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Abstract. To improve the prediction accuracy of energy-saving design for homestay buildings, a multi-objective optimization model is studied. A
model of multi-objective optimization algorithm for energy efficiency design of home stay buildings based on decomposition multi-objective
evolutionary algorithm is proposed. Decomposition based multi-objective evolutionary algorithm is selected. To select the preliminary algorithm for
achieving energy-saving design of homestay buildings, it divides the objectives into algorithm determination and model construction and uses multi-
objective optimization algorithms to solve the proposed optimization model. The validation results show that the minimum discomfort time calculated
using the non-dominated sorting genetic algorithm is 555.30 and the energy consumption is 7.68, while the minimum discomfort time calculated
using the non-dominated sorting genetic algorithm method is 896 and the energy consumption is 8.92. With alternative model, the speed of multi-
objective Evolutionary algorithm is the fastest, reaching 6105.44 seconds, which is 68.80% lower than the proposed method. With the help of
substitutes, the computational speed of the multi-objective particle swarm optimization algorithm has been greatly improved. Its computational speed
has reached 1217.231 seconds, while the fastest multi-objective particle swarm optimization algorithm among the four comparison methods is only
3868.591 seconds. Although the individual improvement is not significant, the overall optimization is still considerable and has strategic foresight in
the decision-making plan of decision-makers.
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1. Introduction as building shape coefficient, heat transfer coefficient, exterior
wall area, and so on. In traditional building energy-saving design
problems, most scholars have also attempted to apply
optimization methods such as genetic algorithm, particle swarm
optimization, simulated annealing, etc. Although these methods
have improved the efficiency and effectiveness of building
energy-saving design to a certain extent, they still face problems
such as slow convergence speed, insufficient diversity of
solutions, and severe constraints in dealing with multi-objective
optimization problems. They face difficulties in sample selection
and complex model construction (Liang et al. 2022). Therefore,
the study introduces the Decomposition based Multi Objective
Evolutionary Algorithm (MOEA/D) algorithm for building
energy efficiency analysis. MOEAD can decompose multi-
objective problems into multiple single objective subproblems
for parallel solving, and its diversity strategy based on
decomposition and constraints on the problem can effectively
improve operational efficiency, making it suitable for diverse
and complex building energy-saving design problems. The issue
of building energy-saving design itself contains many
contradictory performance indicators, such as building energy
consumption and environmental thermal comfort, lighting effect
and lighting energy consumption, ventilation demand and heat
loss, etc. (Serat et al 2023); Janus et al. 2021). However,
currently, the vast majority of multi-objective optimization

With the increasingly severe global shortage of energy resources
and environmental pollution, promoting energy-efficient design
in buildings has become one of the important ways to achieve
sustainable development. According to the "China Building
Energy Consumption Research Report (2022)", in 2020, the total
energy consumption of buildings and construction accounted
for 45.5% of the total national energy consumption, and carbon
emissions accounted for 50.9% of the national total. Among
them, the energy consumption and carbon emissions during the
operation phase of buildings both exceeded 20% (Yugank et al.
2022). At present, the proportion of building energy
consumption is increasing significantly, and strengthening
effective management of building energy consumption has
become one of the important contents to improve energy
utilization and guide building energy conservation (Du et al.
2022). The physical structure and parameter performance of
buildings are largely related to their energy performance and
residential suitability, especially in small and medium-sized
buildings such as homestays. Energy saving design can not only
reduce operating costs, but also help improve user comfort and
environmental friendliness, thus having significant social and
economic benefits (Ebrahimi et al. 2021). The issue of building
energy efficiency includes various performance indicators such
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models generally suffer from problems such as long iteration
times and high operating costs, which seriously affect the cost
control of construction teams. Therefore, innovative research
proposes the idea of combining surrogate models with
evolutionary algorithms to achieve energy-saving design in
buildings. The structure of homestay buildings includes single
house structures and multi house structures, with complex data
types. The study uses multi-objective design methods to analyze
real homestay buildings, and establishes relevant mathematical
algorithms and optimization conditions using multi-objective
optimization models, ultimately achieving the goal of reducing
construction period and cost.

