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Abstract. The growing concern about global climate change and the rapid development of rural areas highlight the need for energy efficient building
design. This study aims to establish a multi-objective optimization model based on artificial neural network (ANN) and non-dominated sorting Genetic
algorithm II (NSGA-II) to optimize the energy consumption of rural prefabricated buildings. Firstly, ANN and simulation technology are used to build
building models and predict building energy consumption. Then, NSGA-II algorithm was used to optimize the energy consumption and material
selection of the building, and the best prefabricated building scheme was obtained. The experimental results show that the optimization efficiency of
the model is about 95%, which is better than the traditional method. Specifically, compared with the NSGA-II algorithm, the model reduces energy
consumption by 16.7%, operating costs by 20.0%, and carbon emissions by 20.0%. When the cost optimization, energy consumption optimization
and carbon emission optimization are difficult to balance, the average optimization efficiency of the research design method is about 90% when the
cost optimization rate is low, and the other optimization rates are about 85% when the cost optimization rate rises to 50%. When the cost optimization
reaches the maximum, the optimization rate remains at about 80%. These results show that the proposed model is robust and efficient. This study
provides a comprehensive framework for designing sustainable and energy efficient rural prefabricated buildings that can help reduce energy
consumption and environmental impact. It has positive significance in the sustainable development of rural economy and provides a new way of
thinking for rural construction.
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1. Introduction the energy-efficient design of rural prefabricated buildings,

artificial neural networks can be used for building energy
consuming simulating, thermal comfort, daylighting, and other
performance factors under different design parameters while
employing complex nonlinear function approximation and
pattern recognition (Hamida et al. 2021) and (Hobbie et al. 2021).
Non-dominated sorting genetic algorithm, as a multi-objective
optimization (MOO) algorithm, can be combined with artificial
neural networks to significantly reduce the time required for
performance evaluation during the rapid optimization process
for building performance simulation (Jayakeerti et al. 2023) and
(Jayashankara et al. 2023). In this context, this study considers
the practical performance requirements of energy-efficient
design, innovatively integrating objectives such as energy
consumption, cost, and carbon emissions to comprehensively
assess the sustainability of buildings (Khettabi et al. 2022).
Furthermore, the study creatively considers the coupling effects
between envelope structure design and renewable energy
system design while also considering independent parameter
optimization for different facade orientations to better meet
energy-saving needs under different conditions. Ultimately, a
MOO model for energy-efficient rural prefabricated buildings is
proposed, based on artificial neural networks (ANN) and non-
dominated sorting genetic algorithm II (NSGA-II), integrating

Inrecent years, the worsening global climate change and the
rapid depletion of natural resources have heightened the global
focus on energy conservation and emission reduction (Von
Homeyer et al. 2021). Among various industries, the building
sector accounts for a significant portion of energy consumption,
making energy-efficient buildings a crucial and unavoidable
topic (Li et al. 2022). In rural areas, prefabricated buildings are
constructed using a factory-based production approach,
followed by assembly and installation in rural regions (Wasim et
al. 2022). Compared to traditional brick and timber structures,
prefabricated buildings offer several energy-saving advantages
(Luo et al. 2021). Rural prefabricated buildings utilize advanced
energy-saving materials and technologies, such as efficient
insulation materials like polystyrene boards and rock wool
boards for walls and roofs, effectively reducing energy
consumption by providing thermal insulation (Awad et al. 2022)
and (Arjomandnia et al. 2023). However, energy-efficient
building design in rural areas faces challenges related to varying
climate conditions, financial and technological constraints,
limitations in construction materials and techniques, building
land and spatial constraints, as well as awareness and education
levels (Doerr et al. 2023) and (Fakhr et al. 2023). Additionally, in
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building energy consumption simulation. This model assists
designers in weighing and selecting among multiple objectives.

The study conducted technical exploration and analysis
from four aspects. The first part discussed and summarized the
current research on energy conservation in the building sector.
The second part focused on researching building energy
consumption simulation, ANN, and multi-objective algorithms,
including the construction of a MOO model. The third part
mainly validated the MOO model through experiments and
analyzed the data. The fourth part provided a comprehensive
overview of the entire article and reflected and summarized its
shortcomings.

