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Abstract. The growing concern about global climate change and the rapid development of rural areas highlight the need for energy efficient building 
design. This study aims to establish a multi-objective optimization model based on artificial neural network (ANN) and non-dominated sorting Genetic 
algorithm II (NSGA-II) to optimize the energy consumption of rural prefabricated buildings. Firstly, ANN and simulation technology are used to build 
building models and predict building energy consumption. Then, NSGA-II algorithm was used to optimize the energy consumption and material 
selection of the building, and the best prefabricated building scheme was obtained. The experimental results show that the optimization efficiency of 
the model is about 95%, which is better than the traditional method. Specifically, compared with the NSGA-II algorithm, the model reduces energy 
consumption by 16.7%, operating costs by 20.0%, and carbon emissions by 20.0%. When the cost optimization, energy consumption optimization 
and carbon emission optimization are difficult to balance, the average optimization efficiency of the research design method is about 90% when the 
cost optimization rate is low, and the other optimization rates are about 85% when the cost optimization rate rises to 50%. When the cost optimization 
reaches the maximum, the optimization rate remains at about 80%. These results show that the proposed model is robust and efficient. This study 
provides a comprehensive framework for designing sustainable and energy efficient rural prefabricated buildings that can help reduce energy 
consumption and environmental impact. It has positive significance in the sustainable development of rural economy and provides a new way of 
thinking for rural construction. 
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1. Introduction 

In recent years, the worsening global climate change and the 
rapid depletion of natural resources have heightened the global 
focus on energy conservation and emission reduction (Von 
Homeyer et al. 2021). Among various industries, the building 
sector accounts for a significant portion of energy consumption, 
making energy-efficient buildings a crucial and unavoidable 
topic (Li et al. 2022). In rural areas, prefabricated buildings are 
constructed using a factory-based production approach, 
followed by assembly and installation in rural regions (Wasim et 
al. 2022). Compared to traditional brick and timber structures, 
prefabricated buildings offer several energy-saving advantages 
(Luo et al. 2021). Rural prefabricated buildings utilize advanced 
energy-saving materials and technologies, such as efficient 
insulation materials like polystyrene boards and rock wool 
boards for walls and roofs, effectively reducing energy 
consumption by providing thermal insulation (Awad et al. 2022) 
and (Arjomandnia et al. 2023). However, energy-efficient 
building design in rural areas faces challenges related to varying 
climate conditions, financial and technological constraints, 
limitations in construction materials and techniques, building 
land and spatial constraints, as well as awareness and education 
levels (Doerr et al. 2023) and (Fakhr et al. 2023). Additionally, in 
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the energy-efficient design of rural prefabricated buildings, 
artificial neural networks can be used for building energy 
consuming simulating, thermal comfort, daylighting, and other 
performance factors under different design parameters while 
employing complex nonlinear function approximation and 
pattern recognition (Hamida et al. 2021) and (Hobbie et al. 2021). 
Non-dominated sorting genetic algorithm, as a multi-objective 
optimization (MOO) algorithm, can be combined with artificial 
neural networks to significantly reduce the time required for 
performance evaluation during the rapid optimization process 
for building performance simulation (Jayakeerti  et al. 2023) and 
(Jayashankara et al. 2023). In this context, this study considers 
the practical performance requirements of energy-efficient 
design, innovatively integrating objectives such as energy 
consumption, cost, and carbon emissions to comprehensively 
assess the sustainability of buildings (Khettabi et al. 2022). 
Furthermore, the study creatively considers the coupling effects 
between envelope structure design and renewable energy 
system design while also considering independent parameter 
optimization for different facade orientations to better meet 
energy-saving needs under different conditions. Ultimately, a 
MOO model for energy-efficient rural prefabricated buildings is 
proposed, based on artificial neural networks (ANN) and non-
dominated sorting genetic algorithm II (NSGA-II), integrating 

