distribution was found to achieve the 
optimum performance of the overall, thermal, and electrical efficiencies of 63.5%, 49.6%, and 14.25%, respectively. Furthermore, the electricity 
production cost was reduced by 11.6%, and the yearly CO2 emissions were reduced by 215.3 kg/m2 compared to the normal PV system. The proposed 
irregular-line distribution of the jets is found to be the best configuration regarding the temperature of the PV model and the overall efficiency 
considering the pumping losses. 
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1. Introduction 

Photovoltaic systems are a compact and clean method for 
converting solar to electrical energy, as they account for 60% of 
renewable energy conversion in the world (Koohestani et al., 
2023). Using such systems participates in sustainability and 
reduces the carbon footprint created by traditional power 
generation systems. However, the increase in the PV 
temperatures negatively affects its efficiency. Different cooling 
techniques were proposed for enhancing the electrical 
efficiency (𝜂𝑒) of the PV systems. Moreover, the harvested 
thermal energy from the cooling process could be counted as a 
by-product that increased the overall system efficiency (𝜂𝑜) by 
up to 81% (Hasan et al., 2018). With this high energy conversion 
efficiency, these systems can be considered as a compact and 
clean solution for hot water and electricity supply in smart cities. 
According to the cooling method, PV cooling methods are 
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classified into passive and active. Passive cooling considers fins 
and extending surfaces to enlarge the heat transfer, while active 
cooling applies forced convection. The active cooling type is 
usually more expensive than passive cooling as it needs 
pumping power. However, it achieves better performance than 
the passive cooling (Dwivedi et al., 2020) (Gharzi et al., 2020). 
The active cooling method applies many configurations to 
achieve forced convection. These configurations include 
serpentine, parallel flow channels, and impingement-jet flow. A 
cooling channel in which an inclined perforated plate is 
responsible for the flow distribution over the metal plate 
attached to the PV back was investigated numerically in (Zhang 
et al. 2022). For every 1×10-3 kg/s increase in the cooling mass 
flow rate (𝑚̇), enhancements in the thermal efficiency (𝜂𝑡) and 
𝜂𝑒 by 0.086% and 0.92%, respectively, were achieved. 
Furthermore, a forced airflow channel attached to the back side 
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of the PV-module was tested experimentally (Patil et al., 2023). 
Due to the forced convection air cooling, the PV average 
temperature (Tav) was reduced by 9ºC, and 𝜂𝑒 increased by 80% 
using 𝑚̇ of 0.08kg/s. Extra enhancement for the cooling process 
was tested using finned air flow channels (Özcan et al., 2021). 
Flat and curved fins with thicknesses of 1.5, 3, and 5 mm were 
investigated under an air velocity of 5 m/s. This could decrease 
the PV panel's temperature by 21ºC with the flat fins. The 
curved fins caused higher pressure drops than the flat ones. The 
maximum electrical efficiency was found to reach 18.92%. 
Various baffle orientations in the air channel of a PVT system 
were tested numerically, as well, by (Song et al., 2023). The 
optimum orientation of the baffles achieved improvements in 𝜂𝑒 
and 𝜂𝑡 by 4.3% and 12.9%, respectively. Aluminum fins were 
tested under different geometries as a heat sink for cooling the 
PV panel (Bayrak et al., 2019). Among the tested configurations 
of the fins, the optimum electrical efficiency achieved was 
11.55%. A PVT system with underground pre-cooled air was 
investigated experimentally by (Elminshawy et al., 2019). The 
value of Tav was decreased by 13oC, and 𝜂𝑒was improved by 
18.9%. A new idea for the PVT system was to partially cover a 
solar collector with a PV module (Kazemian et al., 2023). This 
achieved an improvement of 31.24% in the overall power 
output. Furthermore, it reduced the payback period of the 
system by 35.07% as per the PV system alone. Water spray was 
also applied to increase the relative humidity of air through a 
cooling channel attached to the PV Panel (Zhang et al. 2023). 
This achieved a reduction of approximately 17ºC in Tav. An air-
cooled PVT system using a converging channel was tested 
experimentally and numerically (Baloch et al., 2015). Different 
convergence angles of the channel were tested in comparison 
with the uncooled PV case. A significant PV temperature 
reduction was noticed using the proposed converging channel. 
An improvement in 𝜂𝑒 by 36.1% was achieved, and an economic 
study concluded that the cost was reduced 19.5% compared to 
the uncooled case. 

A variety of systems use water as a cooling fluid (CF). This 
enhances the rate of heat transfer referring to the large specific 
heat of water and its various applications as hot water. A water-
cooled system with twisted tabs inside the riser tubes attached 
to the PV panel was tested experimentally (Kalateh et al., 2022). 
Both clockwise and counterclockwise twist directions were 
investigated. The use of the twisted taps in the riser tubes 
increased the energy efficiency by 28.4%. Water-propylene 
glycol as a CF was used in a cooling channel with small spaced 
dorsal-shaped transverse saliences through a numerical 
simulation by (Yildirim et al., 2022). The achieved 𝜂𝑒 and 
𝜂𝑡  reached 17.79% and 76.13%, respectively. This test was 
conducted at the normal operating cell temperature (NOCT) 
conditions with a cooling fluid inlet temperature of 15ºC and a 
flow rate of 0.014 kg/s. Although this study achieved very 
elevated 𝜂𝑡, it did not account for the pressure drop of the 
pumping power consumed. 

As the flow direction affects the heat transfer process, the 
angle encountered between the temperature gradient and the 
velocity gradient is preferred to be smaller according to the field 
synergy theory (Shen et al., 2021) (Li et al., 2020)  (Essa et al., 
2023). One of the techniques that agrees with the synergy theory 
is the impingement-jet flow. An investigation was performed 
experimentally for the performance of the impingement jet 
nozzle cooling of the PV with different distributions, diameters, 
and nozzle to PV module spacing (Javidan & Moghadam, 2021). 
The nozzle-to-PV distance that achieved the best cooling for the 
PV was five times the nozzle diameter, which was the minimum 
value in this test parameter. This configuration decreased the 

average PV temperature by around 30oC. The densest nozzle 
distribution achieved the best cooling effect for the PV. 
Moreover, with 0.014 kg/s  of 𝑚̇ and a 4 mm nozzle-diameter, 
the jet cooling could achieve 𝜂𝑒 and 𝜂𝑡  of 10.2% and 82.3%, 
respectively (Khalaf et al., 2023). One of the normal flow 
solutions that presents a cheap manufacturing method is a 
perforated plate parallel to the PV in which the cooling stream 
passes through its holes normally on the PV module. An 
experimental indoor investigation was performed on the 
perforated plate to study its cooling effect for the PV module, 
using air as a CF (Ewe et al., 2022). The system achieved the 
optimum 𝜂𝑒  and 𝜂𝑡  of 10.36% and 57.3%, respectively. 

Recently, machine learning (ML) methodologies, 
including artificial neural networks (ANNs), have proven their 
utility in modeling the performance of thermal and electrical 
systems like PV systems and heat exchangers. As a result, 
employing the ANN as a methodology for predicting the PVT 
systems’ performance under various external and internal 
scenarios has been widely used recently. This includes; fluid 𝑚̇, 
climate variations, and system design parameters that can be 
deemed appropriate (Gunasekar et al., 2015) (Kalani et al., 2017) 
(Ahmadi et al., 2019). 

