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Abstract. This review article examines the revolutionary possibilities of machine learning (ML) and intelligent algorithms for enabling renewable 
energy, with an emphasis on the energy domains of solar, wind, biofuel, and biomass. Critical problems such as data variability, system inefficiencies, 
and predictive maintenance are addressed by the integration of ML in renewable energy systems. Machine learning improves solar irradiance 
prediction accuracy and maximizes photovoltaic system performance in the solar energy sector. ML algorithms help to generate electricity more 
reliably by enhancing wind speed forecasts and wind turbine efficiency. ML improves the efficiency of biofuel production by optimizing feedstock 
selection, process parameters, and yield forecasts. Similarly, ML models in biomass energy provide effective thermal conversion procedures and real-
time process management, guaranteeing increased energy production and operational stability. Even with the enormous advantages, problems such 
as data quality, interpretability of the models, computing requirements, and integration with current systems still remain. Resolving these issues calls 
for interdisciplinary cooperation, developments in computer technology, and encouraging legislative frameworks. This study emphasizes the vital 
role of ML in promoting sustainable and efficient renewable energy systems by giving a thorough review of present ML applications in renewable 
energy, highlighting continuing problems, and outlining future prospects.  
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1. Introduction 

The economy has been growing quickly, and the need for 
energy is also rising quickly to meet people's daily demands and 
activities (Hoang et al., 2022d; Yoro et al., 2021), in which the 
immediate result of the growing energy demand has been a 
notable rise in the quantity of electricity generated (IEA, 2022a; 
IRENA, 2013). Due to the ever-increasing energy demand for 
human activities, the fossil fuel has been thoroughly exploited 
and used (Nguyen et al., 2021b; Zou et al., 2016). As a result, the 
use of these fossil fuels contribute to numerous other serious 
environmental issues, which the emissions of greenhouse gases 
produced by these fossil fuels may be partly blamed for both the 
phenomena of climate change and global warming (Bakır et al., 
2022; Martins et al., 2019; V. G. Nguyen et al., 2023a; Nguyen et 
al., 2021a). Meanwhile, the cornerstones of a sustainable future 
are the development of technology that uses renewable energy 
sources and the execution of a policy that seeks to reach "zero 
carbon emission" (Li and Haneklaus, 2022; Vats and Mathur, 
2022). In this regard, a large number of studies have pledged to 
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work on developing renewable energy systems (RES), which are 
those that employ renewable energy sources to generate power 
(Bui et al., 2022; Kaur et al., 2021; Nguyen-Thi and Bui, 2023). 
The International Energy Agency (IEA) projects that by 2040, 
renewable energy sources will account for about 60% of the 
total capacity for the production of new power (IEA, 2022b, 
2015). 

The Energy Status Report 2021 on Sustainable 
Development Goal 7 (SDG-7), intends to encourage 
policymakers on global cooperation to provide affordable and 
universal access to sustainable energy by 2030. Important 
energy targets included in the 2021 SDG-7 report are universal 
access to affordable energy, clean cooking fuels, and an 
increased proportion of renewable energy (IEA, 2019; Trinh and 
Chung, 2023a). In 2010, 10.6 billion USD in foreign funding was 
invested in developing countries for clean energy production. 
Globally, the production of renewable energy has increased 
considerably from 16.4% in 2010 to 17.1% in 2018, out of the 
total energy consumption (Trinh and Chung, 2023b). The 
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statistics indicate the global attempts to generate renewable 
energy to provide us access to electricity for industrial uses, 
transportation, and daily needs (V. G. Nguyen et al., 2024e; 
Philibert, 2017). The objective of achieving SDG-7 by 2030 
requires consistent efforts from the private sector, government, 
and civil society as well as international organizations. It 
involves investment in renewable energy, policy reforms, 
technological innovations, and enhanced energy efficiency 
(Burke and Melgar, 2022; UNDP et al., 2021; Yu et al., 2022).  

Renewable energy sources still face inherent issues like 
weather dependency, intermittency, and high upfront costs 
even with enormous technological advances (Bandh et al., 2024; 
Demirbas, 2009; Medina et al., 2022). Still, the long-term 
advantages of renewable energy—including the protection of 
the environment, lower greenhouse gas emissions, and the 
financial challenges often exceed the disadvantages (Fan and Li, 
2023; Franco and Salza, 2011). Integration of renewables with 
energy storage possibilities, smarter grid approaches, and 
preserving energy security become increasingly crucial as the 
world's energy landscape shifts toward sustainability (Hoang et 
al., 2021a; Tan et al., 2021). The IEA projects that yearly 
spending on renewable energy must surpass $1 trillion in order 
to meet the global sustainable energy needs by 2030. 
Governments, international organizations, and private 
companies have created a range of financial tools, including 
crowdsourcing, green bonds, and public-private partnerships, to 
support these initiatives (IEA, 2021; Smirnova et al., 2021).  