Research Article 

https://doi.org/10.61435/ijred.2024.60153
https://doi.org/10.61435/ijred.2024.60153
https://ijred.cbiore.id/
http://creativecommons.org/licenses/by-sa/4.0/).
https://orcid.org/0009-0001-6521-7791
https://orcid.org/0000-0002-6134-3432
http://crossmark.crossref.org/dialog/?doi=10.61435/ijred.2024.60153%26domain=pdf


C. Bai and X. Xue  Int. J. Renew. Energy Dev 2024, 13(5), 995-1004 

| 996 

 

ISSN: 2252-4940/© 2024. The Author(s). Published by CBIORE 

building energy consumption simulation. This model assists 
designers in weighing and selecting among multiple objectives. 

The study conducted technical exploration and analysis 
from four aspects. The first part discussed and summarized the 
current research on energy conservation in the building sector. 
The second part focused on researching building energy 
consumption simulation, ANN, and multi-objective algorithms, 
including the construction of a MOO model. The third part 
mainly validated the MOO model through experiments and 
analyzed the data. The fourth part provided a comprehensive 
overview of the entire article and reflected and summarized its 
shortcomings. 

2. Related works 

The increasing depletion of global non-renewable resources 
and the enormous energy consumption in the construction 
industry have led to a further demand for energy-efficient 
buildings. Constructing efficient and energy-saving construction 
methods has become an important research area for some 
scholars. Deng et al., (2022) addressing the issue of urban 
building energy modeling, proposed a city building energy 
model based on clustering and random forest algorithms, 
thereby enhancing the control over building energy usage and 
conservation and emissions reduction. Ali et al., (2021) focusing 
on the analysis of energy consumption and potential energy 
savings in a particular institution in Malaysia, proposed an 
energy consumption analysis method based on energy audits, 
thereby improving the targeted and feasible measures for 
building energy conservation. Berawi et al., (2023) addressing 
the energy performance, indoor comfort, and life-cycle cost 
efficiency of office buildings, proposed an intelligent integrated 
workspace design framework based on IoT technology, thereby 
enhancing building energy performance and efficiency. Shafie et 
al., (2021) addressing the energy efficiency management issue 
in university campus buildings, proposed energy and energy 
efficiency management strategies based on expert interviews 
and the collection of electronic materials and books, thereby 
providing sustainable solutions for energy and energy efficiency 
management in university campus buildings. Mahapatra and 
Nayyar (2022) addressing the optimization of energy 
management in residential housing, proposed an impromptu 
creative building design method based on green building 
principles, thereby enhancing the efficiency and reliability of 
residential energy management systems. Ye et al., (2021) 
addressing the impact of energy efficiency measures on 
medium-sized office building energy consumption in the United 
States, proposed an optimization strategy for energy efficiency 
retrofit measures based on sensitivity analysis combined with 
standard regression coefficients and sensitivity analysis 
methods, thereby providing decision support for energy-saving 
retrofitting of medium-sized office buildings. Long R et al., 
addressing issues related to energy-efficient building design, 
proposed an energy-efficient building design framework based 
on building information modeling simulation technology 
combined with artificial intelligence technology, thereby 
improving energy utilization efficiency in the building design 
process (Long and Li 2021). 

In addition, Amani  et al., addressing the issue of improving 
energy efficiency in residential buildings, proposed a residential 
building energy efficiency optimization model based on 
ecological technology analysis software, thereby enhancing the 
energy utilization efficiency of residential buildings under 
different environmental and climatic conditions (Amani et al. 
2022). Zekić-Sušac et al., (2021) focusing on the prediction of 
energy consumption costs in public buildings, proposed an 

energy cost prediction model based on ANN, thereby improving 
the prediction capability in the field of energy management and 
estimating the surplus generated after reconstruction measures. 
Al-Habaibeh et al., (2021) addressing the heat performance 
preservation issue during building retrofit processes, proposed 
a building heat performance assessment model based on deep 
learning ANN, thereby enhancing energy-saving effects during 
building retrofit processes. Nazari et al., (2023) addressing the 
reduction of energy consumption and improving indoor 
environment quality in commercial buildings, proposed a 
commercial building energy efficiency improvement model 
based on NSGA-II, thereby improving the indoor environmental 
quality while reducing energy consumption in commercial 
buildings. Li et al., (2023) addressing the issues of sustainable 
development and energy system construction in public 
buildings, proposed a structure of renewable energy microgrids 
based on an improved NSGA-II, thereby enhancing the 
sustainable development and energy utilization efficiency of 
public buildings. 

