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Abstract. Multi-energy micro-grid has received widespread attention in the wave of continuous promotion and development of renewable energy.
However, in the face of wind and solar uncertainty, its scheduling model needs to be further optimized. Therefore, a multi-energy micro-grid day-
ahead optimal scheduling model was proposed to construct wind and solar uncertainty scenarios, and the application of energy storage station was
considered. Multiple algorithms were introduced to propose the multi-energy micro-grid day-ahead optimal scheduling model. Finally, the research
content was validated. The results confirmed that the wind and solar power output probability model could describe the characteristics of wind and
solar power output at different periods. The generated scenes had a large number of wind speeds in the range of 1.5 m/s to 5 m/s, and the light
intensity reached its peak at 14:00, which was consistent with the historical data of the research object. In addition, the total pre-scheduling cost of
this optimized scheduling model within a day was 45.16x10° yuan, while the actual scheduling cost within a day was only 21.46x10° yuan. It saved
costs by 41.65% and 44.95%, respectively, compared to the comparison algorithms. The research has driven innovation and optimization of the multi-
energy micro-grid scheduling model. This provides a useful theoretical and practical basis for addressing the uncertainty of wind and solar energy
and improving the economic efficiency of energy systems, which is crucial for the sustainable development of new energy.
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1. Introduction volatility and intermittency of RE by storing energy, improving
the stability and reliability of micro-grids (Moradzadeh and
Abdelaziz, 2020). Therefore, the study aims at economic costs
and Carbon Emission (CE) and proposes a Wind and Solar
Power Output Probability Model (WSPOPM) for Wind and Solar
Uncertainty (WSU). On this basis, considering the role of ESS in
MEMG, a Multi-Energy Micro-Grid Day-Ahead Optimal
Scheduling (MEMG-DAQOS) model is proposed. The research
aims to improve the operational efficiency of MEMG systems by
optimizing scheduling models to adapt to the future trend of
carbon neutral energy development.

The study is divided into four parts. Firstly, the current
research on RE, MEMG, and other related topics is introduced.
Secondly, it mainly introduces how to build WSPOPM and
MEMG-DAOS. Then, experimental verification is conducted on
the performance of the proposed WSPOPM and MEMG-DAOQOS,
demonstrating their effectiveness and feasibility. Finally, the
article is summarized and discussed, and the shortcomings and
future prospects of this paper are pointed out.

Under the rapid development of modern society,
traditional disposable energy is constantly decreasing. The
sustainable development and energy security of energy systems
have become one of the major challenges that today's society
faces (Maka and Alabid, 2022). In addition, the intensification of
global warming, environmental pollution and other issues has
led people to urgently seek more environmentally friendly,
clean, and sustainable energy (Kostis et al, 2023). Many
countries, led by China, have elevated "carbon neutrality" to a
national strategy and proposed the era goals of "peaking
carbon" and "carbon neutrality" (Vasilj et al,, 2020). In this
context, Multi-Energy Micro-Grid (MEMG) has emerged. In
addition, Renewable Energy (RE) such as wind and solar energy
are increasingly being used in production and daily life, which
has to some extent alleviated the pressure of primary energy use
(Yodo and Arfin, 2021). However, due to the strong seasonal
and weather fluctuations of wind and solar energy, MEMG faces
many challenges. It is crucial to predict and adapt to the
uncertainty of wind and solar energy in advance to achieve