The renewable energy sector may be assisted by artificial 
intelligence (AI), especially in terms of improving management 
and distribution systems, increasing environmental monitoring, 
and optimizing energy production (T. Ahmad et al., 2021; Yan et 
al., 2022). Applications of AI have shown the capacity to 
enhance offshore wind energy production, speed up decision-
making, and manage renewable energy production (Ferrero 
Bermejo et al., 2019; Han et al., 2024). Systems for different 
energy production techniques are quickly adapting machine 
learning (ML) to boost efficiency, save costs, and enhance 
prediction abilities (Andrizal et al., 2018; H. P. Nguyen et al., 
2023). Renewable energy systems can be deployed and 
managed in a better way if assisted by ML. This approach can 
increase their viability in supplying energy. ML algorithms are 
used in solar energy systems to maximize energy storage, 
improve energy projections, and increase solar panel 
performance (Balsora et al., 2022; Tchandao et al., 2023). 
Through the identification and isolation of flaws in solar panels, 
these methods may greatly reduce the amount of time needed 
for maintenance. Additionally demonstrating remarkable 
accuracy are ML-based solar energy forecasting systems 
(Alassery et al., 2022; Utama et al., 2023). ML has improved 
energy generation from wind energy farms by accurately 
forecasting the wind speed, direction, and other weather 
information (Ponkumar et al., 2023; Zafar et al., 2022). ML has 
been used to optimize wind farm design for more effective 
operations (Nascimento et al., 2023). Using the prognostic and 

 
Fig. 1 Schematics of model development using ML (Khan et al., 2021) 
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optimizing abilities of ML, the RES can be more efficiently 
controlled, which is crucial to meeting global energy needs and 
achieving sustainable development goals (Le et al., 2024b; 
Stetco et al., 2019). Similar gains are observed in different 
renewable energy sectors like biofuel and geothermal (Buster et 
al., 2021; Shakibi et al., 2023). A flow of ML-based model 
development is illustrated in Figure 1 (Khan et al., 2021). 

The literature review was conducted using an organized 
approach that comprises several crucial phases: literature 
search, selection criteria, data extraction, analysis, and 
synthesis of important findings. Using well-known academic 
databases like Web of Science, Springer Link, IEEE Xplore, 
ScienceDirect, and Google Scholar, the literature in this domain 
was searched. A search was directed by using particular terms 
and combinations, like "machine learning," "renewable energy," 
"solar energy," "wind energy," “biofuel”, “biomass”, "intelligent 
algorithms," "energy optimization," "energy forecasting," and 
"AI in energy systems." Although fundamental papers providing 
fundamental knowledge will also be taken into account, the 
focus will be on recent research within the last five years to 
guarantee the inclusion of current material. Selected papers will 
be peer-reviewed and excellent conference papers on the use of 
intelligent algorithms and machine learning in RES. Studies 
ought to incorporate case studies that show how to use the 
material practically, theoretical analysis, or real data. Research 
not immediately related to the intersection of ML and renewable 
energy, papers not available in English, and papers lacking 
adequate methodological detail or empirical data will be 
ignored.  

To methodically collect relevant data from every study, a 
standard data extraction form was developed. Authors, 
publication year, goals, methods, kinds of ML algorithms used, 
applications of renewable energy, results, and conclusions were 
retrieved. Methodologies for the analysis were both quantitative 
and qualitative. This helped in assessing different strategies in 
detail and their effectiveness in the published studies. The 
information was combined to provide a logical story that 
emphasizes the status of present research, significant 
achievements, and unresolved problems in the area. Gaps in 
current research will be noted, along with themes for further 

investigation and the value of interdisciplinary approaches and 
cooperation between AI researchers and renewable energy 
experts. At last, practical suggestions for academics, 
professionals, and legislators will be offered, with an emphasis 
on applying ML to fully exploit renewable energy sources, as 
well as best practices and new developments that could 
influence future studies and applications in this field. The goal 
of this systematic approach is to give a thorough and 
educational analysis of how ML and intelligent algorithms may 
improve RES, therefore contributing valuable information to 
both academic study and real-world energy applications.  

This review paper investigates how ML could help progress 
renewable energy, focusing on developments in biofuel, 
biomass, solar, organic waste utilization, and wind energy 
systems. It talks about the limitations and restrictions of current 
renewable energy technologies with AI and highlights 
significant breakthroughs in the field led by AI. Among the 
issues discussed is the viability of wind and solar energy for an 
eco-friendly and greener future. Ultimately, this work seeks to 
demonstrate how ML interacts with RES, influencing the 
direction of these technologies and energy storage 
developments and advancing knowledge of AI's capacity to 
drive the RES industry toward a cleaner and greener future.  

2. ⁠Machine learning algorithms 

Numerous studies investigating the combination of ML with 
different renewable energy (RE) study fields can be found in the 
scholarly literature (W. Ahmed et al., 2020; Chen et al., 2024b; 
Ding et al., 2022; Rangel-Martinez et al., 2021). The type of ML 
methods used in these papers allow for a methodical 
classification of them. Supervised algorithms are a main class; 
they are trained on labeled datasets to forecast results from 
input data (Saravanan and Sujatha, 2018; Sen et al., 2020). Semi-
supervised algorithms fall into another group and enhance 
learning accuracy by combining labeled and unlabelled input 
(Roscher et al., 2020; P. Sharma et al., 2022a). Stochastic and 
statistically supervised algorithms are also reported in the 
literature, which improve prediction performance by using 

 
Fig. 2 Classification of AI & ML algorithms (Benti et al., 2023) 
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statistical and probabilistic models  (Haksoro et al., 2023; 
Palanichamy and Palani, 2014; Premalatha and Baskar, 2012). A 
classification of AI & ML approaches is depicted in Figure 2 
(Benti et al., 2023). 