From the research conducted by scholars from different 
countries, most of the building energy-saving studies mainly 
focus on optimizing a single aspect, neglecting the systematic 
parameter optimization of the entire system composed of the 
building and its environment. Therefore, the proposed MOO 
model for energy-saving in rural prefabricated buildings, based 
on ANN and NSGA-II combined with building energy 
consumption simulation, exhibits certain innovativeness. 

3. Research and design of energy-efficient models for 
rural prefabricated buildings 

Compared to traditional models, a multi-objective 
optimization model can automatically extract the complex 
relationships of building energy consumption by learning from 
a large amount of data, thereby accurately predicting building 
energy consumption. Additionally, this model can 
simultaneously consider multiple optimization objectives, such 
as energy saving, cost reduction, and improved comfort, 
enabling more comprehensive optimization. Therefore, the 
design and implementation of the algorithm model are 
particularly important to ensure continuous optimization. 
Hence, this section mainly analyzes the fundamental principles 
of the model and the construction of the system. 

3.1 Building energy consumption simulation and artificial neural 
network 

The building system studied in this paper is the rural 
prefabricated building system. The system focuses on 
combining advanced building technologies with energy efficient 
materials and renewable energy technologies. A key element of 
the system is high-performance insulation materials for walls 
and roofs, such as polystyrene and rockwool, which significantly 
improve thermal efficiency. In addition, the system includes 
solar photovoltaic panels for on-site renewable energy 
generation, an efficient heating, ventilation and air conditioning 
(HVAC) system for maintaining an optimal indoor climate, and 
a smart energy management system for real-time monitoring 
and control of energy consumption. Together, these features 
aim to optimize energy use, reduce carbon emissions, and 
improve the sustainability of rural prefabricated buildings. 

Buildings are considered as thermodynamic systems 
comprising closely connected and interacting indoor and 
outdoor environments (Mehboob 2021) and (Ma et al. 2023). 
Various factors, such as heat radiation within the rooms and 
building equipment, can influence the internal environment, 
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while external factors like solar radiation and climatic 
conditions can affect the thermal conduction and optical 
properties of the building’s structural components (Jin et al. 
2023). The general process is illustrated in Figure 1. 

From Figure 1, building energy consumption simulation 
converts building information into a computer model. Based on 
the building model, boundary conditions, and material 
properties, it calculates internal heat transfer, energy 
consumption, and other factors, and then analyzes the results 
for improving the energy efficiency and sustainability of the 
building (Patil et al. 2024). The mathematical expression for 
building energy consumption calculation is shown in Equation 
(1) (Saber et al. 2021) and (Singh Rajput et al. 2023). 

= + + +
all conv CE IV sys

q q q qq    (1) 

Equation (1), qall represents the building’s energy consuming, 
qconv represents the convective energy consumption on the 
building surfaces, qCE represents the convective energy 
consumption indoors, qIV represents the energy consumption 
due to airflow infiltration and ventilation, qsys represents the 
energy consumption of the air conditioning system. The 
convective energy consumption outdoors and indoors is shown 
in Equation (2). 

 



=  

=  

conv

CE CE CE CE

q h A T

q h A T
   (2) 

In Equation (2), h represents the convective heat transfer 
coefficient, A represents the surface area for heat conduction, 
∆T represents the temperature difference between the object 
surface and the fluid, hCE  represents the convective heat transfer 

coefficient for indoor loads, ACE represents the surface area 
affected by indoor loads, and ∆TCE  represents the temperature 
difference between the indoor environment and the load 
surface. Additionally, the energy consumption due to airflow 
infiltration and air conditioning is shown in Equation (3). 