2. Literature review

Mazlomi et al. (2022) optimized the QoS indicators of wireless
sensor networks based on this, thereby improving the
performance and reducing energy consumption. It studied the
mathematical models and optimization problems of various
indicators in the network. Simulation experiments have shown
that the proposed model can effectively optimize the parameters
and indices of the network. The Samarasinghalage et al. (2022)
research team involved many parameters in the design of solar
cell and building integrated enclosure structures, and there were
contradictions  with photovoltaic related performance
indicators. A new integrated photovoltaic (BIPV) design method
was proposed based on MOO, which comprehensively
optimized its lifetime energy consumption and cost. Research
has shown that simulation findings have certain guiding
significance for the mid-term design of products, but cannot
serve as a decision-making basis for product design. The
subjectivity, taste, preferences, and other factors of users had a
significant impact on the energy-saving effect of the system.
Scholars such as Ebrahimi A found that in the future of
sustainable development, the development of renewable energy
became inevitable. This energy competed with conventional
energy sources that could fully utilize wind and solar energy.
The hybrid renewable energy power generation system could
not only improve the economic efficiency of renewable energy
generation, but also improved its environmental performance.
To address this issue, this project planed to establish a
distributed renewable energy system scale optimization model
based on MOO. The whole system included wind turbines,
photovoltaic panels, batteries, Diesel generator, etc. This project
planed to use the Non domain Sorted Genetic Algorithm (NSGA)
to solve the MOO problem, while ensuring the energy utilization
rate of the system and minimizing the energy consumption and
carbon emissions of the system. And it was compared with other
multi-objective optimal algorithms. Through comparison, this
plan was feasible. The calculation results denoted that under the
selected climate and building environmental conditions, the
renewable energy utilization rate of the residential building
could reach about 78%, meeting the requirements (Ebrahimi et
al. 2021). Wang et al. (2021)found that early design decisions
were crucial in building energy efficiency. However, due to its
poor applicability in real environments, its practicality has been
questioned. The calculation outcomes indicated that after using
MOOSAS, the energy efficiency of the system was significantly
improved, and the average energy density decreased by 8%. In
addition, researchers have found that during the research, they
could obtain more energy-saving new design solutions and
make better choices between the "best" and "near best" options.
8% of participants believed that Moosa was effective, while 58%
of participants indicated that they were willing to use MOOSAS
in the future. This also meant that being responsible for and
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utilizing auxiliary tools during the pre-set process was beneficial
for design practice. Du et al. (2022) established a dynamic
temperature adjustment mode for each partition based on
different levels of user needs. The research findings expressed
that by dynamically adjusting the set temperature every day, the
load demand could be reduced by 6.17% without affecting user
comfort. At the application and control levels, a comprehensive
approach of operational optimization and model predictive
control was adopted to achieve an overall energy-saving index
of 12.75% for the air conditioning system .

Scholars such as Pu have established a MOO based speed
curve model for urban rail transit and provided a 3D Pareto
boundary model suitable for urban rail transit. The research
results confirmed the correctness of the method proposed in this
article, and also suggested that when using comfort, one could
not use only one method (Pu et al. 2022). Zhang et al. (2020)
designed an objective function energy-saving mode for energy
consumption, lighting, and ventilation in buildings, and used
genetic algorithms to optimize building parameters. The results
showed that this method can effectively reduce building energy
consumption, increase the lighting coefficient by more than 10%,
and effectively achieve building energy-saving effects. Elsheikh
et al. (2023) used a multi-objective genetic algorithm model to
analyze the energy efficiency of residential buildings under
different climates, and considered various design variables
related to energy efficiency, such as exterior wall type, window
to wall ratio, building direction, and so on. The results indicate
that the research design method can achieve a good balance of
energy consumption and ensure good thermal comfort
conditions in semi-arid climates. Pioppi et al. (2020) believed
that the energy efficiency of buildings is related to factors such
as personnel energy behavior and environmental perception.
They modeled and analyzed an office building and found that
eliminating energy waste behavior can effectively reduce energy
demand, and improving indoor environmental conditions can
enhance energy efficiency. Egwim et al. (2024) introduced a
hybrid stacked ensemble method to evaluate building energy
efficiency, and found that using ensemble machine learning can
effectively analyze and predict building energy efficiency data.
Considering the complexity of building energy, Yu et al. (2021)
conducted a literature review and analysis of the application
ideas of deep reinforcement learning, and concluded that this
technology has significant control optimization performance.
Buturache et al. (2022) utilized the Six Sigma stage approach for
building energy consumption prediction analysis and designed
data processing and hyperparameter selection. The results
indicate that the model has good application scalability and
significant advantages in digital analysis of energy consumption
data. Bagholinizad et al (2022) conducted multi-objective
optimization on photovoltaic sunshades, including the selection
of position and geometry, and completed function design using
Morris sensitivity analysis and artificial neural networks. The
results indicate that shading the southern direction of the
building and adjusting the tilt angle appropriately according to
the seasonal cycle can effectively reduce power consumption.
The optimal photovoltaic shading tilt angle is 19.6 °. In
summary, scholars and scientists have made contributions in
neural networks and feature sequence extraction. Many
improved algorithms were designed to meet more efficient
dataset processing and optimization algorithms. At the same
time, considering the good data processing performance of the
sequence feature model and the shortcomings of current
advertising recommendation algorithms, using this method to
optimize the efficiency of advertising recommendation should
have significant application value in the operational decision-
making of large internet companies and advertising companies.
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3. Optimization of multi-objective algorithm for ESD of
homestay buildings based on MOEAD

This study adopts multi-objective algorithms to optimize the
ESD of homestay buildings, and determines the recommended
model and construction algorithm based on actual situations
and ESD cases. Through the analysis of MOEAD algorithm,
multi-agent assisted MOEAD and scientific control, the model
differentiation comparison is realized by compiling software.
Ultimately, an ESD model is obtained for that is suitable for real
situations can provide valuable reference for the design of
homestay buildings and provide forward-looking strategic value
for the development of the industry.