2. Related works

The increasing depletion of global non-renewable resources
and the enormous energy consumption in the construction
industry have led to a further demand for energy-efficient
buildings. Constructing efficient and energy-saving construction
methods has become an important research area for some
scholars. Deng et al,, (2022) addressing the issue of urban
building energy modeling, proposed a city building energy
model based on clustering and random forest algorithms,
thereby enhancing the control over building energy usage and
conservation and emissions reduction. Ali et al., (2021) focusing
on the analysis of energy consumption and potential energy
savings in a particular institution in Malaysia, proposed an
energy consumption analysis method based on energy audits,
thereby improving the targeted and feasible measures for
building energy conservation. Berawi et al., (2023) addressing
the energy performance, indoor comfort, and life-cycle cost
efficiency of office buildings, proposed an intelligent integrated
workspace design framework based on IoT technology, thereby
enhancing building energy performance and efficiency. Shafie et
al, (2021) addressing the energy efficiency management issue
in university campus buildings, proposed energy and energy
efficiency management strategies based on expert interviews
and the collection of electronic materials and books, thereby
providing sustainable solutions for energy and energy efficiency
management in university campus buildings. Mahapatra and
Nayyar (2022) addressing the optimization of energy
management in residential housing, proposed an impromptu
creative building design method based on green building
principles, thereby enhancing the efficiency and reliability of
residential energy management systems. Ye et al., (2021)
addressing the impact of energy efficiency measures on
medium-sized office building energy consumption in the United
States, proposed an optimization strategy for energy efficiency
retrofit measures based on sensitivity analysis combined with
standard regression coefficients and sensitivity analysis
methods, thereby providing decision support for energy-saving
retrofitting of medium-sized office buildings. Long R et al,
addressing issues related to energy-efficient building design,
proposed an energy-efficient building design framework based
on building information modeling simulation technology
combined with artificial intelligence technology, thereby
improving energy utilization efficiency in the building design
process (Long and Li 2021).

In addition, Amani et al., addressing the issue of improving
energy efficiency in residential buildings, proposed a residential
building energy efficiency optimization model based on
ecological technology analysis software, thereby enhancing the
energy utilization efficiency of residential buildings under
different environmental and climatic conditions (Amani et al.
2022). Zeki¢-Susac et al, (2021) focusing on the prediction of
energy consumption costs in public buildings, proposed an
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energy cost prediction model based on ANN, thereby improving
the prediction capability in the field of energy management and
estimating the surplus generated after reconstruction measures.
Al-Habaibeh et al., (2021) addressing the heat performance
preservation issue during building retrofit processes, proposed
a building heat performance assessment model based on deep
learning ANN, thereby enhancing energy-saving effects during
building retrofit processes. Nazari et al., (2023) addressing the
reduction of energy consumption and improving indoor
environment quality in commercial buildings, proposed a
commercial building energy efficiency improvement model
based on NSGA-II, thereby improving the indoor environmental
quality while reducing energy consumption in commercial
buildings. Li et al., (2023) addressing the issues of sustainable
development and energy system construction in public
buildings, proposed a structure of renewable energy microgrids
based on an improved NSGA-II, thereby enhancing the
sustainable development and energy utilization efficiency of
public buildings.

From the research conducted by scholars from different
countries, most of the building energy-saving studies mainly
focus on optimizing a single aspect, neglecting the systematic
parameter optimization of the entire system composed of the
building and its environment. Therefore, the proposed MOO
model for energy-saving in rural prefabricated buildings, based
on ANN and NSGA-II combined with building energy
consumption simulation, exhibits certain innovativeness.

3. Research and design of energy-efficient models for
rural prefabricated buildings

Compared to traditional models, a multi-objective
optimization model can automatically extract the complex
relationships of building energy consumption by learning from
a large amount of data, thereby accurately predicting building
energy consumption. Additionally, this model can
simultaneously consider multiple optimization objectives, such
as energy saving, cost reduction, and improved comfort,
enabling more comprehensive optimization. Therefore, the
design and implementation of the algorithm model are
particularly important to ensure continuous optimization.
Hence, this section mainly analyzes the fundamental principles
of the model and the construction of the system.