A second important class is unsupervised algorithms, which 
find underlying patterns and structures by analyzing data 
without specified labels. Finally, reinforced algorithms 
concentrate on learning the best courses of action by trial and 
error and improving their decision-making techniques with 
input (Sierra-García and Santos, 2020; Yeter et al., 2022). This 
categorization scheme not only helps to arrange a large amount 
of research but also emphasizes the various methodological 
approaches and breakthroughs in the use of ML for renewable 
energy problems. Through this kind of classification of the 
literature, academics and practitioners can better comprehend 
and negotiate the many approaches and their distinct benefits 
in using ML to advance renewable energy solutions (Cervantes 
et al., 2020; Shi et al., 2012). A few approaches commonly 
reported in the literature are discussed: 

2.1 Artificial Neural Networks  

Artificial Neural Networks (ANNs) are computer systems 
models that simulate the way that the human brain processes 
information through layers of interconnected nodes (neurons) 
(Okumuş et al., 2021; Su et al., 2023; Veza et al., 2022a). ANNs 
are one of the efficient approaches to modeling and forecasting 
datasets with complex, non-linear interactions in the domain of 
RES (Afridi et al., 2022; Al Mamun et al., 2020). With significant 
volatility and non-linearity in input factors like weather, ANNs 
appear to be particularly helpful in predicting the output of 
energy from renewable sources like wind and solar (V. N. 
Nguyen et al., 2024b; Tuan Hoang et al., 2021). Learning from 
historical data, artificial neural networks (ANNs) may produce 
intricate patterns and improve prediction accuracy (Cepowski 
et al., 2021; Ihsan et al., 2023). Since they can generalize from 
trained data, they are perfect for scenarios involving large, 
diverse datasets and enable better operational planning, 
prediction, and management for a large number of fields such 
as education (Haque et al., 2024; Yaqin et al., 2021), society and 

human (Capote-Leiva et al., 2022; Kannan et al., 2023), energy 
and fuels (Le et al., 2023; Notton et al., 2019; Taghavifar and 
Perera, 2023), economy (Moonlight et al., 2023; Suvon et al., 
2023), medicine (Puri et al., 2023; Yeo et al., 2023), 
manufacturing and industry (Cong My et al., 2023; Radonjić et 
al., 2020; Rosiani et al., 2023), environment (Biswas et al., 2024; 
Zarra et al., 2019), food and agriculture (Chaivivatrakul et al., 
2022; Swasono et al., 2022), transportation (Abramowski, 2008; 
H. P. Nguyen et al., 2024a; V. G. Nguyen et al., 2023b), and 
others (Sigiel et al., 2024; Sumari et al., 2022). While artificial 
neural networks (ANNs) are computationally demanding and 
need a lot of training data, their potential for enhancing the 
performance of RES and their integration into existing power 
grids seems bright. Figure 3 illustrates the application of ANN in 
solar energy harvesting (Janarthanan et al., 2021).   

2.2 Gaussian Process Regression  

Gaussian Process Regression (GPR) provides a non-
parametric, Bayesian method of regression with its probabilistic 
framework for prediction and uncertainty quantification (Ma et 
al., 2022; Marrel and Iooss, 2024). GPR is used to estimate and 
forecast the fundamentally variable and environment-
dependent outputs of renewable energy sources such as solar 
panels and wind turbines (Ferkous et al., 2021; Lio et al., 2021). 
Since GPR can produce confidence intervals in addition to point 
estimates, it truly excels in assessing the accuracy of energy 
estimates (Baiz et al., 2020; Huang et al., 2019). This knowledge 
is highly helpful in the field of managing the integration of 
renewable energy into the grid, which calls for reducing 
uncertainty. GPR can handle datasets of small to medium size 
with efficiency and is flexible enough to integrate domain 
knowledge through kernel functions (Boyle, 2007; Gibbs, 1997; 
Keerthi and Lin, 2003). GPR's strong prediction performance 
and uncertainty estimation—especially with large datasets—
make it a necessary tool for renewable energy research and 
applications despite its computing requirements. Figure 4 
depicts the schematics of the GPR framework applied for solar 
forecasting.  
 