3.1 Design of multi-objective evolutionary optimization algorithm for
ESD of homestay buildings based on MOEAD

Compared with single objective optimization problems, MOO
problems require simultaneous optimization of multiple
indicators, and there are contradictions between multiple
indicators (Do and Ohsaki 2021; Pu et al. 2022). There is no
single way to solve such problems once and for all, and only a
compromise approach can be adopted. It takes the minimized
MOO as an example, as shown in equation (1).

Jmi”F(X):(ﬁ(X):fz(X)VK,fM(X))
h (X)=()0,j=12K 3
{X = (X% L ,XD)eQ

(1)

In equation (1), 2 means the decision space; X = (x4, %3 **+, xp)
denotes the D dimensional solution; F(X) indicates the
performance indicator; hj(X) refers to the equality or inequality
constraint; M means the number of objectives. It researches a
method based on decomposing MOO that can obtain the
optimal solution of Pareto's law for each suboptimal problem.
One of the solving methods is shown in equation (2).
M

migws(x\/l)=§/1,fi(x)

(2)

In equation (2), 4 refers to the reference weight vector, which is
the weighted sum approach (WS), while the other method is the
Tchebycheff method. The aggregation form of this method is
expressed in equation (3)(Pereira et al. 2020; Polo-Mendoza et
al. 2023).

ming"* (X [4,Z2")=max{ 4 |f (X)-Z/
6 (X[1.2") = ma{a] (%) 7]} o
In equation (3), Z* denotes min{f;(X)|X € 2},i € {1,2, ..., M},
which belongs to the position of the reference point. Based on
the penalty boundary crossing method, the objective function
aggregation form of this method is denoted in equation (4).

ming™ (X ‘A,Z‘):dﬁ—ﬁdz

(4)

In equation (4), 6 expresses the penalty factor, and d6 and d:
control the distribution and convergence of the population.
Usually, the optimal solution set obtained by the boundary
crossing method is more uniform (Sohani et al. 2022; Ma et al.
2023). A multi-objective energy-saving model for homestay
buildings is established based on indicators such as annual
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energy consumption and user discomfort hours, as shown in
equation (5).

min F = (BEC(X), UDE(X))
Xors Xtolw» Xsrar» Xghtc) Xshger +
Xiwl Xiwws Xbwwr Xkwlr Xkeww «+ (5)
Xwwi Xwwwo xlepdr xbepdr
xkepd: xwepdv Xhstr Xcst

s.t.X =

In Formula (5), BEC and UDE express the annual energy
consumption and the annual user uncomfortable hours,
respectively. x in s. t. X is the room orientation, the thickness of
external insulation layer of the wall, the solar absorption rate of
the external wall, the Heat transfer coefficient of the window, the
solar heat gain coefficient of the window, the length of the living
room window, the width of the bedroom window, the length of
the kitchen window, the length of the bathroom window, the
lighting density of the living room, the lighting density of the
bedroom, the lighting density of the bathroom, the heating
setting temperature of the air conditioning system and the
cooling setting temperature of the air conditioning system (Liu
et al. 2021; Liu et al. 2020). It utilizes fuzzy decision-making
technology to provide decision-makers with a new choice
scheme for the compromise solution of the target value, and the
satisfaction level is shown in equation (6).

1
K ™ -1, (Xk)

flmax _ flmin
0
(6)
In equation (6), f™%* and f/™" are the max and mini values of
the i objective function, respectively, and the normalized

membership function corresponding to X, is indicated in
equation (7).

M

2u

k i=1

H= |SET|

=il (7)

In equation (7), M expresses the amount of objective functions;
|SET| means the amount of elements in the set SET, and the
compromise solution is the solution with the highest u* value in
SET. The specific implementation of this algorithm is expressed
in Fig. 1.

In Fig. 1, the specific implementation of the proposed
algorithm is shown. Firstly, it uses Sketchup software to draw a
3D model of the building to be optimized, and uses it as one IDF
files for storage; Secondly, using the MOEA/D method in
MATLAB software, a new single point positioning problem is
generated, which is a new solution. Then, it utilizes the Visual
C++interface program to decode the new solution and generate
EnergyPlus; It runs EnergyPlus and outputs two performance
indicators: energy consumption of buildings and minimum
discomfort time; Then, MATLAB is applied to calculate the
performance parameters of the new solution and modify the
results of the new solution to achieve the desired results. Finally,
the Pareto optimal solution retained in the external population
is utilized as the final result of the algorithm (Pavankumar et al.
2021). The algorithm performance is evaluated using the
hypervolume measure. The increase of hypervolume means that
the distribution or convergence of the results become better, as
shown in equation (8).

HY = 5(Ufv )
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Analyze the output results
of EnerguPlus through
MATLARB code

*

Using Visual C++interface
program to decode fresh
decoding into EnergyPlus

Fig. 1 MOEAD algorithm implementation

Fig. 2 The SketchUp simulation results of the exterior of a
residential building

In equation (8), 8 means the Lebesgue measure; |S| denotes the
amount of non dominated solution sets; v; expresses the hyper
volume formed by the i —th structure of the reference point and
solution set. It uses the SC measure for MOO of convergence,
as shown in equation (9).

