
Int. J. Renew. Energy Dev. 2024, 13 (5), 873-883 
|873 

https://doi.org/10.61435/ijred.2024.60218 
ISSN: 2252-4940/© 2024.The Author(s). Published by CBIORE 

 

Application of day-ahead optimal scheduling model based on multi-
energy micro-grids with uncertainty in wind and solar energy and 
energy storage station  
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Abstract. Multi-energy micro-grid has received widespread attention in the wave of continuous promotion and development of renewable energy. 
However, in the face of wind and solar uncertainty, its scheduling model needs to be further optimized. Therefore, a multi-energy micro-grid day-
ahead optimal scheduling model was proposed to construct wind and solar uncertainty scenarios, and the application of energy storage station was 
considered. Multiple algorithms were introduced to propose the multi-energy micro-grid day-ahead optimal scheduling model. Finally, the research 
content was validated. The results confirmed that the wind and solar power output probability model could describe the characteristics of wind and 
solar power output at different periods. The generated scenes had a large number of wind speeds in the range of 1.5 m/s to 5 m/s, and the light 
intensity reached its peak at 14:00, which was consistent with the historical data of the research object. In addition, the total pre-scheduling cost of 
this optimized scheduling model within a day was 45.16×105 yuan, while the actual scheduling cost within a day was only 21.46×105 yuan. It saved 
costs by 41.65% and 44.95%, respectively, compared to the comparison algorithms. The research has driven innovation and optimization of the multi-
energy micro-grid scheduling model. This provides a useful theoretical and practical basis for addressing the uncertainty of wind and solar energy 
and improving the economic efficiency of energy systems, which is crucial for the sustainable development of new energy. 
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1. Introduction 

Under the rapid development of modern society, 
traditional disposable energy is constantly decreasing. The 
sustainable development and energy security of energy systems 
have become one of the major challenges that today's society 
faces (Maka and Alabid, 2022). In addition, the intensification of 
global warming, environmental pollution and other issues has 
led people to urgently seek more environmentally friendly, 
clean, and sustainable energy (Kostis et al., 2023). Many 
countries, led by China, have elevated "carbon neutrality" to a 
national strategy and proposed the era goals of "peaking 
carbon" and "carbon neutrality" (Vasilj et al., 2020). In this 
context, Multi-Energy Micro-Grid (MEMG) has emerged. In 
addition, Renewable Energy (RE) such as wind and solar energy 
are increasingly being used in production and daily life, which 
has to some extent alleviated the pressure of primary energy use 
(Yodo and Arfin, 2021). However, due to the strong seasonal 
and weather fluctuations of wind and solar energy, MEMG faces 
many challenges. It is crucial to predict and adapt to the 
uncertainty of wind and solar energy in advance to achieve 
efficient operation of MEMG. Energy Storage Station (ESS) is a 
key component of MEMG, which converts electrical energy into 
other forms of energy and converts it back into electrical energy 
when needed (Kamath et al., 2020). ESS can compensate for the 
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volatility and intermittency of RE by storing energy, improving 
the stability and reliability of micro-grids (Moradzadeh and 
Abdelaziz, 2020). Therefore, the study aims at economic costs 
and Carbon Emission (CE) and proposes a Wind and Solar 
Power Output Probability Model (WSPOPM) for Wind and Solar 
Uncertainty (WSU). On this basis, considering the role of ESS in 
MEMG, a Multi-Energy Micro-Grid Day-Ahead Optimal 
Scheduling (MEMG-DAOS) model is proposed. The research 
aims to improve the operational efficiency of MEMG systems by 
optimizing scheduling models to adapt to the future trend of 
carbon neutral energy development. 

The study is divided into four parts. Firstly, the current 
research on RE, MEMG, and other related topics is introduced. 
Secondly, it mainly introduces how to build WSPOPM and 
MEMG-DAOS. Then, experimental verification is conducted on 
the performance of the proposed WSPOPM and MEMG-DAOS, 
demonstrating their effectiveness and feasibility. Finally, the 
article is summarized and discussed, and the shortcomings and 
future prospects of this paper are pointed out. 