efficient operation of MEMG. Energy Storage Station (ESS) is a 2. Related works

key component of MEMG, which converts electrical energy into As time goes by, the proportion of RE in energy supply is
other forms of energy and converts it back into electrical energy gradually increasing, including but not limited to the utilization
when needed (Kamath et al., 2020). ESS can compensate for the of RE such as solar energy, wind energy, hydropower,
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geothermal energy, etc. However, the use of RE often comes
with various uncertainties. Therefore, many scholars have
conducted research on such issues. The fluctuation of RE and
load output power can bring problems to the scheduling and
operation of the distribution network. Zhao et al. proposed a
robust voltage control model based on an improved generative
adversarial network. Meanwhile, they introduced an improved
wolf pack algorithm to improve the model accuracy. This
effectively improved the convergence speed, accuracy, and
stability of robust voltage control (Zhao et al., 2020). Faraji et al.
proposed an optimized scheduling and operation method for
permanent magnet generators to address the uncertainty of
equipment such as wind turbines. They generated different
scenarios through Monte Carlo simulation, thereby significantly
improving the robustness of micro-grids in the face of
uncertainty (Faraji et al., 2020). The integrated energy system in
distributed generators has output uncertainty and is limited by
CE. Ge et al. proposed a novel optimization planning model that
considered both the uncertainty of distributed power generation
output and CE penalties. This effectively reduced the impact of
uncertainty and CE (Ge et al., 2021). Yang et al. proposed a time-
series joint scheduling method to address the uncertain risks
faced by grid energy storage demand resources in active
distribution networks. They made full use of various resources
in terms of spatial and temporal data, completed analysis of the
future, and effectively reduced the risk of energy storage in the
power grid (Yang et al., 2020).

MEMG is a small-scale energy system designed to provide
electricity, thermal energy, and other forms of energy services
by integrating multiple energy resources and equipment.
Compared with traditional single-energy micro-grids, MEMG
has higher integration and diversity. It has emerged under the
pursuit of sustainability, cleanliness, and reliability of energy
systems, as well as the promotion of technological progress.
Similarly, many scholars have conducted extensive research on
it. MEMG has the problem of multi-stage real-time random
operation. Therefore, Li et al. proposed a solution that combined
hybrid model predictive control and approximate dynamic
programming methods. A good real-time operation solution was
obtained, improving the control of MEMG by continuously
updating predictions (Li et al., 2021). Tian et al. proposed an
optimized scheduling model based on unified energy flow to
address the low planning efficiency of coordinated operation in
MEMBG. They established a simulated energy storage model to
describe the time-dependent characteristics of MEMG. This
provided an effective new method for scheduling optimization
of MEMG (Tian et al., 2020). Masrur et al. proposed a mixed
integer linear optimization model to address the challenge of
integrating multiple energy sources in MEMG. They calculated
and predicted the hourly electricity and thermal load curves.
This achieved coordinated operation of multiple energy sources
and improved the recovery ability of MEMG in the event of
long-term power outages in the power grid (Masrur et al., 2022).
There are various uncertainties in RE power generation,
electricity prices, and load demand. Therefore, Chen et al
proposed a two-stage stochastic operation scheme for
optimizing the scheduling of distributed generators, electric
boilers, electric refrigerators, and energy storage equipment.
Meanwhile, they borrowed a mixed integer linear programming
model to save operating costs while maintaining the robustness
of MEMG and the thermal comfort of customers (Chen et al.,
2020).

In summary, many scholars around the world have
considered the uncertainty of RE utilization and conducted
multiple research works to solve these problems. In addition, as
an emerging energy system, the importance of MEMG is self-
evident. However, in the face of WSU, the optimization
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scheduling of MEMG is rarely discussed. Poor scheduling
solutions can lead to waste of micro-grid operating costs,
resources, etc., hindering the achievement of "carbon peak" and
"carbon neutrality" goals. Therefore, based on WSPOPM, the
study proposes MEMG-DAOQOS with economic costs and CE as
optimization objectives, providing a comprehensive and
innovative solution to address the uncertainty and operational
efficiency issues in actual MEMG systems.

3. Day-ahead optimal scheduling model with multi-
energy micro-grid and energy storage station based on
wind and solar uncertainty

Driven by the goals of global energy transformation and
carbon neutrality, this section introduces in detail an innovative
day-ahead optimization scheduling model, MEMG-DAOS,
proposed in this study. Aiming at the operational challenges of
MEMG under the influence of wind and solar energy
uncertainties, this model improves the scheduling efficiency and
economy of the system by establishing WSPOPM and
introducing advanced optimization algorithms. At the same
time, it enhances the adaptability to RE fluctuations and the low-
carbon operation characteristics of the micro-grid.

