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Abstract. To improve the prediction accuracy of energy-saving design for homestay buildings, a multi-objective optimization model is studied. A 
model of multi-objective optimization algorithm for energy efficiency design of home stay buildings based on decomposition multi-objective 
evolutionary algorithm is proposed. Decomposition based multi-objective evolutionary algorithm is selected. To select the preliminary algorithm for 
achieving energy-saving design of homestay buildings, it divides the objectives into algorithm determination and model construction and uses multi-
objective optimization algorithms to solve the proposed optimization model. The validation results show that the minimum discomfort time calculated 
using the non-dominated sorting genetic algorithm is 555.30 and the energy consumption is 7.68, while the minimum discomfort time calculated 
using the non-dominated sorting genetic algorithm method is 896 and the energy consumption is 8.92. With alternative model, the speed of multi-
objective Evolutionary algorithm is the fastest, reaching 6105.44 seconds, which is 68.80% lower than the proposed method. With the help of 
substitutes, the computational speed of the multi-objective particle swarm optimization algorithm has been greatly improved. Its computational speed 
has reached 1217.231 seconds, while the fastest multi-objective particle swarm optimization algorithm among the four comparison methods is only 
3868.591 seconds. Although the individual improvement is not significant, the overall optimization is still considerable and has strategic foresight in 
the decision-making plan of decision-makers. 
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1. Introduction 

With the increasingly severe global shortage of energy resources 
and environmental pollution, promoting energy-efficient design 
in buildings has become one of the important ways to achieve 
sustainable development. According to the "China Building 
Energy Consumption Research Report (2022)", in 2020, the total 
energy consumption of buildings and construction accounted 
for 45.5% of the total national energy consumption, and carbon 
emissions accounted for 50.9% of the national total. Among 
them, the energy consumption and carbon emissions during the 
operation phase of buildings both exceeded 20% (Yugank et al. 
2022). At present, the proportion of building energy 
consumption is increasing significantly, and strengthening 
effective management of building energy consumption has 
become one of the important contents to improve energy 
utilization and guide building energy conservation (Du et al. 
2022). The physical structure and parameter performance of 
buildings are largely related to their energy performance and 
residential suitability, especially in small and medium-sized 
buildings such as homestays. Energy saving design can not only 
reduce operating costs, but also help improve user comfort and 
environmental friendliness, thus having significant social and 
economic benefits (Ebrahimi et al. 2021). The issue of building 
energy efficiency includes various performance indicators such 
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as building shape coefficient, heat transfer coefficient, exterior 
wall area, and so on. In traditional building energy-saving design 
problems, most scholars have also attempted to apply 
optimization methods such as genetic algorithm, particle swarm 
optimization, simulated annealing, etc. Although these methods 
have improved the efficiency and effectiveness of building 
energy-saving design to a certain extent, they still face problems 
such as slow convergence speed, insufficient diversity of 
solutions, and severe constraints in dealing with multi-objective 
optimization problems. They face difficulties in sample selection 
and complex model construction (Liang et al. 2022). Therefore, 
the study introduces the Decomposition based Multi Objective 
Evolutionary Algorithm (MOEA/D) algorithm for building 
energy efficiency analysis. MOEAD can decompose multi-
objective problems into multiple single objective subproblems 
for parallel solving, and its diversity strategy based on 
decomposition and constraints on the problem can effectively 
improve operational efficiency, making it suitable for diverse 
and complex building energy-saving design problems. The issue 
of building energy-saving design itself contains many 
contradictory performance indicators, such as building energy 
consumption and environmental thermal comfort, lighting effect 
and lighting energy consumption, ventilation demand and heat 
loss, etc. (Serat et al. 2023); Janus et al. 2021). However, 
currently, the vast majority of multi-objective optimization 
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models generally suffer from problems such as long iteration 
times and high operating costs, which seriously affect the cost 
control of construction teams. Therefore, innovative research 
proposes the idea of combining surrogate models with 
evolutionary algorithms to achieve energy-saving design in 
buildings. The structure of homestay buildings includes single 
house structures and multi house structures, with complex data 
types. The study uses multi-objective design methods to analyze 
real homestay buildings, and establishes relevant mathematical 
algorithms and optimization conditions using multi-objective 
optimization models, ultimately achieving the goal of reducing 
construction period and cost. 