3.1 Building energy consumption simulation and artificial neural
network

The building system studied in this paper is the rural
prefabricated building system. The system focuses on
combining advanced building technologies with energy efficient
materials and renewable energy technologies. A key element of
the system is high-performance insulation materials for walls
and roofs, such as polystyrene and rockwool, which significantly
improve thermal efficiency. In addition, the system includes
solar photovoltaic panels for on-site renewable energy
generation, an efficient heating, ventilation and air conditioning
(HVAC) system for maintaining an optimal indoor climate, and
a smart energy management system for real-time monitoring
and control of energy consumption. Together, these features
aim to optimize energy use, reduce carbon emissions, and
improve the sustainability of rural prefabricated buildings.

Buildings are considered as thermodynamic systems
comprising closely connected and interacting indoor and
outdoor environments (Mehboob 2021) and (Ma et al. 2023).
Various factors, such as heat radiation within the rooms and
building equipment, can influence the internal environment,
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Fig. 1 Flow chart of building energy consumption simulation

while external factors like solar radiation and climatic
conditions can affect the thermal conduction and optical
properties of the building’s structural components (Jin et al.
2023). The general process is illustrated in Figure 1.

From Figure 1, building energy consumption simulation
converts building information into a computer model. Based on
the building model, boundary conditions, and material
properties, it calculates internal heat transfer, energy
consumption, and other factors, and then analyzes the results
for improving the energy efficiency and sustainability of the
building (Patil et al. 2024). The mathematical expression for
building energy consumption calculation is shown in Equation
(1) (Saber et al. 2021) and (Singh Rajput et al. 2023).

qall = qconv + qCE + qlv + qsys (1)

Equation (1), gur represents the building’s energy consuming,
geov Tepresents the convective energy consumption on the
building surfaces, gcr represents the convective energy
consumption indoors, gv represents the energy consumption
due to airflow infiltration and ventilation, gss represents the
energy consumption of the air conditioning system. The
convective energy consumption outdoors and indoors is shown
in Equation (2).

{qconv =hx AxAT
Oce = hCE X Ace X ATee

In Equation (2), h represents the convective heat transfer
coefficient, A represents the surface area for heat conduction,
AT represents the temperature difference between the object
surface and the fluid, ~cr represents the convective heat transfer

(2)

Input Layer

Hidden Layers

coefficient for indoor loads, Acs represents the surface area
affected by indoor loads, and ATce: represents the temperature
difference between the indoor environment and the load
surface. Additionally, the energy consumption due to airflow
infiltration and air conditioning is shown in Equation (3).

g,y =mxCpxAT, )

Oys = UAX ATSyS
In Equation (3), m represents the mass flow rate of the airflow,
C, represents the specific heat capacity of the air, ATw
represents the temperature difference between indoor and
outdoor airflow UA represents the thermal conductivity
coefficient, and ATy represents the temperature difference in
the return water of the air conditioning system. Due to the
complexity and uncertainty of real buildings, simulations may
not accurately capture all factors. By introducing ANN into the
simulation, the accuracy and precision of predictions for
nonlinear problems can be improved through training with a
large amount of data, enabling better prediction of actual
building energy consumption (Fan et al. 2021). The ANN model
is illustrated in Figure 2.

From Figure 2, the ANN model is composed of multiple
neurons (or nodes) arranged in a network structure, which
contains input, hidden, and output layer. Input from the
previous layer is imported and calculated a weighted sum using
weights, which is then passed through an activation function to
generate an output (Verma et al. 2023) and (Vijayan et al. 2022).
ANN can be used to process various types of data, including

Output Layer

Fig. 2 ANN model structure diagram
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structured data and sequential data. The weight calculation is
represented by Equation (4).

Zt=W'. X +b
Z?=W?.-A'+b*(4)
A =o(Z")

o represents the activation function, Z’ represents the output of
the weights from the input layer to the hidden layer, W’
represents the weight matrix from the input layer to the hidden
layer, X represents the input data vector, b’ represents the bias
vector of the hidden layer, Z? represents the output of the
weights from the hidden layer to the output layer, W? represents
the weight matrix from the hidden layer to the output layer, 5%
represents the bias vector of the output layer, and A’ represents
the activation value of the hidden layer. The output is then
passed through the weight matrix added with the bias and
sequentially through the activation function. After obtaining the
predicted result, it is necessary to measure the error between
the predicted value and the actual value using a loss function.
The loss function is defined by Equation (5).