=  

=



 

IV IV

sys sys

q m Cp T

q UA T
    (3) 

In Equation (3), m represents the mass flow rate of the airflow, 
Cp represents the specific heat capacity of the air, ∆TIV 
represents the temperature difference between indoor and 
outdoor airflow UA represents the thermal conductivity 
coefficient, and ∆Tsys represents the temperature difference in 
the return water of the air conditioning system. Due to the 
complexity and uncertainty of real buildings, simulations may 
not accurately capture all factors. By introducing ANN into the 
simulation, the accuracy and precision of predictions for 
nonlinear problems can be improved through training with a 
large amount of data, enabling better prediction of actual 
building energy consumption (Fan et al. 2021). The ANN model 
is illustrated in Figure 2. 

From Figure 2, the ANN model is composed of multiple 
neurons (or nodes) arranged in a network structure, which 
contains input, hidden, and output layer. Input from the 
previous layer is imported and calculated a weighted sum using 
weights, which is then passed through an activation function to 
generate an output (Verma et al. 2023) and (Vijayan et al. 2022). 
ANN can be used to process various types of data, including 
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Fig. 1 Flow chart of building energy consumption simulation 
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structured data and sequential data. The weight calculation is 
represented by Equation (4). 

1 1 1

2 2 1 2

1 1
( )

 =  +


=  +


=

Z W X b

Z W A b

A Z

(4) 

σ represents the activation function, Z1 represents the output of 
the weights from the input layer to the hidden layer, W1 
represents the weight matrix from the input layer to the hidden 
layer, X represents the input data vector, b1 represents the bias 
vector of the hidden layer, Z2 represents the output of the 
weights from the hidden layer to the output layer, W2  represents 
the weight matrix from the hidden layer to the output layer, b2 
represents the bias vector of the output layer, and A1 represents 
the activation value of the hidden layer. The output is then 
passed through the weight matrix added with the bias and 
sequentially through the activation function. After obtaining the 
predicted result, it is necessary to measure the error between 
the predicted value and the actual value using a loss function. 
The loss function is defined by Equation (5). 

( )2 2

1

2 2

1
log( ) (1 ) log(1 )

( )

=


= −  + −  −


 =


m

i i i i

i

J Y A Y A
m

A Z

 (5) 

J represents the loss value, m represents the number of samples, 
Yi represents the actual value of the sample, A2 represents the 
predicted value from the output layer, and Z2 represents the 
input to the output layer. After calculating the error using the 
loss function, the error needs to be backpropagated. The 
mathematical expression for backpropagation is shown in 
Equation (6). 

2 2

1 2 2 1
( ) ( )

 = −


=  
T

dZ A Y

dZ W dZ Z
   (6) 

In Equation (6), dZ2 represents the error in the output layer, dZ1 
represents the error in the hidden layers, T represents the 
transpose operation, and σ’ represents the derivative of the 
activation function. After calculating the error, it is necessary to 
compute the weight gradients for weight update, as shown in 
Equation (7). 

2 2 1

1 1

1
( )

1










= 

=

T

T

dW dZ A
m

dW dZ X
m

   (7) 

In Equation (7), dW2 represents the weight gradient from the 
hidden to the output layer, dW1 represents the weight gradient 
from the input to the hidden layer. The computed errors and 
weight gradients are then used to update the weights according 
to Equation (8). 