2. Related works 

As time goes by, the proportion of RE in energy supply is 
gradually increasing, including but not limited to the utilization 
of RE such as solar energy, wind energy, hydropower, 
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geothermal energy, etc. However, the use of RE often comes 
with various uncertainties. Therefore, many scholars have 
conducted research on such issues. The fluctuation of RE and 
load output power can bring problems to the scheduling and 
operation of the distribution network. Zhao et al. proposed a 
robust voltage control model based on an improved generative 
adversarial network. Meanwhile, they introduced an improved 
wolf pack algorithm to improve the model accuracy. This 
effectively improved the convergence speed, accuracy, and 
stability of robust voltage control (Zhao et al., 2020). Faraji et al. 
proposed an optimized scheduling and operation method for 
permanent magnet generators to address the uncertainty of 
equipment such as wind turbines. They generated different 
scenarios through Monte Carlo simulation, thereby significantly 
improving the robustness of micro-grids in the face of 
uncertainty (Faraji et al., 2020). The integrated energy system in 
distributed generators has output uncertainty and is limited by 
CE. Ge et al. proposed a novel optimization planning model that 
considered both the uncertainty of distributed power generation 
output and CE penalties. This effectively reduced the impact of 
uncertainty and CE (Ge et al., 2021). Yang et al. proposed a time-
series joint scheduling method to address the uncertain risks 
faced by grid energy storage demand resources in active 
distribution networks. They made full use of various resources 
in terms of spatial and temporal data, completed analysis of the 
future, and effectively reduced the risk of energy storage in the 
power grid (Yang et al., 2020). 

MEMG is a small-scale energy system designed to provide 
electricity, thermal energy, and other forms of energy services 
by integrating multiple energy resources and equipment. 
Compared with traditional single-energy micro-grids, MEMG 
has higher integration and diversity. It has emerged under the 
pursuit of sustainability, cleanliness, and reliability of energy 
systems, as well as the promotion of technological progress. 
Similarly, many scholars have conducted extensive research on 
it. MEMG has the problem of multi-stage real-time random 
operation. Therefore, Li et al. proposed a solution that combined 
hybrid model predictive control and approximate dynamic 
programming methods. A good real-time operation solution was 
obtained, improving the control of MEMG by continuously 
updating predictions (Li et al., 2021). Tian et al. proposed an 
optimized scheduling model based on unified energy flow to 
address the low planning efficiency of coordinated operation in 
MEMG. They established a simulated energy storage model to 
describe the time-dependent characteristics of MEMG. This 
provided an effective new method for scheduling optimization 
of MEMG (Tian et al., 2020). Masrur et al. proposed a mixed 
integer linear optimization model to address the challenge of 
integrating multiple energy sources in MEMG. They calculated 
and predicted the hourly electricity and thermal load curves. 
This achieved coordinated operation of multiple energy sources 
and improved the recovery ability of MEMG in the event of 
long-term power outages in the power grid (Masrur et al., 2022). 
There are various uncertainties in RE power generation, 
electricity prices, and load demand. Therefore, Chen et al. 
proposed a two-stage stochastic operation scheme for 
optimizing the scheduling of distributed generators, electric 
boilers, electric refrigerators, and energy storage equipment. 
Meanwhile, they borrowed a mixed integer linear programming 
model to save operating costs while maintaining the robustness 
of MEMG and the thermal comfort of customers (Chen et al., 
2020). 

In summary, many scholars around the world have 
considered the uncertainty of RE utilization and conducted 
multiple research works to solve these problems. In addition, as 
an emerging energy system, the importance of MEMG is self-
evident. However, in the face of WSU, the optimization 

scheduling of MEMG is rarely discussed. Poor scheduling 
solutions can lead to waste of micro-grid operating costs, 
resources, etc., hindering the achievement of "carbon peak" and 
"carbon neutrality" goals. Therefore, based on WSPOPM, the 
study proposes MEMG-DAOS with economic costs and CE as 
optimization objectives, providing a comprehensive and 
innovative solution to address the uncertainty and operational 
efficiency issues in actual MEMG systems. 

3. Day-ahead optimal scheduling model with multi-
energy micro-grid and energy storage station based on 
wind and solar uncertainty 

Driven by the goals of global energy transformation and 
carbon neutrality, this section introduces in detail an innovative 
day-ahead optimization scheduling model, MEMG-DAOS, 
proposed in this study. Aiming at the operational challenges of 
MEMG under the influence of wind and solar energy 
uncertainties, this model improves the scheduling efficiency and 
economy of the system by establishing WSPOPM and 
introducing advanced optimization algorithms. At the same 
time, it enhances the adaptability to RE fluctuations and the low-
carbon operation characteristics of the micro-grid. 

3.1 Wind and solar power output probability model and scene 
generation 

A MEMG-DAOS model considering economic costs and 
CE is proposed for WSU. It needs to consider the time scale of 
wind speed and light intensity. Therefore, WSPOPM is 
established in this study to provide typical scenario inputs for 
the model and achieve optimized scheduling of MEMG. In 
WSPOPM, wind power generation system and photovoltaic 
power generation system are modelled. weibull distribution is 
used to describe the power output characteristics of wind 
turbines, while Bate distribution is used to simulate the output 
of photovoltaic power generation system. The maximum 
likelihood method is used to estimate the parameters of these 
distribution models to ensure that the models can accurately 
reflect the probabilistic characteristics of wind speed and light 
intensity. The Latin Hypercube sampling method combined 
with K-means clustering method is used to select representative 
scenes from a large number of generated scene-power scenes 
to reduce the computational burden of subsequent optimization 
models and maintain the diversity of scenes. Firstly, the wind 
power generation system and photovoltaic power generation 
system are modelled. Figure 1 shows the typical structure of 
wind turbines and photovoltaic power generation systems 
(Chen et al., 2021; Nosratabadi et al., 2021). 