‘{beB:ElaeA,ap b}‘
8]

SC(A’B)=

Table 1
Range of Building Decision Variables

In equation (9), |g| means the amount of elements in the set;
Sc(A,B) =1 denotes that all solutions of the set B are
dominated by the solutions of the set A. When S¢(4,B) =0 is
used, it indicates that no solution of set B is dominated by any
solution of set A.According to different functions, residential
buildings are divided into four hot zones, namely living room,
bedroom, kitchen, and bathroom. The initial length and width of
the window are 1.8m and 1.2m, respectively. According to the
recommendations in the EnergyPlus software manual, set their
return air coefficient to 0, radiation coefficient to 0.37, visible
light coefficient to 0.18, and coefficient of heat transfer from light
to the surrounding air to 0.40. The Fig. 2 shows the SketchUp
simulation results of the exterior of a residential building.
Consider building orientation, window length and width in
each hot zone, heat transfer coefficient and solar heat gain
coefficient of windows, thickness of wall insulation layer,
external wall solar absorption rate, lighting power density and
other parameters as decision variables for this model. Based on
the reference to the "Building Energy Efficiency Design
Standards", the variable range of the building has been
preliminarily determined, as shown in Table 1 (Najafi et al. 2023).
Among them, the length and width of the windows are
determined by the size of the rooms in the building model, and
the range of values for the remaining variables is determined by
the specific design of building energy efficiency. When
conducting  building energy consumption simulation,
EnergyPlus first needs to preserve the 3D geometric model in.

Decision variables Range Reference value
Building orientation/° [0,360] 0

Insulation layer thickness/m (0.0001,0.1) 0.0523

Window heat transfer coefficient/w/(m? - k) (2,6) 4.5

Lighting density/w/m? [4.5,6] 5.0

Air conditioning system heating/cooling set temperature [18,24]/[24,28] 8/20

Personnel density/w/m? (0.1,1.0) 0.2

Equipment energy consumption density/w/m? [10,18] 15
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idf file format, and then set parameter information based on
design requirements and actual situations, including
maintenance structure information, operating time, lighting
equipment, air conditioning system, etc. It can also download
required weather files for operation, and output building energy

consumption, project load, and other content (Egwim et al. 2024).

Subsequently, the Matrix Laboratory (MATLAB) can be
connected to the EnergyPlus engine to optimize building
energy-saving design. MATLAB can use the performance
indicators of the scheme as objective function values for
constraint execution analysis, generate new positions until the
constraint conditions are met, and finally obtain the Pareto
optimal solution in the external population.

3.2 Design of MOO algorithm for ESD of homestay buildings based
on multi-agent assisted MOEAD

In response to the drawback of high computational complexity
in existing evolutionary optimization methods, this project plans
to study multi-agent MOEAD based on multi-agent models,
which is referred to as the MS-MOEAD algorithm. On this basis,
an individual evaluation method based on neighboring agent
aggregation is proposed, and a reference point update method
that integrates prediction results is proposed for the problem of
single search without valuable targets (Liu et al. 2022; Najafi et
al. 2023). The basic framework of the proposed MS-MOEAD
algorithm is expressed in Fig. 3.

Fig. 3 shows the basic framework of the proposed MS-
MOEAD algorithm. On this basis, four modules are proposed:
multi-agent modeling and management based on agents, group
update based on MOEAD, individual evaluation based on
neighboring agents, and reference point update. The function of
the "Multi-agent Model Establishment and Management"
module is to synchronously establish representative multiple
Agent models and continuously update them based on newly
added samples, to ensure their accuracy as much as possible.
On this basis, a group update algorithm based on MOEA/D
algorithm is proposed. The "Personal Evaluation Based on
Adjacent Subject Aggregation" module aims to independently
integrate multiple basic subject models using the adjacent
subject aggregation mechanism for the evaluated object, and
then comprehensively evaluate a single subject, thereby
achieving accurate prediction of a single subject (Altekin et al.
2022; Egwim et al. 2024; Sharma and Kumar 2022;). The function
of the 'Management of Filling Samples' module is to select high-
quality new individuals from the population, conduct real
evaluations of them, and update the sample training set used for
the alternative model based on this (Mazloomi et al. 2022;

Tdata '—

Construction of multi
Surrogate model
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Zvyagina and Zvyagin 2022). The uncertainty of individual X is
shown in equation (10).

i1 -1 7+1 (10)

In Formula (10), M denotes the number of targets; f;(X)
means the surrogate model evaluation value of the individual X;
7 indicates the neighborhood size of the individual; f;(X)
expresses the average approximate value of X on the ith target.
Only when the optimization results of a certain weighted vector
have not changed within several generations, the basic vector
model corresponding to this weighted vector is updated.
Evaluation indicators are utilized to obtain the final target value,
as shown in equation (11).

fo (X)) =2y, xFo (Xi[SM _4 ) m=12K M (11)

In equation (11), @; indicates the weight of SM A{ denotes the

Al
reference weight vector. The weight value is determined by the
distance between the weight vector and the reference weight

vector, as shown in equation (12).