2. Literature review 

Mazlomi et al. (2022) optimized the QoS indicators of wireless 
sensor networks based on this, thereby improving the 
performance and reducing energy consumption. It studied the 
mathematical models and optimization problems of various 
indicators in the network. Simulation experiments have shown 
that the proposed model can effectively optimize the parameters 
and indices of the network. The Samarasinghalage et al. (2022) 
research team involved many parameters in the design of solar 
cell and building integrated enclosure structures, and there were 
contradictions with photovoltaic related performance 
indicators. A new integrated photovoltaic (BIPV) design method 
was proposed based on MOO, which comprehensively 
optimized its lifetime energy consumption and cost. Research 
has shown that simulation findings have certain guiding 
significance for the mid-term design of products, but cannot 
serve as a decision-making basis for product design. The 
subjectivity, taste, preferences, and other factors of users had a 
significant impact on the energy-saving effect of the system. 
Scholars such as Ebrahimi A found that in the future of 
sustainable development, the development of renewable energy 
became inevitable. This energy competed with conventional 
energy sources that could fully utilize wind and solar energy. 
The hybrid renewable energy power generation system could 
not only improve the economic efficiency of renewable energy 
generation, but also improved its environmental performance. 
To address this issue, this project planed to establish a 
distributed renewable energy system scale optimization model 
based on MOO. The whole system included wind turbines, 
photovoltaic panels, batteries, Diesel generator, etc. This project 
planed to use the Non domain Sorted Genetic Algorithm (NSGA) 
to solve the MOO problem, while ensuring the energy utilization 
rate of the system and minimizing the energy consumption and 
carbon emissions of the system. And it was compared with other 
multi-objective optimal algorithms. Through comparison, this 
plan was feasible. The calculation results denoted that under the 
selected climate and building environmental conditions, the 
renewable energy utilization rate of the residential building 
could reach about 78%, meeting the requirements (Ebrahimi et 
al. 2021). Wang et al. (2021)found that early design decisions 
were crucial in building energy efficiency. However, due to its 
poor applicability in real environments, its practicality has been 
questioned. The calculation outcomes indicated that after using 
MOOSAS, the energy efficiency of the system was significantly 
improved, and the average energy density decreased by 8%. In 
addition, researchers have found that during the research, they 
could obtain more energy-saving new design solutions and 
make better choices between the "best" and "near best" options. 
8% of participants believed that Moosa was effective, while 58% 
of participants indicated that they were willing to use MOOSAS 
in the future. This also meant that being responsible for and 

utilizing auxiliary tools during the pre-set process was beneficial 
for design practice. Du et al. (2022) established a dynamic 
temperature adjustment mode for each partition based on 
different levels of user needs. The research findings expressed 
that by dynamically adjusting the set temperature every day, the 
load demand could be reduced by 6.17% without affecting user 
comfort. At the application and control levels, a comprehensive 
approach of operational optimization and model predictive 
control was adopted to achieve an overall energy-saving index 
of 12.75% for the air conditioning system . 

Scholars such as Pu have established a MOO based speed 
curve model for urban rail transit and provided a 3D Pareto 
boundary model suitable for urban rail transit. The research 
results confirmed the correctness of the method proposed in this 
article, and also suggested that when using comfort, one could 
not use only one method (Pu et al. 2022). Zhang et al. (2020) 
designed an objective function energy-saving mode for energy 
consumption, lighting, and ventilation in buildings, and used 
genetic algorithms to optimize building parameters. The results 
showed that this method can effectively reduce building energy 
consumption, increase the lighting coefficient by more than 10%, 
and effectively achieve building energy-saving effects. Elsheikh 
et al. (2023) used a multi-objective genetic algorithm model to 
analyze the energy efficiency of residential buildings under 
different climates, and considered various design variables 
related to energy efficiency, such as exterior wall type, window 
to wall ratio, building direction, and so on. The results indicate 
that the research design method can achieve a good balance of 
energy consumption and ensure good thermal comfort 
conditions in semi-arid climates. Pioppi et al. (2020) believed 
that the energy efficiency of buildings is related to factors such 
as personnel energy behavior and environmental perception. 
They modeled and analyzed an office building and found that 
eliminating energy waste behavior can effectively reduce energy 
demand, and improving indoor environmental conditions can 
enhance energy efficiency. Egwim et al. (2024) introduced a 
hybrid stacked ensemble method to evaluate building energy 
efficiency, and found that using ensemble machine learning can 
effectively analyze and predict building energy efficiency data. 
Considering the complexity of building energy, Yu et al. (2021) 
conducted a literature review and analysis of the application 
ideas of deep reinforcement learning, and concluded that this 
technology has significant control optimization performance. 
Buturache et al. (2022) utilized the Six Sigma stage approach for 
building energy consumption prediction analysis and designed 
data processing and hyperparameter selection. The results 
indicate that the model has good application scalability and 
significant advantages in digital analysis of energy consumption 
data. Bagholinizad et al. (2022) conducted multi-objective 
optimization on photovoltaic sunshades, including the selection 
of position and geometry, and completed function design using 
Morris sensitivity analysis and artificial neural networks. The 
results indicate that shading the southern direction of the 
building and adjusting the tilt angle appropriately according to 
the seasonal cycle can effectively reduce power consumption. 
The optimal photovoltaic shading tilt angle is 19.6 °. In 
summary, scholars and scientists have made contributions in 
neural networks and feature sequence extraction. Many 
improved algorithms were designed to meet more efficient 
dataset processing and optimization algorithms. At the same 
time, considering the good data processing performance of the 
sequence feature model and the shortcomings of current 
advertising recommendation algorithms, using this method to 
optimize the efficiency of advertising recommendation should 
have significant application value in the operational decision-
making of large internet companies and advertising companies. 
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3. Optimization of multi-objective algorithm for ESD of 
homestay buildings based on MOEAD 

This study adopts multi-objective algorithms to optimize the 
ESD of homestay buildings, and determines the recommended 
model and construction algorithm based on actual situations 
and ESD cases. Through the analysis of MOEAD algorithm, 
multi-agent assisted MOEAD and scientific control, the model 
differentiation comparison is realized by compiling software. 
Ultimately, an ESD model is obtained for that is suitable for real 
situations can provide valuable reference for the design of 
homestay buildings and provide forward-looking strategic value 
for the development of the industry. 