 
Fig. 3 Application of ANN-based controller in solar energy (Janarthanan et al., 2021) 

 



T.T. Le et al Int. J. Renew. Energy Dev 2024, 13(4), 783-813 
| 787 

ISSN: 2252-4940/© 2024. The Author(s). Published by CBIORE 

2.3 Support Vector Machine 

The Support Vector Machine (SVM) is one of the 
prominently used supervised learning models in the domain of 

RES and energy management (Ahmad et al., 2022; Said et al., 
2023b). SVM makes use of Kernel functions to handle high-
dimensional data and non-linear relationships quite well (Cortes 

 
Fig. 4 GPR framework’s schematic diagram 

 

 
Fig. 5 Wind speed prediction with SVM (Liu et al., 2018) 
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and Vapnik, 1995; Liao et al., 2024). It can efficiently handle 
model-prediction tasks like classification and regression (Astuti 
et al., 2021; Secilmis et al., 2023). It can be used in RES for the 
prediction of solar radiation (Meenal and Selvakumar, 2018), 
wind speed (Sarp et al., 2022), and patterns of energy 
consumption (You et al., 2022). SVMs help identify complex 
patterns in datasets related to renewable energy as they can 
identify the optimum hyperplane that splits data into many 
groups (Gangwar et al., 2018; Liu et al., 2020). Their resistance 
against overfitting and ability to manage non-linear data 
distributions increase the accuracy of their forecasts. SVMs 
perform exceptionally well when the dataset is small and the 
processing power is limited. But optimizing SVM performance 
calls for careful parameter modification and choosing 
appropriate kernel functions. Support vector machines (SVMs) 
are nevertheless a practical and reliable approach to improve 
the predictability and administration of RES in spite of these 
challenges (Tuerxun et al., 2021; Wang et al., 2020). Figure 5 
depicts the application of metaheuristic approach optimized 
SVM for wind speed prediction (Liu et al., 2018).  

2.4 XGBoost  

Extreme Gradient Boosting (XGBoost) makes use of 
ensembles of decision trees for high-performance prognostics 
(Hartanto et al., 2023; Wicaksono et al., 2023).  The XGBoost 
truly excels in the renewable energy industry in the case of 
predictive modeling and optimization (Chen and Guestrin, 2016; 
Dong et al., 2022). XGBoost-based models can be efficiently 
employed in optimizing energy storage systems, and 

forecasting solar as well as wind energy output. XGBoost has a 
unique advantage that it can handle large datasets quickly while 
maintaining high precision levels (Akbar et al., 2024; Aksoy and 
Genc, 2023; X. Li et al., 2022). This is achieved by boosting trees, 
which are built one after the other, each of which fixes the errors 
of the one before it. This helps in optimizing the loss function. 
Regularization techniques in XGBoost provide resistance to 
overfitting and suitability for a broad spectrum of applications 
(Bae et al., 2021; Huang et al., 2021). Improved forecasts of 
renewable energy sources result in better control and 
integration of these resources into energy systems because of 
the efficiency and scalability of XGBoost. A flowchart as Figure 
6 depicts the model development process using annual data in 
the case of solar energy  (D. Li et al., 2023). 

2.5 Adaptive Neuro Fuzzy Inference System  

In the case of Adaptive Neuro-Fuzzy Inference System 
(ANFIS) a qualitative method of fuzzy logic is combined with 
neural network learning capabilities to form an efficient hybrid 
intelligence system (P. Sharma et al., 2022b; Yadav et al., 2021). 
ANFIS does exceptionally well at modeling and forecasting 
complex, non-linear phenomena like wind speed prediction and 
solar irradiance forecasts in renewable energy applications 
(Purwanto et al., 2021; Safari et al., 2021; Wasista et al., 2023). 
By fusing fuzzy systems and neural networks, ANFIS can handle 
the inherent uncertainties and variations in renewable energy 
data (Baghban et al., 2019; Sharma and Sahoo, 2022). Accurate 
and reliable forecasts are offered by ANFIS as it gets trained 
using historical data and adjusting to any change in 

 
Fig. 6 A hybrid approach of PSO-XGBoost for PV system (D. Li et al., 2023) 
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environmental conditions. Because ANFIS can handle noise in 
data and approximate non-linear processes, it is a useful tool for 
raising the dependability and efficiency of RES. Its capacity for 
modeling and analysis of the connection between different input 
and output parameters enhances energy management and 
optimization decision-making (Nassef et al., 2020; Pitalúa-Díaz 
et al., 2019). Figure 7 depicts the ANFIS architecture used in the 
case of an energy prediction from a solar farm (Gopi et al., 2022). 

2.6 AdaBoost 

The ensemble learning method known as AdaBoost 
(Adaptive Boosting) builds a better classifier by combining the 
predictions of multiple weak classifiers (Ilham et al., 2023; Liu et 
al., 2022; Shahraki et al., 2020). In renewable energy, AdaBoost 
is used to classify energy use patterns, forecast solar energy, 
and estimate wind speed. Through iteratively changing the 
weights of falsely detected samples, the system is able to 
concentrate on more challenging cases in subsequent iterations 
(R. Li et al., 2022). The general expected robustness and 

accuracy of the model are increased by this approach. AdaBoost 
is quite efficient in handling varied and complicated datasets as 
are generally reported in renewable energy research, (Yang and 
Liu, 2022). It is a crucial method for strengthening the baseline 
model’s performance and therefore improving the 
dependability and predictability of RES (Shao et al., 2016; Yang 
and Liu, 2022). Flexibility and adaptability of the algorithm 
support decision-making procedures in RES management and 
help to generate more precise projections. A schematic of 
AdaBoost is illustrated in Figure 8 (Wang et al., 2021). 