The feed-forward neural networks (FFNNs) models were 
applied to estimate the PVT evaporator’s performance in the 
heat pumps (Gunasekar et al., 2015). It used the relative 
humidity, wind speed, solar intensity, and air temperature, as 
inputs in the FFNN model. The model successfully predicted the 
PV cell temperature, efficiency, and evaporator heat gain. 
Different ANNs were used in (Kalani et al., 2017) for modeling 
the PVT with nanofluids as CF. The ANNs of the adaptive 
neuro-fuzzy inference system (ANFIS), Radial-basis function 
(RBFNN), and FFNN were applied to determine 𝜂𝑒 of the PV, 
and the collector fluid outlet temperature. Also, the optimal 
structure of the networks was calculated by using the particle 
swarm optimization technique. Moreover, the genetic 
algorithm-back propagation (GA-BP) neural network model was 
employed to enhance the concentrated parabolic collector 
(CPC's) cavity absorber (Wei Wang Ming Li & Feng, 2017). Its 
objectives were to reduce the heat losses, enlarges the system's 
output energy and  𝜂𝑡. The results indicated that the GA-BP 
model accurately estimated the intricate nonlinear relation 
between the input/output parameters and surpassing the 
predective accuracy of other methods. Also, the Least Squares 
support vector machine (LS-SVM) and ANN were applied in the 
PVT systems’ modelling and predict the thermal and electrical 
efficiencies (Ahmadi et al., 2019). The findings showed that the 
LS-SVM exhibited the most superior performance. Various PVT 
models were tested for the same conditions by using the FFNN 
(Al-Waeli et al., 2019). It tested the nanofluid/Phase change 
material (PCM), water-nanofluid PVT, water-based PVT, and 
conventional PV. The FFNN model proved that 𝜂𝑒  and 𝜂𝑡 were 
enhanced to 13.32% and 72%, respectively, by using 
nanofluid/nano-PCM. Also, it achieved mean square errors 
(MSEs) of 0.0282 and 0.0229 for the validating and training 
phases, respectively. Thermal and FFNN models were 
developed for performance prediction of various arrangements 
of the PVT connected with thermoelectric cooler (PVT-TEC) 
systems (Dimri et al., 2019).  Three different configurations were 
studied: Aluminum/semitransparent-based PVT-TEC water 
collectors and opaque PVT-TEC collectors. The FFNN model 
was used to obtain the exergy efficiencies and the fluid 
temperature. Moreover, the FFNN was presented to model the 
nanofluid-based solar collector performance (Delfani et al., 
2019). It used the reduced temperature difference, collector 
length, collector depth, nanofluid concentration, and flowrate to 
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predict the efficiency and thermal performance. Predicting both 
the Nusselt number and the collector's efficiency was obtained 
with a minimum mean absolute percentage error (MAPE) of 
2.576% and 1.470%, respectively. The performance potential of 
various ANN models, such as LSTM, SOFM, SVM, SOVM, MLP, 
GFF, and RNN, was thoroughly reviewed and compared for 
data prediction in PVT collectors (Yousif et al., 2019). It was 
concluded that the transverse zone exposed to moderate/high 
irradiation, was deemed appropriate for the implementation of 
solar systems. The generated energy from the PVT based on 
nano-PCM, SiC-water, and nanofluid were enhanced in (Al-
Waeli et al., 2020). The ambient temperature and solar 
irradiance were applied as inputs to the Self-organizing Feature 
Map and the MLP networks. According to the evaluation 
criteria, the models achieved an R2 value of 0.8742, an RMSE 
value of 0.149, an MSE value of 0.0223, and a trend accuracy of 
59.7. A FFNN model was adopted to predict the PVT’s 
efficiency in an air collector (Chaibi et al., 2021). The cell 
temperature and solar irradiance were used as inputs to the 
ANN model. Climatic samples of one year were used to train 
and validate the FFNN under various weather variables. The 
developed FFNN model showed MAPE of 0.0078% and 
3.3607% in estimating 𝜂𝑒 and 𝜂𝑡, respectively. Different ANN 
models were presented to optimize the efficiency of the nano-
coolant PVT systems (Cao et al., 2022). Four ANNs, LS-SVM 
and ANFIS, were obtained by statistical and trial-and-error 
analyses. It used the irradiation intensity and the nanofluid flow 
rate as model inputs. The best prediction model was the ANFIS 
model for predicting 𝜂𝑒 where it predicted 200 patterns for 
testing the model with MSE equal to 2.548, RMSE equal to 1.6, 
and R2 equal to 0.9534. Two distinct ANN models were 
presented for predicting the PVT performance parameters 
(outlet temperature, cell temperature, and exergy, thermal, and 
electrical efficiencies) (Büyükalaca et al., 2023). The models 
were specifically designed to utilize a cooling fluid of hexagonal 
BN/water nanofluid. In the first set of models, every model was 
created to forecast one specific performance parameter from 
the set of five. On the other hand, the second set of models 
employed an ANN model capable of predicting the five output 
parameters simultaneously. The FFNN-BP algorithm was 
consistently employed as a training algorithm across all models. 

As can be deduced from the introduced literature, forced 
flow aligned normally with the PV interface achieves good 
cooling performance and elevated 𝜂𝑜 of the system. The 
direction of the flow concerning the PV module plays an 
important role, and the normal flow of impingement jet flow 
cooling showed a good cooling effect in the thermal modules 
presented in the PVT systems. So, this paper studies the effect 
of varying the configuration of the jet flow considering different 
jet distributions, different distributions of the flow inlets and 
outlets in each jet distribution, and varying the flow and 
boundary test parameters. The paper presents the following 
contributions: 
• Proposing a novel different configuration of jets on a cooling 

plate. This study presents both linear and circular 
distribution for the flow inlet jets over the cooling plate 
considering regular and irregular positioning for all the jets 
as new cooling configurations. 

• The proposed distinct geometrical configurations are 
studied to identify the most suitable configuration that 
achieves the optimum efficiency and temperature. 

• The different test parameters considered are mass flow 
rates, radiation intensities, wind speeds, and ambient 
temperatures. 

• Building a numerical database using the optimum 
configuration considering wider ranges of the test 
parameters to be used as training material for the proposed 
ANN model. 

• Proposing a novel MFFNN-RSA hybrid model to forecast 
the PVT system's performance as an application in smart 
cities.  

• Using the proposed RSA to identify the most convenient 
parameters and architecture of the MFFNN model 
understudy. 

2. Research Methodology 

The research has a sequence of three different investigations. 
The first investigation performs a comparative study between 
four different jet flow configurations to identify the configuration 
with the optimum performance. The second investigation 
performs a study on the optimum configuration with wider test 
parameter ranges to constitute a numerical database for this 
configuration. In the third investigation, the proposed ANN 
model is trained and tested based on the created numerical 
database to make a predictive model for the best performance 
configuration. 

2.1 The numerical model 

The numerical model for the present study considered ANSYS 
Fluent and ANSYS ICEM software for solving the numerical 
model and building the mesh, respectively. The coupling of 
velocity and pressure is achieved through the utilization of the 
SIMPLE algorithm. The standard discretization is used for the 
pressure, while the first order is used for the turbulence and 
radiation model. Second-order upwind scheme is employed for 
the energy and momentum equations. The momentum, 
continuity, and turbulence equations employ a convergence 
criterion set at 1E-4, while the energy and radiation equations 
utilize a value of 1E-6. Finally, a steady-state solution is 
considered through all the numerical simulations. 

2.1.1 Set of  Equations 

The set of equations discretized and solved in ANSYS Fluent 
software are the following equations (Ansys Inc, 2017): 

Continuity equation: 

∇. (𝜌 𝑉⃗ ) = 0                                                                      (1) 
 

where 𝑉⃗   is the velocity vector in 3D space. 
Momentum equation: 
 

∇. (𝜌 𝑉⃗ 𝑉⃗ ) = −∇𝑃𝑃 + ∇. (𝜏̿) + 𝜌𝑔                                       (2) 
 
where 𝑃𝑃 is the pressure, and  𝑔  is the acceleration of gravity.  
𝜏̿ is the stress tensor in the fluid domain. 
The energy equation in the solid regions: 
 

∇. ( 𝑉⃗ 𝜌𝐻) = ∇. (𝐾𝑠∇𝑇)                                                      (3) 

 
The Energy equation in the liquid regions: 
 

∇. ( 𝑉⃗ (𝜌𝐸 + 𝑃𝑃)) = ∇. (𝐾𝑓∇𝑇)                                          (4) 
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where 𝐸 includes the effect of the enthalpy (h), pressure energy, 
and kinetic energy in the flow. 𝐾𝑠 and 𝐾𝑓 represent the thermal 

conductivity for the solid and fluid regions, respectively. The 
model used for turbulence is the Renormalised group RNG 𝑘′- 
ɛ′ model that as it is valid for high and low Reynolds number 
flows. 𝑘′ is the kinetic energy of the turbulence, and ɛ′ is the 
turbulence dissipation rate. The equations for both 𝑘′ and ɛ′ are 
expressed as follows: 

 
𝜕

𝜕𝑥𝑖
(𝜌𝑘′𝑉𝑖) =

𝜕

𝜕𝑥𝑗
(𝛼𝑘′𝜇𝑒𝑓𝑓

𝜕𝑘′

𝜕𝑥𝑗
) + 𝐺𝑘 − 𝑌𝑘′                          (5) 

 
𝜕

𝜕𝑥𝑖
(𝜌𝜀′𝑉𝑖) =

𝜕

𝜕𝑥𝑗
(𝛼𝜀′𝜇𝑒𝑓𝑓

𝜕𝜀′

𝜕𝑥𝑗
) + 𝐶1𝜀′

𝜀′

𝐾′
𝐺𝑘′ − 𝐶2𝜀′𝜌

𝜀′2

𝐾′
       (6) 

 

where 𝐶1𝜀′ = 1.42, and 𝐶2𝜀′ = 1.68. The values of 𝛼𝑘′ and 𝛼𝜀′ 
are the inverse Prandtl numbers for 𝑘′ and 𝜀′, respectively.  

The Discrete Ordinates (DO) radiation model was the 
radiation model implemented in the current study. The 
radiation equation is expressed as follows: 

 
dIS(r⃗ ,s⃗ )

ds
+ (𝑎 + 𝜎𝑠)IS(r , s ) = 𝑎𝑛𝑟2 𝜎𝑇4

𝜋
+

𝜎𝑠

4𝜋
∫ IS(r , s )Φ(

4𝜋

0
s . s ′)𝑑Ω′                        

(7) 

where IS(r , s ) is the irradiance in position and direction vectors 
of r  and s , respectively. 𝑎 is the absorptivity, 𝜎𝑠 is the coefficient 
of scattering, 𝑛𝑟 is the index of refraction, and 𝜎 is the radiation 
constant of Stefan-Boltzmann, Ω′ is the solid angle, and Φ is a 
phase function. 