3.1 Design of multi-objective evolutionary optimization algorithm for 
ESD of homestay buildings based on MOEAD 

Compared with single objective optimization problems, MOO 
problems require simultaneous optimization of multiple 
indicators, and there are contradictions between multiple 
indicators (Do and Ohsaki 2021; Pu et al. 2022). There is no 
single way to solve such problems once and for all, and only a 
compromise approach can be adopted. It takes the minimized 
MOO as an example, as shown in equation (1). 
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In equation (1), 𝛺 means the decision space; 𝑋 = (𝑥1, 𝑥2⋯ , 𝑥𝐷) 
denotes the 𝐷  dimensional solution; F(X) indicates the 
performance indicator; hj(X) refers to the equality or inequality 
constraint; M means the number of objectives. It researches a 
method based on decomposing MOO that can obtain the 
optimal solution of Pareto's law for each suboptimal problem. 
One of the solving methods is shown in equation (2). 
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In equation (2), 𝜆 refers to the reference weight vector, which is 
the weighted sum approach (WS), while the other method is the 
Tchebycheff method. The aggregation form of this method is 
expressed in equation (3)(Pereira et al. 2020; Polo-Mendoza et 
al. 2023). 
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In equation (3), 𝑍∗  denotes 𝑚𝑖𝑛{𝑓𝑖(𝑋)|𝑋 ∈ 𝛺} , 𝑖 ∈ {1,2, … ,𝑀} , 
which belongs to the position of the reference point. Based on 
the penalty boundary crossing method, the objective function 
aggregation form of this method is denoted in equation (4). 
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In equation (4), 𝜃 expresses the penalty factor, and d1𝜃 and d2 
control the distribution and convergence of the population. 
Usually, the optimal solution set obtained by the boundary 
crossing method is more uniform (Sohani et al. 2022; Ma et al. 
2023). A multi-objective energy-saving model for homestay 
buildings is established based on indicators such as annual 

energy consumption and user discomfort hours, as shown in 
equation (5). 

{
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In Formula (5), 𝐵𝐸𝐶  and 𝑈𝐷𝐸  express the annual energy 
consumption and the annual user uncomfortable hours, 
respectively. 𝑥 in 𝑠. 𝑡. 𝑋 is the room orientation, the thickness of 
external insulation layer of the wall, the solar absorption rate of 
the external wall, the Heat transfer coefficient of the window, the 
solar heat gain coefficient of the window, the length of the living 
room window, the width of the bedroom window, the length of 
the kitchen window, the length of the bathroom window, the 
lighting density of the living room, the lighting density of the 
bedroom, the lighting density of the bathroom, the heating 
setting temperature of the air conditioning system and the 
cooling setting temperature of the air conditioning system (Liu 
et al. 2021; Liu et al. 2020). It utilizes fuzzy decision-making 
technology to provide decision-makers with a new choice 
scheme for the compromise solution of the target value, and the 
satisfaction level is shown in equation (6). 
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In equation (6), 𝑓𝑖
𝑚𝑎𝑥 and 𝑓𝑖

𝑚𝑖𝑛 are the max and mini values of 
the 𝑖  objective function, respectively, and the normalized 
membership function corresponding to 𝑋𝑘  is indicated in 
equation (7). 
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In equation (7), 𝑀 expresses the amount of objective functions; 
|𝑆𝐸𝑇| means the amount of elements in the set 𝑆𝐸𝑇, and the 
compromise solution is the solution with the highest 𝜇𝑘 value in 
𝑆𝐸𝑇. The specific implementation of this algorithm is expressed 
in Fig. 1. 

In Fig. 1, the specific implementation of the proposed 
algorithm is shown. Firstly, it uses Sketchup software to draw a 
3D model of the building to be optimized, and uses it as one IDF 
files for storage; Secondly, using the MOEA/D method in 
MATLAB software, a new single point positioning problem is 
generated, which is a new solution. Then, it utilizes the Visual 
C++interface program to decode the new solution and generate 
EnergyPlus; It runs EnergyPlus and outputs two performance 
indicators: energy consumption of buildings and minimum 
discomfort time; Then, MATLAB is applied to calculate the 
performance parameters of the new solution and modify the 
results of the new solution to achieve the desired results. Finally, 
the Pareto optimal solution retained in the external population 
is utilized as the final result of the algorithm (Pavankumar et al. 
2021). The algorithm performance is evaluated using the 
hypervolume measure. The increase of hypervolume means that 
the distribution or convergence of the results become better, as 
shown in equation (8). 
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In equation (8),   means the Lebesgue measure; |𝑆| denotes the 
amount of non dominated solution sets; 𝑣𝑖 expresses the hyper 
volume formed by the 𝑖 −th structure of the reference point and 
solution set. It uses the SC measure for MOO of convergence, 
as shown in equation (9). 
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In equation (9), |𝑔| means the amount of elements in the set; 
𝑆𝐶(𝐴, 𝐵) = 1  denotes that all solutions of the set 𝐵  are 
dominated by the solutions of the set 𝐴. When 𝑆𝐶(𝐴,𝐵) = 0 is 
used, it indicates that no solution of set 𝐵 is dominated by any 
solution of set 𝐴 .According to different functions, residential 
buildings are divided into four hot zones, namely living room, 
bedroom, kitchen, and bathroom. The initial length and width of 
the window are 1.8m and 1.2m, respectively. According to the 
recommendations in the EnergyPlus software manual, set their 
return air coefficient to 0, radiation coefficient to 0.37, visible 
light coefficient to 0.18, and coefficient of heat transfer from light 
to the surrounding air to 0.40. The Fig. 2 shows the SketchUp 
simulation results of the exterior of a residential building. 

