Int. J. Renew. Energy Dev. 2024, 13 (4), 581-600
| 581

BIYRE

INTERNATIONAL JOURNAL OF
RENEWABLE ENERGY DEVELOPMENT

Contents list available at CBIORE journal website

iji Q Rﬁ International Journal of Renewable Energy Development

Journal homepage: https://ijred.cbiore.id

Research Article

Optimization of the PVT performance with various orientations of
jets and MFFNN-RSA prediction model for smart buildings

Ali Al-Otaibi®®, Ahmed Y. Hatata>*®, Mansoor Alrugi®, Aasem Alabdullatief®®,
Mohamed A. Essa®"

“Department of Civil Engineering, College of Engineering, Shaqra University, Dawadmi, 11911 Riyadh, Saudi Arabia.

®Department of Electrical Engineering, College of Engineering, Shaqra University, Saudi Arabia.

‘Electrical Engineering Department, Engineering College, Mansoura University, Egypt

Department of Mechanical Engineering, College of Engineering, Shaqra University, Dawadmi, 11911 Riyadh, Saudi Arabia.

*Department of Architecture and Building Science, College of Architecture and Planning, King Saud University, Riyadh 11421, Saudi Arabia.
IDepartment of Mechanical Power Engineering, Faculty of Engineering, Zagazig University, 44519 Zagazig, Egypt.

Abstract. The combined thermal and photovoltaic technology in PV/T systems is considered as a greatly promising technology for smart buildings.
Thus, investigations for enhancing the PV/T performance are still proceeding. This research presents an investigation for novel configurations of
cooling jets for the PVT system. The linear and circular distribution for the inlet jets considering regular and irregular positioning for all the jets as
new cooling configurations are implemented. Moreover, the proposed geometrical configurations are optemized regarding the performance to identify
the most suitable configuration that achieves the optimum efficiency and temperature. Furthermore, a novel hybrid ANN model is presented for
predicting the performance of the PVT systems. This model combines the multi-feedforward neural network (MFFNN) with an optimization technique
called reptile search algorithm (RSA). The proposed model can process the studied parameters to predict the PVT performance parameters (top
surface temperature, temperature un-uniformity, outlet temperature, and efficiencies). The proposed MFFNN-RSA model minimized the mean square
error to less than 0.4857-10°. The maximum temperature decrease achieved by the presented configuration reached 60.62K compared to the
uncooled case, while the minimum temperature un-uniformity reached 1K and 6K for 400 and 1000 W/m?, respectively. The increase of the ambient
temperature found to decrease the temperature un-uniformity in all the cases. The irregular jet with the linear distribution was found to achieve the
optimum performance of the overall, thermal, and electrical efficiencies of 63.5%, 49.6%, and 14.25%, respectively. Furthermore, the electricity
production cost was reduced by 11.6%, and the yearly CO; emissions were reduced by 215.3 kg/m? compared to the normal PV system. The proposed
irregular-line distribution of the jets is found to be the best configuration regarding the temperature of the PV model and the overall efficiency
considering the pumping losses.
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1. Introduction classified into passive and active. Passive cooling considers fins
and extending surfaces to enlarge the heat transfer, while active
cooling applies forced convection. The active cooling type is
usually more expensive than passive cooling as it needs
pumping power. However, it achieves better performance than
the passive cooling (Dwivedi et al.,, 2020) (Gharzi et al.,, 2020).
The active cooling method applies many configurations to
achieve forced convection. These configurations include
serpentine, parallel flow channels, and impingement-jet flow. A
cooling channel in which an inclined perforated plate is
responsible for the flow distribution over the metal plate
attached to the PV back was investigated numerically in (Zhang
et al. 2022). For every 1x10°3 kg/s increase in the cooling mass
flow rate (1), enhancements in the thermal efficiency (7,) and
ne by 0.086% and 0.92%, respectively, were achieved.
Furthermore, a forced airflow channel attached to the back side

Photovoltaic systems are a compact and clean method for
converting solar to electrical energy, as they account for 60% of
renewable energy conversion in the world (Koohestani et al,
2023). Using such systems participates in sustainability and
reduces the carbon footprint created by traditional power
generation systems. However, the increase in the PV
temperatures negatively affects its efficiency. Different cooling
techniques were proposed for enhancing the electrical
efficiency (n.) of the PV systems. Moreover, the harvested
thermal energy from the cooling process could be counted as a
by-product that increased the overall system efficiency (1,) by
up to 81% (Hasan et al., 2018). With this high energy conversion
efficiency, these systems can be considered as a compact and
clean solution for hot water and electricity supply in smart cities.
According to the cooling method, PV cooling methods are
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of the PV-module was tested experimentally (Patil et al., 2023).
Due to the forced convection air cooling, the PV average
temperature (Tav) was reduced by 9°C, and 7, increased by 80%
using m of 0.08kg/s. Extra enhancement for the cooling process
was tested using finned air flow channels (Ozcan et al, 2021).
Flat and curved fins with thicknesses of 1.5, 3, and 5 mm were
investigated under an air velocity of 5 m/s. This could decrease
the PV panel's temperature by 21°C with the flat fins. The
curved fins caused higher pressure drops than the flat ones. The
maximum electrical efficiency was found to reach 18.92%.
Various baffle orientations in the air channel of a PVT system
were tested numerically, as well, by (Song et al., 2023). The
optimum orientation of the baffles achieved improvements in 7,
and 1, by 4.3% and 12.9%, respectively. Aluminum fins were
tested under different geometries as a heat sink for cooling the
PV panel (Bayrak et al., 2019). Among the tested configurations
of the fins, the optimum electrical efficiency achieved was
11.55%. A PVT system with underground pre-cooled air was
investigated experimentally by (Elminshawy et al., 2019). The
value of T. was decreased by 13°C, and n,was improved by
18.9%. A new idea for the PVT system was to partially cover a
solar collector with a PV module (Kazemian et al.,, 2023). This
achieved an improvement of 31.24% in the overall power
output. Furthermore, it reduced the payback period of the
system by 35.07% as per the PV system alone. Water spray was
also applied to increase the relative humidity of air through a
cooling channel attached to the PV Panel (Zhang et al. 2023).
This achieved a reduction of approximately 17°C in Ta. An air-
cooled PVT system using a converging channel was tested
experimentally and numerically (Baloch et al., 2015). Different
convergence angles of the channel were tested in comparison
with the uncooled PV case. A significant PV temperature
reduction was noticed using the proposed converging channel.
An improvement in 17, by 36.1% was achieved, and an economic
study concluded that the cost was reduced 19.5% compared to
the uncooled case.

A variety of systems use water as a cooling fluid (CF). This
enhances the rate of heat transfer referring to the large specific
heat of water and its various applications as hot water. A water-
cooled system with twisted tabs inside the riser tubes attached
to the PV panel was tested experimentally (Kalateh et al., 2022).
Both clockwise and counterclockwise twist directions were
investigated. The use of the twisted taps in the riser tubes
increased the energy efficiency by 28.4%. Water-propylene
glycol as a CF was used in a cooling channel with small spaced
dorsal-shaped transverse saliences through a numerical
simulation by (Yildirim et al, 2022). The achieved 7, and
ne reached 17.79% and 76.13%, respectively. This test was
conducted at the normal operating cell temperature (NOCT)
conditions with a cooling fluid inlet temperature of 15°C and a
flow rate of 0.014 kg/s. Although this study achieved very
elevated 7, it did not account for the pressure drop of the
pumping power consumed.