2.1.2 The Physical Domain 

The PV module used in the present simulation is EGE-50P-
36. On the backside of the module, a thermal module is installed 
with a thermal paste. The PVT model has dimensions of 
520x680x23 mm. The properties and specifications of the 
materials used are described in Table 1 (Nahar et al., 2017). 

The jets distribution inside the thermal module considers 

regular and irregular orientations. Both configurations consider 
a horizontal and vertical spacing between the jets of 171.69 mm 
and 168.57 mm, respectively. 

The diameter of the jet equals the spacing between the jet 
opening and the plate, which equals to 5mm. The selection of 
the inlet jets in these configurations considers linear and circular 
distributions. The difference between the four configurations is 
shown in Figure 1. 

The boundary conditions of the model apply incident 
radiation on the top PV surface, with a combined 
convection/radiation heat loss. The backside of the thermal 
module and its sides are considered as adiabatic. The 

Table 1  
Thermophysical properties of the PVT model understudy (Nahar et 
al., 2017). 

Material  ρ 
[kg/m3] 

K  
[W/m. K] 

Cp 
[J/kg. k] 

Thickness 
[mm] 

Glass 2450 2 500 3.2 
EVA 950 0.311 2090 0.8 
PV Silicon 2329 148 700 0.5 
Tedlar 1200 0.15 1250 0.1 
Thermal paste 2600 1.9 700 0.3 
Aluminium 2700 237 903 1 
CF (water) 998 0.68 4200 17 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
Fig 1. Jets distribution and inlets orientation for (a) Regular jets with linear inlets, (b) irregular jets with linear inlets, (c) Regular jets with 
circular inlets, and (d) irregular jets with circular inlets 
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convection coefficient (ℎ𝑐𝑜𝑛𝑣) is calculated according to the 
following relation (Shahsavar & Arıcı, 2023) (Duffie & Beckman, 
2013): 
 
ℎ𝑐𝑜𝑛𝑣 = 2.8 + 3𝑉𝑤𝑖𝑛𝑑                                                                 (8) 
 
where 𝑉𝑤𝑖𝑛𝑑 is the external wind speed. The rate of heat loss by 
convection [W/m2] is calculated as follows: 
 
𝑞𝑐𝑜𝑛𝑣 = ℎ𝑐𝑜𝑛𝑣 ∗ (𝑇𝑎𝑣 − 𝑇𝑎𝑏𝑚)                                                    (9) 
 
where 𝑇𝑎𝑏𝑚 is the ambient temperatures. The rate of heat loss 
by radiation [W/m2] is calculated as follows: 
 
𝑞𝑟𝑎𝑑 = 𝑒 ∗ 𝜎(𝑇𝑎𝑣

4 − 𝑇𝑎𝑏𝑚
4 )                                                          (10) 

Where 𝒆 is the radiation emissivity. 

2.1.3 Mesh generation and independence test. 

The mesh was generated through Ansys ICEM software using a 
structured mesh of hexahedrons. A sample of the used mesh is 
shown in Figure 2. To ensure a mesh-independent solution, 
different meshes with different numbers of elements are used, 
and the top surface temperature is compared. This simulation is 
conducted for irradiance of 1200 W/m2, 0.026 m/s fluid inlet 
velocity, an inlet fluid temperature of 293K, which is equivalent 
to ambient, and convection coefficient of 11.8 W/m2K. The 
variation of Tav with the different number of mesh elements is 
depicted in Figure 3. It is noticed that after 1.7 M elements, the 
value of the temperature is very near to that of the finest mesh 
at 3.3 M elements. So, in this paper, the mesh of 1.7 M is used 
for all the simulations. 

2.1.4 Model Validation 

The simulation model understudy is validated with 
experimental data for PV cooling with a back heat exchanger 
using air flow from (Tiwari et al. 2006). The comparison is 
conducted considering the outlet air temperature and Tav, as 
shown in Figure 4. It is observed that the results from the 
simulation highly agree with the experimental data with ARE of 
4.12%. 

2.1.5 Case setup 

The setup for the boundary conditions on the different 
boundaries of the numerical model is illustrated on figure 5. 

2.2 Performance Evaluation 

The parameters used for judging the system’s performance are 
ηe, ηth, and ηo. The electrical efficiency is evaluated according to 
Tav of the PV module (𝑇𝑎𝑣) as follows: 

𝜂𝑒 = 𝜂𝑟𝑒𝑓 (1 − 𝛾(𝑇𝑎𝑣 − 𝑇𝑟𝑒𝑓))                               (11) 

where 𝑇𝑟𝑒𝑓 is the PV test temperature of 25ºC, and  𝜂𝑟𝑒𝑓 is the 

PV module's temperature at this reference temperature, which 
equals to 0.14 for the used module. 𝛾 is the PV temperature 
decrease factor, which equals to 0.0041 /ºC. According to the 
value of 𝜂𝑒, the electrical power (𝑃𝑒) is calculated as follows: 

𝑃𝑒 = 𝜂𝑒 ∗ IS ∗ A                                                      (12) 

where IS is the incident irradiance, and A is the PV area.  
The thermal efficiency, 𝜂𝑡, is the ratio between the 

harvested thermal energy and the input solar power. It is 
expressed as: 
 

𝜂𝑡 =
𝑚̇ 𝐶𝑝 (𝑇𝑜𝑡 − 𝑇𝑖)

IS ∗ A
                                                  (13) 

 
such that 𝑚̇ is the flow rate [kg/s], 𝐶𝑝 is the specific heat of the 

CF, which is water in the present case, 𝑇𝑜𝑡 is the outlet 
temperature of the CF, and 𝑇𝑖   are the inlet temperatures of the 
CF. 

The overall efficiency is the ratio between all the produced 
electrical and thermal powers, considering the fluid pumping 

power loss (𝑄̇ ∗ 𝛿𝑃𝑃), and the input solar power. This is 
expressed as follows: 

𝜂𝑜 = 𝜂𝑒 + 𝜂𝑡 −
𝑄̇ ∗ 𝛿𝑃𝑃

I ∗ A
                                             (14) 

 

 

 
Fig 3. The PV temperature variation with the No. of elements 

in each mesh. 
 

 
Fig 4. Comparison between experimental data from (Tiwari et 

al., 2006), and numerical simulation 
. 
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One of the parameters used for judging the cooling efficiency 
and its homogeneity is the temperature non-uniformity (𝛿𝑇), 
which expresses the PV maximum and minimum temperatures 
expressed as follows: 

𝛿𝑇 = 𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛                                                                   (15) 

2.3 ANN model 

The ANNs are widely recognized as a popular method in the 
field of artificial intelligence for modeling, predicting, and 
solving pattern classification problems. It typically contains 
three layers, which are output, input, and a layer of hidden 
sublayers. The appropriate number of these hidden sublayers is 
based on the degree of simplicity of the addressed problem. 
Neurons are the fundamental elements of the ANNs, that are 
like the neurons in the human brain. The neurons of the output 
and input layers rely on the number of the parameters in the 
outputs and inputs of the given problem, correspondingly. Each 
neuron in the ANN receives signals (inputs), perform a 
mathematical transformation to those signals, and produces an 
output signal  (Talaat et al., 2020) (Abdel daiem et al., 2021) 
(Leema et al., 2016). Typically, the transformation within a 
neural network involves computing a weighted sum of the 
inputs, which is then followed by an activation function 
application. This activation function is responsible for 
presenting the non-linearity to the network. It determines the 
output of the neuron based on its inputs. During training, ANNs 
learn from labeled input-output pairs. The network adjusts its 
internal parameters, including the biases and weights linked to 
the neurons’ connections, to reduce the error between the 
predicted and the desired outputs. This process is often 
achieved using optimization algorithms (Leema et al., 2016). 
Careful consideration is needed when determining who many 
neurons in the hidden layer, as it directly impacts the ANN 
performance. 