Consider building orientation, window length and width in 
each hot zone, heat transfer coefficient and solar heat gain 
coefficient of windows, thickness of wall insulation layer, 
external wall solar absorption rate, lighting power density and 
other parameters as decision variables for this model. Based on 
the reference to the "Building Energy Efficiency Design 
Standards", the variable range of the building has been 
preliminarily determined, as shown in Table 1 (Najafi et al. 2023). 

Among them, the length and width of the windows are 
determined by the size of the rooms in the building model, and 
the range of values for the remaining variables is determined by 
the specific design of building energy efficiency. When 
conducting building energy consumption simulation, 
EnergyPlus first needs to preserve the 3D geometric model in. 
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Set the invariant parameters 
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Fig. 1 MOEAD algorithm implementation 
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Fig. 2 The SketchUp simulation results of the exterior of a 
residential building 

 

Table 1 
Range of Building Decision Variables 

Decision variables Range Reference value 

Building orientation/° [0,360] 0 

Insulation layer thickness/m (0.0001,0.1) 0.0523 

Window heat transfer coefficient/w/(m2 · k) (2,6) 4.5 

Lighting density/w/m2 [4.5,6] 5.0 

Air conditioning system heating/cooling set temperature [18,24]/[24,28] 8/20 

Personnel density/w/m2 (0.1,1.0) 0.2 

Equipment energy consumption density/w/m2 [10,18] 15 
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idf file format, and then set parameter information based on 
design requirements and actual situations, including 
maintenance structure information, operating time, lighting 
equipment, air conditioning system, etc. It can also download 
required weather files for operation, and output building energy 
consumption, project load, and other content (Egwim et al. 2024). 
Subsequently, the Matrix Laboratory (MATLAB) can be 
connected to the EnergyPlus engine to optimize building 
energy-saving design. MATLAB can use the performance 
indicators of the scheme as objective function values for 
constraint execution analysis, generate new positions until the 
constraint conditions are met, and finally obtain the Pareto 
optimal solution in the external population. 

3.2 Design of MOO algorithm for ESD of homestay buildings based 
on multi-agent assisted MOEAD 

In response to the drawback of high computational complexity 
in existing evolutionary optimization methods, this project plans 
to study multi-agent MOEAD based on multi-agent models, 
which is referred to as the MS-MOEAD algorithm. On this basis, 
an individual evaluation method based on neighboring agent 
aggregation is proposed, and a reference point update method 
that integrates prediction results is proposed for the problem of 
single search without valuable targets (Liu et al. 2022; Najafi et 
al. 2023). The basic framework of the proposed MS-MOEAD 
algorithm is expressed in Fig. 3. 

Fig. 3 shows the basic framework of the proposed MS-
MOEAD algorithm. On this basis, four modules are proposed: 
multi-agent modeling and management based on agents, group 
update based on MOEAD, individual evaluation based on 
neighboring agents, and reference point update. The function of 
the "Multi-agent Model Establishment and Management" 
module is to synchronously establish representative multiple 
Agent models and continuously update them based on newly 
added samples, to ensure their accuracy as much as possible. 
On this basis, a group update algorithm based on MOEA/D 
algorithm is proposed. The "Personal Evaluation Based on 
Adjacent Subject Aggregation" module aims to independently 
integrate multiple basic subject models using the adjacent 
subject aggregation mechanism for the evaluated object, and 
then comprehensively evaluate a single subject, thereby 
achieving accurate prediction of a single subject (Altekin et al. 
2022; Egwim et al. 2024; Sharma and Kumar 2022;). The function 
of the 'Management of Filling Samples' module is to select high-
quality new individuals from the population, conduct real 
evaluations of them, and update the sample training set used for 
the alternative model based on this (Mazloomi et al. 2022; 