1 1 1

2 2 2





= − 

=


− 





W W dW

W W dW
    (8) 

Equation (8) introduces the learning rate, α. The artificial neural 
network adjusts the weights gradually during training through 
the forward and backward propagation processes, controlling 
the step size of weight updates using the learning rate. This 
iterative adjustment of weights helps the network approach the 
true values and achieve the goal of performance prediction. 
(Verma et al. 2023). The general process of combining ANN with 
building energy consumption simulation is depicted in Figure 3 

From Figure 3, the general process involves several steps: 
preprocessing the collected data, selecting an appropriate ANN 
architecture, simulating the building energy consumption and 
inputting relevant parameters, aligning the input data from ANN 
with the output data from building energy consumption 
simulation, training ANN using the aligned data as input, 
extracting feature values from the output of each training 
iteration to form a feature database, analyzing and evaluating 
the trained feature data, and periodically updating the model 
parameters based on the analysis results. 

3.2 MOO Model for Rural Prefabricated Buildings 

In rural areas, the economic level is relatively low and resources, 
including land, materials, and energy, are relatively limited. 
Optimizing the building structure and material selection can 
reduce material waste, construction and maintenance costs, and 
energy consumption of buildings (Ve et al. 2021) and (Wei et al. 
2024). The optimization model that combines ANN structure 
with building energy consumption simulation can only achieve 
single-objective optimization. Therefore, a MOO model is 
needed to fully consider the environmental impact of buildings 
and take corresponding measures in the design process. The 
overall technical roadmap of the MOO model for rural 
prefabricated buildings is shown in Figure 4. 

From Figure 4, the overall technical roadmap of the MOO 
model for rural prefabricated buildings consists of three 
modules: parameter design, research stage, and optimization 
objectives. The NSGA-II can be used to achieve MOO of the 
system. and find a set of non-dominated solutions among 
multiple objectives (Doerr and Qu 2023). The general process 
of the NSGA-II algorithm is shown in Figure 5. 

From Figure 5, the algorithm first randomly generates an 
initial population. Then, it calculates the fitness value and 
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Fig. 3 Flow chart of building energy consumption simulation combined with ANN 
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generates offspring individuals through crossover, mutation, 
and merging operations to generate a new population. This 
process is repeated until the termination condition is met, and 
the population is updated to return the optimal solution. The 
initialization of the population and the fitness value calculation 
are mathematically expressed in Equation (9) (Yan et al. 2021). 

 

( )

1 2
,  ,  ...,  




=

=

i

i i

population G G G

fitness f G
  (9) 

In Equation (9) population represents the initial population, Gi 
represents the gene of an individual, fitnessi represents the 
fitness value of an individual, and f(Gi) represents the fitness 
function. The formula for the selection operation on the 
randomly generated initial population is shown in Equation (10). 

1=

=



i

i N

j

j

fitness
P

f itness
    (10) 

In Equation (10), Pi represents the probability of an individual 
being selected, and  N represents the total number of individuals 
in the population. The mathematical expression for the 
crossover and mutation operations on the selected individuals 
is shown in Equation (11). 

 e,, if if r oth is, erw =  ij ij c ij mX x r P y r P  (11) 

In Equation (11), 𝑋𝑖𝑗
′  represents the new individual obtained 

from crossover and mutation operations on different 

individuals, x and y represent the parent individuals, r 
represents a random number, Pc represents the crossover 

probability, and Pm represents the mutation probability. The new 
individuals generated until the termination condition is met 
form a new population, which represents the optimal solutions. 
The combination of the NSGA-II, ANN structure, and building 
energy consumption simulation is depicted in Figure 6.  

From Figure 6, the overall technical roadmap consists of 
three parts: dataset generation, construction of artificial neural 
network, and solution using the NSGA-II MOO algorithm. 
Firstly, building simulation is performed using the constructed 
building model to calculate the objective functions and obtain a 
dataset with building energy consumption, operational costs, 
carbon emissions, etc. Then, the determined ANN structure is 
trained using the dataset to obtain prediction models for energy 
consumption, costs, and carbon emissions. Finally, in the 
process of MOO based on the NSGA-II algorithm, the ANN 
prediction models are used for prediction and correction of the 
data, and the non-dominated sorting is employed to generate a 
set of multi-objective optimal solutions (Fang et al. 2022). When 
combined with the multi-objective building optimization 
technique, a cost calculation for production and construction 
can be derived as shown in Equation (12). 