2.7 Tweedie Regression 

Tweedie Regression is a type of generalized linear model 
that does especially well with data having both positive and zero 
continuous values (V. G. Nguyen et al., 2024b; Parveen et al., 
2016). Its applications are reported in renewable energy 
research, such as wind turbine and solar panel simulation. 
Precise and trustworthy forecasts are obtained by Tweedie 
Regression, which successfully captures the underlying 

 
Fig. 7 ANFIS architecture for energy prediction from solar farm (Gopi et al., 2022) 

 

 

Fig. 8 Schematics of AdaBoost-based model (Wang et al., 2021) 
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distribution of energy generation data (Bonat and Kokonendji, 
2017; Petterle et al., 2019). Applications where the response 
variable is a non-negative value with a lot of zeros, such as daily 
energy production interrupted by weather-related intervals of 
no output, benefit particularly from it. Tweedie Regression 
enhances the accuracy of predictive models by accounting for 
the particular distribution of data on renewable energy, 
therefore facilitating better planning, optimization, and 
integration of renewable energy into the power system (Alawi et 
al., 2024; Tweedie and Reynolds, 2016).  

2.8 Huber Regression  

Huber Regression is especially useful for handling outliers in 
data. Huber is a robust regression technique that blends the 
features of absolute deviation regression and conventional least 
squares (Feng and Wu, 2022; Sun et al., 2020). In applications 
for renewable energy, Huber Regression is used to estimate the 
energy output from wind turbines and solar panels, where data 
may be noisy and include large outliers brought on by fast 
changes in meteorological circumstances. The Huber loss 
function balances the robustness of absolute deviation with the 
sensitivity of least squares; it is quadratic for small errors and 
linear for large errors (Huang et al., 2018; Jiang, 2023). As it 
guarantees that outliers do not have a disproportionate effect on 
the model, Huber Regression is, therefore, a reliable method for 
modeling and forecasting renewable energy outputs (Ibidoja et 
al., 2023; Lin et al., 2022). Through the improvement of 
prediction robustness and accuracy, Huber Regression 
facilitates the better management and integration of renewable 
energy sources into the power system.  

3. ⁠Application of ML in solar energy 

Solar energy is considered as the most abundant renewable 
energy source in the world. As reported, solar energy could be 
harvested for a large number of use purposes such as electricity 
production (Ghodbane et al., 2020; Y. Khan et al., 2024; L. Zhang 
et al., 2023), heat production (Faisal Ahmed et al., 2021; 

Franzese et al., 2020; Said et al., 2022b), distillation (Gandhi et 
al., 2022; Larik et al., 2019; Tri Le et al., 2020), food drying 
(Lingayat et al., 2020; Madhankumar et al., 2023; Murugavelh et 
al., 2019), and hydrogen production (Hoang et al., 2023c; 
Okonkwo et al., 2022; Phap et al., 2022). However, weather 
variables vary throughout the year, photovoltaic (PV) electricity 
output is by nature stochastic and experiences sporadic swings. 
The projection of PV generation is made more challenging by 
these oscillations in data. PV generation forecasting accuracy 
need must be improved since forecasting errors are far larger 
(15–20%) during energy generation in comparison with load 
forecasting errors (1-3%). (Behzadi and Sadrizadeh, 2023; Tian 
et al., 2023). Solar energy forecasting is classified as short-term 
(a few minutes to a few hours) and medium-term (a few hours 
to a few days) forecasts, as well as long-term (a few days to 
several months). Out of these, since short-term forecasting calls 
for making results predictions quickly, it is the most difficulty to 
be precise (Allal et al., 2024; Heidari and Khovalyg, 2020; Rabehi 
et al., 2020; Venkateswaran and Cho, 2024). However, short-
term forecasting is, therefore, the most accurate and 
dependable approach to PV forecasting, offering a reliable and 
reliable way to project PV production. Short-term forecasting 
has therefore generated a lot of interest in solving the 
integration and operational issues related to solar power 
penetration. Enhancing grid stability and dependability, 
optimizing market participation, and raising solar power 
generating efficiency all depend on it (Akilu et al., 2018; 
Hayajneh et al., 2024; Said et al., 2022a; S. Zhang et al., 2023).  

Statistical, and ML models are the most often used models 
for solar PV power forecasts to improve upon the physical 
models (Le et al., 2024a; Wedashwara et al., 2023). Physical 
models simulate PV systems employing complicated equations, 
but they are expensive to compute and can fall short of 
capturing the subtleties of actual circumstances, which leads to 
less precise forecasts. Similar short-term variations and quick 
changes in meteorological conditions, which have a significant 
effect on solar PV generation and lead to inaccurate predictions, 
are also difficult for statistical techniques based on historical 
data patterns and statistical algorithms to capture 
(Antonopoulos and Antonopoulos, 2024; Marzouq et al., 2018; 