Zvyagina and Zvyagin 2022). The uncertainty of individual 𝑋 is 
shown in equation (10). 
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In Formula (10), M denotes the number of targets; 𝑓̄𝑖(𝑋) 
means the surrogate model evaluation value of the individual 𝑋; 
𝜏  indicates the neighborhood size of the individual; 𝑓̄𝑖(𝑋) 
expresses the average approximate value of 𝑋 on the 𝑖th target. 
Only when the optimization results of a certain weighted vector 
have not changed within several generations, the basic vector 
model corresponding to this weighted vector is updated. 
Evaluation indicators are utilized to obtain the final target value, 
as shown in equation (11). 
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In equation (11), 𝜛𝑗 indicates the weight of 𝑆𝑀
𝜆𝑖
𝑗; 𝜆𝑖

𝑗
 denotes the 

reference weight vector. The weight value is determined by the 
distance between the weight vector and the reference weight 
vector, as shown in equation (12). 
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distance between 𝜆𝑖
0 and 𝜆𝑖

𝑗
. The closer the distance between 𝜆𝑖

𝑗
 

and 𝜆𝑖
0, the closer the sub optimization problems represented by 

𝑆𝑀
𝜆𝑖
𝑗 and 𝑆𝑀𝜆𝑖

0 are, and the greater the weight of the objective 

function predicted by 𝑆𝑀
𝜆𝑖
𝑗 . In MOEAD, the properties of the 

reference point Z 'are related to the distribution and 
convergence of the Pareto front-end obtained. Unlike general 
numerical optimization problems, the objective function of this 
algorithm has two types: one is practical, and the other is 
predictive. In view of this, the new reference point is determined 
by referring to two objective functions, as shown in equation 
(13). 
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Fig. 3 Basic framework of MS-MOEAD 
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In equation (13), 𝑓𝑚
𝑚𝑖𝑛 indicates the true minimum value and 

𝑓𝑚
𝑚𝑖𝑛 refers to the predicted minimum value. This example will 

obtain a more ductile real Pareto front-end, as shown in Fig. 4. 
In Fig. 4, the red curve means the real Pareto front, the purple 

and yellow dots mean the reference points determined by 𝑓𝑚
𝑚𝑖𝑛 

and the surrogate model, and the green dots refer to10 
individuals in the population. When selecting the yellow point 
defined by the alternative model as the reference point, the two 
edge individuals always search for the best solution in the blue 
shadow area. But this shadow is useless, which leads to a 
decrease in the search efficiency of the population (Atanassov 
2022). Write the MS-MOEAD algorithm in the MATLAB 

environment, and the running framework of the algorithm is 
shown in Fig. 5. 

In Fig. 5, first, Sketchup software is utilized to draw a 3D 
model of the building that needs to be optimized, and stored as 
an idf file; Secondly, MATLAB is applied to perform initial value 
operations on the algorithm to obtain the initial population and 
initial sample set, and then this initial value is used to establish 
N basic substitution models. Then, the MS-MOEAD algorithm is 
utilized to generate new single cells and predict their objective 
function. Secondly, whether necessary updates have been made 
to the alternative model. If necessary, it uses the Visual 
C++interface program to pass the solutions to these problems 
to Energy Plus, and then outputs two objective functions during 
the operation of Energy Plus, namely the energy consumption 
of the building and the minimum discomfort time; After 
obtaining the new function, it needs to updates the sample set 
Tdata using MATLAB and reconstruct the required basic 
alternative model; If not necessary, it proceeds to the next step 
(Belgacemet al. 2024; Nguyen et al. 2022). On this basis, the MS-
MOEAD method is used to continuously generate new 
individuals. Repeating this process until the algorithm reaches 
the end condition. Finally, the Pareto optimal solution in the T 
data is used as the final result of the algorithm. The complexity 
calculation of the reference algorithm is denoted in equation 
(14). 

 

maxF S g otherC RFEs C C C C t=  + + +  (14) 

 

Among them, 𝐶𝐹  expresses the calculation cost of the real 

evaluation target individual; 𝑅𝐹𝐸𝑠  indicates the amount of 

times the real evaluation individual is evaluated; 𝑡𝑚𝑎𝑥 refers to 

the total amount of iterations of the algorithm; 𝐶𝑆 represents the 

generated fill sample; 𝐶𝑜𝑡ℎ𝑒𝑟 stands for other operators required 
for updating the population. 
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Fig. 5 Execution framework of MS-MOEAD algorithm 
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3.3 Model design of MOOPSO algorithm based on multi-agent 
assistance 

Firstly, theoretical framework of Sa-MOOSO is introduced. On 
this basis, a particle position update method based on Agent and 
a method for establishing and managing Agent models are 
proposed. Similar to other multi-objective PSO algorithms, 
particle position update is also an important component of PSO 
(Lu et al. 2023; Khodadadi 2022).  It can continuously update the 
position of particles in the particle swarm to generate new 
particle swarm, while also maintaining the local optimal solution 
in the particle swarm. The framework structure diagram is 
shown in Fig. 6. 