(12)

S =1
In equation (12), |1 — /1{ | expresses the reciprocal of the
distance between A7 and A/. The closer the distance between A/

and A2, the closer the sub optimization problems represented by
SM,; and SM 29 are, and the greater the weight of the objective

function predicted by SM,;. In MOEAD, the properties of the

reference point Z ‘'are related to the distribution and
convergence of the Pareto front-end obtained. Unlike general
numerical optimization problems, the objective function of this
algorithm has two types: one is practical, and the other is
predictive. In view of this, the new reference point is determined
by referring to two objective functions, as shown in equation
(13).

ot ]X {min
Torax (13)

Generation of filled
samples

Fig. 3 Basic framework of MS-MOEAD
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f

Z* ﬂ’lO fl

Fig. 4 Schematic diagram of the effectiveness of reference point
selection

In equation (13), £7" indicates the true minimum value and
A,;{”" refers to the predicted minimum value. This example will
obtain a more ductile real Pareto front-end, as shown in Fig. 4.

In Fig. 4, the red curve means the real Pareto front, the purple
and yellow dots mean the reference points determined by fm"
and the surrogate model, and the green dots refer tol0
individuals in the population. When selecting the yellow point
defined by the alternative model as the reference point, the two
edge individuals always search for the best solution in the blue
shadow area. But this shadow is useless, which leads to a
decrease in the search efficiency of the population (Atanassov
2022). Write the MS-MOEAD algorithm in the MATLAB

Int. J. Renew. Energy Dev 2024, 13(5), 982-994
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environment, and the running framework of the algorithm is
shown in Fig. 5.

In Fig. 5, first, Sketchup software is utilized to draw a 3D
model of the building that needs to be optimized, and stored as
an idf file; Secondly, MATLAB is applied to perform initial value
operations on the algorithm to obtain the initial population and
initial sample set, and then this initial value is used to establish
N basic substitution models. Then, the MS-MOEAD algorithm is
utilized to generate new single cells and predict their objective
function. Secondly, whether necessary updates have been made
to the alternative model. If necessary, it uses the Visual
C++interface program to pass the solutions to these problems
to Energy Plus, and then outputs two objective functions during
the operation of Energy Plus, namely the energy consumption
of the building and the minimum discomfort time; After
obtaining the new function, it needs to updates the sample set
Tdata using MATLAB and reconstruct the required basic
alternative model; If not necessary, it proceeds to the next step
(Belgacemet al. 2024; Nguyen et al. 2022). On this basis, the MS-
MOEAD method is used to continuously generate new
individuals. Repeating this process until the algorithm reaches
the end condition. Finally, the Pareto optimal solution in the T
data is used as the final result of the algorithm. The complexity
calculation of the reference algorithm is denoted in equation
(14).

C=RFEs-C¢ +C; +C, + Coer L (14)

Among them, Cr expresses the calculation cost of the real
evaluation target individual; RFEs indicates the amount of
times the real evaluation individual is evaluated; t,,,, refers to
the total amount of iterations of the algorithm; Cs represents the
generated fill sample; C, e stands for other operators required
for updating the population.

N

Generate initial population
and construct N basic
Surrogate model

1

Execute MOEA/D to
1 generate a new individual

1

Predict individual target

start

values

Fig. 5 Execution framework of MS-MOEAD algorithm
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Update gb and pb

Representative solutions
for genuine evaluation

Optimal solution set

Fig. 6 Sa-MOOSO framework

3.3 Model design of MOOPSO algorithm based on multi-agent
assistance

Firstly, theoretical framework of Sa-MOOSO is introduced. On
this basis, a particle position update method based on Agent and
a method for establishing and managing Agent models are
proposed. Similar to other multi-objective PSO algorithms,
particle position update is also an important component of PSO
(Luetal. 2023; Khodadadi 2022). It can continuously update the
position of particles in the particle swarm to generate new
particle swarm, while also maintaining the local optimal solution
in the particle swarm. The framework structure diagram is
shown in Fig. 6.

In Fig. 6, the Agent model management section is used to
maintain and update the Agent model used in the previous
section. In other words, this paragraph is used to generate high-
quality new particles or to fill the sample. Within a given time
interval, it selects a representative and high-quality solution set
from the backup library, and uses EnergyPlus to solve its actual
target; Then, each representative solution and their actual target
values form a new filled sample. All new sampleset data are
added to the sampleset data (Alghamdi et al. 2022; He et al. 2023;
Lu et al. 2023). Finally, it extracts all non optimal solutions from
the dataset and optimize them accordingly. To enhance the
search ability of the population, conventional PSO algorithms
often use an inertia weighting and two learning factors. The
particle position is updated by the Gaussian distribution relative
to the two navigator, so it is unnecessary to set the above control
parameters. Specifically, the update rules for particle X; are
shown in equation (15).