In Figure 1 (a), the wind turbine includes pneumatic, 
transmission, electrical, and control systems. During the 
operation of wind turbine, its power acquisition is limited by 
both the limits of the pneumatic and electrical systems (Liu et 
al., 2020; Zhang et al., 2021). Its normal output power 
characteristic 𝑃𝑤, which is the relationship between wind speed 
and fan output, is represented by equation (1). 
 

𝑃𝑤 = {

0(𝑣 < 𝑣𝑐𝑖)

𝑃𝑟
𝑣3−𝑣𝑐𝑖

3

𝑣𝑟
3−𝑣𝑐𝑖

3 (𝑣𝑐𝑖 < 𝑣 < 𝑣𝑟)

𝑃𝑟(𝑣𝑟 < 𝑣 < 𝑣𝑐𝑜)

 (1) 

In equation (1), 𝑃𝑟  is the rated power. 𝑣 , 𝑣𝑐𝑖 , 𝑣𝑟 , and 𝑣𝑐𝑜 
represent the actual wind speed, cut in wind speed, rated wind 
speed, and cut out wind speed, respectively (Li et al., 2021; Li et 
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al., 2020). The study uses probability models to fit wind turbine 
output, with the aim of reflecting more wind power prediction 
information. The research suggests that the wind power 
generation system model conforms to a Weibull distribution, 
and the probability density function 𝛷𝑤(𝑣) of wind speed and 
the corresponding probability distribution function 𝜑𝑤(𝑣) are 
represented by equation (2). 
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In equation (2), 𝑘 represents the shape parameter. 𝑐 is a scale 
parameter. The maximum likelihood method is used to solve 
the equation and obtain the values of 𝑘 and 𝑐. The likelihood 
function is represented by equation (3). 
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In equation (3), the values of 𝑘  and 𝑐  are solved using 
equation (4). 
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 (4) 

In equation (4), 𝑣𝑖 represents the statistical data of wind 
speed samples. To use the maximum likelihood method, it is 
first necessary to collect 𝑣𝑖 and obtain the initial values of the 
shape and distribution parameters. Then, the Jacobian matrices 
of 𝐹1 and 𝐹2 are calculated, and the changes of 𝑘 and 𝑐 are 
obtained. The current parameter estimate has been updated 
using changes and gradually approximated to the true 

maximum likelihood estimate. If the change meets the accuracy 
requirements, the calculation of 𝑘 and 𝑐 values is completed. 
Thus, the modeling of the wind power generation system in 
WSPOPM is successful. In Figure 1 (b), the composition of the 
photovoltaic power generation system includes a photovoltaic 
array, DC/DC converter, DC/AC inverter, battery, and control 
system. A photovoltaic array is composed of multiple 
photovoltaic cells. The electrical energy is transmitted to the 
DC/DC and DC/AC links through a combiner box and 
ultimately converted into AC energy that meets the 
requirements of the power grid (Hou et al., 2021; Shaheen et al., 
2021; Su and Teh, 2022). The factors that affect the output of 
photovoltaic power generation include light intensity, weather 
temperature, air humidity, and atmospheric pressure. The 
power equation for photovoltaic power generation output is 
represented by equation (5). 
 

pv pv pv tP S =  (5) 

In equation (5), 𝑃𝑝𝑣 is the output of the photovoltaic system. 
𝜂𝑝𝑣  and 𝑆𝑝𝑣  are the photovoltaic radiation efficiency and 
radiation area, respectively. 𝜃𝑡  means the solar radiation 
intensity at a certain moment. The research suggests that the 
photovoltaic power generation system model follows a bate 
distribution, and its shape parameter 𝛼  and distribution 
parameter 𝛽 are represented by equation (6). 
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In equation (6), 𝜇 and 𝜎 represent the expected value 
and standard deviation of photovoltaic radiation intensity, 
respectively. Thus, the establishment of the photovoltaic power 
generation system model in WSPOPM is completed. 
Furthermore, the study utilizes an improved Monte Carlo 
statistical simulation method, Latin Hypercube Sampling (LHS), 
to establish wind and solar power output uncertainty scenarios, 
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Fig 1 Typical structure of wind power generation system and photovoltaic power generation system 
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and utilizes K-means clustering method to reduce the scenes. 
The main reason for choosing the K-means algorithm is that it 
can effectively identify and summarize the representative 
typical scenes from a large number of scenery and power scenes, 
while maintaining the high efficiency and practicality of the 
processing process (Liu et al., 2020; Nowak et al., 2020). By 
iteratively optimizing the cluster center, the K-means algorithm 
ensures the homogeneity within each cluster and the obvious 
differences between clusters, which not only helps to capture 
the diversity of the wind power uncertainty, but also 
significantly reduces the computational complexity and solution 
time of the subsequent optimization model by reducing the 
number of scenes (Shirzadi et al., 2022; Xu et al., 2021). In 
addition, as a mature and widely used clustering method, K-
means has the advantage of being easy to implement and adjust 
parameters, which can improve the practicality of the model and 
the accuracy of optimal scheduling (Liu and Yang , 2021; Wu et 
al., 2021). Figure 2 shows the specific process. 