In Fig. 6, the Agent model management section is used to 
maintain and update the Agent model used in the previous 
section. In other words, this paragraph is used to generate high-
quality new particles or to fill the sample. Within a given time 
interval, it selects a representative and high-quality solution set 
from the backup library, and uses EnergyPlus to solve its actual 
target; Then, each representative solution and their actual target 
values form a new filled sample. All new sampleset data are 
added to the sampleset data (Alghamdi et al. 2022; He et al. 2023; 
Lu et al. 2023). Finally, it extracts all non optimal solutions from 
the dataset and optimize them accordingly. To enhance the 
search ability of the population, conventional PSO algorithms 
often use an inertia weighting and two learning factors. The 
particle position is updated by the Gaussian distribution relative 
to the two navigator, so it is unnecessary to set the above control 

parameters. Specifically, the update rules for particle 𝑋𝑖  are 
shown in equation (15). 

In equation (15), 𝑁(⋅)  denotes a Gaussian distribution 

function; 𝑟3 indicates a random number from 0 to 1; 𝑝𝑏𝑖 and 𝑝𝑏𝑖 
mean the local and global guides of the current particle; 𝑡𝑚𝑎𝑥 
expresses the maximum number of iterations; 𝑥𝑗

𝑙𝑜𝑤 and 𝑥𝑗
𝑢𝑝 refer 

to the lower and upper limits of the 𝑥𝑗
𝑢𝑝

 variable; 
max

mf  and 
max

mf  

stand for the maximum and minimum values of the m-th 

objective function of the population; 𝛿𝑗 means the interference 

factor determined by the similarity between 𝑝𝑏𝑖  and 𝑝𝑏𝑖 ; 𝑝ℎ 
refers to a probability determined by the difference between 
𝑓𝑚(𝑔𝑏𝑖(𝑡)) and 𝑓𝑚(𝑝𝑏𝑖(𝑡)) (Muhiuddin et al. 2022). On this basis, 
the Sa-MOOSO algorithm is developed using MATLAB, and the 
energy consumption of buildings is simulated using Energy Plus 
to obtain the actual initial value. In other words, in MATLAB, the 
Sa-MOOSO algorithm will continuously generate new solutions, 
and then the Energy Plus algorithm will solve the actual target 

of the selected representative solution. A data exchange 
interface between Matlab and Energy Plus is established using 
isualC++ (Qiao et al. 2022; Ramzanpoor et al. 2022). The Sa-
MOOSO execution framework is shown in Fig. 7. 

In Fig. 7, the specific implementation steps of the algorithm 
are shown. Firstly, SketchUp is utilized to perform 3D modeling 
of the optimized building. Then, the Sa-MOOSO algorithm in 
MATLAB is used to solve the original population and sample set, 
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Fig. 6 Sa-MOOSO framework 
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and the original RBF replacement model is established. On this 
basis, the Sa-MOOSO algorithm is used to obtain new particle 
positions and update the candidate particle set through this 
algorithm. It needs to redetermine whether to update the 
Surrogate model. If so, a new representative solution will be 
selected from the backup set and passed to Energy Plus. Finally, 
the actual target values obtained are evaluated through Energy 
Plus and the results are fed back to Matlab; Then, with 
MATLAB, these target values are added to the dataset to obtain 
a new sample set, and the alternative model is updated. If there 
is no need to update, then it proceeds to the next step. In this 
algorithm, the particle update operator continuously generates 
new solution results. Repeating this process until the algorithm 
meets the termination condition. Finally, the non inferior 
solutions in the dataset are output as the final result of the 
algorithm. 

4. Model analysis of MOO algorithm for ESD of homestay 
buildings based on MOEAD 

By constructing sequence data, sampling sequence data, and 
training sequence feature vectors, the feature vectors of 
sequence nodes were obtained. The next step was to process 
the sequence composed of the feature vectors. A self attention 
model was built to assist in extracting information from 
advertising sequences, and then it concatenated and fused it 
with a front term network that can extract low-level features to 

form a complete model. It compared and tested this complete 
model with the other five models. 

4.1 Model analysis of MOO for ESD of homestay buildings integrated 
with MOEAD 

The MOEAD and NSGA-II algorithms were run 40 times 
respectively, and the differences between the algorithms were 
verified using t-test. The significance level of the t-test was set 
to 0.5, where "R+" indicated that the performance of the 
MOEAD algorithm was significantly better than the compared 
algorithms. Two algorithms wee used for the HV value, SC 
value, and compromise solution of single room homestay 
buildings, as shown in Table 2. 

In Table 2, it compared the results of the two methods. 
Regarding HV measurement, although the stability displayed by 
MOEAD was slightly worse than that of NSGA-II, the average 
value of NSGA-II was 12743.38, which was 19691.18 higher than 
the average value of the MOEAD algorithm proposed in this 
chapter; Compared to NSGA II, MOEA/D had greater 
advantages. In terms of SC measurement, there was SC 
(MOEA/D, NSGA-II) =0.52, indicating that MOEA/D 
accounted for 52% in NSGA-II; NSGA-II only accounted for 24% 
of MOEAD, with SC=0.21. From the above results, the rate of 
convergence of this method was much faster than that of NSGA 
- II method. Then, using these two algorithms, a compromise 
was made on the one room oriented building. Research has 
found that the minimum discomfort time calculated using the 
NSGA-II method was 555.30 and the energy consumption was 

Table 2 
Two algorithms for HV value, SC value, and compromise solution of single room homestay buildings 