 
Fig. 9 ANN architecture for GSR prediction (Aljanad et al., 2021) 
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A. Sharma et al., 2022). ML models, on the other hand, can 
enhance accuracy by combining historical trends, incorporating 
real-time data, and adapting to changing circumstances (Jathar 
et al., 2024). ML-based methods work particularly well at 
identifying the connections between non-linear trends, which 
leads to more precise short-term solar PV projections. ML 
techniques most often used include artificial neural networks 
(ANN), support vector machines (SVM), Gaussian process 
regression (GPR), and regression trees. The comprehension of 
the intricate and dynamic character of solar PV generation is 
greatly enhanced by these techniques, which also raise the 
precision and effectiveness of solar power forecasts (R. Ahmed 
et al., 2020; Luo et al., 2021). A lot of researchers have 
concentrated on encouraging the application of ML in the 
domain of solar energy including photovoltaic (PV) array layout 
optimization (Subhashini et al., 2023), PV energy predictions 
(Mellit and Pavan, 2010), solar irradiance predictions (Hameed 
et al., 2019; Hou et al., 2023) and enhancing the efficiency of 
solar chimney facilities (Mandal et al., 2024; Taki et al., 2021). 
An ANN architecture employed for the prediction of global solar 
irradiance (GSR) depicts the way it is employed in Figure 9 
(Aljanad et al., 2021). A summary of studies using ML in the solar 
energy domain is listed in Table 1. 

4. ⁠Application of machine learning in wind energy  

Wind energy is one of the significant RES, it has high 
potential for long-term power production (Barus and Dalimi, 
2021; Chen et al., 2021; Zhang et al., 2021). Wind turbines make 

use of the kinetic energy present in the wind to transform it into 
electrical energy, it offers a clean and plentiful alternative to 
fossil fuels (Chen et al., 2022c; Oueslati, 2023; Tumenbayar and 
Ko, 2023). Among other energy sources, wind energy is 
especially favorable because of its low environmental effect, low 
greenhouse gas emissions, and falling prices as technology 
advances (Chaurasiya et al., 2019; Chen et al., 2024c; Sayed et 
al., 2021). It may also be used both onshore and offshore, 
offering flexibility in deployment. As wind energy capacity 
grows worldwide, it plays an important role in providing energy 
security, lowering carbon footprints, and facilitating the shift to 
a sustainable energy future (Kumara et al., 2017; Sitharthan et 
al., 2018). 

Using AI to improve the efficiency of these systems creates 
prospects for future improvement. Investigations in the domain 
of wind energy systems comprising the design of turbine blades, 
and precise wind speed predictions, may enhance wind farm 
performance and environmental sustainability. In the domain of 
wind energy, it has been employed for wind energy prediction, 
wind speed forecasting, peak power point tracking, prediction 
of wind energy quantification, and prediction of wind pressure 
and energy (Dosdoğru and Boru İpek, 2022; Ju et al., 2019; Wu 
et al., 2022). Wind power prediction techniques fall into three 
categories: long-term, medium-term, and short-term. Real-time 
wind power scheduling relies on short-term forecasts during the 
next few hours (De Caro et al., 2020; Jiang et al., 2017). Medium-
term wind power forecasts are utilized for unit mix and standby 
arrangements in the next week. Long-term wind power 
forecasting, often done in months or quarters, is crucial for 
assessing and maintaining wind resources (Carvalho et al., 2017; 

Table 1 
Application of ML in solar energy domain 

Name of ML 
The main theme of the 

study 
Parameters Main outcomes Source 

Linear regression, SVM, 
Random Forest (RF), and 
ANN 

Solar energy forecasting 

Energy, wind speed (WS), 
humidity, solar radiation 
(SR), wind direction (WD), 
wind pressure (WP) 

On the basis of statistical 
metrics, ANN was superior to 
other ML 

(Jebli et al., 2021) 

ANN Hourly solar radiation 

Mean ambient temperature, 
hourly global and direct 
irradiation, mean speed of 
wind, location coordinates 

R values of 0.9340 could be 
achieved during model testing. 

(Geetha et al., 2022) 

ANN 
Performance prediction 
of solar thermal 
collectors 

Type of heaters, Input 
temperature and irradiance 

An R-value of 0.9956 was 
achieved for ANN 15 model 

(Çerçi et al., 2024) 

LSTM + CNN 
Solar irradiance and plan 
of array (POA) 

Solar irradiance and POA 
data 

The stacking of LSTM and CNN 
was superior to individual CNN 
and LSTM models 

(Elizabeth Michael et 
al., 2022) 

Gradient boosting 
regression trees (GBRT), 
ANN, k-near test 
neighbor (kNN), and 
lasso regression 

Model-prediction of solar 
energy 

Seasonal meteorological 
data 

GBRT and kNN were superior 
to other models. 

(Sivakumar et al., 
2022) 

LSTM + CNN + 
transformer model 

Grid integration-based 
solar energy 

Hourly basis data adopted 
from the Fin grid 
comprising meteorological 
data 

A combined approach of 
LSTM-CNN-transformer led to 
superior results compared to 
individual models 

(Al-Ali et al., 2023) 

Hybrid ML + statistical 
approach 

Forecasting of solar 
energy generation from a 
large-scale RE plant 

Five-minute resolution 
dataset from 10 MW thin-
film solar cells and 
polycrystalline solar panels 

Hybrid model, combining ML 
and statistics. It showed 
superior performance and 
accuracy compared to standard 
individual models and an ML-
only model. 