As the flow direction affects the heat transfer process, the
angle encountered between the temperature gradient and the
velocity gradient is preferred to be smaller according to the field
synergy theory (Shen et al., 2021) (Li et al, 2020) (Essa et al.,
2023). One of the techniques that agrees with the synergy theory
is the impingement-jet flow. An investigation was performed
experimentally for the performance of the impingement jet
nozzle cooling of the PV with different distributions, diameters,
and nozzle to PV module spacing (Javidan & Moghadam, 2021).
The nozzle-to-PV distance that achieved the best cooling for the
PV was five times the nozzle diameter, which was the minimum
value in this test parameter. This configuration decreased the
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average PV temperature by around 30°C. The densest nozzle
distribution achieved the best cooling effect for the PV.
Moreover, with 0.014 kg/s of i and a 4 mm nozzle-diameter,
the jet cooling could achieve 7, and 71, of 10.2% and 82.3%,
respectively (Khalaf et al, 2023). One of the normal flow
solutions that presents a cheap manufacturing method is a
perforated plate parallel to the PV in which the cooling stream
passes through its holes normally on the PV module. An
experimental indoor investigation was performed on the
perforated plate to study its cooling effect for the PV module,
using air as a CF (Ewe et al.,, 2022). The system achieved the
optimum 7, and 1, of 10.36% and 57.3%, respectively.

Recently, machine learning (ML) methodologies,
including artificial neural networks (ANNSs), have proven their
utility in modeling the performance of thermal and electrical
systems like PV systems and heat exchangers. As a result,
employing the ANN as a methodology for predicting the PVT
systems’ performance under various external and internal
scenarios has been widely used recently. This includes; fluid m,
climate variations, and system design parameters that can be
deemed appropriate (Gunasekar et al., 2015) (Kalani et al., 2017)
(Ahmadi et al., 2019).

The feed-forward neural networks (FFNNs) models were
applied to estimate the PVT evaporator’s performance in the
heat pumps (Gunasekar et al, 2015). It used the relative
humidity, wind speed, solar intensity, and air temperature, as
inputs in the FFNN model. The model successfully predicted the
PV cell temperature, efficiency, and evaporator heat gain.
Different ANNs were used in (Kalani et al., 2017) for modeling
the PVT with nanofluids as CF. The ANNs of the adaptive
neuro-fuzzy inference system (ANFIS), Radial-basis function
(RBFNN), and FFNN were applied to determine 7, of the PV,
and the collector fluid outlet temperature. Also, the optimal
structure of the networks was calculated by using the particle
swarm optimization technique. Moreover, the genetic
algorithm-back propagation (GA-BP) neural network model was
employed to enhance the concentrated parabolic collector
(CPC's) cavity absorber (Wei Wang Ming Li & Feng, 2017). Its
objectives were to reduce the heat losses, enlarges the system's
output energy and 7,. The results indicated that the GA-BP
model accurately estimated the intricate nonlinear relation
between the input/output parameters and surpassing the
predective accuracy of other methods. Also, the Least Squares
support vector machine (LS-SVM) and ANN were applied in the
PVT systems’ modelling and predict the thermal and electrical
efficiencies (Ahmadi et al,, 2019). The findings showed that the
LS-SVM exhibited the most superior performance. Various PVT
models were tested for the same conditions by using the FFNN
(Al-Waeli et al., 2019). It tested the nanofluid/Phase change
material (PCM), water-nanofluid PVT, water-based PVT, and
conventional PV. The FFNN model proved that 7, and 1, were
enhanced to 13.32% and 72%, respectively, by using
nanofluid/nano-PCM. Also, it achieved mean square errors
(MSEs) of 0.0282 and 0.0229 for the validating and training
phases, respectively. Thermal and FFNN models were
developed for performance prediction of various arrangements
of the PVT connected with thermoelectric cooler (PVT-TEC)
systems (Dimri et al., 2019). Three different configurations were
studied: Aluminum/semitransparent-based PVT-TEC water
collectors and opaque PVT-TEC collectors. The FFNN model
was used to obtain the exergy efficiencies and the fluid
temperature. Moreover, the FFNN was presented to model the
nanofluid-based solar collector performance (Delfani et al,
2019). It used the reduced temperature difference, collector
length, collector depth, nanofluid concentration, and flowrate to
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predict the efficiency and thermal performance. Predicting both
the Nusselt number and the collector's efficiency was obtained
with a minimum mean absolute percentage error (MAPE) of
2.576% and 1.470%, respectively. The performance potential of
various ANN models, such as LSTM, SOFM, SVM, SOVM, MLP,
GFF, and RNN, was thoroughly reviewed and compared for
data prediction in PVT collectors (Yousif et al, 2019). It was
concluded that the transverse zone exposed to moderate/high
irradiation, was deemed appropriate for the implementation of
solar systems. The generated energy from the PVT based on
nano-PCM, SiC-water, and nanofluid were enhanced in (Al-
Waeli et al, 2020). The ambient temperature and solar
irradiance were applied as inputs to the Self-organizing Feature
Map and the MLP networks. According to the evaluation
criteria, the models achieved an R? value of 0.8742, an RMSE
value of 0.149, an MSE value of 0.0223, and a trend accuracy of
59.7. A FFNN model was adopted to predict the PVT’s
efficiency in an air collector (Chaibi et al, 2021). The cell
temperature and solar irradiance were used as inputs to the
ANN model. Climatic samples of one year were used to train
and validate the FFNN under various weather variables. The
developed FFNN model showed MAPE of 0.0078% and
3.3607% in estimating 7, and 7, respectively. Different ANN
models were presented to optimize the efficiency of the nano-
coolant PVT systems (Cao et al., 2022). Four ANNs, LS-SVM
and ANFIS, were obtained by statistical and trial-and-error
analyses. It used the irradiation intensity and the nanofluid flow
rate as model inputs. The best prediction model was the ANFIS
model for predicting 1, where it predicted 200 patterns for
testing the model with MSE equal to 2.548, RMSE equal to 1.6,
and R? equal to 0.9534. Two distinct ANN models were
presented for predicting the PVT performance parameters
(outlet temperature, cell temperature, and exergy, thermal, and
electrical efficiencies) (Biytkalaca et al, 2023). The models
were specifically designed to utilize a cooling fluid of hexagonal
BN/water nanofluid. In the first set of models, every model was
created to forecast one specific performance parameter from
the set of five. On the other hand, the second set of models
employed an ANN model capable of predicting the five output
parameters simultaneously. The FFNN-BP algorithm was
consistently employed as a training algorithm across all models.

As can be deduced from the introduced literature, forced
flow aligned normally with the PV interface achieves good
cooling performance and elevated 7, of the system. The
direction of the flow concerning the PV module plays an
important role, and the normal flow of impingement jet flow
cooling showed a good cooling effect in the thermal modules
presented in the PVT systems. So, this paper studies the effect
of varying the configuration of the jet flow considering different
jet distributions, different distributions of the flow inlets and
outlets in each jet distribution, and varying the flow and
boundary test parameters. The paper presents the following
contributions:

e  Proposing a novel different configuration of jets on a cooling
plate. This study presents both linear and circular
distribution for the flow inlet jets over the cooling plate
considering regular and irregular positioning for all the jets
as new cooling configurations.

e The proposed distinct geometrical configurations are
studied to identify the most suitable configuration that
achieves the optimum efficiency and temperature.

e The different test parameters considered are mass flow
rates, radiation intensities, wind speeds, and ambient
temperatures.

e Building a numerical
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database using the optimum
configuration considering wider ranges of the test
parameters to be used as training material for the proposed
ANN model.

e Proposing a novel MFFNN-RSA hybrid model to forecast

the PVT system's performance as an application in smart
cities.

e Using the proposed RSA to identify the most convenient

parameters and architecture of the MFFNN model
understudy.

2. Research Methodology

The research has a sequence of three different investigations.
The first investigation performs a comparative study between
four different jet flow configurations to identify the configuration
with the optimum performance. The second investigation
performs a study on the optimum configuration with wider test
parameter ranges to constitute a numerical database for this
configuration. In the third investigation, the proposed ANN
model is trained and tested based on the created numerical
database to make a predictive model for the best performance
configuration.

2.1 The numerical model

The numerical model for the present study considered ANSYS
Fluent and ANSYS ICEM software for solving the numerical
model and building the mesh, respectively. The coupling of
velocity and pressure is achieved through the utilization of the
SIMPLE algorithm. The standard discretization is used for the
pressure, while the first order is used for the turbulence and
radiation model. Second-order upwind scheme is employed for
the energy and momentum equations. The momentum,
continuity, and turbulence equations employ a convergence
criterion set at 1E-4, while the energy and radiation equations
utilize a value of 1E-6. Finally, a steady-state solution is
considered through all the numerical simulations.