/ MOEAD NSGA-II SC(NSGA-II,MOEAD) SC(NSGA-II,MOEAD) 

HV(BEST) 32840.08 16724.69 / / 

HV(Average) 19691.18 12743.38 / / 

HV(Std) 7372.89 5565.90 / / 

T-tset \ R+ / / 

Best / / 0.37 1.00 

Average / / 0.21 0.53 

Std / / 0.30 0.57 

Compromise solution 
0.0,2.5,1.2,0.7,0.1,0.
1,0.1,6.0,10.7,26.2 

4.2,2.5,2.1,3.6,0.4,0.0,0.7,0.1,9.6,
15.2,20.1,26.1, 

/ / 

Target value 7.68,555.30 8.92,896.00 / / 
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Fig. 8 Pareto frontiers of two algorithms in single room and multi-room homestay buildings 
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7.68, while the minimum discomfort time calculated using the 
NSGA-II method was 896 and the energy consumption was 8.92. 
From this point of view, it has greatly improved both in comfort 
and power saving. The Pareto front of two algorithms in multi 
room homestay buildings is shown in Fig. 8. 

In Fig. 8 expresses the optimal Pareto frontier obtained by 
the two algorithms. The results denoted that this method had 
fast convergence and good distribution performance. Research 
has found that using the MOEA/D method to solve the problem 
of multi room houses had better convergence and effectiveness 
than the NSGA-II method. For better comparison, the 
population size of the two control algorithms was set to 20, and 
the maximum number of iterations was set to 50. Each control 
algorithm was executed 20 times, while the other parameters 
used recommended values. Finally, by analyzing the simulation 
results of five representative multi-objective evolutionary 
algorithms, corresponding simulation results were provided. 

"R+" indicated that MS-MOEAD performed better than the 
control algorithm; "=" denoted that the two algorithms had the 
same performance; "one" expressed that the calculation was 
meaningless. 

In Table 3, with alternative model, the execution speed of the 
MS-MOEAD program significantly decreased to 1774.58 
seconds. This speed was almost twice the fastest among the 
other five algorithms; In computational time, the average 
execution time of the MS-MOEAD algorithm in practical 
applications was 3616.96 seconds. Among other methods, the 
MOEAD method had the fastest speed, reaching 6105.44 
seconds, which was 68.80% lower than the proposed method. 
Subsequently, the error situation of the above algorithm under 
data processing was analyzed, and the results are shown in Fig. 
9. 

The results in Fig. 9 indicate that in the data processing 
results, the error results of the above algorithms show different 
trends with increasing time. Among them, the overall error 
results of the proposed model do not exceed 1%, and the 
minimum value can reach 0.3%. The algorithm with the second 
smallest error is MOEA/D, and its error processing results vary 
within a range of (1.3%, 1.6%), with some fluctuations. The error 
curves of MOABC and MOPSO algorithms have relatively high 
variation values, with maximum values reaching 2.45% and 
2.97%, respectively. The reason for the large error result may be 
that these algorithms are prone to getting stuck in local optima 
problems (Zhou et al. 2022). Although the maximum error of 
BBMOPSO-A algorithm is greater than that of NSGA-II 
algorithm, its subsequent error curve shows a downward trend, 
and the algorithm with the worst data processing performance 
is NSGA-II algorithm. The above results indicate that the 
proposed model has good data processing performance and can 

Table 3 
Shows the running time comparison between MS-MOEAD and five multi-objective evolutionary algorithm. 

Case Algorithm Best Worst Averge Std 

Single room 
homestay 
building 

MS-MOEAD 1666.44 2203.69 1774.59 194.28 
MOEAD 2994.73 3270.96 3114.67 112.42 
MOABC 3043.70 3908.08 3425.26 344.80 
MOOSO 3099.54 3868.60 3415.30 353.92 
NSGA-II 3673.42 4275.59 3940.46 239.64 

BBMOOSO-A 3086.94 4854.86 3685.66 711.97 

Multi room 
homestay 
building 

MS-MOEAD 3485.23 3784.16 3616.97 138.57 
MOEA/D 5797.84 6319.07 6105.55 224.80 
MOABC 6039.16 6825.57 6471.38 339.75 
MOOSO 6422.77 7191.60 6735.33 295.88 
NSGA-II 6250.50 6963.36 6542.66 298.07 

BBMOOSO-A 6162.72 6833.23 6473.02 294.50 
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Fig. 9 Data processing error results 
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Fig. 10 The HV values and runtime of Sa-MOOSO and four algorithms for handling single room homestays 

 



X.Wu and Y.Peng  Int. J. Renew. Energy Dev 2024, 13(5), 982-994 

|991 

 

ISSN: 2252-4940/© 2024. The Author(s). Published by CBIORE 

improve computational performance while considering data 
differences. 

4.2 MOO model for ESD of homestay buildings based on agent 
assisted backbone MOOSO 

It compared the proposed algorithm with four traditional MOO 
algorithms for single room office buildings. Firstly, the energy 
consumption, comfort, safety, and environmental performance 
of a single room office building were taken as the objective 
functions for optimization, and transformed into multiple 
optimization problems, which were then solved using the 
proposed algorithm. The comparison of HV values obtained 
when dealing with single room homestay buildings is shown in 
Fig. 10. 