In equation (15), N(-) denotes a Gaussian distribution
function; r; indicates a random number from 0 to 1; pb; and pb;
mean the local and global guides of the current particle; ¢,
expresses the maximum number of iterations; x/°* and x;'? refer

to the lower and upper limits of the x;* variable; " and f'm
stand for the maximum and minimum values of the m-th
objective function of the population; & ; means the interference
factor determined by the similarity between pb; and pb;; ph
refers to a probability determined by the difference between
fn(gb;(®)) and f,,(pb; (1)) (Muhiuddin et al. 2022). On this basis,
the Sa-MOOSO algorithm is developed using MATLAB, and the
energy consumption of buildings is simulated using Energy Plus
to obtain the actual initial value. In other words, in MATLAB, the
Sa-MOQSO algorithm will continuously generate new solutions,
and then the Energy Plus algorithm will solve the actual target

of the selected representative solution. A data exchange
interface between Matlab and Energy Plus is established using
isualC++ (Qiao et al. 2022; Ramzanpoor et al. 2022). The Sa-
MOOSO execution framework is shown in Fig. 7.

In Fig. 7, the specific implementation steps of the algorithm
are shown. Firstly, SketchUp is utilized to perform 3D modeling
of the optimized building. Then, the Sa-MOOSO algorithm in
MATLAB is used to solve the original population and sample set,

start

EnergyPlus results are

fed back to Mathb. and

the Surrogate model is
updated

Update particles

Using the Visual
C++interface program
to pass new solutions to
EnergyPlus

Fig. 7 Execution framework of Sa-MOOSO
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and the original RBF replacement model is established. On this
basis, the Sa-MOOQOSO algorithm is used to obtain new particle
positions and update the candidate particle set through this
algorithm. It needs to redetermine whether to update the
Surrogate model. If so, a new representative solution will be
selected from the backup set and passed to Energy Plus. Finally,
the actual target values obtained are evaluated through Energy
Plus and the results are fed back to Matlab; Then, with
MATLARB, these target values are added to the dataset to obtain
a new sample set, and the alternative model is updated. If there
is no need to update, then it proceeds to the next step. In this
algorithm, the particle update operator continuously generates
new solution results. Repeating this process until the algorithm
meets the termination condition. Finally, the non inferior
solutions in the dataset are output as the final result of the
algorithm.

4. Model analysis of MOO algorithm for ESD of homestay
buildings based on MOEAD

By constructing sequence data, sampling sequence data, and
training sequence feature vectors, the feature vectors of
sequence nodes were obtained. The next step was to process
the sequence composed of the feature vectors. A self attention
model was built to assist in extracting information from
advertising sequences, and then it concatenated and fused it
with a front term network that can extract low-level features to

Table 2
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form a complete model. It compared and tested this complete
model with the other five models.

4.1 Model analysis of MOO for ESD of homestay buildings integrated
with MOEAD

The MOEAD and NSGA-II algorithms were run 40 times
respectively, and the differences between the algorithms were
verified using t-test. The significance level of the t-test was set
to 0.5, where "R+" indicated that the performance of the
MOEAD algorithm was significantly better than the compared
algorithms. Two algorithms wee used for the HV value, SC
value, and compromise solution of single room homestay
buildings, as shown in Table 2.

In Table 2, it compared the results of the two methods.
Regarding HV measurement, although the stability displayed by
MOEAD was slightly worse than that of NSGA-II, the average
value of NSGA-II was 12743.38, which was 19691.18 higher than
the average value of the MOEAD algorithm proposed in this
chapter; Compared to NSGA II, MOEA/D had greater
advantages. In terms of SC measurement, there was SC
(MOEA/D, NSGA-II) =0.52, indicating that MOEA/D
accounted for 52% in NSGA-II; NSGA-II only accounted for 24%
of MOEAD, with SC=0.21. From the above results, the rate of
convergence of this method was much faster than that of NSGA
- II method. Then, using these two algorithms, a compromise
was made on the one room oriented building. Research has
found that the minimum discomfort time calculated using the
NSGA-II method was 555.30 and the energy consumption was

Two algorithms for HV value, SC value, and compromise solution of single room homestay buildings

/ MOEAD NSGA-II SC(NSGA-I,MOEAD) SC(NSGA-IL,MOEAD)
HV(BEST) 32840.08 16724.69 / /
HV(Average) 19691.18 12743.38 / /
HV(Std) 7372.89 5565.90 / /
T-tset \ R+ / /
Best / / 0.37 1.00
Average / / 0.21 0.53
Std / / 0.30 0.57
Compromise solution 0.0,2.5,1.2,0.7,0.1,0.  4.2,2.5,2.1,3.6,0.4,0.0,0.7,0.1,9.6, / /
P 1,0.1,6.0,10.7,26.2 15.2,20.1,26.1,
Target value 7.68,555.30 8.92,896.00 / /
32 32
®MOEAD * MOEAD
+NSGA-II . +NSGA-II
31 .4 + % 31 ¢
E ‘I *» 5
B 30 B 30
3 v M 2 A
£ 20 - ‘:* = £ 2 P
= e * = 8 ¢ 4
g 28 - “t‘ % 28 - °%
o - P S ++
5 s s ¥
zZ 27 m s % Z o7 . % .
v® % o
26 X Y 26 + %
L " *
L *
25 I I I I I 1 25 | | | |
4 6 14 16 45 46 47 48 49

8 10 12
Total energy consumption
(a)Pareto Frontiers of Two Algorithms in Single
Room Homestay Buildings