3.1 Wind and solar power output probability model and scene
generation

A MEMG-DAOS model considering economic costs and
CE is proposed for WSU. It needs to consider the time scale of
wind speed and light intensity. Therefore, WSPOPM is
established in this study to provide typical scenario inputs for
the model and achieve optimized scheduling of MEMG. In
WSPOPM, wind power generation system and photovoltaic
power generation system are modelled. weibull distribution is
used to describe the power output characteristics of wind
turbines, while Bate distribution is used to simulate the output
of photovoltaic power generation system. The maximum
likelihood method is used to estimate the parameters of these
distribution models to ensure that the models can accurately
reflect the probabilistic characteristics of wind speed and light
intensity. The Latin Hypercube sampling method combined
with K-means clustering method is used to select representative
scenes from a large number of generated scene-power scenes
to reduce the computational burden of subsequent optimization
models and maintain the diversity of scenes. Firstly, the wind
power generation system and photovoltaic power generation
system are modelled. Figure 1 shows the typical structure of
wind turbines and photovoltaic power generation systems
(Chen et al., 2021; Nosratabadi et al., 2021).

In Figure 1 (a), the wind turbine includes pneumatic,
transmission, electrical, and control systems. During the
operation of wind turbine, its power acquisition is limited by
both the limits of the pneumatic and electrical systems (Liu et
al, 2020; Zhang et al, 2021). Its normal output power
characteristic B,,, which is the relationship between wind speed
and fan output, is represented by equation (1).

0(v <wvy)
3
R, =P

v3-v};
T 3_,3
vi-vd;

s (e <v <) (1)
Pr(vr <v< vco)
In equation (1), B. is the rated power. v, v, v, and v,

represent the actual wind speed, cut in wind speed, rated wind
speed, and cut out wind speed, respectively (Li et al., 2021; Li et
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Fig 1 Typical structure of wind power generation system and photovoltaic power generation system

al., 2020). The study uses probability models to fit wind turbine
output, with the aim of reflecting more wind power prediction
information. The research suggests that the wind power
generation system model conforms to a Weibull distribution,
and the probability density function @,,(v) of wind speed and
the corresponding probability distribution function ¢,,(v) are
represented by equation (2).

eaortlef ol )
£, (v)=1-exp (Ej (k>0.051)

In equation (2), k represents the shape parameter. ¢ is ascale
parameter. The maximum likelihood method is used to solve
the equation and obtain the values of k and c. The likelihood
function is represented by equation (3).

cotilfe =[] o

In equation (3), the values of k and ¢ are solved using
equation (4).

In equation (4), v; represents the statistical data of wind
speed samples. To use the maximum likelihood method, it is
first necessary to collect v; and obtain the initial values of the
shape and distribution parameters. Then, the Jacobian matrices
of F; and F, are calculated, and the changes of k and ¢ are
obtained. The current parameter estimate has been updated
using changes and gradually approximated to the true

maximum likelihood estimate. If the change meets the accuracy
requirements, the calculation of k and ¢ values is completed.
Thus, the modeling of the wind power generation system in
WSPOPM is successful. In Figure 1 (b), the composition of the
photovoltaic power generation system includes a photovoltaic
array, DC/DC converter, DC/AC inverter, battery, and control
system. A photovoltaic array is composed of multiple
photovoltaic cells. The electrical energy is transmitted to the
DC/DC and DC/AC links through a combiner box and
ultimately converted into AC energy that meets the
requirements of the power grid (Hou et al., 2021; Shaheen et al.,
2021; Su and Teh, 2022). The factors that affect the output of
photovoltaic power generation include light intensity, weather
temperature, air humidity, and atmospheric pressure. The
power equation for photovoltaic power generation output is
represented by equation (5).

Py =10 Sp0, (5)

In equation (5), P,y is the output of the photovoltaic system.
Npy and S,, are the photovoltaic radiation efficiency and
radiation area, respectively. 6, means the solar radiation
intensity at a certain moment. The research suggests that the
photovoltaic power generation system model follows a bate
distribution, and its shape parameter « and distribution
parameter 8 are represented by equation (6).