0= +
n

Mi

i

IC IC IC (12) 

ICo represents the construction costs of buildings of the same 
type, and ICM represents the additional costs. Additionally, the 
calculation formula for operational costs is shown in Equation 
(13). 

1 2 3

1 1

[ ( ) ]
= =

= + + + + − + 
n n

y h c l w e r z z

y z
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      (13) 
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Fig. 4. Technical roadmap of MOO model 
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Fig. 5 Flowchart of the NSGA-II algorithm 
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a  represents the cost coefficient due to price fluctuations, Eh 

represents the energy consumption of the heating system, Ec  
represents the energy consumption of the cooling system, El  
represents the energy consumption of the lighting system, Ew  
represents the energy consumption of the hot water system, Ee 
represents the energy consumption of appliances, Er  represents 
the energy output of rooftop photovoltaic systems, Wh 
represents the heating energy price, W2 represents the average 
energy price, and  W3 represents the price of renewable energy 
grid connection. Lastly, the cost calculation for the recycling 
stage is shown in Equation (14). 

( )= + +
D T C y

RC RC RC RC a (14) 

RCD represents the dismantling cost, RCT represents the cost of 
waste transportation, and RCC represents the cost of waste 
treatment. By summing up these various costs, the final cost 
calculation formula can be obtained. Additionally, the 
calculation of carbon emissions during the lifecycle is shown in 
Equation (15). 

2
= + +

A B c
LCCO C C C (15) 

CA represents the carbon emissions generated during the 
production and manufacturing process, CB represents the 
continuous carbon emissions generated during operation and 
management, and CC represents the carbon emissions 
generated during the dismantling and recycling process. In 
summary, the energy consumption optimization of rural 
prefabricated buildings is a MOO problem that needs to 
consider multiple objectives, such as energy consumption, 
comfort, and economy. Building energy consumption 
simulation provides data, ANN can analyze and predict these 
data, and NSGA-II can optimize multiple objectives. Therefore, 
combining ANN, NSGA-II, and building energy consumption 
simulation for MOO of rural prefabricated buildings can help 
designers balance between multiple objectives and obtain a set 
of optimal solutions to achieve energy consumption 
optimization. 

4. Experimental verification and data analysis 

For confirming the performance of the MOO Model (MOM) that 
incorporates ANN, the NSGA-II, and building energy 
consumption simulation in optimizing energy consuming of 
rural prefabricated buildings, the MOM model is compared with 
traditional optimization algorithms including NSGA, Strength 
Pareto Evolutionary Algorithm (SPEA), Indicator-Based 

Evolutionary Algorithm (IBEA), Multi-Objective Genetic 
Algorithm (MOGA), and Pareto Archived Evolution Strategy 
(PAES) using 10 datasets that include different parameters of 
rural single-story standard buildings. The results of the 
parameter optimization comparison are presented in Figure 7. 

From Figure 7, MOM achieves approximately 1% 
improvement over NSGA, about 4% improvement over SPEA, 
about 7% improvement over IBEA, about 10% improvement 
over MOGA, and about 11% improvement over PAES. Since 
rural single-story building designs are relatively simple with 
fewer parameters, the improvement of MOM compared to 
NSGA is relatively small, and the overall optimization efficiency 
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Fig. 6 Algorithm combination technology roadmap 
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is similar. However, thanks to the artificial neural network 
model in MOM, it has gained advantages even with fewer 
parameters. Further research compares different algorithms in 
single-story irregular structure building parameters, as shown in 
Figure 8. 

From Figure 8, as parameter structures vary, the 
optimization efficiency decreases, leading to differences in 
optimization efficiency among the algorithms. Among them, 
MOM achieves approximately 4% improvement over NSGA, 
about 6% improvement over SPEA, about 9% improvement 
over IBEA, about 13% improvement over MOGA, and about 
15% improvement over PAES. As the economic conditions in 
modern rural areas gradually improve, some rural buildings are 
evolving into villa-type structures. Further research compares 
the optimization efficiency of different algorithms in villa-scale 
buildings, as shown in Figure 9. 