In Fig. 10 (a), although the calculation results of the Sa-
MOOSO algorithm varied greatly, its average HV was 35928.55, 
which was significantly higher than the other four comparison 
algorithms. In Fig. 10 (b), the execution cycle of the algorithm 
was shown. With the assistance of substitutes, the calculation 
speed of Sa-MOOSO has been greatly improved, reaching 
1217.231 seconds, while the fastest MOOSO among the four 
comparison methods was only 3868.591 seconds. The 
comparison of HV values between Sa-MOOSO and proxy 

assisted algorithms for multi room homestay buildings is shown 
in Fig. 11. 

The results in Fig. 13 (a) indicate that the SC values of Sa 
MOEO algorithm are higher than those of MS-MOEA/D 
algorithm and ParEGO algorithm at different running times, and 
the average SC values are generally greater than 0.5. The 
average SC values of MS-MOEA/D algorithm at 4, 8, 12, 16, and 
20 runs are 0.431, 0.455, 0.568, 0.522, and 0.495. The SC 
measure curve of the ParEGO algorithm changes smoothly, with 
the maximum value approaching 0.4. Overall, the performance 
comparison of Sa MOEO algorithm is significantly better than 
the other two proxy models. In Fig. 13 (b), compared to the other 
two proxy models, the proposed model has better energy 
consumption prediction performance, with a relative prediction 
error based on less than 0%, and the overall curve nodes have 
smaller fluctuations. The maximum prediction errors exhibited 
by MS-MOEA/D algorithm and ParEGO algorithm can reach 
0.038% and 0.007%, respectively, and the energy consumption 
prediction results vary greatly at different testing time intervals. 
The adaptability originally designed by MS-MOEA/D and 
ParEGO may not be sufficient to handle the specific and variable 
constraints and goals of building energy consumption. The 
objective function involved in optimizing building energy 
consumption may be nonlinear, non convex, or have multiple 
peaks. MS-MOEA/D and ParEGO may require significant 
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Fig. 11 HV values obtained from Sa-MOOSO and two proxy assisted algorithms when processing multi-room homestay buildings 
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computational resources to handle complex building energy 
optimization problems, resulting in poor performance and 
difficulty in quickly obtaining effective solutions (Qiao et al. 
2022); Sharma et al. 2022)。 The above results indicate that the 

proposed model has good energy consumption analysis results, 
good data processing performance, and small data error values. 

In Fig. 11, the advantages and disadvantages of this method 
were analyzed by combining it with methods such as ParEGO 
and MS-MOEA/D. Although the optimization effect of Sa-
MOOSO was not as significant as the two comparison methods, 
it achieved the optimal average HV. When dealing with multi 
room homestay buildings, the running time obtained from Sa-
MOOSO and two proxy assisted algorithms is shown in Fig. 12. 

In Fig. 12, compared to MS-MOEAD, the Sa-MOEO 
algorithm had a much slower computational speed, perhaps due 
to its lower cost. Among them, Sa-MDPSO had the least 
computation time for best, while Sa-MDPSO took much longer 
on the worst problem. Overall, compared to existing alternative 
assisted high-dimensional adaptive evolutionary algorithms, Sa-
MOOO had strong advantages in solving high-dimensional 
problems. Subsequently, the algorithm proposed by the research 
institute was subjected to building energy-saving SC 
measurement and energy consumption prediction analysis, and 
the results are shown in Fig. 13. 

5. Conclusion 

For the ESD of homestay buildings, an optimization model 
based on MOEAD and Sa-MDOSO was adopted, and various 
indicators were verified. The research results indicated that the 
minimum discomfort time calculated using the NSGA-II 
algorithm was 555.30 and the energy consumption was 7.68, 
while the minimum discomfort time calculated using NSGA-II 
was 896 and the energy consumption was 8.92. With models, 
Sa-MDPSO had the fastest speed, reaching 6105.44 seconds, 
which was 68.80% lower than the proposed method. With the 
help of substitutes, the calculation speed of Sa-MDPSO 
algorithm has been greatly improved, reaching 1217.231 
seconds, while the fastest multi-objective PSO algorithm among 
the four comparison methods was only 3868.591 seconds. The 
convergence and effectiveness of using the MOEAD method to 
solve the problem of multi room houses were superior to the 
NSGA-II method. For better comparison, the population size of 
the two control algorithms was set to 20, and the maximum 
number of iterations was set to 50. Each control algorithm was 
executed 20 times, while the other parameters used 
recommended values. Finally, by analyzing the simulation 
results of five representative multi-objective evolutionary 

algorithms, corresponding simulation results were provided. In 
the practical application process, in addition to efficiently 
optimizing the ESD of homestay buildings, cost was also a 
crucial consideration goal. Future research can explore the 
impact of cost factors on energy-saving optimization of 
homestay buildings. Therefore, the results of this study have 
great reference value for guiding the energy-saving optimization 
of homestay buildings. 
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