2.3.1 Multi-layer feedforward neural network 

In this paper, MFFNN is employed as the chosen ANN-
based model. The network architecture consists of an input 
layer with four neurons (Tamb, I, 𝑚̇, and hconv) and an output layer 
with six neurons (Tav, 𝛿T, Tot, 𝜂𝑒, 𝜂𝑡, and 𝜂𝑜). Optimizing the 
architecture of the MFFNN involves several considerations, 

such as the appropriate activation functions, the number of 
hidden layers, the number of hidden neurons, and the 
hyperparameters (the learning rate, the batch size, and the 
optimization algorithms). Selecting the optimum architecture of 
the MFFNN will impact the capacity to learn the complex 
patterns, the training performance, and the network's ability to 
model the non-linear relationships (Talaat et al., 2020). The first 
hidden layer output can be obtained by, 

 

Hi=
1

[1+exp(- ∑ (ωij xj-Bi))
𝑚
𝑗=1 ]

  i=1, 2,….,N               (16) 

 
where xj is the NN model input, and Hi is the output of the 

hidden neuron ith. m and N are the total neurons in the input and 
hidden layers, respectively. ωik and  Bi are the weight factor and 
bias between jth input and ith hidden neurons, respectively. This 
equation will be repeated for the number of hidden sublayers in 
the proposed MFFNN model.  The output layer outputs are 
calculated by, 
 

Ok= ∑ (ωlkHl
𝑅
l=1 )                k=1, 2, …F        (17) 

 
where R and F are the total number of neurons in last hidden 
sublayer and the output layer, respectively. ωlk is the weight 
factor between neuron lth and neuron kth in the hidden and 
output layer, respectively. Ok represents the output of kth neuron 
in the output layer. The MSE function is used to evaluate the 
performance of the proposed MFFNN in this study (Abdel 
daiem et al., 2021) (Leema et al., 2016).  The MSE is expressed 
as follows: 
 

MSE=
1

M
∑ (Ok-Ak)2M

k=1                                       (18)   

            
where Ak is the actual output, and M represents the number of 
training patterns. The fitness function of training the proposed 
MFFNN model is determined by, 
 

Fitness function = min (MSE) = Min. [
1

M
∑ (Ok-Ak)2
M

k=1

] (19) 

 
The weights and biases of the proposed MFFNN are modified 
during the training by using the MSE function (Abdel daiem et 

 

 

Fig 5. Boundary conditions on the Numerical model for the 
Irregular jets with linear inlets distribution case 

 

 

 

Fig 6. Proposed MFFNN structure 
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al., 2021). The optimization methods can be employed for 
training the MFFNN to find the optimum numbers of hidden 
layers, numbers of hidden neurons, activation functions, 
hyperparameters, and weights factors and biases. The reptile 
search algorithm (RSA) is used to attain the optimal architecture 
of the proposed MFFNN in the present study, Figure 6 illustrates 
the structure of the proposed MFFNN prediction model. 

2.3.2 Reptile Search Algorithm 

The RSA is an algorithm inspired naturally by metaheuristic 
algorithm that takes inspiration from the characteristics and 
behaviors of crocodiles. It relies on the hunting behavior, 
enveloping mechanism, and social dynamics observed in 
crocodiles. This swarm-based approach utilizes these principles 
to guide its search process (Abualigah et al., 2022).  

2.3.2.1 Generate initial solutions 

The RSA initialization formula is used to generate the 
initial solution randomly within the solution domain. The 
solution domain represents the set of all possible solutions to 
the optimization problem (Abualigah et al., 2022). 

 
𝐿𝑖𝑗 = 𝐿𝑉 + 𝑟. (𝑈𝑉 − 𝐿𝑉)  𝑗 = 1, 2,… 𝑛                                 (20) 

 
where 𝐿𝑖𝑗 is the value of the jth dimension of the ith crocodile. 𝑈𝑉 

and 𝐿𝑉 upper and lower boundary values of the search domain, 
respectively. r is random number between 0 and 1, and n is the 
size of the populations.  

2.3.2.2- Enveloping Mechanism 

The RSA applies the concept of enveloping by exploring 
the search space in a way that focuses on promising regions 
while avoiding less favorable areas. This helps the algorithm 
efficiently navigate complex optimization landscapes. During 
the global search phase, crocodiles engage in elevated and 
sprawling walks. The search strategy can be calculated by 
iterations. The mathematical models of this mechanism can be 
modeled by (Abualigah et al., 2022) (Khan et al., 2023): 

 

𝐿𝑖𝑗(𝑡 + 1) = {
𝐿𝑗,𝑏𝑒𝑠𝑡
𝑡  . (−𝜗𝑖𝑗

𝑡 × 𝛽 × 𝑅𝑖𝑗
𝑡 × 𝑟)         𝑡 ≤

𝑇𝑚

4
        

𝐿𝑗,𝑏𝑒𝑠𝑡
𝑡 × 𝐿𝑗,𝑟𝑎𝑛𝑑

𝑡 × 𝐸𝑆𝑡 × 𝑟      
𝑇𝑚

4
≤ 𝑡 ≤

2𝑇𝑚

4

 (21) 

    

where t is the number of current iteration, Tm is the number of 
maximum iterations.  𝐿𝑗,𝑏𝑒𝑠𝑡

𝑡  is the optimum solution at tth 

iteration and jth location. 𝜗𝑖𝑗
𝑡  is the hunting operator value for ith 

solution at jth location. The hunting operator can be determined 
by: 
 

𝜗𝑖𝑗
𝑡 = 𝐿𝑗,𝑏𝑒𝑠𝑡

𝑡  × (𝜎 +
𝐿𝑖𝑗
𝑡 − 𝐴𝑣𝑟(𝐿𝑖𝑗

𝑡 )

𝐿𝑗,𝑏𝑒𝑠𝑡
𝑡 × (𝑈𝑉 − 𝐿𝑉) + 𝜀

)                 (22) 

 

𝑅𝑖𝑗
𝑡 =

𝐿𝑗,𝑏𝑒𝑠𝑡
𝑡 − 𝐿𝑖𝑗

𝑡

𝐿𝑗,𝑏𝑒𝑠𝑡
𝑡 + 𝜀

                                                                        (23) 

 

𝐸𝑆𝑡 = 2𝑟1 (
𝑇𝑚 − 1

𝑇𝑚
)                                                                    (24) 

 

where 𝜎  is a constant to control the accuracy of the exploration,  
𝑟1  is a random number from -1 to 1, ε is a minimum value to 
prevent the denominator from being zero, and  𝐴𝑣𝑟 is the 
average value. ES is the evolutionary Sense. 

2.3.2.3- Hunting Mechanism 

The hunting mechanism is like an enveloping 
mechanism that has two phases: hunting cooperation and 
coordination. These phases are implemented to locate the best 
possible solution by exploring the search domain and assisting 
in capturing the prey. The two phases can be defined depending 
upon the iterations' number. Hunting coordination is applied for 
iterations from 𝑡 > 0.5𝑇𝑚 to 𝑡 ≤ 0.75𝑇𝑚. While the hunting 
cooperation is applied from 𝑡 > 0.75𝑇𝑚 to 𝑡 ≤ 𝑇𝑚. The following 
equations are used to represent the hunting mechanism 
(Abualigah et al., 2022)  (Khan et al., 2023). 

𝐿𝑖𝑗(𝑡 + 1) = {
𝐿𝑗,𝑏𝑒𝑠𝑡
𝑡 × 𝑃𝑖𝑗 × 𝑟                    

𝑇𝑚

2
< 𝑡 ≤

3𝑇𝑚

4
 

𝐿𝑗,𝑏𝑒𝑠𝑡
𝑡 −𝜗𝑖𝑗

𝑡 × 𝜀 − 𝑅𝑖𝑗
𝑡 × 𝑟   

3𝑇𝑚

4
< 𝑡 ≤ 𝑇𝑚

    (25) 

 

2.3.2.4- Improved Reptile Search Algorithm  

The RSA has some limitations, such as local minima 
trapping, high computational complexity, and slow 
convergence speed. Hence, in order to address these 
challenges, some modifications are presented for the original 
RSA.  One adjustment involves integrating a sin operator into 
the high walking phase of the previous RSA algorithm. This 
modification is inspired from the sine cosine algorithm (Yuan et 
al., 2022). The sin operator can avoid local minimum trapping 
and improve the capability of global exploration. The sin 
operator is inserted in (21) and modified as follows.  

 
𝐿𝑖𝑗(𝑡 + 1)

= {
𝐿𝑗,𝑏𝑒𝑠𝑡
𝑡 + (𝑟2 × sin(𝑟) × |𝑟3 × 𝐿𝑗,𝑏𝑒𝑠𝑡

𝑡 − 𝐿𝑖𝑗
𝑡 |)  𝑡 ≤

𝑇𝑚

3
 

𝐿𝑗,𝑏𝑒𝑠𝑡
𝑡 × 𝐿𝑗,𝑟𝑎𝑛𝑑

𝑡 × 𝐸𝑆𝑡 × 𝑟             
𝑇𝑚

4
≤ 𝑡 ≤

2𝑇𝑚

4

 (26) 

 
where r2 and r3, are randomly selected numbers in range [0, 1]. 
The utilization of the chaotic inverse learning strategy by all 
individuals leads to higher computational costs and hindering 
algorithm convergence. To address this issue, this paper 
employs the linear decreasing population strategy. As the 
iteration progresses, the number of individuals utilizing the 
chaotic backward learning strategy gradually diminishes. The 
specific mathematical formula for implementing this strategy is 
outlined in (27). 
 

𝑃 = 𝑟 × (
(𝑃𝑚𝑖𝑛 − 𝑃𝑚𝑎𝑥) ×  𝑡

𝑇𝑚
+ 𝑃𝑚𝑎𝑥)                                (27) 

 
where P is the number of chaotic backward learning strategy 
populations.  𝑃𝑚𝑖𝑛 and 𝑃𝑚𝑎𝑥 are the minimum and maximum 
population numbers, respectively.  

2.3.3 Proposed MFFNN-RSA hybrid model  

The MFFNN proposed in this research undergoes training using 
the RSA technique, aiming to calculate the optimal architecture 
for various parameters, including the number of hidden 
sublayers, the number of hidden neurons, the biases and 
weights factors, and the activation functions. This optimized 
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MFFNN-RSA is subsequently employed to model and predict 
the PVT model's performance. The implementation of the 
proposed MFFNN-RSA layout is depicted in Figure 7 which can 
be outlined in the following steps: 
• Firstly, the inputs of the proposed MFFNN are read, which 

consist of CF inlet temperature, mass flow rate, solar 
irradiance, and convection coefficient. The corresponding 
outputs to be predicted are the top surface temperature, 
temperature un-uniformity, outlet water temperature, and 
thermal, electrical, and overall efficiencies. 