In Figure 2, establishing a scenario of wind and solar 
power output uncertainty mainly involves three steps. Firstly, 
for data sampling, it is necessary to determine the value of the 
random variable 𝑋𝑘 and its cumulative probability distribution 
function 𝐹. Subsequently, LHS is used to divide the probability 
density function of wind speed into 𝑁 equal intervals based on 
sample size. Finally, the values of the midpoints in each interval 
are calculated. The second step is sample sorting, which 
generates a matrix L. The value of each row represents the 
sample location information of 𝑋𝑘 . After matrix factorization, 
the lower triangular matrix 𝐷 is obtained. Then, the correlation 
coefficient matrix 𝜌 and matrix 𝐺 are calculated, represented 
by equation (7). 
 

{
𝜌 = 𝐿 ⋅ 𝐷 ⋅ 𝐷𝑇

𝐺 = 𝐷−1 ⋅ 𝐿
 (7) 

The elements in 𝐿 are arranged according to the size of the 
elements in 𝐺, and the positions of each element in the sample 
matrix 𝑋  are adjusted, resulting in a simulation scene 
composed of a large number of sampling points with weak 
correlation. However, there are many scenes generated by LHS, 
and many scenes have certain similarities. Therefore, in the 
third step, the study uses K-means to first determine the number 
of sets in the initial state and assign initial cluster centers. Then, 
the samples in the typical scene set are calculated and assigned 
to the nearest cluster center (Haidar et al., 2020; Tian et al., 2020). 
Subsequently, the average value of scene coordinates under 
each cluster is calculated as the new center. Iterations are 
carried out repeatedly until the cluster center no longer moved 

widely or met the requirements for iterations. Ultimately, the 
study aims to output wind and solar scenes with typical features 
as inputs to MEMG-DAOS, improving the accuracy of the model. 

3.2 Establishment of a multi-energy micro-grid day-ahead optimal 
scheduling model 

Faced with WSU, MEMG may face challenges such as 
unstable power output, increased complexity of operation 
scheduling, rising energy storage demand, cost management 
challenges, and power supply reliability issues (Das et al., 2020; 
Liu et al., 2020). This uncertainty makes it more difficult for the 
system to adapt to different wind and solar conditions, thus 
forming a vicious cycle. Therefore, on the basis of the WSPOPM 
model, MEMG-DAOS is further established. The model 
considers the flow of electric energy and heat energy in MEMG, 
especially the role of ESS in the system, as well as the energy 
conversion and storage state during its charge-discharge 
process. The model aims to minimize the total cost and CE, 
covers the cost of electricity purchase, natural gas purchase, 
equipment operation and maintenance, and sets the 
corresponding constraints to ensure the safety and reliability of 
the system. In order to improve the speed and accuracy of 
optimal scheduling, the non-dominated sorting genetic 
algorithm II (NSGA-II) is introduced into the model to deal with 
multi-objective optimization problems and find the balance 
point between economic and low-carbon objectives. The 
establishment of MEMG-DAOS model provides an effective 
day-ahead optimization scheduling strategy for MEMG in the 
face of wind-wind uncertainty, which helps to improve the 
operating efficiency and economy of the system. The study first 
demonstrates the basic structure of MEMG in Figure 3. 

In Figure 3, the basic structure of the MEMG established 
in this study includes electrical energy flow and thermal energy 
flow, where electrical energy involves ESS. In ESS, energy 
storage components can store or release electrical energy 
through the conversion between chemical and electrical energy 
and change their own energy storage state through charging 
and discharging. The study simplifies ESS and does not focus 
on the internal charging and discharging processes of electric 
energy storage components. The energy change of the electric 
energy storage element is represented by equation (8). 
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Fig 2 Generation method of wind-power uncertainty scene 
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In equation (8), 𝑊𝐸𝑆
0  and 𝑊𝐸𝑆

1  are the electricity levels before 
and after charging and discharging, respectively. 𝜎𝐸𝑆  means 
self-discharge rate. 𝑃𝐸𝑆⋅𝐶 and 𝜂𝐸𝑆⋅𝐶 represent charging power 
and discharging power, respectively. 𝑃𝐸𝑆⋅𝐷  and 𝜂𝐸𝑆⋅𝐷  mean 
charging efficiency and discharging efficiency, respectively. 𝛥𝑡 
means charging and discharging time. Constraints are imposed 
on the electrical energy storage components in ESS in Figure 4. 