2.1.1 Set of Equations

The set of equations discretized and solved in ANSYS Fluent
software are the following equations (Ansys Inc, 2017):

Continuity equation:

V.(p)=0 (1)

where V is the velocity vector in 3D space.
Momentum equation:

V.(p VW) = VPP +V.(%) + pg (2)
where PP is the pressure, and g is the acceleration of gravity.
7 is the stress tensor in the fluid domain.

The energy equation in the solid regions:

V.(VpH) = V.(K,VT) 3)

The Energy equation in the liquid regions:

V.(V(oE + PP)) = V. (K,VT) (4)
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Fig 1. Jets distribution and inlets orientation for (a) Regular jets with linear inlets, (b) irregular jets with linear inlets, (c) Regular jets with

circular inlets, and (d) irregular jets with circular inlets

where E includes the effect of the enthalpy (h), pressure energy,
and kinetic energy in the flow. K, and Ky represent the thermal
conductivity for the solid and fluid regions, respectively. The
model used for turbulence is the Renormalised group RNG k'-
¢’ model that as it is valid for high and low Reynolds number
flows. k' is the kinetic energy of the turbulence, and ¢’ is the
turbulence dissipation rate. The equations for both k" and ¢’ are
expressed as follows:

a a okr

Er (pk'V) = o, (ak//leff a_x,) + G — Y (5)
a 3} der er 1?2

% (pe'V) = B_xJ (aenuEff a_x]) + Cie ZGRI - CZEIP;_, (6)

where C;¢, = 1.42, and C,,, = 1.68. The values of a, and a,
are the inverse Prandtl numbers for k' and &', respectively.

The Discrete Ordinates (DO) radiation model was the
radiation model implemented in the current study. The
radiation equation is expressed as follows:

dIS(r,3) 5 T s (4 S 2 '
Trs + (a + 0.)IS(F,8) = anr? UT + :_nfo "IS(E, 3)d(3.3)d0
(7

where IS(%,8) is the irradiance in position and direction vectors
of I and §, respectively. a is the absorptivity, o; is the coefficient
of scattering, nr is the index of refraction, and o is the radiation
constant of Stefan-Boltzmann, Q' is the solid angle, and @ is a
phase function.

2.1.2 The Physical Domain

The PV module used in the present simulation is EGE-50P-
36. On the backside of the module, a thermal module is installed
with a thermal paste. The PVT model has dimensions of
520x680x23 mm. The properties and specifications of the
materials used are described in Table 1 (Nahar et al., 2017).

The jets distribution inside the thermal module considers
regular and irregular orientations. Both configurations consider
a horizontal and vertical spacing between the jets of 171.69 mm
and 168.57 mm, respectively.

The diameter of the jet equals the spacing between the jet
opening and the plate, which equals to 5mm. The selection of
the inlet jets in these configurations considers linear and circular
distributions. The difference between the four configurations is
shown in Figure 1.

The boundary conditions of the model apply incident
radiation on the top PV surface, with a combined
convection/radiation heat loss. The backside of the thermal
module and its sides are considered as adiabatic. The

Table 1
Thermophysical properties of the PVT model understudy (Nahar et
al,, 2017).

Material p K Cp Thickness
[kg/m®*] [W/m.K] [J/kg K] [mm]

Glass 2450 2 500 3.2
EVA 950 0.311 2090 0.8
PV Silicon 2329 148 700 0.5
Tedlar 1200 0.15 1250 0.1
Thermal paste 2600 1.9 700 0.3
Aluminium 2700 237 903 1

CF (water) 998 0.68 4200 17
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convection coefficient (h.yny) is calculated according to the
following relation (Shahsavar & Arici, 2023) (Duffie & Beckman,
2013):

heony = 2.8 + 3Viying 3

where V.4 is the external wind speed. The rate of heat loss by
convection [W/m?] is calculated as follows:

Geonv = heonv * (Tav — Tapm) €C)]

where Ty, is the ambient temperatures. The rate of heat loss
by radiation [W/m?] is calculated as follows:

Qrad = € * O'(T;v - T;bm) (10)

Where e is the radiation emissivity.

2.1.3 Mesh generation and independence test.

The mesh was generated through Ansys ICEM software using a
structured mesh of hexahedrons. A sample of the used mesh is
shown in Figure 2. To ensure a mesh-independent solution,
different meshes with different numbers of elements are used,
and the top surface temperature is compared. This simulation is
conducted for irradiance of 1200 W/m?, 0.026 m/s fluid inlet
velocity, an inlet fluid temperature of 293K, which is equivalent
to ambient, and convection coefficient of 11.8 W/m?K. The
variation of Tay with the different number of mesh elements is
depicted in Figure 3. It is noticed that after 1.7 M elements, the
value of the temperature is very near to that of the finest mesh
at 3.3 M elements. So, in this paper, the mesh of 1.7 M is used
for all the simulations.

3073

3072

Temperature [K]

307.1

0 0.5 1 15 2 2.5 3 35
No. of mesh elements [M]

Fig 3. The PV temperature variation with the No. of elements
in each mesh.
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Fig 4. Comparison between experimental data from (Tiwari et

al., 2006), and numerical simulation

2.1.4 Model Validation

The simulation model understudy is validated with
experimental data for PV cooling with a back heat exchanger
using air flow from (Tiwari et al 2006). The comparison is
conducted considering the outlet air temperature and Tay, as
shown in Figure 4. It is observed that the results from the
simulation highly agree with the experimental data with ARE of
4.12%.

2.1.5 Case setup

The setup for the boundary conditions on the different
boundaries of the numerical model is illustrated on figure 5.

2.2 Performance Evaluation

The parameters used for judging the system’s performance are
Ne, N, and Mo. The electrical efficiency is evaluated according to
Tav of the PV module (T,,) as follows:

Ne = Nref (1 - Y(Tav - Tref)) 1y

where T, is the PV test temperature of 25°C, and 7, is the
PV module's temperature at this reference temperature, which
equals to 0.14 for the used module. y is the PV temperature
decrease factor, which equals to 0.0041 /°C. According to the
value of 7,, the electrical power (P,) is calculated as follows:

P, =n,*IS*A (12)

where IS is the incident irradiance, and A is the PV area.

The thermal efficiency, n;, is the ratio between the
harvested thermal energy and the input solar power. It is
expressed as:

mC, (Tor — T;)
_ p Yot i
Nt TIS<A 13)

such that 7 is the flow rate [kg/s], C,, is the specific heat of the
CF, which is water in the present case, T,; is the outlet
temperature of the CF, and T; are the inlet temperatures of the
CF.

The overall efficiency is the ratio between all the produced
electrical and thermal powers, considering the fluid pumping
power loss (Q * 6PP), and the input solar power. This is
expressed as follows:

Q = 6PP
Mo =Me+Me =72 (14)
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Fig 5. Boundary conditions on the Numerical model for the
Irregular jets with linear inlets distribution case

One of the parameters used for judging the cooling efficiency
and its homogeneity is the temperature non-uniformity (67T),
which expresses the PV maximum and minimum temperatures
expressed as follows:

8T = Trmax — Tmin (15)

2.3 ANN model

The ANNs are widely recognized as a popular method in the
field of artificial intelligence for modeling, predicting, and
solving pattern classification problems. It typically contains
three layers, which are output, input, and a layer of hidden
sublayers. The appropriate number of these hidden sublayers is
based on the degree of simplicity of the addressed problem.
Neurons are the fundamental elements of the ANNs, that are
like the neurons in the human brain. The neurons of the output
and input layers rely on the number of the parameters in the
outputs and inputs of the given problem, correspondingly. Each
neuron in the ANN receives signals (inputs), perform a
mathematical transformation to those signals, and produces an
output signal (Talaat et al, 2020) (Abdel daiem et al., 2021)
(Leema et al, 2016). Typically, the transformation within a
neural network involves computing a weighted sum of the
inputs, which is then followed by an activation function
application. This activation function is responsible for
presenting the non-linearity to the network. It determines the
output of the neuron based on its inputs. During training, ANNs
learn from labeled input-output pairs. The network adjusts its
internal parameters, including the biases and weights linked to
the neurons’ connections, to reduce the error between the
predicted and the desired outputs. This process is often
achieved using optimization algorithms (Leema et al, 2016).
Careful consideration is needed when determining who many
neurons in the hidden layer, as it directly impacts the ANN
performance.