• Secondly, the parameters of the modified RSA are set. The 
modified RSA involves generating an initial population of 
locations randomly within specified upper and lower 
bounds. These locations are treated as potential solutions to 
the problem. 

• Thirdly, the fitness function is then calculated for each 
location in the population using the MSE of the proposed 
MFFNN by using (20). The MSE serves as a measure of how 
well the MFFNN performs in predicting the desired outputs 
based on the given inputs. 

• Fourthly, arrange the fitness values of all populations in 
ascending order, then evaluate the best locations of the 
crocodiles and update these locations using Equations (27 
and 28). The improved positions of the crocodiles will serve 
as new solutions. If the constraints are achieved or the 
number of iterations reaches the maximum value, the 
crocodiles' locations will represent the optimal solution.  

• Finally, the optimal results are displayed, including the 
number of hidden sublayers, the number of neurons within 
each hidden layer, the weights and biases factors, and the 
activation functions associated with the best crocodile 
locations. Figure 7 illustrates the flowchart of the proposed 
MFFNN-RSA hybrid model in detail. 

The proposed MFFNN-RSA hybrid model is trained and tested 
using a group of 100 patterns. These patterns are collected and 
then fed into the model to obtain the optimal architecture of the 
MFFNN. The training process of the MFFNN-RSA hybrid model 
is implemented using a MATLAB program (version 2020). A 
specific m-file is created to handle the training process of the 
MFFNN, while the ANN toolbox is utilized to model the 
proposed MFFNN. By applying the proposed RSA technique, 
the MFFNN-RSA hybrid model can determine the most suitable 
architecture for achieving the desired outcome. 

3. Results and discussion 

This section explores the results and discussion of the three 
tests presented in this paper. This includes the comparison 
among the four proposed PVT models viewed in figure 1, the 
results of the performance for the optimum model among the 
four presented with more parameter ranges, and the third of the 
MFFNN-RSA hybrid model. 

3.1 Modules Comparison results and discussion. 

In this section, the temperature contours, temperature non-
uniformity, and the performance indicators of the different 
efficiencies are presented. The parameters tested in this test are 
solar irradiance of 400 and 1200 W/m2 and wind speed of 0 and 
3 m/s, which are equivalent to convection coefficient of 2.8 and 
11.8 W/m2.K, respectively. And 𝑚̇ of 0.003135 and 0.028218 
kg/s. 

3.1.1 Temperature Contours and Flow Streamlines. 

The temperature contours of Tav with test conditions of 1200 
W/m2 of irradiance, Tamb=Ti=293K, and convection coefficient 
of 2.8 W/m2.K for 𝐦̇ of 0.003135 kg/s and 0.028218 kg/s  are 
shown in Figure 8. The maximum temperature of the regular 
and irregular line distribution reaches 315.7K and 314.5K, 
respectively at low cooling flow rates, as observed in the 
subfigures (a) and (b). at the high flow rates, the maximum 
temperature of the regular and irregular line distribution reaches 
302.3K and 301.7K, respectively, as indicated in the subfigures 
(e) and (f). This temperature decrease is caused by increasing 
the convection due to the cooling flow rate. For the regular and 
irregular circle distribution, the maximum temperatures reach 
320.1K and 319.8K, respectively for low flow rates, as indicated 
in the subfigures (c) and (d). for the higher flow rates, this 
maximum temperature reaches 305.9K and 305.8K for the 
regular and irregular circle distributions, respectively, as 
indicated in the subfigures (g) and (h). 

It is observed that the line-distributed jets in the regular or 
irregular orientation achieve a lower maximum temperature 

 
 

Fig 7. Flowchart of MFFNN-RSA model 
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than the circle distribution in both flow rates. This refers to the 
distribution of the inlet flow rate on eight jets in the case of the 
line distribution. However, the inlet jets are 6 and 7 only in 
distribution the regular and irregular circular distributions, 
respectively. This larger number of inlet jets permits a more 
effective distribution of cooling over the panel. It can be noticed 
that the irregular distribution of the jets achieves lower 
temperatures in the line distribution for the nature of the 
irregular distribution of the jets. At higher flow rates, as 
indicated in subfigures (e), (f), (g) and (h), the PV temperature 
decreases more than the low cooling flow rates due to the higher 
convection coefficient in the cooling channels. 

Figure 9. shows the shape of the flow streamlines for the 
four flow configurations in the present test set. It can be 
observed that the line distribution of inlet jets represented by 

Figure 9. (a) and (b), guarantees the distribution of the 
streamlines fairly over the whole area, with small regions clear 
from the streamlines. This reflects a good contact of the CF 
flows through these streamlines to the panel and that the cooling 
effects reach larger areas. This explains the lower temperatures 
achieved by this distribution. However, the circular distribution 
leaves larger areas with no streamlines, thereby indicating that 
these regions are not affected well by the cooling process. 

3.1.2 Average temperature of the PV module 
 
Figure 10 shows variation of Tav of the tested cases with an 
ambient temperature of 293K and 313K under different 
irradiance power, convection coefficient and 𝑚̇. It can be 
observed that the case of irregular circle configuration of the jets 

  

(a) (b) 

  
(c) (d) 

 
 

(e) (f) 

  
(g) (h) 

Fig 8. Temperature contours for the PV surface under 𝑚̇ of 0.003135 kg/s for (a) Regular- line jets distribution, (b) Irregular- line 
jets distribution, (c) Regular- circle jets distribution, and (d) Irregular- circle jets distribution. And under 𝑚̇ of 0.028218 kg/s for (e) 

Regular- line jets distribution, (f) Irregular- line jets distribution, (g) Regular- circle jets distribution, and (h) Irregular- circle jets 
distribution 
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achieves the lowest average temperature at low flow rates, 
which reaches 295.45K. In comparison, the regular line 
configuration reaches the lowest average temperature of 
293.89K at high flow rates as observed from the subfigure (a). It 

is evident that by increasing 𝑚̇, the temperature decreases in all 
cases. Moreover, the increase of the convection coefficient 
caused by the moving air around the panel helps decrease the 
average temperature, as observed in cases (b) and (d) compared 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
Fig 9. Streamlines under 𝑚̇ of 0.028218 kg/s for (a) Regular- line jets distribution, (b) Irregular- line jets distribution, (c) Regular- circle jets 
distribution, and (d) Irregular- circle jets distribution. 

 

 

    
(a) (b) (c) (d) 

    

(e) (f) (g) (h) 

Fig 10. Tav behaviour at Tamb=293K under (a) IS=400 W/m2, hconv=2.8 W/m2.K, (b) IS=400 W/m2, hconv=11.8 W/m2.K, (c) IS=1200 
W/m2,hconv=2.8 W/m2.K, and (d) IS=1200 W/m2,hconv=11.8 W/m2.K, and at Tamb=313K under (e) IS=400 W/m2, hconv=2.8 W/m2.K, (f) 

IS=400 W/m2, hconv=11.8 W/m2.K, (g) IS=1200 W/m2,hconv=2.8 W/m2.K, and (h) IS=1200 W/m2,hconv=11.8 W/m2.K. 
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to (a) and (c), respectively. The subfigures (e), (f), (g) and (h) 
depicts the variation of Tav at ambient temperature of 313K. It 
can be observed that Tav rises as Tamb increases for all the cases 
compared to lower Tamb.  In general, it can be deduced that the 
four configurations achieve similar average temperatures when 
subjected to high flow rates. However, at low flow rates, the 
difference between the four configurations is around 1.5K in the 
most variant case. Table 2. Indicates the variation of Tav for the 
un-cooled case and the minimum cooled cases among the 
different configurations considering the highest cooling flow 
rate. 

For the most severe case of the maximum irradiance, 
maximum ambient temperature, and minimum convection 
coefficient, the system achieved a reduction of Tav by up to 

49.06K, compared to the uncooled system. This reduction 
reached 60.62K in some cases, as shown in Table 2. The value 
of the temperature reduction is minimal in the case of the low 
radiation intensity, which reaches 0.27K. 

3.1.3 Temperature un-uniformity distribution. 

The study of this parameter is important for preventing the 
thermal stresses caused by the temperature differences, which 
can result in different expansion of the PV material and lead to 
cracks. So, the distribution of the jets is important to keep this 
parameter as low as possible. Figure 11 shows the temperature 
un-uniformity factor (𝜹𝑻) variation through the different test 
cases at an ambient temperature of 293K and 313K. It is 
observed from Figure 11 that at low ambient temperature, the 
irregular line distribution achieves the lowest un-uniformity 
factor of less than 1K at low irradiance of 400 W/m2 (subfigures 
(a) and (b)), and less than 6K at high radiation power of 1200 
W/m2 (subfigures (c) and (d)). This behaviour is found to be very 
near to the regular line configuration in all the tested cases. The 
circle distribution of the jets shows the highest δT among these 
configurations. The lowest value of δT reach greater than 1K 
(subfigures (a) and (b)) and 8K (subfigures (c) and (d) at 400 
W/m2 and 1200 W/m2, respectively. With the increase of the 
cooling flow rate and the external convection coefficient, this 
factor decreases due to enhancing the PV cooling. 