From Figure 9, in the optimization efficiency comparison of 
villa buildings, the MOM model still maintains an average 
optimization efficiency of over 95%, while the traditional NSGA 
algorithm’s average optimization efficiency decreases to about 
88%, SPEA’s average optimization efficiency is about 85%, 
IBEA’s average optimization efficiency is about 80%, MOGA’s 

average optimization efficiency is about 78%, and PAES’s 
average optimization efficiency is about 72%. As mentioned 
earlier, further research refines the optimization objectives to 
Comprehensive Energy Consumption Optimization (CEO), 
Integrated Cost Optimization (ICO), and Integrated Carbon 
Emission Optimization (IEO), and compares the algorithms as 
shown in Figure 10. 

From Figure 10, the MOM model consistently maintains a 
comprehensive optimization efficiency of over 90% in different 
category optimization tests. Its optimization efficiency is 
approximately 7%, 8%, and 5% higher than the SPEA algorithm, 
and approximately 10%, 15%, and 20% higher than the PAES 
algorithm.  

Figure 9 compares the optimization efficiencies of different 
algorithms specifically for villa-scale buildings, showing how the 
MOM algorithm outperforms others like NSGA, SPEA, IBEA, 
MOGA, and PAES in this context. Figure 10, on the other hand, 
breaks down the MOM algorithm's performance across three 
specific optimization objectives: CEO, ICO, and IEO. It 
highlights the algorithm's ability to balance these distinct goals. 
In summary, Figure 9 focuses on overall efficiency in villa 
buildings, while Figure 10 details the MOM algorithm's 
performance in specific optimization categories. A set of 
parameters for a 2-story villa is optimized using the MOM 
algorithm, and the optimization results are shown in Table 1. 

From Table 1, the MOM model provides specific 
optimization strategies for different optimization types. The 
solutions with the lowest energy consumption and the lowest 
carbon emissions tend to use three-layer glass windows with 
low emissivity coatings. All recommended solutions suggest 
using a 10mm insulation layer and recommend insulation 
thickness of around 50mm for the suspended floor. Additionally, 
all recommended solutions have a permeability rate of 0.2, and 
the installation scale of the photovoltaic system is 8 kW. The 
experimental data above fully demonstrate that the MOM 
model can design different optimization solutions based on 
different objectives (energy consumption, carbon emissions, 
cost, etc.) to achieve optimal energy efficiency and 
environmental performance in transparent envelope structures. 
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Fig. 9 Comparison of villa building optimization 
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Fig. 10 Comparison of energy consumption, cost and carbon emission optimization 

 



C. Bai and X. Xue  Int. J. Renew. Energy Dev 2024, 13(5), 995-1004 

| 1002 

 

ISSN: 2252-4940/© 2024. The Author(s). Published by CBIORE 

Furthermore, as modern rural areas are also transitioning to 
more dense construction, large-scale villages are starting to 
emerge. The optimization efficiency of different algorithms for 
large-scale villages is compared in Figure 11. 

From Figure 11, it is evident that it is difficult to balance cost 
optimization with energy consumption and carbon emission 
optimization. PAES maintains an average optimization rate of 
about 80% when the cost optimization rate is low, but as the cost 
optimization rate increases to 50%, the other optimization rates 
start to decrease significantly, averaging around 65%. When the 
cost optimization is at its maximum, the other optimization rates 
are close to 0%. SPEA maintains an average optimization rate 

of about 85% when the cost optimization rate is low, and as the 
cost optimization rate increases to 50%, the other optimization 
rates decrease to approximately 75%. When the cost 
optimization is at its maximum, the other optimization rates are 
around 50%. MOM maintains an average optimization rate of 
about 90% when the cost optimization rate is low, and as the 
cost optimization rate increases to 50%, the other optimization 
rates decrease to approximately 85%. When the cost 
optimization is at its maximum, the other optimization rates are 
around 80%. Therefore, it can be concluded that as the cost 
optimization rate increases, MOM shows a more stable and 
higher optimization rate compared to SPEA, with an average 