2.3.1 Multi-layer feedforward neural network

In this paper, MFFNN is employed as the chosen ANN-
based model. The network architecture consists of an input
layer with four neurons (7ams, I, 1, and hcn) and an output layer
with six neurons (Taw, 6T, To, e, N, and n,). Optimizing the
architecture of the MFFNN involves several considerations,
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such as the appropriate activation functions, the number of
hidden layers, the number of hidden neurons, and the
hyperparameters (the learning rate, the batch size, and the
optimization algorithms). Selecting the optimum architecture of
the MFFNN will impact the capacity to learn the complex
patterns, the training performance, and the network's ability to
model the non-linear relationships (Talaat et al., 2020). The first
hidden layer output can be obtained by,

1
H;= i=1,2,....N 16
= Trexp( 2y @y -B))] (16)

where x; is the NN model input, and H; is the output of the
hidden neuron i™. m and N are the total neurons in the input and
hidden layers, respectively. w;, and B; are the weight factor and
bias between j input and i* hidden neurons, respectively. This
equation will be repeated for the number of hidden sublayers in
the proposed MFFNN model. The output layer outputs are
calculated by,
Ox=YR  (wyH)) k=1,2,..F  (17)

where R and F are the total number of neurons in last hidden
sublayer and the output layer, respectively. wy is the weight
factor between neuron /* and neuron k% in the hidden and
output layer, respectively. O, represents the output of k™ neuron
in the output layer. The MSE function is used to evaluate the
performance of the proposed MFFNN in this study (Abdel
daiem et al., 2021) (Leema et al,, 2016). The MSE is expressed
as follows:

MSE= =M, (Oy-Ay)’ (18)

where Ay is the actual output, and M represents the number of
training patterns. The fitness function of training the proposed
MFFNN model is determined by,

M
1
Fitness function = min (MSE) = Min. MZ (Ox-Ap)* [ (19)
k=1

The weights and biases of the proposed MFFNN are modified
during the training by using the MSE function (Abdel daiem et

| Hidden Layers ]

Input layer

Fig 6. Proposed MFFNN structure

‘ Output layer |
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al, 2021). The optimization methods can be employed for
training the MFFNN to find the optimum numbers of hidden
layers, numbers of hidden neurons, activation functions,
hyperparameters, and weights factors and biases. The reptile
search algorithm (RSA) is used to attain the optimal architecture
of the proposed MFFNN in the present study, Figure 6 illustrates
the structure of the proposed MFFNN prediction model.

2.3.2 Reptile Search Algorithm

The RSA is an algorithm inspired naturally by metaheuristic
algorithm that takes inspiration from the characteristics and
behaviors of crocodiles. It relies on the hunting behavior,
enveloping mechanism, and social dynamics observed in
crocodiles. This swarm-based approach utilizes these principles
to guide its search process (Abualigah et al., 2022).

2.3.2.1 Generate initial solutions

The RSA initialization formula is used to generate the
initial solution randomly within the solution domain. The
solution domain represents the set of all possible solutions to
the optimization problem (Abualigah et al., 2022).

Lj=LV+7r.(UV—LV) j=12,..n (20)

where L;; is the value of the j dimension of the i crocodile. UV
and LV upper and lower boundary values of the search domain,
respectively. ris random number between 0 and 1, and 7 is the
size of the populations.

2.3.2.2- Enveloping Mechanism

The RSA applies the concept of enveloping by exploring
the search space in a way that focuses on promising regions
while avoiding less favorable areas. This helps the algorithm
efficiently navigate complex optimization landscapes. During
the global search phase, crocodiles engage in elevated and
sprawling walks. The search strategy can be calculated by
iterations. The mathematical models of this mechanism can be
modeled by (Abualigah et al., 2022) (Khan et al., 2023):

|33

t t t
L pese - (=953 x B X Ry x 1) t<

T,
t t t m
Lj‘best X Lj,mnd X ESt X1 2 <t

4

N

where ¢ is the number of current iteration, 7 is the number of
maximum iterations. Lf-‘best is the optimum solution at t®
iteration and j™ location. 195- is the hunting operator value for i
solution at j™ location. The hunting operator can be determined

by:

Lt — Avr(LE)
O = Lo X - - 22
i = Fbest (“ T X WV —LV) + e 22)
Lt — It
'j,best ij
R =2 (23)
Lj,best t+e
T,—1
ESt = 2r1( = ) (24)
m
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where ¢ is a constant to control the accuracy of the exploration,
7, is a random number from -1 to 1, € is a minimum value to
prevent the denominator from being zero, and Avr is the
average value. ES is the evolutionary Sense.

2.3.2.3- Hunting Mechanism

The hunting mechanism is like an enveloping
mechanism that has two phases: hunting cooperation and
coordination. These phases are implemented to locate the best
possible solution by exploring the search domain and assisting
in capturing the prey. The two phases can be defined depending
upon the iterations' number. Hunting coordination is applied for
iterations from t > 0.5T,, to t < 0.75T,,. While the hunting
cooperation is applied from t > 0.75T,, to t < T,,. The following
equations are used to represent the hunting mechanism
(Abualigah et al., 2022) (Khan et al., 2023).

Ty 3T
> <t < 2

t
Lj,best X Pii xr

3T,
Lf pest—0fj X € — R X1 T’” <t<Tpm

2.3.2.4- Improved Reptile Search Algorithm

The RSA has some limitations, such as local minima
trapping, high computational complexity, and slow
convergence speed. Hence, in order to address these
challenges, some modifications are presented for the original
RSA. One adjustment involves integrating a sin operator into
the high walking phase of the previous RSA algorithm. This
modification is inspired from the sine cosine algorithm (Yuan et
al., 2022). The sin operator can avoid local minimum trapping
and improve the capability of global exploration. The sin
operator is inserted in (21) and modified as follows.

Ly(t+1)
T,
L} pest + (ry X sin(r) x |rg x L} pest — LE]-D t< ?m
= (26)
¢ ¢ t Tm 2Tm
Lj,best X Lj,rand X ES'Xr e <t< 2

where r; and 13, are randomly selected numbers in range [0, 1].
The utilization of the chaotic inverse learning strategy by all
individuals leads to higher computational costs and hindering
algorithm convergence. To address this issue, this paper
employs the linear decreasing population strategy. As the
iteration progresses, the number of individuals utilizing the
chaotic backward learning strategy gradually diminishes. The
specific mathematical formula for implementing this strategy is
outlined in (27).

Pnin — B X t
P—rx (% 4 pmax) @7
m
where P is the number of chaotic backward learning strategy
populations. Py, and Py, are the minimum and maximum
population numbers, respectively.