ﬁ=(1—u)[@—q ©

In equation (6), ¢ and o represent the expected value
and standard deviation of photovoltaic radiation intensity,
respectively. Thus, the establishment of the photovoltaic power
generation system model in WSPOPM is completed.
Furthermore, the study utilizes an improved Monte Carlo
statistical simulation method, Latin Hypercube Sampling (LHS),
to establish wind and solar power output uncertainty scenarios,
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Fig 2 Generation method of wind-power uncertainty scene

and utilizes K-means clustering method to reduce the scenes.
The main reason for choosing the K-means algorithm is that it
can effectively identify and summarize the representative
typical scenes from a large number of scenery and power scenes,
while maintaining the high efficiency and practicality of the
processing process (Liu et al., 2020; Nowak et al, 2020). By
iteratively optimizing the cluster center, the K-means algorithm
ensures the homogeneity within each cluster and the obvious
differences between clusters, which not only helps to capture
the diversity of the wind power uncertainty, but also
significantly reduces the computational complexity and solution
time of the subsequent optimization model by reducing the
number of scenes (Shirzadi et al., 2022; Xu et al, 2021). In
addition, as a mature and widely used clustering method, K-
means has the advantage of being easy to implement and adjust
parameters, which can improve the practicality of the model and
the accuracy of optimal scheduling (Liu and Yang , 2021; Wu et
al., 2021). Figure 2 shows the specific process.

In Figure 2, establishing a scenario of wind and solar
power output uncertainty mainly involves three steps. Firstly,
for data sampling, it is necessary to determine the value of the
random variable X, and its cumulative probability distribution
function F. Subsequently, LHS is used to divide the probability
density function of wind speed into N equal intervals based on
sample size. Finally, the values of the midpoints in each interval
are calculated. The second step is sample sorting, which
generates a matrix L. The value of each row represents the
sample location information of X,. After matrix factorization,
the lower triangular matrix D is obtained. Then, the correlation
coefficient matrix p and matrix G are calculated, represented
by equation (7).

{p=L~D~DT
G=D"1-1

The elements in L are arranged according to the size of the
elements in G, and the positions of each element in the sample
matrix X are adjusted, resulting in a simulation scene
composed of a large number of sampling points with weak
correlation. However, there are many scenes generated by LHS,
and many scenes have certain similarities. Therefore, in the
third step, the study uses K-means to first determine the number
of sets in the initial state and assign initial cluster centers. Then,
the samples in the typical scene set are calculated and assigned
to the nearest cluster center (Haidar et al., 2020; Tian et al., 2020).
Subsequently, the average value of scene coordinates under
each cluster is calculated as the new center. Iterations are
carried out repeatedly until the cluster center no longer moved

(7)

widely or met the requirements for iterations. Ultimately, the
study aims to output wind and solar scenes with typical features
as inputs to MEMG-DAQS, improving the accuracy of the model.

3.2 Establishment of a multi-energy micro-grid day-ahead optimal
scheduling model

Faced with WSU, MEMG may face challenges such as
unstable power output, increased complexity of operation
scheduling, rising energy storage demand, cost management
challenges, and power supply reliability issues (Das et al., 2020;
Liu et al., 2020). This uncertainty makes it more difficult for the
system to adapt to different wind and solar conditions, thus
forming a vicious cycle. Therefore, on the basis of the WSPOPM
model, MEMG-DAOS is further established. The model
considers the flow of electric energy and heat energy in MEMG,
especially the role of ESS in the system, as well as the energy
conversion and storage state during its charge-discharge
process. The model aims to minimize the total cost and CE,
covers the cost of electricity purchase, natural gas purchase,
equipment operation and maintenance, and sets the
corresponding constraints to ensure the safety and reliability of
the system. In order to improve the speed and accuracy of
optimal scheduling, the non-dominated sorting genetic
algorithm II (NSGA-II) is introduced into the model to deal with
multi-objective optimization problems and find the balance
point between economic and low-carbon objectives. The
establishment of MEMG-DAOS model provides an effective
day-ahead optimization scheduling strategy for MEMG in the
face of wind-wind uncertainty, which helps to improve the
operating efficiency and economy of the system. The study first
demonstrates the basic structure of MEMG in Figure 3.

In Figure 3, the basic structure of the MEMG established
in this study includes electrical energy flow and thermal energy
flow, where electrical energy involves ESS. In ESS, energy
storage components can store or release electrical energy
through the conversion between chemical and electrical energy
and change their own energy storage state through charging
and discharging. The study simplifies ESS and does not focus
on the internal charging and discharging processes of electric
energy storage components. The energy change of the electric
energy storage element is represented by equation (8).