Table 1 
Comparison of villa optimization results 

Serial 
number 

Parameter CEO ICO IEO 

1 North elevation exterior window type 7 3 8 
2 West elevation exterior window type 7 1 6 
3 South elevation exterior window type 8 2 7 
4 East elevation exterior window type 4 1 5 

5 
EPS insulation thickness of exterior wall 

insulation panels (mm 
60 90 60 

6 
Thickness of insulation layer of 

prefabricated exterior wall panel (mm) 
120 140 120 

7 Roof insulation board Thickness (mm) 40 10 20 
8 Thickness of floor insulation (mm) 10 10 10 

9 
Thickness of overhead floor insulation 

(mm) 
50 50 45 

10 North visor overhang length (cm) 100 40 100 
11 West visor overhang length (cm) 100 40 100 
12 South visor overhang length (cm) 20 60 100 
13 East visor overhang length (cm) 100 100 100 
14 Building orientation (°) 0 0 0 
15 Air Tightness of Buildings (ACH) 0.2 0.2 0.2 
16 Installed capacity of PV system (kw) 8 8 8 
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improvement of approximately 10%, and an improvement of 
approximately 8% compared to PAES. The experiments fully 
demonstrate that MOM has certain advantages and feasibility in 
optimizing various types of rural buildings and in MOO. 

Energy Consumption, Operational Cost, and Carbon 
Emissions are selected as three different objective functions, 
and the optimization results of the traditional NSGA-II model 
and the MOM model proposed in this paper for the three 
objective functions are shown in Table 2. As can be seen from 
Table 2, compared with NSGA-II algorithm, MOM algorithm 
significantly improves the optimization efficiency of all targets. 
Specifically, the MOM algorithm reduced energy consumption 
by 16.7%, operating costs by 20.0%, and carbon emissions by 
20.0%. 
 
5.Conclusion 

For the energy optimization problem of rural prefabricated 
buildings, a MOO Model was proposed, combining ANN and 
NSGA-II, and building energy consumption simulation. 
Experimental comparisons and data analysis were conducted 
for optimizing various types of building performance and MOO. 
The experimental results show that in the case of ordinary 
single-story rural prefabricated buildings, MOM achieves 
approximately 1% improvement over NSGA, about 4% 
improvement over SPEA, about 7% improvement over IBEA, 
about 10% improvement over MOGA, and about 11% 
improvement over PAES. In the case of multi-story rural 
buildings, MOM achieves approximately 4% improvement over 
NSGA, about 6% improvement over SPEA, about 9% 
improvement over IBEA, about 13% improvement over MOGA, 
and about 15% improvement over PAES. In the optimization 
efficiency comparison of villa buildings, MOM still maintains an 
average optimization efficiency of over 95%, while NSGA’s 
average optimization efficiency decreases to about 88%, SPEA’s 
average optimization efficiency is about 85%, IBEA’s average 
optimization efficiency is about 80%, MOGA’s average 
optimization efficiency is about 78%, and PAES’s average 
optimization efficiency is about 72%. In the scenario where cost 
optimization and energy consumption and carbon emission 
optimization are difficult to balance, MOM maintains an average 
optimization efficiency of about 90% when the cost optimization 
rate is low, and as the cost optimization rate increases to 50%, 
the other optimization rates are around 85%. When the cost 
optimization is at its maximum, the optimization rates remain 
around 80%. The experiments demonstrate that MOM has 
certain advantages in optimizing different types of rural 
prefabricated buildings and in MOO. However, it should be 
noted that the computational resources required for the fusion 
model are relatively large, leading to higher resource 
consumption. Further exploration is needed to optimize the 
performance and energy consumption of the model itself. 
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