Total energy consumption .
(b)Pareto Frontiers of Two Algorithms in Multi room

Homestay Buildings

Fig. 8 Pareto frontiers of two algorithms in single room and multi-room homestay buildings
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Table 3
Shows the running time comparison between MS-MOEAD and five multi-objective evolutionary algorithm.
Case Algorithm Best Worst Averge Std

Single room MS-MOEAD 1666.44 2203.69 1774.59 194.28
homestay MOEAD 2994.73 3270.96 3114.67 112.42
building MOABC 3043.70 3908.08 3425.26 344.80
MOOSO 3099.54 3868.60 3415.30 353.92
NSGA-II 3673.42 4275.59 3940.46 239.64
BBMOOSO-A 3086.94 4854.86 3685.66 711.97
Multi room MS-MOEAD 3485.23 3784.16 3616.97 138.57
homestay MOEA/D 5797.84 6319.07 6105.55 224.80
building MOABC 6039.16 6825.57 6471.38 339.75
MOOSO 6422.77 7191.60 6735.33 295.88
NSGA-II 6250.50 6963.36 6542.66 298.07
BBMOOSO-A 6162.72 6833.23 6473.02 294.50

"R+" indicated that MS-MOEAD performed better than the

e ng'\flsgAD control algorithm; "=" denoted that the two algorithms had the

60 107 MOABC same performance; "one" expressed that the calculation was

@ MOPSO meaningless.

45 | Y~ BBMOPSO-A In Table 3, with alternative model, the execution speed of the

—@— NSGA-II MS-MOEAD program significantly decreased to 1774.58

30 V... seconds. This speed was almost twice the fastest among the

=
3]

Data processing error/%

Time(min)
Fig. 9 Data processing error results

7.68, while the minimum discomfort time calculated using the
NSGA-II method was 896 and the energy consumption was 8.92.
From this point of view, it has greatly improved both in comfort
and power saving. The Pareto front of two algorithms in multi
room homestay buildings is shown in Fig. 8.

In Fig. 8 expresses the optimal Pareto frontier obtained by
the two algorithms. The results denoted that this method had
fast convergence and good distribution performance. Research
has found that using the MOEA/D method to solve the problem
of multi room houses had better convergence and effectiveness
than the NSGA-II method. For better comparison, the
population size of the two control algorithms was set to 20, and
the maximum number of iterations was set to 50. Each control
algorithm was executed 20 times, while the other parameters
used recommended values. Finally, by analyzing the simulation
results of five representative multi-objective evolutionary
algorithms, corresponding simulation results were provided.

other five algorithms; In computational time, the average
execution time of the MS-MOEAD algorithm in practical
applications was 3616.96 seconds. Among other methods, the
MOEAD method had the fastest speed, reaching 6105.44
seconds, which was 68.80% lower than the proposed method.
Subsequently, the error situation of the above algorithm under
data processing was analyzed, and the results are shown in Fig.
9.

The results in Fig. 9 indicate that in the data processing
results, the error results of the above algorithms show different
trends with increasing time. Among them, the overall error
results of the proposed model do not exceed 1%, and the
minimum value can reach 0.3%. The algorithm with the second
smallest error is MOEA/D, and its error processing results vary
within a range of (1.3%, 1.6%), with some fluctuations. The error
curves of MOABC and MOPSO algorithms have relatively high
variation values, with maximum values reaching 2.45% and
2.97%, respectively. The reason for the large error result may be
that these algorithms are prone to getting stuck in local optima
problems (Zhou et al. 2022). Although the maximum error of
BBMOPSO-A algorithm is greater than that of NSGA-II
algorithm, its subsequent error curve shows a downward trend,
and the algorithm with the worst data processing performance
is NSGA-II algorithm. The above results indicate that the
proposed model has good data processing performance and can

______________ 5000
[ ]
T b 4500
— - T H
S T R 4000 ° . o o
| // _____ [ ]
L e O Pt S 350 . s .
| 3000 °
40000” 3 .
1 £ 2500 o Time(Best)
i o Time(Worst)
3ooodl’ 2000 © Time(Average)
zggo(j‘/ 1500 ! o Time(Std)
00— o Hv(Best) 1000
-MOPs o HV(Worst)  5og U]
NSGA.1j p S0 M o HV/(Average) S . . o N
Algoriyy OABC BMopg,, * VD 0

Sa-MOPSO NSGA-II  MOPSO MOABC BBMOPSO-A
Algorithm

(2)Sa-MOPSO and HV values of four algorithms for handling single room homestays ~ (0)The running time of Sa-MOPSO and four algorithms when handling single room homestays
Fig. 10 The HV values and runtime of Sa-MOOSO and four algorithms for handling single room homestays
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improve computational performance while considering data
differences.

4.2 MOO model for ESD of homestay buildings based on agent
assisted backbone MOOSO

It compared the proposed algorithm with four traditional MOO
algorithms for single room office buildings. Firstly, the energy
consumption, comfort, safety, and environmental performance
of a single room office building were taken as the objective
functions for optimization, and transformed into multiple
optimization problems, which were then solved using the
proposed algorithm. The comparison of HV values obtained
when dealing with single room homestay buildings is shown in
Fig. 10.