]m

I:>ES-C

ES-C

WElS :WEOS (1_ Oks ) + [PES»CHES»C -
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Fig 3 Basic structure of multi-energy micro-grid

In equation (8), W2 and Wj; are the electricity levels before
and after charging and discharging, respectively. ozs means
self-discharge rate. Pgs.. and ngs. represent charging power
and discharging power, respectively. Pgs., and ngs.p, mean
charging efficiency and discharging efficiency, respectively. @At
means charging and discharging time. Constraints are imposed
on the electrical energy storage components in ESS in Figure 4.

In Figure 4, S is the state of charge of the energy storage
element. Wgs.z means the rated capacity of the energy storage
element. Wggpmin and Wggma, represent the minimum and
maximum energy storage of the electric energy storage element,
respectively. Pgs.cmax and Pgs.pmar refer to the maximum
charging power and maximum discharging power of the energy
storage element, respectively. ugg is a state variable, where 0
represents the discharge state and 1 represents the charging
state. In the following research, MEMG-DAOS is established.
The minimum daily operating cost of MEMG is calculated using
equation (9).

€ =min(Ce + Cp + Crg) (9)

In equation (9), C represents the total cost. C; is the cost of
purchasing electricity. C;f means the cost of purchasing
natural gas. Cy4 refers to the cost of equipment operation and
maintenance. In addition to cost, the study also considers the
constraint of minimizing CE, represented by equation (10).

QGB‘heat +m
1MssCV

P

s | AL

F =min mMT~gasQMT~gas + mGB ird-t

gird
gas

(10)

uES

I
I
I
I
| Stable working
: condition
I
e )|
Wes :
Charge state | 1 State variable
I
I
I
I

WES

0<

0<

In equation (10), myr.gqs represents the CE coefficient per unit
of natural gas consumed. Qur.gas is the gas power. mgp
refers to the CE coefficient per unit of natural gas consumption.
Q¢p-heat means the thermal power output. 7nsp represents
work efficiency. CVyqs is the unit calorific value of natural gas,
with a value of 10 kWh/m?®. mg;q refers to the CE coefficient
of power generation in the power grid system. Pyirq.: means
the amount of electricity purchased from the micro electric
network during period t. At means within a certain period of
time. In MEMG-DAOS, a data-driven approach is used to
establish a functional relationship between output power and
control variables from historical data of wind and solar energy.
This allows MEMG to better understand how output power is
influenced by control variables under different conditions. It
further optimizes the output power more effectively, improves
the performance and efficiency of the energy system, and
extends to optimization methods for joint operation of multiple
MEMGs based on MEMG operation optimization. MEMG-
DAOS is represented by equation (11).

min(ch +max E, (e(x,f)))
xeX

e(x,&)=h"y

yeR

Ax+By+CE<LE

s.t.

In equation (11), E, represents the expected value. x is
the set of decision variables in the first stage. y refers to
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Fig 4 Constraint diagram of electric energy storage components
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Fig 5 Flowchart of NSGA-II in MEMG-DAOS model

uncertain variables. ¢ is the second stage variable. C, b, A, B,
C, and E are the coefficient vectors or matrices corresponding
to the variables in the optimization model, T represents the
transpose symbol, D represents the data-driven set of
uncertainties, and R is the constant. The cost function of MEMG
during the pre-scheduling phase is represented by equation (12).
G, =C®+C®+C"+C%+C™ (12)

In equation (12), C¢ represents the cost of generating
electricity for the unit. CYP is the cost of starting and stopping
the unit. C" refers to the operation and maintenance cost of
distributed power sources. C° means equipment maintenance
costs. CEN represents environmental cost. Multiple micro-grid
operators conduct real-time control based on the pre-
scheduling plan and simultaneously consider the uncertainty of
distributed power generation output and load power. The
objective function is represented by equation (13).

G, =AC®" + AC™ + AC™ +C'*¥ (13)

In equation (13), AC%YP represents the cost of unit regulation.
ACESS refers to the cost of ESS regulation. ECEX is the
transaction cost. CL9SS means regulating the cost of wind
curtailment. Finally, the study incorporates Non-Dominated
Sorting Genetic Algorithm II (NSGA-II) into MEMG-DAOS to

Table 1

improve the speed and accuracy of optimization scheduling in
Figure 5.