3 == 231 log(A?) + @-Y,)-log(1- A7)

A =o(Z%)

(5)

Jrepresents the loss value, m represents the number of samples,
Y; represents the actual value of the sample, A? represents the
predicted value from the output layer, and Z? represents the
input to the output layer. After calculating the error using the
loss function, the error needs to be backpropagated. The
mathematical expression for backpropagation is shown in
Equation (6).

dz® = A*-Y
(6)
{dz1 =W?)".dz?.o'(Z")

In Equation (6), dZ” represents the error in the output layer, dZ’
represents the error in the hidden layers, T represents the
transpose operation, and ¢’ represents the derivative of the
activation function. After calculating the error, it is necessary to
compute the weight gradients for weight update, as shown in
Equation (7).

dw? :%d22~(A1)T

dwlzldzl.xT
m

In Equation (7), dW? represents the weight gradient from the
hidden to the output layer, dW represents the weight gradient
from the input to the hidden layer. The computed errors and
weight gradients are then used to update the weights according
to Equation (8).

WH=W!-qa-dw! (8)
W2 =W?—q-dW?
Equation (8) introduces the learning rate, o. The artificial neural
network adjusts the weights gradually during training through
the forward and backward propagation processes, controlling
the step size of weight updates using the learning rate. This
iterative adjustment of weights helps the network approach the
true values and achieve the goal of performance prediction.
(Verma et al. 2023). The general process of combining ANN with
building energy consumption simulation is depicted in Figure 3
From Figure 3, the general process involves several steps:
preprocessing the collected data, selecting an appropriate ANN
architecture, simulating the building energy consumption and
inputting relevant parameters, aligning the input data from ANN
with the output data from building energy consumption
simulation, training ANN using the aligned data as input,
extracting feature values from the output of each training
iteration to form a feature database, analyzing and evaluating
the trained feature data, and periodically updating the model
parameters based on the analysis results.

3.2 MOO Model for Rural Prefabricated Buildings

In rural areas, the economic level is relatively low and resources,
including land, materials, and energy, are relatively limited.
Optimizing the building structure and material selection can
reduce material waste, construction and maintenance costs, and
energy consumption of buildings (Ve et al. 2021) and (Wei et al.
2024). The optimization model that combines ANN structure
with building energy consumption simulation can only achieve
single-objective optimization. Therefore, a MOO model is
needed to fully consider the environmental impact of buildings
and take corresponding measures in the design process. The
overall technical roadmap of the MOO model for rural
prefabricated buildings is shown in Figure 4.

From Figure 4, the overall technical roadmap of the MOO
model for rural prefabricated buildings consists of three
modules: parameter design, research stage, and optimization
objectives. The NSGA-II can be used to achieve MOO of the
system. and find a set of non-dominated solutions among
multiple objectives (Doerr and Qu 2023). The general process
of the NSGA-II algorithm is shown in Figure 5.

From Figure 5, the algorithm first randomly generates an
initial population. Then, it calculates the fitness value and
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Fig. 5 Flowchart of the NSGA-II algorithm

generates offspring individuals through crossover, mutation,
and merging operations to generate a new population. This
process is repeated until the termination condition is met, and
the population is updated to return the optimal solution. The
initialization of the population and the fitness value calculation
are mathematically expressed in Equation (9) (Yan et al. 2021).

population =[G,, G,, ..., G]

) (9)
fitness; = f (G;)

In Equation (9) population represents the initial population, G;

represents the gene of an individual, fitness; represents the

fitness value of an individual, and f{Gi) represents the fitness

function. The formula for the selection operation on the

randomly generated initial population is shown in Equation (10).

fitness,

-
Z fitness,
-1

(10)

In Equation (10), P; represents the probability of an individual
being selected, and Nrepresents the total number of individuals
in the population. The mathematical expression for the
crossover and mutation operations on the selected individuals
is shown in Equation (11).
Xi = {xij,if r<Py,,ifr< Pmr,otherwise} (11)

In Equation (11), X;; represents the new individual obtained
from crossover and mutation operations on different
individuals, x and Yy represent the parent individuals, r
represents a random number, P. represents the crossover

probability, and P, represents the mutation probability. The new
individuals generated until the termination condition is met
form a new population, which represents the optimal solutions.
The combination of the NSGA-II, ANN structure, and building
energy consumption simulation is depicted in Figure 6.