2.3.3 Proposed MFFNN-RSA hybrid model

The MFFNN proposed in this research undergoes training using
the RSA technique, aiming to calculate the optimal architecture
for various parameters, including the number of hidden
sublayers, the number of hidden neurons, the biases and
weights factors, and the activation functions. This optimized
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Fig 7. Flowchart of MFFNN-RSA model

MFFNN-RSA is subsequently employed to model and predict
the PVT model's performance. The implementation of the
proposed MFFNN-RSA layout is depicted in Figure 7 which can
be outlined in the following steps:

e Firstly, the inputs of the proposed MFFNN are read, which
consist of CF inlet temperature, mass flow rate, solar
irradiance, and convection coefficient. The corresponding
outputs to be predicted are the top surface temperature,
temperature un-uniformity, outlet water temperature, and
thermal, electrical, and overall efficiencies.

e Secondly, the parameters of the modified RSA are set. The
modified RSA involves generating an initial population of
locations randomly within specified upper and lower
bounds. These locations are treated as potential solutions to
the problem.

e Thirdly, the fitness function is then calculated for each
location in the population using the MSE of the proposed
MFFNN by using (20). The MSE serves as a measure of how
well the MFFNN performs in predicting the desired outputs
based on the given inputs.
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e Fourthly, arrange the fitness values of all populations in
ascending order, then evaluate the best locations of the
crocodiles and update these locations using Equations (27
and 28). The improved positions of the crocodiles will serve
as new solutions. If the constraints are achieved or the
number of iterations reaches the maximum value, the
crocodiles' locations will represent the optimal solution.

e Finally, the optimal results are displayed, including the
number of hidden sublayers, the number of neurons within
each hidden layer, the weights and biases factors, and the
activation functions associated with the best crocodile
locations. Figure 7 illustrates the flowchart of the proposed
MFFNN-RSA hybrid model in detail.

The proposed MFFNN-RSA hybrid model is trained and tested
using a group of 100 patterns. These patterns are collected and
then fed into the model to obtain the optimal architecture of the
MFFNN. The training process of the MFFNN-RSA hybrid model
is implemented using a MATLAB program (version 2020). A
specific m-file is created to handle the training process of the
MFFNN, while the ANN toolbox is utilized to model the
proposed MFFNN. By applying the proposed RSA technique,
the MFFNN-RSA hybrid model can determine the most suitable
architecture for achieving the desired outcome.

3. Results and discussion

This section explores the results and discussion of the three
tests presented in this paper. This includes the comparison
among the four proposed PVT models viewed in figure 1, the
results of the performance for the optimum model among the
four presented with more parameter ranges, and the third of the
MFFNN-RSA hybrid model.

3.1 Modules Comparison results and discussion.

In this section, the temperature contours, temperature non-
uniformity, and the performance indicators of the different
efficiencies are presented. The parameters tested in this test are
solar irradiance of 400 and 1200 W/m? and wind speed of 0 and
3 m/s, which are equivalent to convection coefficient of 2.8 and
11.8 W/m?2.K, respectively. And rm of 0.003135 and 0.028218
kg/s.

3.1.1 Temperature Contours and Flow Streamlines.

The temperature contours of Tav with test conditions of 1200
W/m? of irradiance, Tamb=Ti=293K, and convection coefficient
of 2.8 W/m?2.K for m of 0.003135 kg/s and 0.028218 kg/s are
shown in Figure 8. The maximum temperature of the regular
and irregular line distribution reaches 315.7K and 314.5K,
respectively at low cooling flow rates, as observed in the
subfigures (a) and (b). at the high flow rates, the maximum
temperature of the regular and irregular line distribution reaches
302.3K and 301.7K, respectively, as indicated in the subfigures
(e) and (f). This temperature decrease is caused by increasing
the convection due to the cooling flow rate. For the regular and
irregular circle distribution, the maximum temperatures reach
320.1K and 319.8K, respectively for low flow rates, as indicated
in the subfigures (c) and (d). for the higher flow rates, this
maximum temperature reaches 305.9K and 305.8K for the
regular and irregular circle distributions, respectively, as
indicated in the subfigures (g) and (h).

It is observed that the line-distributed jets in the regular or
irregular orientation achieve a lower maximum temperature

ISSN: 2252-4940/© 2024. The Author(s). Published by CBIORE



A. Al-Otaibi et al

-
(@)

Temperature
Fegue

3134

3111

308.9
306.6

I I‘

- -

Tem&szrgture Kl

3008

2994
- S
296.5

(e)

Tsr%ssglum K] ' ‘

(8)

Int. J. Renew. Energy Dev 2024, 13(4), 581-600
|589

e [

3106
N

Nl N N |
(b)

Temperature
ey »

Ts%%%%lum K] '
303.5
301.1
2988

296.4

(h)

Fig 8. Temperature contours for the PV surface under m of 0.003135 kg/s for (a) Regular- line jets distribution, (b) Irregular- line
jets distribution, (c) Regular- circle jets distribution, and (d) Irregular- circle jets distribution. And under m of 0.028218 kg/s for (e)
Regular- line jets distribution, (f) Irregular- line jets distribution, (g) Regular- circle jets distribution, and (h) Irregular- circle jets

distribution

than the circle distribution in both flow rates. This refers to the
distribution of the inlet flow rate on eight jets in the case of the
line distribution. However, the inlet jets are 6 and 7 only in
distribution the regular and irregular circular distributions,
respectively. This larger number of inlet jets permits a more
effective distribution of cooling over the panel. It can be noticed
that the irregular distribution of the jets achieves lower
temperatures in the line distribution for the nature of the
irregular distribution of the jets. At higher flow rates, as
indicated in subfigures (e), (), (g) and (h), the PV temperature
decreases more than the low cooling flow rates due to the higher
convection coefficient in the cooling channels.

Figure 9. shows the shape of the flow streamlines for the
four flow configurations in the present test set. It can be
observed that the line distribution of inlet jets represented by

Figure 9. (a) and (b), guarantees the distribution of the
streamlines fairly over the whole area, with small regions clear
from the streamlines. This reflects a good contact of the CF
flows through these streamlines to the panel and that the cooling
effects reach larger areas. This explains the lower temperatures
achieved by this distribution. However, the circular distribution
leaves larger areas with no streamlines, thereby indicating that
these regions are not affected well by the cooling process.

3.1.2 Average temperature of the PV module

Figure 10 shows variation of Tav of the tested cases with an
ambient temperature of 293K and 313K under different
irradiance power, convection coefficient and m. It can be
observed that the case of irregular circle configuration of the jets
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Fig 9. Streamlines under m of 0.028218 kg/s for (a) Regular- line jets distribution, (b) Irregular- line jets distribution, (c) Regular- circle jets
distribution, and (d) Irregular- circle jets distribution.

achieves the lowest average temperature at low flow rates, is evident that by increasing m, the temperature decreases in all
which reaches 295.45K. In comparison, the regular line cases. Moreover, the increase of the convection coefficient
configuration reaches the lowest average temperature of caused by the moving air around the panel helps decrease the
293.89K at high flow rates as observed from the subfigure (a). It average temperature, as observed in cases (b) and (d) compared
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Fig 10. Ty behaviour at Tamy=293K under (a) IS=400 W/m?, heonv=2.8 W/m?K, (b) IS=400 W/m?, heonv=11.8 W/m?K, (c) IS=1200
W/m?heonv=2.8 W/m?K, and (d) IS=1200 W/m?hconv=11.8 W/m?K, and at Tamp=313K under (e) IS=400 W/m?, heonv=2.8 W/m?K, (f)
1S=400 W/m? heonv=11.8 W/m*X, (g) IS=1200 W/m? heon=2.8 W/mZ2K, and (h) IS=1200 W/m*heow=11.8 W/m2K.
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Fig 11. The behaviour of 8T of the PV module at Tamb=293K and (a) IS=400 W/m?, heonv=2.8 W/m?2X, (b) [S=400 W/m?, hconv=11.8
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heonv=2.8 W/m?X, (f) IS=400 W/m?, heonv=11.8 W/m?2K, (g) IS=1200 W/m?%hconv=2.8 W/m2K, and (h) IS=1200 W/m?*hconv=11.8 W/m2XK.

to (a) and (c), respectively. The subfigures (e), (f), (g) and (h)
depicts the variation of Ty at ambient temperature of 313K. It
can be observed that Tay rises as Tamb increases for all the cases
compared to lower Tamb. In general, it can be deduced that the
four configurations achieve similar average temperatures when
subjected to high flow rates. However, at low flow rates, the
difference between the four configurations is around 1.5K in the
most variant case. Table 2. Indicates the variation of Tay for the
un-cooled case and the minimum cooled cases among the
different configurations considering the highest cooling flow
rate.