In Figure 5, NSGA-II first initializes the data and then
selects the minimum operating cost and CE as the optimization
objectives for operation. By processing constraint conditions
and objective function operations through the corresponding
running optimization vectors of individual populations, the
calculation results of individual fitness can be obtained (Lee et
al., 2020; Shinde et al.,, 2020). Based on the individual fitness
results obtained in the previous steps, selection, crossover, and
mutation operations are performed to obtain the individual
situation of the next generation population. Subsequently, the
fitness of all individuals in the current generation population is
recalculated and a hierarchical operation is performed between
the previous generation population and the contemporary
population. When the set maximum number of genetic
iterations is reached, the output result is the optimal scheduling
power generation combination and various target costs.

4. Simulation and performance analysis of the multi-
energy micro-grid day-ahead optimal scheduling model

4.1 Scheduling model setting and scenario simulation

To verify the effectiveness and superiority of MEMG-
DAQS, a MEMG operation model was first constructed using
the wind and solar output uncertainty scenario generated by
WSPOPM. Subsequently, it underwent a day-ahead optimal

Equipment parameters of an actual multi-energy micro-grid in northern China

Equipment Technical parameter

Economic parameter

Wind power system Capacity 50kW Operation and maintenance cost 0.0196 yuan/kWh
Capacity 80kWp
Photovoltaic system Cut-in wind speed 2.5m/s Operation and maintenance 0.0235 yuan/kWh
Rated wind speed 12m/s
Cut-out wind speed 18m/s
Capacity 150kWh
Charging efficiency 0.95
Discharge efficiency 0.95
Self-discharge rate 0.04
ESS Minimum energy storage 5kWh Operation and maintenance 0.0018yuan/kWh
Maximum storage energy 140kWh
Maximum charging power 20kW
Maximum discharge power 20kW
Initial storage energy 100kWh
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Fig 6 Parameter fitting values in WSPOPM

scheduling. The study selected a practical grid connected
MEMG in northern China as the research object. Table 1 shows
the parameters of wind turbines, photovoltaics, and ESS
equipment.

Table 1 details the key equipment parameters of an actual
grid-connected MEMG in North China, including the capacity of
wind power system and photovoltaic power system and their
operation and maintenance costs. The capacity of wind power
system is 50 kW, the operation and maintenance cost is 0.0196
yuan/kWh, and the capacity of photovoltaic system is 80 kWp
at its peak. Operation and maintenance cost is 0.0235
yuan/kWh. The wind power system also includes specific
technical parameters, such as the cut wind speed of 2.5 m/s, the
rated wind speed of 12 m/s and the cut wind speed of 18 m/s.
The parameters of the ESS range from 150 kWh storage
capacity to 0.0018 yuan/kWh operation and maintenance costs,
with both charge and discharge efficiency of 95%, self-discharge
rate of 4%, minimum and maximum storage energy of 5 kWh
and 140 kWh, respectively, and maximum charge and discharge
power of 20 kWh. In addition, the energy storage system starts
operation with an initial power of 100 kWh. These detailed
technical and economic parameters are the basis for the
optimization of MEMG scheduling, ensuring that the system can
carry out effective day-ahead optimization scheduling under the
uncertainty of wind and solar energy to improve operational
efficiency and economy (Kalakova et al., 2021; Naughton et al.,
2021). To better accommodate wind and solar RE, the MEMG
is connected to the higher-level distribution network, allowing
the purchase of electricity from the higher-level distribution
network to meet the load demand in the MEMG. In addition,
while allowing MEMG to sell surplus electricity to higher-level
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distribution networks and improve the economy of MEMG, it
also demonstrates low-carbon characteristics. In Figure 6, the
historical data of this MEMG are presented.

In Figure 6 (a), the wind speed distribution in the historical
data is concentrated in the range of 0 m/s-14 m/s and
concentrated in the 0 m/s—-6 m/s. In Figure 6 (b), the highest
light intensity is around 0.7 kWm™. The study utilized the
distribution of wind speed and light intensity of the MEMG to fit
the shape k of wind speed, scale c, shape a oflight intensity,
and distribution parameter S in Figure 7.