(Vennila et al., 2022) 

SVM based classifier 
City scale classification of 
roof scale for PV 
application 

Solar radiation and roof 
shape data set 

The SVM classifier identified 6 
kinds of roof forms with a mean 
accuracy of 66%. 

(Mohajeri et al., 2018) 

GPR 
Forecasting of solar 
radiation 

One week of weather data 
from Stellenbosch, SA 

Results were accurate up to 
95%. 

(Lubbe et al., 2020) 
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Haghshenas et al., 2023). All forecasting approaches aim to 
improve the precision of wind power predictions. Traditional 
prediction of wind power methods includes physical and 
statistical approaches, whereas intelligent methods include ML 
and deep learning techniques (X. Deng et al., 2020; Jiang et al., 
2021; Lipu et al., 2021). Physical models use numerical weather 
prediction data to compute wind power production by 
estimating wind speed time series in a given environment (Li 
and Zhang, 2022; Simankov et al., 2023). Figure 10 illustrates 
how an ML-based architecture is employed in the wind energy 
domain for model-prediction. Table 2 summarizes works that 
used ML in wind energy and related research prognostics.  

5. ⁠⁠Application of Machine learning in biofuels 

Biofuels are renewable and alternative fuels derived from 
organic materials like plants and organic waste. Biofuels are 
attractive substitutes for fossil fuels since they reduce 

greenhouse gas emissions (Ahmed et al., 2023; Hoang et al., 
2023d; Istadi et al., 2021). As reported, biofuels are beneficial in 
reducing dependence on costly fossil fuel imports and offer a 
sustainable substitute for fossil fuels (Hoang and Pham, 2021; 
Wei et al., 2024; Zeńczak and Gromadzińska, 2020). Indeed, 
ancohol (methanol, ethanol, n-propanol, butanol, pentanol, 
hexanol), biodiesel, bio-oil, furan-based biofuels, ether, and 
biogas are typical examples (Bui et al., 2021; Cao and Johnson, 
2024; Changxiong et al., 2023a; De Poures et al., 2023; Doan et 
al., 2022; Fayad et al., 2022; Hoang et al., 2023a, 2021c; Jia et al., 
2024; Yusuf et al., 2023). Biofuels may be used to generate 
electricity, heat, and transport, therefore ensuring 
environmental sustainability and energy source diversity 
(Hoang et al., 2021e; Veza et al., 2022b). A sustainable for of fuel 
for use in diesel engines, biodiesel is made from vegetable oils, 
animal fats, and waste cooking oils. Use of it in diesel engines, 
either in pure form (B100) or as a blend with petroleum fuel 

 
Fig. 10 ML architecture for wind energy prediction 

 

Table 2 
Application of ML in the wind energy domain  

Algorithm employed 
The main theme of the 

research 
Main outcomes Source 

Gaussian Process 
Measurement of unsteady 
wind characteristics 

Indirect dynamic GP outperformed deterministic 
and probabilistic wind power prediction modes, 
resulting in lower errors. 

(Xue et al., 2020) 

Autoregressive Integrated 
Moving Average (ARIMA) 

Precision of wind speed 
forecasting 

A study found that ML-based frameworks were 
superior to traditional approaches for predicting 
wind energy. 

(Shawon et al., 
2021) 

kNN, XGBoost, Random 
Forest, LASSO, and SVR 

Wind power forecasting 
The algorithms correctly forecasted daily wind 
power outputs for places other than the model-
trained location. 

(Demolli et al., 
2019) 

Echo state networks (ESN) 
Wind direction as well as 
speed forecasting 

The proposed method could predict the data with 
high accuracy. 

(Chitsazan et al., 
2019) 

LSTM + Grey wolf optimizer Wind speed forecasting 
The LSTM-GWO combined model predicted with 
high accuracy also filled in missing data and 
flattened WSTs data. 

(Altan et al., 
2021) 

Ensemble approach of ML + 
mayfly optimization 

Wind speed prediction 

Point and interval forecasting are employed for 
more intelligent grid management. The optimal 
distribution is an excellent way to assess 
uncertainty. 

(Liu et al., 2021) 

Elman and Elastic wavelets 
transform (EWT) 

Wind speed forecasting 

ENN was developed to anticipate sub-signals. A new 
error rectification approach was developed to 
enhance prediction capabilities for decomposition-
based models. 

(Y. Deng et al., 
2020) 

Deep learning bi-directional 
LSTM 

Handing uncertainty and 
overfitting in the prediction 
model of wind speed 

Boruta wrapper feature selection was used to extract 
critical meteorological data for wind speed 
predictions (BFS), forecasting wind speed based on 
previous and subsequent time steps. 