At high ambient temperatures the values of δT even 
decrease down to 0.4K and 5K in cases of radiation powers of 
400 (subfigures (e) and (f)) and 1200W/m2 (subfigures (g) and 
(h)), respectively, for the irregular distributions. This decrease is 

Table 2 
The variation of Tav for the cooled and uncooled cases. 

Tmin 

[K] 
IS 

[w/m2] 
Tamb 
[K] 

hconv 
[W/m2.k] Tav [K] 

dT 
[K] 

299.6 1200 293.00 2.80 360.3 60.62 

299.1 1200 293.00 11.80 323.1 24.06 

318.8 1200 313.00 2.80 367.8 49.06 

318.3 1200 313.00 11.80 338.4 20.13 

293.9 400 293.00 2.80 303.6 9.70 

293.8 400 293.00 11.80 297.2 3.35 

313.1 400 313.00 2.80 313.8 0.71 

313.1 400 313.00 11.80 313.3 0.27 

 

 

   
 

(a) (b) (c) (d) 

 
 

 
 

(e) (f) (g) (h) 

Fig 11. The behaviour of  δT of the PV module at Tamb=293K and (a) IS=400 W/m2, hconv=2.8 W/m2.K, (b) IS=400 W/m2, hconv=11.8 
W/m2.K, (c) IS=1200 W/m2,hconv=2.8 W/m2.K, and (d) IS=1200 W/m2,hconv=11.8 W/m2.K, and at Tamb=313K under (e) IS=400 W/m2, 

hconv=2.8 W/m2.K, (f) IS=400 W/m2, hconv=11.8 W/m2.K, (g) IS=1200 W/m2,hconv=2.8 W/m2.K, and (h) IS=1200 W/m2,hconv=11.8 W/m2.K. 
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caused by the increase of the lower temperature of the PV panel, 
causing the difference between the higher and lower 
temperatures to decrease. The irregular-line distribution 
achieved the best performance for high irradiance powers 
followed by the regular-line configuration. However, at low 
radiation power, the irregular line configuration achieves lower 
δT values at low flow rates, while at high flow rates, the irregular 
circle configuration achieves lower δT by 0.02K.  

As a general comment on the temperature performance of 
the four tested configurations within the tested parameter 
ranges, it can be deduced that the irregular-line case is the best 
case regarding 𝛿𝑇, and it is similar to the other configurations in 
an acceptable range regarding Tav. 

3.1.4 Energy Efficiencies. 

The overall, thermal, and electrical efficiencies of the four tested 
configurations are explored in the present section, The PV 
panel’s electrical efficiency is inversely proportional to its 
temperature according to the equation (11).  So, it is normal to 
find that the maximum efficiency of the test cases is achieved at 
the lowest average temperature configuration. Figure 12 shows 
the electrical efficiency of the different tested configurations 
under various test conditions. It is observed that the highest 
efficiency of 14.2% is achieved at the low ambient temperatures 
depicted in the subfigures (a), (b), (c), and (d) by the regular line 
configuration at the highest cooling flow rate. However, at high 
ambient temperatures, the electrical efficiency decreases to a 
maximum of 13.13% at the highest cooling flow rate, as shown 
in subfigures (e), (f), (g), and (h). At low cooling flow rates, the 
irregular-circular configuration achieves the highest electrical 
efficiency reaching 13.13%, while the regular-line configuration 

achieves the highest electrical efficiency of 13.14% under high 
flow rates. 

The value of 𝜂𝑡 depends on the quantity of heat collected 
by the CF with respect to the entering solar radiation energy as 
expressed by equation (13). Figure 13 shows the variation in 𝜂𝑡 
of the different test cases under various test parameters. It can 
be observed that 𝜂𝑡 increases with the radiation intensity 
increase, at low ambient temperature in the subfigures (a), (b), 
(c) and (d), the thermal efficiency reaches up to 19.7% and 49%, 
at 400 W/m2 (subfigures (a) and (b)) and 1200 W/m2 (subfigures 
(c) and (d)), respectively, for the  irregular-line configuration.  
For higher ambient temperature of 313K, the thermal efficiency 
reaches up to 45.8% and 42.6% at 400 W/m2 (subfigures (e) and 
(f)) and 1200 W/m2 (subfigures (g) and (h)), respectively. 

The 𝜂𝑜 variation for the PVT system understudy is 
indicated in figure 14. The value of 𝜂𝑜 in this study considers the 
summation of 𝜂𝑒 and 𝜂𝑡 and the pumping losses exerted for the 
CF flow as expressed in equation (14). It is noticed that the 
increase of the external convection coefficient causes a 
decrease in ηO. This is caused by the decrease in 𝜂𝑡 principally. 
It is noticed that 𝜂𝑜 is affected by 𝜂𝑡 more than 𝜂𝑒, due to its 
higher value in most cases. the overall efficiency reaches up to 
33.9% and 49%, at 400 W/m2 (subfigures (a) and (b)) and 1200 
W/m2 (subfigures (c) and (d)), respectively, for the irregular-line 
configuration.   

For higher ambient temperature of 313K, the thermal 
efficiency reaches up to 14.7% and 55.4% at 400 W/m2 

(subfigures (e) and (f)) and 1200 W/m2 (subfigures (g) and (h)), 
respectively. In general, the factors affecting 𝜂𝑡 have the same 
effect trend on 𝜂𝑜. This is clear from the inverse proportionality 
of 𝜂𝑜with Tamb and hconv, and its positive proportionality with the 
radiation intensity and 𝑚̇. The configuration that achieved the 
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Fig 12. The response of ηe of the PV module at (a) IS=400 W/m2, hconv=2.8 W/m2.K, Tamb=293K  (b) IS=400 W/m2, hconv=11.8 
W/m2.K, Tamb=293K   (c) IS=1200 W/m2,hconv=2.8 W/m2.K, Tamb=293K, (d) IS=1200 W/m2,hconv=11.8 W/m2.K, Tamb=293K, (e) IS=400 

W/m2, hconv=2.8 W/m2.K, Tamb=313K  (f) IS=400 W/m2, hconv=11.8 W/m2.K, Tamb=313K   (g) IS=1200 W/m2,hconv=2.8 W/m2.K, 
Tamb=313K, (h) IS=1200 W/m2,hconv=11.8 W/m2.K, Tamb=313K. 
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higher overall efficiency is the irregular-line configuration for 
most of the cases, as observed from Figure 14. 

3.2 Optimization Results  

In this subsection, the results of the optimum configuration 
case found in the comparison among the four tested 
configurations are discussed. The criteria of the comparison are 

the lowest 𝛿𝑇 and the highest 𝜂𝑜. These conditions are met in 
the irregular-line inlets configuration as indicated in the results 
discussed in section 3.1. In the present test, some ranges of the 
boundary parameters are extended to make a solution database 
that is used for the training of the proposed MFFNN-RSA hybrid 
model in this research. The solar irradiance power values used 
are 400, 800, and 1200 W/m2. The ambient temperature values 
are 293, 303, and 313K. The convection coefficient values are 
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Fig 13. The response of ηt of the PV module at (a) IS=400 W/m2, hconv=2.8 W/m2.K, Tamb=293K  (b) IS=400 W/m2, hconv=11.8 W/m2.K, 
Tamb=293K   (c) IS=1200 W/m2,hconv=2.8 W/m2.K, Tamb=293K, (d) IS=1200 W/m2,hconv=11.8 W/m2.K, Tamb=293K, (e) IS=400 W/m2, 

hconv=2.8 W/m2.K, Tamb=313K  (f) IS=400 W/m2, hconv=11.8 W/m2.K, Tamb=313K   (g) IS=1200 W/m2,hconv=2.8 W/m2.K, Tamb=313K, (h) 
IS=1200 W/m2,hconv=11.8 W/m2.K, Tamb=313K. 
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Fig 14. The response of  ηo of the PV module at (a) IS=400 W/m2, hconv=2.8 W/m2.K, Tamb=293K  (b) IS=400 W/m2, hconv=11.8 W/m2.K, 
Tamb=293K   (c) IS=1200 W/m2,hconv=2.8 W/m2.K, Tamb=293K, (d) IS=1200 W/m2,hconv=11.8 W/m2.K, Tamb=293K, (e) IS=400 W/m2, 

hconv=2.8 W/m2.K, Tamb=313K  (f) IS=400 W/m2, hconv=11.8 W/m2.K, Tamb=313K   (g) IS=1200 W/m2,hconv=2.8 W/m2.K, Tamb=313K, (h) 
IS=1200 W/m2,hconv=11.8 W/m2.K, Tamb=313K. 
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2.8, 11.8, and 17.8 W/m2.K, which are equivalent to wind 
speeds of 0, 3, and 5 m/s, respectively, according to equation 
(9). The used 𝑚̇ are 0.00314, 0.0282, and 0.0533 kg/s. 