In Figure 7 (a), kK shows an upward trend from 1 to 7
hours, a downward trend from 7 to 18 hours, and an upward
trend again from 18 to 24 hours, with a significant change. ¢
has a relatively small change range within 24 hours, and the
overall trend of change is similar to k. In Figure 7 (b), both «
and B suddenly and rapidly increase after 6h-7h, while
suddenly and rapidly decrease between 16h-18h, which is
consistent with the changes in light intensity within a day.
Furthermore, the study utilized WSPOPM to generate 200 wind
speed scenes and 200 lighting intensity scenes and used K-
means to reduce a total of 400 scenes. Finally, 10 typical wind
speed scenes and 10 typical lighting intensity scenes are
retained in Figure 8.

In Figure 8 (a), the generated scene has a higher number
of wind speeds in the range of 1.5m/s to 5m/s. The number of
wind speed time periods at 8m/s is relatively small, and the 10
generated scenarios matches the real data distribution, which
has credibility. In Figure 8 (b), the distribution characteristics of
the 10 lighting intensity scenes are also consistent with the true
lighting intensity scenes. The light intensity starts to rise around
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Fig 7 Parameter fitting values in WSPOPM
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8:00 and reaches the peak of the day's light intensity around
14:00, until the light intensity approaches 0 around 18:00. In
Figure 8 (c), among the 10 scenic scenes, scenario 2 has the
highest probability of occurrence, reaching 17.50%, while
scenarios 3 and 4 have the lowest probability of occurrence,
only 2.5%.

4.2 Scheduling model performance analysis and verification

According to the above content, the study used scenario 2
as a simulated WSU scene for MEMG scheduling. The
simulation experiment software used in the study is MATLAB
2016a. The hardware environment is mainly as follows. The
CPU is Intel Core 15-7500, with a 6-core processor and 8GB of
memory. Scenario 2 was input into MEMG-DAOS, economic

1950 —
1900 —

1850 —

1800 —

1750 [~

Carbon emission / Kg

1700 [~

1650 ' '

goals and low-carbon goals were considered, and the day-ahead
scheduling of MEMG was optimized using NSGA-II in the model.
The study set the NSGA-II2 population to 200, with 100
iterations. Figure 9 shows its economic and low-carbon
optimization results.

The optimization results shown in Figure 9 deeply reveal
the complex trade off between CE and economic costs in day-
ahead optimal scheduling of MEMG. Specifically, when the
economic cost is in the range of 1700 yuan to 1750 yuan, CE is
maintained at 1900kg to 1950kg, reflecting that within this cost
range, each increase in a certain amount of economic input can
achieve a relatively limited CE reduction effect. However, when
the economic cost is close to 1950 yuan, CE shows a significant
decline, falling below 1700kg, indicating that the additional
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1850 1900 1950
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Fig 9 Optimization results of multi-energy micro-grid operation scheduling
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economic input can bring about a significant reduction in CE
when approaching the cost sensitive point (Yapici, 2021).
Therefore, after comprehensive consideration, the study chose
the location of the red dot in Figure 9. This point is more
advantageous for MEMG operators in terms of economic cost
compared to operating points with low CE. Compared to low-
cost operating points, the CE of this selected operating point
was more advantageous in the context of dual carbon. It could
lay the groundwork for the carbon trading market and enhance
the economic benefits brought by subsequent CE exchanges.
On this basis, adjustments were made to the ESS by setting the
battery capacity in the ESS to 100 kWh. Figure 10 shows the
optimization results and changes in battery capacity.

The analysis results in Figure 10 show the interaction
between economic cost and CE of MEMG after ESS adjustment
and the effect of optimal scheduling strategy. First of all, Figure
10(a) reveals that after ESS adjustment, although the economic
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(a) Pre-scheduling cost comparison

cost increases by 26.48 yuan compared with the previous one,
the increase in cost results in a significant reduction of CE by
19.68kg, which indicates that by reasonably adjusting the
energy storage strategy, the system operation efficiency can be
ensured while the environmental impact can be effectively
reduced. Figure 10(b) shows the electrical energy trading
behaviour of MEMG at different time periods of the day. From
9:00 to 15:00, MEMG uses its own power generation capacity to
sell electricity to the distribution network, which not only brings
economic benefits, but also shows negative CE characteristics
due to its use of RE. From 19:00 to 24:00, due to the increase in
load demand, MEMG begins to purchase electricity from the
distribution network to meet its own needs. Figure 10(c) details
the operating state of the battery at different electricity price
periods. During the valley periods when electricity prices are
lower, such as 06:00 to 08:00, 16:00 to 17:00 and 21:00 to 24:00,
the battery is charged and stores energy for use during peak