For the most severe case of the maximum irradiance,
maximum ambient temperature, and minimum convection
coefficient, the system achieved a reduction of Tav by up to

Table 2

The variation of Tay for the cooled and uncooled cases.
Tmin IS Tamb hconv dT
[K] [w/m?] [K] [W/m?.k] Tav [K] [K]
299.6 1200 293.00 2.80 360.3 60.62
299.1 1200 293.00 11.80 323.1 24.06
318.8 1200 313.00 2.80 367.8  49.06
318.3 1200 313.00 11.80 338.4 20.13
2939 400 293.00 2.80 303.6 9.70
293.8 400 293.00 11.80 297.2  3.35
313.1 400 313.00 2.80 313.8 0.71
313.1 400 313.00 11.80 313.3 0.27

49.06K, compared to the uncooled system. This reduction
reached 60.62K in some cases, as shown in Table 2. The value
of the temperature reduction is minimal in the case of the low
radiation intensity, which reaches 0.27K.

3.1.3 Temperature un-uniformity distribution.

The study of this parameter is important for preventing the
thermal stresses caused by the temperature differences, which
can result in different expansion of the PV material and lead to
cracks. So, the distribution of the jets is important to keep this
parameter as low as possible. Figure 11 shows the temperature
un-uniformity factor (8T) variation through the different test
cases at an ambient temperature of 293K and 313K. It is
observed from Figure 11 that at low ambient temperature, the
irregular line distribution achieves the lowest un-uniformity
factor of less than 1K at low irradiance of 400 W/m? (subfigures
(a) and (b)), and less than 6K at high radiation power of 1200
W/m?(subfigures (c) and (d)). This behaviour is found to be very
near to the regular line configuration in all the tested cases. The
circle distribution of the jets shows the highest §T among these
configurations. The lowest value of 8T reach greater than 1K
(subfigures (a) and (b)) and 8K (subfigures (c) and (d) at 400
W/m? and 1200 W/m?, respectively. With the increase of the
cooling flow rate and the external convection coefficient, this
factor decreases due to enhancing the PV cooling.

At high ambient temperatures the values of 8T even
decrease down to 0.4K and 5K in cases of radiation powers of
400 (subfigures (e) and (f)) and 1200W/m? (subfigures (g) and
(h)), respectively, for the irregular distributions. This decrease is
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Fig 12. The response of e of the PV module at (a) [IS=400 W/m? heonv=2.8 W/m2K, Tamb=293K (b) IS=400 W/m? heonv=11.8
W/m2K, Tams=293K (c) IS=1200 W/m%heony=2.8 W/m2K, Tams=293K, (d) IS=1200 W/m2heom=11.8 W/m?K, Tam:=293K, (e) IS=400
W/m?, heon=2.8 W/m2K, Tams=313K (f) IS=400 W/m?, heonv=11.8 W/m2K, Tams=313K (g) IS=1200 W/m%heon=2.8 W/m2K,
Tamb=313K, (h) IS=1200 W/m?heony=11.8 W/m? K, Tamp=313K.

caused by the increase of the lower temperature of the PV panel,
causing the difference between the higher and lower
temperatures to decrease. The irregular-line distribution
achieved the best performance for high irradiance powers
followed by the regular-line configuration. However, at low
radiation power, the irregular line configuration achieves lower
0T values at low flow rates, while at high flow rates, the irregular
circle configuration achieves lower 6T by 0.02K.

As a general comment on the temperature performance of
the four tested configurations within the tested parameter
ranges, it can be deduced that the irregular-line case is the best
case regarding 8T, and it is similar to the other configurations in
an acceptable range regarding Tay.

3.1.4 Energy Efficiencies.

The overall, thermal, and electrical efficiencies of the four tested
configurations are explored in the present section, The PV
panel’s electrical efficiency is inversely proportional to its
temperature according to the equation (11). So, it is normal to
find that the maximum efficiency of the test cases is achieved at
the lowest average temperature configuration. Figure 12 shows
the electrical efficiency of the different tested configurations
under various test conditions. It is observed that the highest
efficiency of 14.2% is achieved at the low ambient temperatures
depicted in the subfigures (a), (b), (c), and (d) by the regular line
configuration at the highest cooling flow rate. However, at high
ambient temperatures, the electrical efficiency decreases to a
maximum of 13.13% at the highest cooling flow rate, as shown
in subfigures (e), (f), (g), and (h). At low cooling flow rates, the
irregular-circular configuration achieves the highest electrical
efficiency reaching 13.13%, while the regular-line configuration

achieves the highest electrical efficiency of 13.14% under high
flow rates.

The value of 7, depends on the quantity of heat collected
by the CF with respect to the entering solar radiation energy as
expressed by equation (13). Figure 13 shows the variation in 7,
of the different test cases under various test parameters. It can
be observed that 7, increases with the radiation intensity
increase, at low ambient temperature in the subfigures (a), (b),
(c) and (d), the thermal efficiency reaches up to 19.7% and 49%,
at 400 W/m? (subfigures (a) and (b)) and 1200 W/m? (subfigures
(c) and (d)), respectively, for the irregular-line configuration.
For higher ambient temperature of 313K, the thermal efficiency
reaches up to 45.8% and 42.6% at 400 W/m? (subfigures (e) and
(f)) and 1200 W/m? (subfigures (g) and (h)), respectively.

The 7, variation for the PVT system understudy is
indicated in figure 14. The value of 1, in this study considers the
summation of 7, and 7, and the pumping losses exerted for the
CF flow as expressed in equation (14). It is noticed that the
increase of the external convection coefficient causes a
decrease in no. This is caused by the decrease in 7, principally.
It is noticed that 7, is affected by n; more than 7,, due to its
higher value in most cases. the overall efficiency reaches up to
33.9% and 49%, at 400 W/m? (subfigures (a) and (b)) and 1200
W/m? (subfigures (c) and (d)), respectively, for the irregular-line
configuration.

For higher ambient temperature of 313K, the thermal
efficiency reaches up to 14.7% and 55.4% at 400 W/m?
(subfigures (e) and (f)) and 1200 W/m? (subfigures (g) and (h)),
respectively. In general, the factors affecting 7, have the same
effect trend on 7,. This is clear from the inverse proportionality
of nowith Tamb and heonv, and its positive proportionality with the
radiation intensity and 7. The configuration that achieved the
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Tamb=293K (c) IS=1200 W/m? hconv=2.8 W/m? K, Tamb=293K, (d) IS=1200 W/m?*hconv=11.8 W/m?*K, Tamb=293K, (€) [S=400 W/m?,
heov=2.8 W/m*XK, Tamy=313K (f) IS=400 W/m?, heorv=11.8 W/m*K, Tam=313K (g) IS=1200 W/m?hcom=2.8 W/m?K, Tamp=313K, (h)
1S=1200 W/m*hconv=11.8 W/m*K, Tamb=313K.

higher overall efficiency is the irregular-line configuration for
most of the cases, as observed from Figure 14.

3.2 Optimization Results
In this subsection, the results of the optimum configuration

case found in the comparison among the four tested
configurations are discussed. The criteria of the comparison are
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the lowest 6T and the highest n,. These conditions are met in
the irregular-line inlets configuration as indicated in the results
discussed in section 3.1. In the present test, some ranges of the
boundary parameters are extended to make a solution database
that is used for the training of the proposed MFFNN-RSA hybrid
model in this research. The solar irradiance power values used
are 400, 800, and 1200 W/m?. The ambient temperature values
are 293, 303, and 313K. The convection coefficient values are
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Fig 14. The response of 1, of the PV module at (a) IS=400 W/m?, heonv=2.8 W/m>K, Tam=293K (b) [S=400 W/m?, heonwv=11.8 W/m?K,
Tamb=293K (c) IS=1200 W/m? hconv=2.8 W/m? K, Tamb=293K, (d) IS=1200 W/m?*hconv=11.8 W/m?2K, Tamb=293K, (€) [S=400 W/m?,
heonv=2.8 W/m2XK, Tamy=313K (f) IS=400 W/m?, heonv=11.8 W/m2K, Tam»=313K (g) IS=1200 W/m?%hconv=2.8 W/m2K, Tamp=313K, (h)
1S=1200 W/m?hconv=11.8 W/m2K, Tamb=313K.
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Fig 15. Average temperature variation for cases (a) [IS=400 W/m?, Tamb =293K, (b) IS=400 W/m?, Tamb =303K, (c) IS=400 W/m?,
Tamb =313K, (d) IS=800 W/m?, Tamb =293K, (€) [IS=800 W/m?, Tamb =303K, (f) IS=800 W/m?, Tamp =313K, (g) IS=1200 W/m?
Tamb =293K, (h) IS=1200 W/m?, Tamb =303K, (i) IS=1200 W/m?, Tamb =313K.