From Figure 6, the overall technical roadmap consists of
three parts: dataset generation, construction of artificial neural
network, and solution using the NSGA-II MOO algorithm.
Firstly, building simulation is performed using the constructed
building model to calculate the objective functions and obtain a
dataset with building energy consumption, operational costs,
carbon emissions, etc. Then, the determined ANN structure is
trained using the dataset to obtain prediction models for energy
consumption, costs, and carbon emissions. Finally, in the
process of MOO based on the NSGA-II algorithm, the ANN
prediction models are used for prediction and correction of the
data, and the non-dominated sorting is employed to generate a
set of multi-objective optimal solutions (Fang et al. 2022). When
combined with the multi-objective building optimization
technique, a cost calculation for production and construction
can be derived as shown in Equation (12).

IC=1C,+ Y IC,; (12)

IC, represents the construction costs of buildings of the same
type, and /Cuy represents the additional costs. Additionally, the
calculation formula for operational costs is shown in Equation
(13).

OC =>a[EW, +(E, +E +E, +E )W, -EW,]+> a,dw,
y=1 z=1

(13)
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a represents the cost coefficient due to price fluctuations, Ej
represents the energy consumption of the heating system, E.
represents the energy consumption of the cooling system, E;
represents the energy consumption of the lighting system, E,
represents the energy consumption of the hot water system, E.
represents the energy consumption of appliances, E, represents
the energy output of rooftop photovoltaic systems, Wi
represents the heating energy price, W: represents the average
energy price, and W represents the price of renewable energy
grid connection. Lastly, the cost calculation for the recycling
stage is shown in Equation (14).

RC = (RC, +RC; +RC,)a, (14)

RCp represents the dismantling cost, RCr represents the cost of
waste transportation, and RCc represents the cost of waste
treatment. By summing up these various costs, the final cost
calculation formula can be obtained. Additionally, the
calculation of carbon emissions during the lifecycle is shown in
Equation (15).

LCCO, =C, +C, +C_(15)

Ca represents the carbon emissions generated during the
production and manufacturing process, Cs represents the
continuous carbon emissions generated during operation and
management, and Cc represents the carbon emissions
generated during the dismantling and recycling process. In
summary, the energy consumption optimization of rural
prefabricated buildings is a MOO problem that needs to
consider multiple objectives, such as energy consumption,
comfort, and economy. Building energy consumption
simulation provides data, ANN can analyze and predict these
data, and NSGA-II can optimize multiple objectives. Therefore,
combining ANN, NSGA-II, and building energy consumption
simulation for MOO of rural prefabricated buildings can help
designers balance between multiple objectives and obtain a set
of optimal solutions to achieve energy consumption
optimization.

4. Experimental verification and data analysis

For confirming the performance of the MOO Model (MOM) that
incorporates ANN, the NSGA-II, and building energy
consumption simulation in optimizing energy consuming of
rural prefabricated buildings, the MOM model is compared with
traditional optimization algorithms including NSGA, Strength
Pareto Evolutionary Algorithm (SPEA), Indicator-Based
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Fig. 7 Comparison of single-storey building optimization

Evolutionary Algorithm (IBEA), Multi-Objective Genetic
Algorithm (MOGA), and Pareto Archived Evolution Strategy
(PAES) using 10 datasets that include different parameters of
rural single-story standard buildings. The results of the
parameter optimization comparison are presented in Figure 7.
From Figure 7, MOM achieves approximately 1%
improvement over NSGA, about 4% improvement over SPEA,
about 7% improvement over IBEA, about 10% improvement
over MOGA, and about 11% improvement over PAES. Since
rural single-story building designs are relatively simple with
fewer parameters, the improvement of MOM compared to
NSGA is relatively small, and the overall optimization efficiency

-O- MOM NSGA - SPEA
100

IBEA -*- MOGA —- PAES

Optimization rate (%)
& 8 &

@
o
L

75 A
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Dataset number

Fig 8.0Optimization comparison of special-shaped buildings
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is similar. However, thanks to the artificial neural network
model in MOM, it has gained advantages even with fewer
parameters. Further research compares different algorithms in
single-story irregular structure building parameters, as shown in
Figure 8.