SO
RO

N
ul

== MEMG-DAOS

= = N
o ur o
T T T

o
o
T

Actual scheduling cost (10%yuan)

1 1 1 1 1 ]

0 4 8 12 16 20 24
Time/h

(b) Actual scheduling cost comparison

Fig 11 Cost comparison result
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hours. On the contrary, during the peak period of high electricity
prices, such as 09:00 to 11:00, the battery is discharged, and the
stored energy is fed back to the grid to achieve electricity sale,
thereby improving the economy of the system. This strategy
leads to an increase in economic costs, as the reduction in
storage capacity limits the amount of power purchased during
the price trough and increases the amount purchased during the
peak period (Nagarajan et al., 2020; Kanellos, 2020). At the same
time, overall CE has been reduced by reducing the amount of
electricity purchased from distribution. Finally, the study
introduced Stochastic Optimization (SO) and Robust
Optimization (RO) as comparative algorithms for MEMG-DAOS
and compared the pre-scheduling cost and real-time control
cost of MEMG in Figure 11.

The results of the analysis in Figure 11 highlight the
significant benefits of MEMG-DAOS in terms of cost control.
From Figure 11 (a), in the calculation of pre-scheduling cost, the
MEMG-DAOS model shows its cost-effectiveness, which is
always lower than the cost of SO method and RO method for
scheduling. Specifically, at 0, the pre-scheduling cost of the
MEMG-DAOS model is 1.94x10° yuan, compared to 2.26x10°
yuan for the SO method and 2.81x10° yuan for the RO method,
which indicates that at a single time point, the MEMG-DAOS
model has achieved cost savings. Extending the perspective to
the whole day, the total pre-scheduling cost of the MEMG-
DAOS model is 45.16x10° yuan, which remains low in the all-
day scheduling. Furthermore, from Figure 11 (b), for the actual
dispatch cost, the total cost of MEMG-DAOS model in a day is
only 21.46x10° yuan, which saves 41.65% and 44.95% of the
cost compared with 36.78x10° yuan of SO method and
38.98x10° yuan of RO method, respectively. In summary, the
conclusions of Figure 11 highlight the cost-effectiveness and
efficiency of the MEMG-DAOS model for day-ahead optimal
scheduling of MEMG, proving that the model is an effective tool
to provide economically viable and environmentally sustainable
scheduling solutions for MEMG operators under uncertain
conditions.

5. Conclusion

In response to the WSU faced in MEMG, a WSPOPM was
established in this paper to lay the groundwork for generating
WSU simulation scenarios. After generating a large number of
scenes, K-means was utilized in this study to reduce the scenes
and obtain typical scenes, further proposing MEMG-DAOS.
MEMG was mathematically modelled and NSGA-II was
introduced to improve the speed and accuracy of optimized
scheduling. Finally, an experiment was conducted. The
experimental results of an actual grid connected MEMG in
northern China confirmed that the overall trend of parameters
k and c was similar. They showed an upward trend from 1h to
7h, a downward trend from 7h to 18h, and an upward trend from
18h to 24h, but the change amplitude of ¢ was smaller. a and
B almost suddenly increased rapidly after 6-7 h, and suddenly
decreased rapidly between 16h-18h. WSPOPM could effectively
calculate the historical data of MEMG. The wind speed and light
intensity in the generated scene matched the historical data
trend. In addition, the adjustment of ESS by MEMG-DAOS
could effectively affect the economic cost and low-carbon goals
of MEMG. Finally, the cost of MEMG-DAOS was always lower
than that of SO and RO methods. For actual scheduling costs,
MEMG-DAOS only cost 21.46x10° yuan per day, while SO and
RO methods are 36.78x10° yuan and 38.98x10° yuan,
respectively. Overall, this study can analyse WSU and complete
the day-ahead optimization scheduling of MEMG, effectively
reducing the operating cost of MEMG. However, further
research can consider the impact of demand side load
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uncertainty and electricity price uncertainty on MEMG
optimization scheduling.
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