In Figure 4, 𝑆 is the state of charge of the energy storage 
element. 𝑊𝐸𝑆⋅𝑅 means the rated capacity of the energy storage 
element. 𝑊𝐸𝑆𝑚𝑖𝑛  and 𝑊𝐸𝑆𝑚𝑎𝑥  represent the minimum and 
maximum energy storage of the electric energy storage element, 
respectively. 𝑃𝐸𝑆⋅𝐶𝑚𝑎𝑥  and 𝑃𝐸𝑆⋅𝐷𝑚𝑎𝑥  refer to the maximum 
charging power and maximum discharging power of the energy 
storage element, respectively. 𝑢𝐸𝑆 is a state variable, where 0 
represents the discharge state and 1 represents the charging 
state. In the following research, MEMG-DAOS is established. 
The minimum daily operating cost of MEMG is calculated using 
equation (9). 
 

𝐶 = 𝑚𝑖𝑛(𝐶𝑡𝑒 + 𝐶𝑡𝑓 + 𝐶𝑡𝑔) (9) 

In equation (9), 𝐶 represents the total cost. 𝐶𝑡𝑒 is the cost of 
purchasing electricity. 𝐶𝑡𝑓  means the cost of purchasing 

natural gas. 𝐶𝑡𝑔 refers to the cost of equipment operation and 
maintenance. In addition to cost, the study also considers the 
constraint of minimizing CE, represented by equation (10). 
 

min GB heat
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In equation (10), 𝑚𝑀𝑇⋅𝑔𝑎𝑠 represents the CE coefficient per unit 

of natural gas consumed. 𝑄𝑀𝑇⋅𝑔𝑎𝑠  is the gas power. 𝑚𝐺𝐵 
refers to the CE coefficient per unit of natural gas consumption. 
𝑄𝐺𝐵⋅ℎ𝑒𝑎𝑡  means the thermal power output. 𝜂𝐺𝐵  represents 

work efficiency. 𝐶𝑉𝑔𝑎𝑠 is the unit calorific value of natural gas, 

with a value of 10 kWh/m3. 𝑚𝑔𝑖𝑟𝑑 refers to the CE coefficient 

of power generation in the power grid system. 𝑃𝑔𝑖𝑟𝑑⋅𝑡 means 
the amount of electricity purchased from the micro electric 
network during period 𝑡. 𝛥𝑡 means within a certain period of 
time. In MEMG-DAOS, a data-driven approach is used to 
establish a functional relationship between output power and 
control variables from historical data of wind and solar energy. 
This allows MEMG to better understand how output power is 
influenced by control variables under different conditions. It 
further optimizes the output power more effectively, improves 
the performance and efficiency of the energy system, and 
extends to optimization methods for joint operation of multiple 
MEMGs based on MEMG operation optimization. MEMG-
DAOS is represented by equation (11). 
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In equation (11), 𝐸𝑝 represents the expected value. 𝑥 is 
the set of decision variables in the first stage. 𝑦  refers to 
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Fig 3 Basic structure of multi-energy micro-grid 
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Fig 4 Constraint diagram of electric energy storage components 
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uncertain variables. 𝜉 is the second stage variable. C, b, A, B, 
C, and E are the coefficient vectors or matrices corresponding 
to the variables in the optimization model, T represents the 
transpose symbol, D represents the data-driven set of 
uncertainties, and R is the constant. The cost function of MEMG 
during the pre-scheduling phase is represented by equation (12). 
 

1

G UD W O ENG C C C C C= + + + +  (12) 

In equation (12), 𝐶𝐺  represents the cost of generating 
electricity for the unit. 𝐶𝑈𝐷 is the cost of starting and stopping 
the unit. 𝐶𝑊 refers to the operation and maintenance cost of 
distributed power sources. 𝐶𝑂 means equipment maintenance 
costs. 𝐶𝐸𝑁 represents environmental cost. Multiple micro-grid 
operators conduct real-time control based on the pre-
scheduling plan and simultaneously consider the uncertainty of 
distributed power generation output and load power. The 
objective function is represented by equation (13). 
 