In Fig. 10 (a), although the calculation results of the Sa-
MOOSO algorithm varied greatly, its average HV was 35928.55,
which was significantly higher than the other four comparison
algorithms. In Fig. 10 (b), the execution cycle of the algorithm
was shown. With the assistance of substitutes, the calculation
speed of Sa-MOOSO has been greatly improved, reaching
1217.231 seconds, while the fastest MOOSO among the four
comparison methods was only 3868.591 seconds. The
comparison of HV values between Sa-MOOSO and proxy

100% -
90% |
80% |

2 T0% f

2 60% |

o

S50%

S 40%

T 300 -
20% |
10%

10982.23 5708.89

8576.92 4990.57

10577.06 6333.08
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assisted algorithms for multi room homestay buildings is shown
in Fig. 11.

The results in Fig. 13 (a) indicate that the SC values of Sa
MOEOQO algorithm are higher than those of MS-MOEA/D
algorithm and ParEGO algorithm at different running times, and
the average SC values are generally greater than 0.5. The
average SC values of MS-MOEA/D algorithm at 4, 8, 12, 16, and
20 runs are 0.431, 0.455, 0.568, 0.522, and 0.495. The SC
measure curve of the ParEGO algorithm changes smoothly, with
the maximum value approaching 0.4. Overall, the performance
comparison of Sa MOEO algorithm is significantly better than
the other two proxy models. In Fig. 13 (b), compared to the other
two proxy models, the proposed model has better energy
consumption prediction performance, with a relative prediction
error based on less than 0%, and the overall curve nodes have
smaller fluctuations. The maximum prediction errors exhibited
by MS-MOEA/D algorithm and ParEGO algorithm can reach
0.038% and 0.007%, respectively, and the energy consumption
prediction results vary greatly at different testing time intervals.
The adaptability originally designed by MS-MOEA/D and
ParEGO may not be sufficient to handle the specific and variable
constraints and goals of building energy consumption. The
objective function involved in optimizing building energy
consumption may be nonlinear, non convex, or have multiple
peaks. MS-MOEA/D and ParEGO may require significant

7899.13 2115.07

MS-MOEA/D
ParEGO
[ Sa-MOPSO

6895.20
1990.13

8763.92 1615.76

0% :
HV/(Best) HV/(Worst)

HV/(Avernage)

HV/(Std)

HV VALUE
Fig. 11 HV values obtained from Sa-MOOSO and two proxy assisted algorithms when processing multi-room homestay buildings
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Fig. 12 Running time obtained from Sa-MOOSO and two proxy assisted algorithms when processing multi room homestay buildings
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computational resources to handle complex building energy
optimization problems, resulting in poor performance and
difficulty in quickly obtaining effective solutions (Qiao et al.
2022); Sharma et al. 2022), The above results indicate that the
proposed model has good energy consumption analysis results,
good data processing performance, and small data error values.

In Fig. 11, the advantages and disadvantages of this method
were analyzed by combining it with methods such as ParEGO
and MS-MOEA/D. Although the optimization effect of Sa-
MOOSO was not as significant as the two comparison methods,
it achieved the optimal average HV. When dealing with multi
room homestay buildings, the running time obtained from Sa-
MOOSO and two proxy assisted algorithms is shown in Fig. 12.

In Fig. 12, compared to MS-MOEAD, the Sa-MOEO
algorithm had a much slower computational speed, perhaps due
to its lower cost. Among them, Sa-MDPSO had the least
computation time for best, while Sa-MDPSO took much longer
on the worst problem. Overall, compared to existing alternative
assisted high-dimensional adaptive evolutionary algorithms, Sa-
MOOO had strong advantages in solving high-dimensional
problems. Subsequently, the algorithm proposed by the research
institute was subjected to building energy-saving SC
measurement and energy consumption prediction analysis, and
the results are shown in Fig. 13.

5. Conclusion

For the ESD of homestay buildings, an optimization model
based on MOEAD and Sa-MDOSO was adopted, and various
indicators were verified. The research results indicated that the
minimum discomfort time calculated using the NSGA-II
algorithm was 555.30 and the energy consumption was 7.68,
while the minimum discomfort time calculated using NSGA-II
was 896 and the energy consumption was 8.92. With models,
Sa-MDPSO had the fastest speed, reaching 6105.44 seconds,
which was 68.80% lower than the proposed method. With the
help of substitutes, the calculation speed of Sa-MDPSO
algorithm has been greatly improved, reaching 1217.231
seconds, while the fastest multi-objective PSO algorithm among
the four comparison methods was only 3868.591 seconds. The
convergence and effectiveness of using the MOEAD method to
solve the problem of multi room houses were superior to the
NSGA-II method. For better comparison, the population size of
the two control algorithms was set to 20, and the maximum
number of iterations was set to 50. Each control algorithm was
executed 20 times, while the other parameters used
recommended values. Finally, by analyzing the simulation
results of five representative multi-objective evolutionary

algorithms, corresponding simulation results were provided. In
the practical application process, in addition to efficiently
optimizing the ESD of homestay buildings, cost was also a
crucial consideration goal. Future research can explore the
impact of cost factors on energy-saving optimization of
homestay buildings. Therefore, the results of this study have
great reference value for guiding the energy-saving optimization
of homestay buildings.
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