3.2.1 Average Temperature and Temperature Un-Uniformity. 

Figure 15 shows the variation of Tav according to different 
conditions of, convection coefficients, inlet temperatures, solar 
radiation, and cooling flow rates. The value of Tav reaches 
293.6K (subfigure a), 303.4K (subfigure b), and 313K (subfigure 
c), for 400 W/m2 and Tamb of 293, 303, and 313K, respectively. 
As the radiation intensity increases to 800 W/m2, the value of 
Tav reaches 295.7K (subfigure d), 305.4K (subfigure e), and 315K 
(subfigure f), for Tamb of 293, 303, and 313K, respectively. For 
the highest radiation intensity of 1200 W/m2, the value of Tav 

reaches 297.7K (subfigure g), 307.4K(subfigure h), and 317.1K 
(subfigure i), for Tamb of 293, 303, and 313K, respectively. It is 
observed that the higher convection coefficient helps in 
decreasing Tav due to the external forced convection effect. 
Similarly, the higher cooling flow rate helps in decreasing Tav. 
However, the higher radiation intensity and ambient 

temperature increase the thermal load on the PV module and as 
a result increase Tav. 

The variations of  𝛿𝑇 is shown in Figure 16. It is noticed 
that the increase of the external convection coefficient enhances 
the temperature distribution by decreasing 𝛿𝑇. This effect is 
achieved by increasing the cooling flow rate as well. The value 
of 𝛿𝑇 reaches 0.51K (subfigure a),0.36K (subfigure b), and 0.33K 
(subfigure c), for 400 W/m2 and Tamb of 293, 303, and 313K, 
respectively. At 800 W/m2, the value of 𝛿𝑇 reaches 2.5K 
(subfigure d), 1.9K (subfigure e), and 1.7K (subfigure f), for Tamb 
of 293, 303, and 313K, respectively. At 1200 W/m2, the value of 
𝛿𝑇 reaches 3.8K (subfigure g), 3.54K (subfigure h), and 3.8K 
(subfigure i), for Tamb of 293, 303, and 313K, respectively. 

In general, this behaviour refers to the cooling effect 
provided by the external wind speed increase and the CF flow 
rate. The value of 𝛿𝑇 reaches as maximum as 7.7K at the highest 
IS of 1200 W/m2, and lowest cooling flow rate, ambient 
temperatures, and lowest convection coefficient. However, as 
an exceptional case, at radiation of 400 W/m2, and Tamb of 313K 
(case c, in figure 16), the increase of the flow rate increases the 
un-uniformity. This may refer to the heating load caused by the 
high Tamb and hconv with the high cooling provided by the CF. As 
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Fig 15. Average temperature variation for cases (a) IS=400 W/m2, Tamb =293K, (b) IS=400 W/m2, Tamb =303K, (c) IS=400 W/m2, 

Tamb =313K, (d) IS=800 W/m2, Tamb =293K, (e) IS=800 W/m2, Tamb =303K, (f) IS=800 W/m2, Tamb =313K, (g) IS=1200 W/m2, 

Tamb =293K, (h) IS=1200 W/m2, Tamb =303K, (i) IS=1200 W/m2, Tamb =313K. 
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the difference between the external temperature and the CF 
temperature increases, the un-uniformity increases. As the 
difference in this case is around 0.5K, as indicated in Figure 16 
(c), the difference in the uniformity reached as low as 0.02K 
according to the flow rate increase. So, this behaviour in that 
specific case can be neglected as the variation is very low. 

3.2.2 Energy Efficiency Variations 

In this section, the variations of 𝜂𝑒, 𝜂𝑡, and 𝜂𝑜 are 
discussed. Figure 17. indicates the response of 𝜂𝑒 for the 
different test parameters. It is found that 𝜂𝑒 is inversely 
proportional to Tav, according to equation (11). The value of 
𝜂𝑒reaches 14.25% (subfigure a), 13.7% (subfigure b), and 13.14% 
(subfigure c), for 400 W/m2 and Tamb of 293, 303, and 313K, 
respectively. As the radiation intensity increases to 800 W/m2, 
the value of 𝜂𝑒 reaches 14.13% (subfigure d), 13.6% (subfigure 
e), and 13.23% (subfigure f), for Tamb of 293, 303, and 313K, 
respectively. For the highest radiation intensity of 1200 W/m2, 
the value of 𝜂𝑒 reaches 14% (subfigure g), 13.5% (subfigure h), 
and 12.9% (subfigure i), for Tamb of 293, 303, and 313K, 
respectively. 

It is observed that the external convection coefficient 
and the cooling flow rate have a positive effect in enhancing 𝜂𝑒. 
However, both of IS and Tamb negatively affect 𝜂𝑒. The 
maximum value of 𝜂𝑒 reached 14.25% in the case of the lowest 

IS and Tamb, with the highest convection coefficient and fluid 
cooling rate. 

The variation in 𝜂𝑡 for the test cases is shown in Figure 
A.1. The value of 𝜂𝑡  is observed to be affected positively by IS, 
and 𝑚̇, while affected negatively by hconv and Tamb. The value of 
𝜂𝑡 reaches 20% (subfigure a), 11.2% (subfigure b), and 1.2% 
(subfigure c), for 400 W/m2 and Tamb of 293, 303, and 313K, 
respectively. As the radiation intensity increases to 800 W/m2, 
the value of 𝜂𝑡 reaches 42.2% (subfigure d), 37.7% (subfigure e), 
and 32.8% (subfigure f), for Tamb of 293, 303, and 313K, 
respectively. For the highest radiation intensity of 1200 W/m2, 
the value of 𝜂𝑡 reaches 49.6% (subfigure g), 46.5% (subfigure h), 
and 43.2% (subfigure i), for Tamb of 293, 303, and 313K, 
respectively. 

It is clear that the increase in IS increases the energy 
content incident on the PV module. Additionally, increasing the 
𝑚̇ enhances the convection coefficient, thereby improving the 
harvesting of this incident energy as thermal energy. The 
increase of the hconv increases the loss of the thermal energy to 
the ambient. So, it negatively affects 𝜂𝑡. The ambient 
temperature increase negatively affects 𝜂𝑡 because the inlet CF 
temperature equals to Tamb in the test cases. As the entering 
temperature of the CF increases, its ability for heat collection 
decreases. This decreases the collected thermal energy in case 
of high Tamb, and hence decreases 𝜂𝑡. The best 𝜂𝑡 in this 
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Fig 16. δT variation for the PV surface for the cases: (a) IS=400 W/m2, Tamb =293K, (b) IS=400 W/m2, Tamb =303K, (c) IS=400 
W/m2, Tamb =313K, (d) IS=800 W/m2, Tamb =293K, € IS=800 W/m2, Tamb =303K, (f) IS=800 W/m2, Tamb=313K, (g) IS=1200 

W/m2, Tamb=293K, (h) IS=1200 W/m2, Tamb=303K, (i) IS=1200 W/m2, Tamb=313K. 
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configuration is 49.5% at the highest €S and 𝑚̇ with the lowest 
Tamb and hconv. 

The value of 𝜂𝑜 is shown in Figure A.2. It is noticed that 
the cases with lower hconv and lower Tamb achieve higher 𝜂𝑜. 
However, the higher 𝑚̇ and I, the higher is 𝜂𝑜. This effect is 
encountered with 𝜂𝑡. The value of 𝜂𝑜 reaches 34.2% (subfigure 
a), 24.9% (subfigure b), and 14.8% (subfigure c), for 400 W/m2 

and Tamb of 293, 303, and 313K, respectively. As the radiation 
intensity increases to 800 W/m2, the value of 𝜂𝑜 reaches 56.3% 
(subfigure d), 51.3% (subfigure e), and 45.8% (subfigure f), for 
Tamb of 293, 303, and 313K, respectively. For the highest 
radiation intensity of 1200 W/m2, the value of 𝜂𝑜 reaches 63.5% 
(subfigure g), 60% (subfigure h), and 56% (subfigure i), for Tamb 
of 293, 303, and 313K, respectively. It is noticed that the system 
achieved the highest 𝜂𝑜of 63.5% at the case of the highest 𝑚̇ and 
I, and lowest hconv and Tamb. 

3.3 MFFNN-RSA hybrid model  

Several MFFNN architectures are employed, all featuring 
four inputs (Tamb, I, 𝑚̇, and hconv ) and six outputs (Tav, Tut, 𝛿T, 𝜂𝑒, 
𝜂𝑡 , and 𝜂𝑜 ). However, the number of hidden neurons varies 
across the models. The fitness function used to assess the 
optimal neurons’ number in the hidden layers relies on the 
MSE, obtained during the testing and training processes. The 
most successful network configuration is achieved with 12 and 

15 neurons in the first two hidden layers, respectively with six 
output neurons, resulting in a (4-12-15-6) architecture. A 
sigmoid transfer function is selected for the two hidden layers. 

The output layer of the proposed MFFNN-RSA can 
minimize the MSE to a final value of 0.4857E-3 within 106 
iterations. Figure 18 illustrates the MSE training error 
convergence diagrams for the MFFNN-RSA. After selecting the 
appropriate processing steps for the input and target data 
patterns, the suitable hidden layers’ number is selected, and the 
MFFNN-RSA has been trained. 