,

2

G UD ESS EX LOSSG C C C C=  +  +  +  (13) 

In equation (13), 𝛥𝐶𝐺,𝑈𝐷 represents the cost of unit regulation. 
𝛥𝐶𝐸𝑆𝑆  refers to the cost of ESS regulation. 𝛥𝐶𝐸𝑋  is the 
transaction cost. 𝐶𝐿𝑂𝑆𝑆  means regulating the cost of wind 
curtailment. Finally, the study incorporates Non-Dominated 
Sorting Genetic Algorithm II (NSGA-II) into MEMG-DAOS to 

improve the speed and accuracy of optimization scheduling in 
Figure 5. 

In Figure 5, NSGA-II first initializes the data and then 
selects the minimum operating cost and CE as the optimization 
objectives for operation. By processing constraint conditions 
and objective function operations through the corresponding 
running optimization vectors of individual populations, the 
calculation results of individual fitness can be obtained (Lee et 
al., 2020; Shinde et al., 2020). Based on the individual fitness 
results obtained in the previous steps, selection, crossover, and 
mutation operations are performed to obtain the individual 
situation of the next generation population. Subsequently, the 
fitness of all individuals in the current generation population is 
recalculated and a hierarchical operation is performed between 
the previous generation population and the contemporary 
population. When the set maximum number of genetic 
iterations is reached, the output result is the optimal scheduling 
power generation combination and various target costs. 

4. Simulation and performance analysis of the multi-
energy micro-grid day-ahead optimal scheduling model 

4.1 Scheduling model setting and scenario simulation 

To verify the effectiveness and superiority of MEMG-
DAOS, a MEMG operation model was first constructed using 
the wind and solar output uncertainty scenario generated by 
WSPOPM. Subsequently, it underwent a day-ahead optimal 

Data initializationStart Generate initial population P

Calculate objective functionsCalculate individual fitness

Selection, crossover, 

mutation operations

Generate offspring 

population Q

Calculate fitness of 

individuals in population Q

Perform non-dominated 

sorting of {P U Q}

Obtain new population P

Check if the maximum 

population size is reached

Output the optimal 

scheduling combination 

and objective costs

EndY

N

 

Fig 5 Flowchart of NSGA-II in MEMG-DAOS model 

 

Table 1  
Equipment parameters of an actual multi-energy micro-grid in northern China 

Equipment Technical parameter Economic parameter 

Wind power system Capacity 50kW Operation and maintenance cost 0.0196 yuan/kWh 

Photovoltaic system 

Capacity 80kWp 

Operation and maintenance  0.0235 yuan/kWh Cut-in wind speed 2.5m/s 
Rated wind speed 12m/s 

Cut-out wind speed 18m/s 

ESS 

Capacity 150kWh 

Operation and maintenance  0.0018yuan/kWh 

Charging efficiency 0.95 

Discharge efficiency 0.95 

Self-discharge rate 0.04 

Minimum energy storage 5kWh 

Maximum storage energy 140kWh 

Maximum charging power 20kW 

Maximum discharge power 20kW 

Initial storage energy 100kWh 

 



 
H. Zhang  Int. J. Renew. Energy Dev 2024, 13(5), 873-883 

| 879 

 

ISSN: 2252-4940/© 2024. The Author(s). Published by CBIORE 

scheduling. The study selected a practical grid connected 
MEMG in northern China as the research object. Table 1 shows 
the parameters of wind turbines, photovoltaics, and ESS 
equipment. 

Table 1 details the key equipment parameters of an actual 
grid-connected MEMG in North China, including the capacity of 
wind power system and photovoltaic power system and their 
operation and maintenance costs. The capacity of wind power 
system is 50 kW, the operation and maintenance cost is 0.0196 
yuan/kWh, and the capacity of photovoltaic system is 80 kWp 
at its peak. Operation and maintenance cost is 0.0235 
yuan/kWh. The wind power system also includes specific 
technical parameters, such as the cut wind speed of 2.5 m/s, the 
rated wind speed of 12 m/s and the cut wind speed of 18 m/s. 
The parameters of the ESS range from 150 kWh storage 
capacity to 0.0018 yuan/kWh operation and maintenance costs, 
with both charge and discharge efficiency of 95%, self-discharge 
rate of 4%, minimum and maximum storage energy of 5 kWh 
and 140 kWh, respectively, and maximum charge and discharge 
power of 20 kWh. In addition, the energy storage system starts 
operation with an initial power of 100 kWh. These detailed 
technical and economic parameters are the basis for the 
optimization of MEMG scheduling, ensuring that the system can 
carry out effective day-ahead optimization scheduling under the 
uncertainty of wind and solar energy to improve operational 
efficiency and economy (Kalakova et al., 2021; Naughton et al., 
2021). To better accommodate wind and solar RE, the MEMG 
is connected to the higher-level distribution network, allowing 
the purchase of electricity from the higher-level distribution 
network to meet the load demand in the MEMG. In addition, 
while allowing MEMG to sell surplus electricity to higher-level 

distribution networks and improve the economy of MEMG, it 
also demonstrates low-carbon characteristics. In Figure 6, the 
historical data of this MEMG are presented. 