From Figure 8, as parameter structures vary, the
optimization efficiency decreases, leading to differences in
optimization efficiency among the algorithms. Among them,
MOM achieves approximately 4% improvement over NSGA,
about 6% improvement over SPEA, about 9% improvement
over IBEA, about 13% improvement over MOGA, and about
15% improvement over PAES. As the economic conditions in
modern rural areas gradually improve, some rural buildings are
evolving into villa-type structures. Further research compares
the optimization efficiency of different algorithms in villa-scale
buildings, as shown in Figure 9.

From Figure 9, in the optimization efficiency comparison of
villa buildings, the MOM model still maintains an average
optimization efficiency of over 95%, while the traditional NSGA
algorithm’s average optimization efficiency decreases to about
88%, SPEA’s average optimization efficiency is about 85%,
IBEA’s average optimization efficiency is about 80%, MOGA’s

@ MOM -A- SPEA -l PAES

88 1

Optimization rate (%)
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average optimization efficiency is about 78%, and PAES’s
average optimization efficiency is about 72%. As mentioned
earlier, further research refines the optimization objectives to
Comprehensive Energy Consumption Optimization (CEO),
Integrated Cost Optimization (ICO), and Integrated Carbon
Emission Optimization (IEO), and compares the algorithms as
shown in Figure 10.

From Figure 10, the MOM model consistently maintains a
comprehensive optimization efficiency of over 90% in different
category optimization tests. Its optimization efficiency is
approximately 7%, 8%, and 5% higher than the SPEA algorithm,
and approximately 10%, 15%, and 20% higher than the PAES
algorithm.

Figure 9 compares the optimization efficiencies of different
algorithms specifically for villa-scale buildings, showing how the
MOM algorithm outperforms others like NSGA, SPEA, IBEA,
MOGA, and PAES in this context. Figure 10, on the other hand,
breaks down the MOM algorithm's performance across three
specific optimization objectives: CEO, ICO, and IEO. It
highlights the algorithm's ability to balance these distinct goals.
In summary, Figure 9 focuses on overall efficiency in villa
buildings, while Figure 10 details the MOM algorithm's
performance in specific optimization categories. A set of
parameters for a 2-story villa is optimized using the MOM
algorithm, and the optimization results are shown in Table 1.

From Table 1, the MOM model provides specific
optimization strategies for different optimization types. The
solutions with the lowest energy consumption and the lowest
carbon emissions tend to use three-layer glass windows with
low emissivity coatings. All recommended solutions suggest
using a 10mm insulation layer and recommend insulation
thickness of around 50mm for the suspended floor. Additionally,
all recommended solutions have a permeability rate of 0.2, and
the installation scale of the photovoltaic system is 8 kW. The
experimental data above fully demonstrate that the MOM
model can design different optimization solutions based on
different objectives (energy consumption, carbon emissions,
cost, etc.) to achieve optimal energy efficiency and
environmental performance in transparent envelope structures.
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Fig. 10 Comparison of energy consumption, cost and carbon emission optimization
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Table 1
Comparison of villa optimization results
Serial
Parameter CEO ICO IEO
number
1 North elevation exterior window type 7 3 8
2 West elevation exterior window type 7 1 6
3 South elevation exterior window type 8 2 7
4 East elevation exterior window type 4 1 5
5 EPS insul'ation thickness of exterior wall 60 90 60
insulation panels (mm
6 ThiFkness of insulation layer of 120 140 120
prefabricated exterior wall panel (mm)
7 Roof insulation board Thickness (mm) 40 10 20
8 Thickness of floor insulation (mm) 10 10 10
9 Thickness of overhead floor insulation 50 50 45
(mm)

10 North visor overhang length (cm) 100 40 100
1 West visor overhang length (cm) 100 40 100
12 South visor overhang length (cm) 20 60 100
13 East visor overhang length (cm) 100 100 100
14 Building orientation (°) 0 0 0
15 Air Tightness of Buildings (ACH) 0.2 0.2 0.2
16 Installed capacity of PV system (kw) 8 8 8

2 %%00 ~ 50 0 %) 50 0
ICO (%) ICO (%)
(a) Optimal distribution of PAES (b) Optimal distribution of SPEA
0

(@] L
L

o L

100 r

- 0 IR

50
ICO (%)

(c) Optimal distribution of MOM

Fig. 11 Comparison of village optimization

Furthermore, as modern rural areas are also transitioning to
more dense construction, large-scale villages are starting to
emerge. The optimization efficiency of different algorithms for
large-scale villages is compared in Figure 11.