Figure A.3 depicts the testing, validating, and training 
regression factor, R, for the proposed MFFNN-RSA hybrid 
model. The regression factor values for the training, validation, 
and training are equal to one.  This indicates that the proposed 
MFFNN-RSA hybrid model effectively predicts the true values 
of PVT performance (Tav, Tot, 𝛿T, 𝜂𝑒, 𝜂𝑡, and 𝜂𝑜). Furthermore, 
the RSA attains the optimum architecture of the MFFNN model. 
Figure A.4 illustrates a comparison between the predicted PVT 
parameters obtained from the MFFNN-RSA hybrid model and 
the actual training dataset patterns, which consist of 81 patterns. 
The figures clearly demonstrate that the predicted parameters 
derived from the MFFNN-RSA model are closely aligned with 
the measured parameters. 

Once the optimal parameters and structure of the 
MFFNN-RSA hybrid model are obtained, its performance is 
evaluated using different datasets that were not utilized during 
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Fig 17. ηe variation for the cases: (a) IS=400 W/m2, Tamb=293K, (b) IS=400 W/m2, Tamb=303K, (c) IS=400 W/m2, Tamb=313K, (d) 
IS=800 W/m2, Tamb=293K, € IS=800 W/m2, Tamb=303K, (f) IS=800 W/m2, Tamb=313K, (g) IS=1200 W/m2, Tamb=293K, (h) IS=1200 

W/m2, Tamb=303K, (i) IS=1200 W/m2, Tamb=313K. 
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the training process. The purpose of this evaluation is to 
evaluate the capability of the MFFNN-RSA hybrid model to 
generalize and extrapolate. The proposed MFFNN-RSA hybrid 
model undergoes testing with various scenarios comprising 19 
patterns. In Figure A.5, a visual comparison is presented 
between the predicted values of Tav, Tot, 𝛿T, 𝜂𝑒, 𝜂𝑡, and 𝜂𝑜 
generated by the MFFNN-RSA hybrid model, and the 
corresponding actual output values. This comparison 
showcases the MFFNN-RSA hybrid model’s capability to 
predict the desired values accurately. 

As shown from Figure A.5, the predicted values closely 
match the actual values. It indicates that the MFFNN-RSA 
hybrid model has successfully learned the underlying patterns 
and relations in the data and can accurately predict the desired 
values. By combining the power of the MFFNN architecture, the 
optimization capabilities of the RSA, and rigorous testing 

procedures, the MFFNN-RSA hybrid model is able to achieve 
accurate predictions of the desired values. 
 

4. Economic and Environmental Analysis 

As the proposed PVT system is suggested as a cogeneration 
system for smart buildings, it was beneficial to analyze its 
economic viability. An economic analysis has been performed 
for the PVT system understudy, compared to the PV system 
using the method provided by (Yanhua et al., 2019). The full 
analysis is shown in Table 3. It can be noticed that the cost of 
electric energy production is decreased by 11.6%. Moreover, 
the production of hot water costs 0.02 $/kW.hr, even if the 
temperature is not very high, it can be used for preheating 
applications. The total energy production cost reached 0.0474 
$/kW.hr in the proposed PVT system, compared to 0.1189 
$/kW.hr for the PV system only. The overall yearly energy 
production reached 582.0 kW.hr/m2 which reduces CO2 
emissions by 215.3 kg/m2.year according to the CO2 production 
rates mentioned in (Hamieh et al., 2022). 

5. Conclusions 

This work presented novel configurations of jet cooling in 
a proposed PVT system as a compact solution for smart 
buildings. The configurations included varying the jets 
distribution on the cooling plate in a regular or irregular 
distribution. Moreover, in each distribution, the jets considered 
as flow inlets were linearly or circularly distributed, while the 
other jets were considered as outlets. The study compared the 
four configurations considering the PV average temperature, 
temperature un-uniformity of the PV, electrical, thermal, and 
overall efficiency of the system. After the first test, an optimum 
configuration was identified to be used in the second test set. 

 
Fig 18. The most convergent training performance of the 

MFFNN after using the RSA. 

 

 

 

Table 3  
Economic analysis comparison for the PV and PVT system under study.  

Item  PV system PVT system 

Initial cost (P) [$] 50.00 70.00 

Salvage value (S) [$] 5.00 7.00 

Lifetime (n) [year] 20.0 20.0 

Rate of interest (i) 12.0% 12.0% 

Factor of recovery (RF) 0.134 0.134 

Sink fund factor (SFF) 0.014 0.014 
First Year cost (FYC=RF × P) [$] 6.694 9.372 

Yearly salvage value (YSC=SFF × S) [$] 0.069 0.097 
Yearly maintenance cost (YMC=0.05 × FYC) [$] 0.335 0.469 

Totla yearly cost (YC=FYC+YMC-YSV) [$] 6.959 9.743 

𝜂𝑒 12.600 14.250 
𝜂𝑡 0.00 30.03 

Average daily electricity production [kW.hr/m2] 0.454 0.513 
Average daily thermal production [kW.hr/m2] 0.000 1.081 
Electricity energy productivity per year[kW.hr/m2] 58.543 66.210 

Thermal energy productivity per year [kW.hr/m2] 0.000 139.529 

Electric KW.hr cost [$/kW.hr] 0.1189 0.1051 

Thermal KW.hr cost [$/kW.hr] - 0.0200 

Total kW.hr cost [$/kW.hr] 0.1189 0.0474 
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Then, an MFFNN-RSA hybrid was created for the prediction of 
the optimum configuration with input parameter ranges of 293 
to 313K for ambient temperature, 400, 800, and 1200 W/m2 for 
irradiance intensity, 0.00314, 0.028, and 0.0533 kg/s for cooling 
flow rate, and 2.8,11.8, and 17.8 W/m2K for external convection 
coefficients. The maximum temperature decrease achieved by 
the presented configuration reached 60.62K compared to the 
uncooled case while the minimum temperature un-uniformity 
reached 1K and 6K for 400 and 1000 W/m2, respectively. The 
increase of the ambient temperature found to minimize the 
temperature un-uniformity in all the cases. The irregular-line 
configuration achieved the best overall efficiency of 62.9% at a 
radiation power of 1200 W/m2, and cooling flowrate of 0.028 
kg/s. The ambient temperature and the radiation intensity were 
found to increase the average temperature of the PV module, 
and as a result, the electrical efficiency decreased. However, the 
high cooling flow rate and external convection coefficient were 
found to increase the electrical efficiency. The radiation 
intensity and the flow rate had a positive effect on the overall 
and thermal efficiencies. In contrast, the ambient temperature 
and the convection coefficient had a negative effect on the 
overall and thermal efficiencies. The irregular line configuration 
achieved an overall efficiency of 63.54% with values of 49.6% 
and 14.3% of thermal and electrical efficiencies, respectively, 
considering irradiance intensity of 1200 W/m2, cooling flow rate 
of 0.0533 kg/s, ambient temperature of 293K and external 
convection coefficient of 2.8 W/m2K. The economic analysis 
revealed a reduction of the electricity production price by 
11.6%. The proposed PVT system’s overall energy cost reached 
0.0474 $/kW.hr with a reduction in the yearly Co2 emissions by 
215.3 kg/m2. The proposed MFFNN-RSA hybrid model 
minimized the MSE to a final value of 0.4857×10-3 within 106 
epochs. The regression factor values for the testing, validation, 
and training of the MFFNN-RSA hybrid model were equal to 
one.  This denotes that it can effectively predict the true values 
of PVT performance. Combining the MFFNN architecture and 
the optimization capabilities of the RSA into the MFFNN-RSA 
hybrid model could achieve accurate predictions of the desired 
values. The proposed MFFNN-RSA hybrid model had the ability 
to generalize and extrapolate. 
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Appendix A
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Fig A.1. Variation of ηt for the cases: (a) IS=400 W/m2, Tamb=293K, (b) IS=400 W/m2, Tamb=303K, (c) IS=400 W/m2, 
Tamb=313K, (d) IS=800 W/m2, Tamb=293K, € IS=800 W/m2, Tamb=303K, (f) IS=800 W/m2, Tamb=313K, (g) IS=1200 W/m2, 

Tamb=293K, (h) IS=1200 W/m2, Tamb=303K, (i) IS=1200 W/m2, Tamb=313K. 
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Fig A.2. 𝜂𝑜 variation for the cases: (a) IS=400 W/m2, Tamb=293K, (b) IS=400 W/m2, Tamb=303K, (c) IS=400 W/m2, Tamb=313K, 
(d) IS=800 W/m2, Tamb=293K, € IS=800 W/m2, Tamb=303K, (f) IS=800 W/m2, Tamb=313K, (g) IS=1200 W/m2, Tamb=293K, (h) 

IS=1200 W/m2, Tamb=303K, (i) IS=1200 W/m2, Tamb=313K. 
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Fig A.4. Comparison between the MFFNN-RSA hybrid model and the training data. 
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Fig A.3. The regression diagram for the MFFNN-RSA (a) training, (b) validation, (c) testing, and (d) overall stages 
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Fig A.5. Comparison between the MFFNN-RSA hybrid model and testing data output. 
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