In Figure 6 (a), the wind speed distribution in the historical 
data is concentrated in the range of 0 m/s–14 m/s and 
concentrated in the 0 m/s–6 m/s. In Figure 6 (b), the highest 
light intensity is around 0.7 kWm-2. The study utilized the 
distribution of wind speed and light intensity of the MEMG to fit 
the shape 𝑘 of wind speed, scale 𝑐, shape 𝛼 of light intensity, 
and distribution parameter 𝛽 in Figure 7. 

In Figure 7 (a), k  shows an upward trend from 1 to 7 

hours, a downward trend from 7 to 18 hours, and an upward 
trend again from 18 to 24 hours, with a significant change. 𝑐 
has a relatively small change range within 24 hours, and the 
overall trend of change is similar to 𝑘. In Figure 7 (b), both 𝛼 
and 𝛽  suddenly and rapidly increase after 6h-7h, while 
suddenly and rapidly decrease between 16h-18h, which is 
consistent with the changes in light intensity within a day. 
Furthermore, the study utilized WSPOPM to generate 200 wind 
speed scenes and 200 lighting intensity scenes and used K-
means to reduce a total of 400 scenes. Finally, 10 typical wind 
speed scenes and 10 typical lighting intensity scenes are 
retained in Figure 8. 

In Figure 8 (a), the generated scene has a higher number 
of wind speeds in the range of 1.5m/s to 5m/s. The number of 
wind speed time periods at 8m/s is relatively small, and the 10 
generated scenarios matches the real data distribution, which 
has credibility. In Figure 8 (b), the distribution characteristics of 
the 10 lighting intensity scenes are also consistent with the true 
lighting intensity scenes. The light intensity starts to rise around 
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Fig 6 Parameter fitting values in WSPOPM 
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Fig 7 Parameter fitting values in WSPOPM 
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8:00 and reaches the peak of the day's light intensity around 
14:00, until the light intensity approaches 0 around 18:00. In 
Figure 8 (c), among the 10 scenic scenes, scenario 2 has the 
highest probability of occurrence, reaching 17.50%, while 
scenarios 3 and 4 have the lowest probability of occurrence, 
only 2.5%.  

4.2 Scheduling model performance analysis and verification 

According to the above content, the study used scenario 2 
as a simulated WSU scene for MEMG scheduling. The 
simulation experiment software used in the study is MATLAB 
2016a. The hardware environment is mainly as follows. The 
CPU is Intel Core I5-7500, with a 6-core processor and 8GB of 
memory. Scenario 2 was input into MEMG-DAOS, economic 

goals and low-carbon goals were considered, and the day-ahead 
scheduling of MEMG was optimized using NSGA-II in the model. 
The study set the NSGA-II2 population to 200, with 100 
iterations. Figure 9 shows its economic and low-carbon 
optimization results. 

The optimization results shown in Figure 9 deeply reveal 
the complex trade off between CE and economic costs in day-
ahead optimal scheduling of MEMG. Specifically, when the 
economic cost is in the range of 1700 yuan to 1750 yuan, CE is 
maintained at 1900kg to 1950kg, reflecting that within this cost 
range, each increase in a certain amount of economic input can 
achieve a relatively limited CE reduction effect. However, when 
the economic cost is close to 1950 yuan, CE shows a significant 
decline, falling below 1700kg, indicating that the additional 
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Fig 8 10 typical wind speed scenes and 10 typical light intensity scenes 
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Fig 9 Optimization results of multi-energy micro-grid operation scheduling 
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economic input can bring about a significant reduction in CE 
when approaching the cost sensitive point (Yapici, 2021). 
Therefore, after comprehensive consideration, the study chose 
the location of the red dot in Figure 9. This point is more 
advantageous for MEMG operators in terms of economic cost 
compared to operating points with low CE. Compared to low-
cost operating points, the CE of this selected operating point 
was more advantageous in the context of dual carbon. It could 
lay the groundwork for the carbon trading market and enhance 
the economic benefits brought by subsequent CE exchanges. 
On this basis, adjustments were made to the ESS by setting the 
battery capacity in the ESS to 100 kWh. Figure 10 shows the 
optimization results and changes in battery capacity. 