2.8, 11.8, and 17.8 W/m2K, which are equivalent to wind
speeds of 0, 3, and 5 m/s, respectively, according to equation
(9). The used m are 0.00314, 0.0282, and 0.0533 kg/s.

3.2.1 Average Temperature and Temperature Un-Uniformity.

Figure 15 shows the variation of Tav according to different
conditions of, convection coefficients, inlet temperatures, solar
radiation, and cooling flow rates. The value of Ta reaches
293.6K (subfigure a), 303.4K (subfigure b), and 313K (subfigure
c), for 400 W/m? and Tamb of 293, 303, and 313K, respectively.
As the radiation intensity increases to 800 W/m?, the value of
Tareaches 295.7K (subfigure d), 305.4K (subfigure e), and 315K
(subfigure f), for Tams of 293, 303, and 313K, respectively. For
the highest radiation intensity of 1200 W/m?, the value of Ta
reaches 297.7K (subfigure g), 307.4K(subfigure h), and 317.1K
(subfigure i), for Tamy of 293, 303, and 313K, respectively. It is
observed that the higher convection coefficient helps in
decreasing Tav due to the external forced convection effect.
Similarly, the higher cooling flow rate helps in decreasing Tav.
However, the higher radiation intensity and ambient

temperature increase the thermal load on the PV module and as
aresult increase Tav.

The variations of 8T is shown in Figure 16. It is noticed
that the increase of the external convection coefficient enhances
the temperature distribution by decreasing 8T. This effect is
achieved by increasing the cooling flow rate as well. The value
of 6T reaches 0.51K (subfigure a),0.36K (subfigure b), and 0.33K
(subfigure c), for 400 W/m? and Tam» of 293, 303, and 313K,
respectively. At 800 W/m? the value of 6T reaches 2.5K
(subfigure d), 1.9K (subfigure e), and 1.7K (subfigure f), for Tamb
of 293, 303, and 313K, respectively. At 1200 W/m?, the value of
6T reaches 3.8K (subfigure g), 3.54K (subfigure h), and 3.8K
(subfigure i), for Tam» of 293, 303, and 313K, respectively.

In general, this behaviour refers to the cooling effect
provided by the external wind speed increase and the CF flow
rate. The value of 6T reaches as maximum as 7.7K at the highest
IS of 1200 W/m?, and lowest cooling flow rate, ambient
temperatures, and lowest convection coefficient. However, as
an exceptional case, at radiation of 400 W/m?, and Tam» of 313K
(case c, in figure 16), the increase of the flow rate increases the
un-uniformity. This may refer to the heating load caused by the
high Tamb and heonv With the high cooling provided by the CF. As
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Fig 16. 8T variation for the PV surface for the cases: (a) 1IS=400 W/m?, Tamb =293K, (b) IS=400 W/m?, Tambp =303K, (c) IS=400
W/m?, Tambp =313K, (d) IS=800 W/m?, Tamp =293K, € IS=800 W/m?, Tamp =303K, (f) [IS=800 W/m? Tamx=313K, (g) [S=1200
W/m?, Tamy=293K, (h) IS=1200 W/m? Tamy=303K, (i) IS=1200 W/m?, Tamp=313K.

the difference between the external temperature and the CF
temperature increases, the un-uniformity increases. As the
difference in this case is around 0.5K, as indicated in Figure 16
(c), the difference in the uniformity reached as low as 0.02K
according to the flow rate increase. So, this behaviour in that
specific case can be neglected as the variation is very low.

3.2.2 Energy Efficiency Variations

In this section, the variations of 7., n;, and 71, are
discussed. Figure 17. indicates the response of 7, for the
different test parameters. It is found that 7, is inversely
proportional to Tav, according to equation (11). The value of
nereaches 14.25% (subfigure a), 13.7% (subfigure b), and 13.14%
(subfigure c), for 400 W/m? and Tam» of 293, 303, and 313K,
respectively. As the radiation intensity increases to 800 W/m?,
the value of 1, reaches 14.13% (subfigure d), 13.6% (subfigure
e), and 13.23% (subfigure f), for Tamp of 293, 303, and 313K,
respectively. For the highest radiation intensity of 1200 W/m?,
the value of 7, reaches 14% (subfigure g), 13.5% (subfigure h),
and 12.9% (subfigure i), for Tam of 293, 303, and 313K,
respectively.

It is observed that the external convection coefficient
and the cooling flow rate have a positive effect in enhancing 7,.
However, both of IS and T.m» negatively affect n,. The
maximum value of 7, reached 14.25% in the case of the lowest

IS and Tam», with the highest convection coefficient and fluid
cooling rate.

The variation in 7, for the test cases is shown in Figure
A.1. The value of n; is observed to be affected positively by IS,
and m, while affected negatively by heonv and Tamb. The value of
n: reaches 20% (subfigure a), 11.2% (subfigure b), and 1.2%
(subfigure c), for 400 W/m? and Tam» of 293, 303, and 313K,
respectively. As the radiation intensity increases to 800 W/m?,
the value of n; reaches 42.2% (subfigure d), 37.7% (subfigure e),
and 32.8% (subfigure f), for Tam» of 293, 303, and 313K,
respectively. For the highest radiation intensity of 1200 W/m?,
the value of n; reaches 49.6% (subfigure g), 46.5% (subfigure h),
and 43.2% (subfigure i), for Tamv of 293, 303, and 313K,
respectively.

It is clear that the increase in IS increases the energy
content incident on the PV module. Additionally, increasing the
m enhances the convection coefficient, thereby improving the
harvesting of this incident energy as thermal energy. The
increase of the hconv increases the loss of the thermal energy to
the ambient. So, it negatively affects 7,. The ambient
temperature increase negatively affects n; because the inlet CF
temperature equals to Tamb in the test cases. As the entering
temperature of the CF increases, its ability for heat collection
decreases. This decreases the collected thermal energy in case
of high Tam», and hence decreases 7,. The best n; in this
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Fig 17. n. variation for the cases: (a) IS=400 W/m?, Tamb=293K, (b) IS=400 W/m?, Tamv=303K, (c) 1S=400 W/m?, Tamp=313K, (d)
1S=800 W/m?, Tams=293K, € 1S=800 W/m?, Tamp=303K, (f) [S=800 W/m?, Tams=313K, (g) IS=1200 W/m?, Tams=293K, (h) IS=1200
W/m?, Tamb=303K, (i) IS=1200 W/m?, Tamb=313K.

configuration is 49.5% at the highest €S and m with the lowest
Tamb and heonv.

The value of 7, is shown in Figure A.2. It is noticed that
the cases with lower hconv and lower Tambp achieve higher 7,.
However, the higher m and I, the higher is 1,. This effect is
encountered with n,. The value of n, reaches 34.2% (subfigure
a), 24.9% (subfigure b), and 14.8% (subfigure c), for 400 W/m?
and Tamb of 293, 303, and 313K, respectively. As the radiation
intensity increases to 800 W/m?, the value of 1, reaches 56.3%
(subfigure d), 51.3% (subfigure e), and 45.8% (subfigure f), for
Tamv of 293, 303, and 313K, respectively. For the highest
radiation intensity of 1200 W/m?, the value of n, reaches 63.5%
(subfigure g), 60% (subfigure h), and 56% (subfigure i), for Tams
of 293, 303, and 313K, respectively. It is noticed that the system
achieved the highest n,0f 63.5% at the case of the highest m and
I, and lowest heonv and Tam.