From Figure 11, it is evident that it is difficult to balance cost
optimization with energy consumption and carbon emission
optimization. PAES maintains an average optimization rate of
about 80% when the cost optimization rate is low, but as the cost
optimization rate increases to 50%, the other optimization rates
start to decrease significantly, averaging around 65%. When the
cost optimization is at its maximum, the other optimization rates
are close to 0%. SPEA maintains an average optimization rate

of about 85% when the cost optimization rate is low, and as the
cost optimization rate increases to 50%, the other optimization
rates decrease to approximately 75%. When the cost
optimization is at its maximum, the other optimization rates are
around 50%. MOM maintains an average optimization rate of
about 90% when the cost optimization rate is low, and as the
cost optimization rate increases to 50%, the other optimization
rates decrease to approximately 85%. When the cost
optimization is at its maximum, the other optimization rates are
around 80%. Therefore, it can be concluded that as the cost
optimization rate increases, MOM shows a more stable and
higher optimization rate compared to SPEA, with an average
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Optimization results of three kinds of objective functions under two models

Objective function NSGA-II Efficiency (%)

MOM Efficiency (%)

Improvement (%)

Energy Consumption (kWh/m?) 120
Operational Cost (USD/m2/year) 10
Carbon Emissions (kg CO2/m2/year) 25

100 16.7
8 20.0
20 20.0

improvement of approximately 10%, and an improvement of
approximately 8% compared to PAES. The experiments fully
demonstrate that MOM has certain advantages and feasibility in
optimizing various types of rural buildings and in MOO.

Energy Consumption, Operational Cost, and Carbon
Emissions are selected as three different objective functions,
and the optimization results of the traditional NSGA-II model
and the MOM model proposed in this paper for the three
objective functions are shown in Table 2. As can be seen from
Table 2, compared with NSGA-II algorithm, MOM algorithm
significantly improves the optimization efficiency of all targets.
Specifically, the MOM algorithm reduced energy consumption
by 16.7%, operating costs by 20.0%, and carbon emissions by
20.0%.

5.Conclusion

For the energy optimization problem of rural prefabricated
buildings, a MOO Model was proposed, combining ANN and
NSGA-II, and building energy consumption simulation.
Experimental comparisons and data analysis were conducted
for optimizing various types of building performance and MOO.
The experimental results show that in the case of ordinary
single-story rural prefabricated buildings, MOM achieves
approximately 1% improvement over NSGA, about 4%
improvement over SPEA, about 7% improvement over IBEA,
about 10% improvement over MOGA, and about 11%
improvement over PAES. In the case of multi-story rural
buildings, MOM achieves approximately 4% improvement over
NSGA, about 6% improvement over SPEA, about 9%
improvement over IBEA, about 13% improvement over MOGA,
and about 15% improvement over PAES. In the optimization
efficiency comparison of villa buildings, MOM still maintains an
average optimization efficiency of over 95%, while NSGA’s
average optimization efficiency decreases to about 88%, SPEA’s
average optimization efficiency is about 85%, IBEA’s average
optimization efficiency is about 80%, MOGA’s average
optimization efficiency is about 78%, and PAES’s average
optimization efficiency is about 72%. In the scenario where cost
optimization and energy consumption and carbon emission
optimization are difficult to balance, MOM maintains an average
optimization efficiency of about 90% when the cost optimization
rate is low, and as the cost optimization rate increases to 50%,
the other optimization rates are around 85%. When the cost
optimization is at its maximum, the optimization rates remain
around 80%. The experiments demonstrate that MOM has
certain advantages in optimizing different types of rural
prefabricated buildings and in MOO. However, it should be
noted that the computational resources required for the fusion
model are relatively large, leading to higher resource
consumption. Further exploration is needed to optimize the
performance and energy consumption of the model itself.
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