The analysis results in Figure 10 show the interaction 
between economic cost and CE of MEMG after ESS adjustment 
and the effect of optimal scheduling strategy. First of all, Figure 
10(a) reveals that after ESS adjustment, although the economic 

cost increases by 26.48 yuan compared with the previous one, 
the increase in cost results in a significant reduction of CE by 
19.68kg, which indicates that by reasonably adjusting the 
energy storage strategy, the system operation efficiency can be 
ensured while the environmental impact can be effectively 
reduced. Figure 10(b) shows the electrical energy trading 
behaviour of MEMG at different time periods of the day. From 
9:00 to 15:00, MEMG uses its own power generation capacity to 
sell electricity to the distribution network, which not only brings 
economic benefits, but also shows negative CE characteristics 
due to its use of RE. From 19:00 to 24:00, due to the increase in 
load demand, MEMG begins to purchase electricity from the 
distribution network to meet its own needs. Figure 10(c) details 
the operating state of the battery at different electricity price 
periods. During the valley periods when electricity prices are 
lower, such as 06:00 to 08:00, 16:00 to 17:00 and 21:00 to 24:00, 
the battery is charged and stores energy for use during peak 
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Fig 10 Optimization results and electricity variation 
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Fig 11 Cost comparison result 
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hours. On the contrary, during the peak period of high electricity 
prices, such as 09:00 to 11:00, the battery is discharged, and the 
stored energy is fed back to the grid to achieve electricity sale, 
thereby improving the economy of the system. This strategy 
leads to an increase in economic costs, as the reduction in 
storage capacity limits the amount of power purchased during 
the price trough and increases the amount purchased during the 
peak period (Nagarajan et al., 2020; Kanellos, 2020). At the same 
time, overall CE has been reduced by reducing the amount of 
electricity purchased from distribution. Finally, the study 
introduced Stochastic Optimization (SO) and Robust 
Optimization (RO) as comparative algorithms for MEMG-DAOS 
and compared the pre-scheduling cost and real-time control 
cost of MEMG in Figure 11. 

The results of the analysis in Figure 11 highlight the 
significant benefits of MEMG-DAOS in terms of cost control. 
From Figure 11 (a), in the calculation of pre-scheduling cost, the 
MEMG-DAOS model shows its cost-effectiveness, which is 
always lower than the cost of SO method and RO method for 
scheduling. Specifically, at 0, the pre-scheduling cost of the 
MEMG-DAOS model is 1.94×105 yuan, compared to 2.26×105 
yuan for the SO method and 2.81×105 yuan for the RO method, 
which indicates that at a single time point, the MEMG-DAOS 
model has achieved cost savings. Extending the perspective to 
the whole day, the total pre-scheduling cost of the MEMG-
DAOS model is 45.16×105 yuan, which remains low in the all-
day scheduling. Furthermore, from Figure 11 (b), for the actual 
dispatch cost, the total cost of MEMG-DAOS model in a day is 
only 21.46×105 yuan, which saves 41.65% and 44.95% of the 
cost compared with 36.78×105 yuan of SO method and 
38.98×105 yuan of RO method, respectively. In summary, the 
conclusions of Figure 11 highlight the cost-effectiveness and 
efficiency of the MEMG-DAOS model for day-ahead optimal 
scheduling of MEMG, proving that the model is an effective tool 
to provide economically viable and environmentally sustainable 
scheduling solutions for MEMG operators under uncertain 
conditions. 

5. Conclusion 

In response to the WSU faced in MEMG, a WSPOPM was 
established in this paper to lay the groundwork for generating 
WSU simulation scenarios. After generating a large number of 
scenes, K-means was utilized in this study to reduce the scenes 
and obtain typical scenes, further proposing MEMG-DAOS. 
MEMG was mathematically modelled and NSGA-II was 
introduced to improve the speed and accuracy of optimized 
scheduling. Finally, an experiment was conducted. The 
experimental results of an actual grid connected MEMG in 
northern China confirmed that the overall trend of parameters 
𝑘 and 𝑐 was similar. They showed an upward trend from 1h to 
7h, a downward trend from 7h to 18h, and an upward trend from 
18h to 24h, but the change amplitude of 𝑐 was smaller. 𝛼 and 
𝛽 almost suddenly increased rapidly after 6-7 h, and suddenly 
decreased rapidly between 16h-18h. WSPOPM could effectively 
calculate the historical data of MEMG. The wind speed and light 
intensity in the generated scene matched the historical data 
trend. In addition, the adjustment of ESS by MEMG-DAOS 
could effectively affect the economic cost and low-carbon goals 
of MEMG. Finally, the cost of MEMG-DAOS was always lower 
than that of SO and RO methods. For actual scheduling costs, 
MEMG-DAOS only cost 21.46×105 yuan per day, while SO and 
RO methods are 36.78×105 yuan and 38.98×105 yuan, 
respectively. Overall, this study can analyse WSU and complete 
the day-ahead optimization scheduling of MEMG, effectively 
reducing the operating cost of MEMG. However, further 
research can consider the impact of demand side load 

uncertainty and electricity price uncertainty on MEMG 
optimization scheduling. 
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