3.3 MFFNN-RSA hybrid model

Several MFFNN architectures are employed, all featuring
four inputs (Tums, I, m, and Acony ) and six outputs (Tav, Tus, 6T, 1,
1, and n,). However, the number of hidden neurons varies
across the models. The fitness function used to assess the
optimal neurons’ number in the hidden layers relies on the
MSE, obtained during the testing and training processes. The
most successful network configuration is achieved with 12 and

15 neurons in the first two hidden layers, respectively with six
output neurons, resulting in a (4-12-15-6) architecture. A
sigmoid transfer function is selected for the two hidden layers.

The output layer of the proposed MFFNN-RSA can
minimize the MSE to a final value of 0.4857E-3 within 106
iterations. Figure 18 illustrates the MSE training error
convergence diagrams for the MFFNN-RSA. After selecting the
appropriate processing steps for the input and target data
patterns, the suitable hidden layers’ number is selected, and the
MFFNN-RSA has been trained.

Figure A.3 depicts the testing, validating, and training
regression factor, R, for the proposed MFFNN-RSA hybrid
model. The regression factor values for the training, validation,
and training are equal to one. This indicates that the proposed
MFFNN-RSA hybrid model effectively predicts the true values
of PVT performance (Tw, To, 87T, ne, 1, and 1, ). Furthermore,
the RSA attains the optimum architecture of the MFFNN model.
Figure A.4 illustrates a comparison between the predicted PVT
parameters obtained from the MFFNN-RSA hybrid model and
the actual training dataset patterns, which consist of 81 patterns.
The figures clearly demonstrate that the predicted parameters
derived from the MFFNN-RSA model are closely aligned with
the measured parameters.

Once the optimal parameters and structure of the
MFFNN-RSA hybrid model are obtained, its performance is
evaluated using different datasets that were not utilized during
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Fig 18. The most convergent training performance of the
MFFNN after using the RSA.

the training process. The purpose of this evaluation is to
evaluate the capability of the MFFNN-RSA hybrid model to
generalize and extrapolate. The proposed MFFNN-RSA hybrid
model undergoes testing with various scenarios comprising 19
patterns. In Figure A.5, a visual comparison is presented
between the predicted values of Tw, To, 67T, e, 1¢, and n,
generated by the MFFNN-RSA hybrid model, and the
corresponding actual output values. This comparison
showcases the MFFNN-RSA hybrid model’s capability to
predict the desired values accurately.

As shown from Figure A.5, the predicted values closely
match the actual values. It indicates that the MFFNN-RSA
hybrid model has successfully learned the underlying patterns
and relations in the data and can accurately predict the desired
values. By combining the power of the MFFNN architecture, the
optimization capabilities of the RSA, and rigorous testing
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procedures, the MFFNN-RSA hybrid model is able to achieve
accurate predictions of the desired values.

4. Economic and Environmental Analysis

As the proposed PVT system is suggested as a cogeneration
system for smart buildings, it was beneficial to analyze its
economic viability. An economic analysis has been performed
for the PVT system understudy, compared to the PV system
using the method provided by (Yanhua et al.,, 2019). The full
analysis is shown in Table 3. It can be noticed that the cost of
electric energy production is decreased by 11.6%. Moreover,
the production of hot water costs 0.02 $/kW.hr, even if the
temperature is not very high, it can be used for preheating
applications. The total energy production cost reached 0.0474
$/kW.hr in the proposed PVT system, compared to 0.1189
$/kW.hr for the PV system only. The overall yearly energy
production reached 582.0 kW.hr/m? which reduces CO:
emissions by 215.3 kg/m2year according to the CO; production
rates mentioned in (Hamieh et al., 2022).

5. Conclusions

This work presented novel configurations of jet cooling in
a proposed PVT system as a compact solution for smart
buildings. The configurations included varying the jets
distribution on the cooling plate in a regular or irregular
distribution. Moreover, in each distribution, the jets considered
as flow inlets were linearly or circularly distributed, while the
other jets were considered as outlets. The study compared the
four configurations considering the PV average temperature,
temperature un-uniformity of the PV, electrical, thermal, and
overall efficiency of the system. After the first test, an optimum
configuration was identified to be used in the second test set.

Table 3
Economic analysis comparison for the PV and PVT system under study.
Item PV system PVT system
Initial cost (P) [$] 50.00 70.00
Salvage value (S) [$] 5.00 7.00
Lifetime (n) [year] 20.0 20.0
Rate of interest (i) 12.0% 12.0%
Factor of recovery (RF) 0.134 0.134
Sink fund factor (SFF) 0.014 0.014
First Year cost (FYC=RF X P) [§] 6.694 9.372
Yearly salvage value (YSC=SFF X S) [$] 0.069 0.097
Yearly maintenance cost (YMC=0.05 x FYC) [$] 0.335 0.469
Totla yearly cost (YC=FYC+YMC-YSV) [§] 6.959 9.743
Ne 12.600 14.250
Ne 0.00 30.03
Average daily electricity production [kW.hr/m?] 0.454 0513
Average daily thermal production [kW.hr/m?] 0.000 1.081
Electricity energy productivity per year[kW.hr/m?] 58.543 66.210
Thermal energy productivity per year [kW.hr/m?] 0.000 139.529
Electric KW.hr cost [$/kW hr] 0.1189 0.1051
Thermal KW hr cost [$/kW hr] - 0.0200
Total KkW.hr cost [§/kW.hr] 0.1189 0.0474
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Then, an MFFNN-RSA hybrid was created for the prediction of
the optimum configuration with input parameter ranges of 293
to 313K for ambient temperature, 400, 800, and 1200 W/m? for
irradiance intensity, 0.00314, 0.028, and 0.0533 kg/s for cooling
flow rate, and 2.8,11.8, and 17.8 W/m?K for external convection
coefficients. The maximum temperature decrease achieved by
the presented configuration reached 60.62K compared to the
uncooled case while the minimum temperature un-uniformity
reached 1K and 6K for 400 and 1000 W/m?, respectively. The
increase of the ambient temperature found to minimize the
temperature un-uniformity in all the cases. The irregular-line
configuration achieved the best overall efficiency of 62.9% at a
radiation power of 1200 W/m?, and cooling flowrate of 0.028
kg/s. The ambient temperature and the radiation intensity were
found to increase the average temperature of the PV module,
and as a result, the electrical efficiency decreased. However, the
high cooling flow rate and external convection coefficient were
found to increase the electrical efficiency. The radiation
intensity and the flow rate had a positive effect on the overall
and thermal efficiencies. In contrast, the ambient temperature
and the convection coefficient had a negative effect on the
overall and thermal efficiencies. The irregular line configuration
achieved an overall efficiency of 63.54% with values of 49.6%
and 14.3% of thermal and electrical efficiencies, respectively,
considering irradiance intensity of 1200 W/m?, cooling flow rate
of 0.0533 kg/s, ambient temperature of 293K and external
convection coefficient of 2.8 W/m?K. The economic analysis
revealed a reduction of the electricity production price by
11.6%. The proposed PVT system’s overall energy cost reached
0.0474 $/kW.hr with a reduction in the yearly Co2 emissions by
215.3 kg/m? The proposed MFFNN-RSA hybrid model
minimized the MSE to a final value of 0.4857x10* within 106
epochs. The regression factor values for the testing, validation,
and training of the MFFNN-RSA hybrid model were equal to
one. This denotes that it can effectively predict the true values
of PVT performance. Combining the MFFNN architecture and
the optimization capabilities of the RSA into the MFFNN-RSA
hybrid model could achieve accurate predictions of the desired
values. The proposed MFFNN-RSA hybrid model had the ability
to generalize and extrapolate.
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