(Sankari Subbiah 
et al., 2023) 
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(often B20, which contains 20% biodiesel), helps in the reduction 
of sulfur, particulate matter, and greenhouse gas emissions 
(Sunil Kumar et al., 2024). Biodiesel offers a cleaner combustion 
having less environmental impact. Besides, biodiesel provides 
superior lubrication than conventional diesel, which may extend 
the life of engine parts (Manimaran et al., 2023; Paramasivama 
et al., 2024). The use of biodiesel does, however, provide several 
challenges. Biodiesel has a higher viscosity in comparison with 
petroleum diesel, thus it may need to be modified in older 
engines and may provide running difficulties in colder climates 
that call for the usage of additives or lower biodiesel mixtures 
(Changxiong et al., 2023b; Hoang, 2021; N et al., 2023; V. N. 
Nguyen et al., 2023). Even with these drawbacks, employing 
biodiesel into diesel engines is a significant step in the direction 
of more environmentally friendly and sustainable transportation 
options (Gebremariam, 2023; Hoang et al., 2022f; P. Singh et al., 
2020).  

A significant number of biofuels such as biogas, methanol, 
and ethanol are helping to produce environmentally friendly 
energy substitutes (P. Sharma et al., 2023; Truong et al., 2021). 
The sugars from maize and sugarcane can be fermented to 
produce ethanol, which is then added to gasoline to raise octane 
levels and cut emissions. Its renewable nature and ability to be 
carbon neutral make it a vital part of the creation of sustainable 
fuel strategies (W.-H. Chen et al., 2023; Kazemi Shariat Panahi 
et al., 2020; Manochio et al., 2017; Megawati et al., 2022). 
Methanol as a flex-fuel can be produced from biomass or as a 
waste organic product of industrial operations. It is them mixed 
with gasoline or used straight in fuel cells. Its high hydrogen 
content and effective combustion properties help to lower 
emissions and strengthen energy security (Deka et al., 2022; 
Yadav et al., 2020). A plentiful supply of biogas containing 
methane may be used for heating, electricity generation, and car 
fuel (Dahlgren, 2022; Korberg et al., 2020). The anaerobic 
digestion (AD) process is employed to produce biogas from 

organic waste. Through the reduction of greenhouse gas 
emissions and the mitigation of waste disposal issues, its 
production advances the circular economy (Hoang et al., 2022a; 
Kapoor et al., 2020). Collectively, these biofuels provide a 
substantial contribution to the creation of renewable energy 
sources and the lessening of environmental harmful impacts 
(Nguyen-Thi and Bui, 2023; Yilmaz, 2012; Yuvenda et al., 2022).  

In the biofuel industry, ML has become a revolutionary 
technique that greatly improves several phases of biofuel 
production and use. Improved overall efficiency and 
sustainability of biofuel production may be achieved by ML 
algorithms optimizing feedstock choices, process parameters, 
and yield forecasts (Okolie, 2024; V. Sharma et al., 2023b). Large 
dataset analysis allows ML models to find correlations and 
patterns that are not immediately obvious using conventional 
techniques. For example, supervised learning algorithms like 
SVM and ANN can forecast the ideal feedstock combination to 
optimize biofuel production with the least amount of 
environmental effect (I. Ahmad et al., 2021; Sharmila et al., 2024; 
Shelare et al., 2023).  

ML methods enable the monitoring and control of 
parameters like temperature, pH, and nutrient content during 
fermentation, guaranteeing the best possible conditions for 
microbial activity and thereby raising conversion rates. 
Reinforcement learning may also be used to improve bioreactor 
operational parameters, which can adjust to changing 
circumstances to preserve high efficiency (Agrawal et al., 2020; 
Sharma, 2021). Moreover, by forecasting the characteristics of 
the finished product depending on the input features and 
process factors, ML models may improve the quality control of 
biofuels. Complying with regulations and guaranteeing constant 
fuel quality depends on this predictive capacity. ML approaches 
help save costs and increase efficiency in biofuel logistics and 
supply chain management since they can help in optimizing 
routes and inventory management (Ayoola et al., 2019; 

 

Fig. 11 ANN in biodiesel synthesis and use in the engine (Jahirul et al., 2013) 
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Muhammad et al., 2022; Prasada Rao et al., 2017). Figure 11 
shows how model-prediction in the domain of biofuel 
production and utilization in engines is achieved using an ML-
based architecture (Jahirul et al., 2013). The biofuel production, 
its utilization, and associated research prognostics studies that 
employed ML are compiled in Table 3.  

 

6. ⁠Application of machine learning ⁠in biomass 

Biomass is known as the major source of renewable energy, 
it has been produced around 146x106 metric tons per year (Balat 
and Ayar, 2005; Duc Bui et al., 2023). As predicted, biomass 
energy could account for more than 50% of energy demand in 
the developping countries by 2050 (Demirbas, 2008). Indeed, 
the main biomass sources in the world include farm waste, 
woodworking wastes, forestry and agricultural residue, and 
aquatic plants (Ağbulut et al., 2023; Alzamora and Barros, 2020; 
Bandh et al., 2023; Dhyani and Bhaskar, 2018; Güleç et al., 2023). 
The variety in feedstock processing, shorter reaction times, 
cheap capital costs, wide product range, high process yield, CO2 
neutrality, and possibility for product improvements have made 
the thermal conversion of biomass into bioenergy a viable 
approach (Chen et al., 2022b; Hoang et al., 2023b, 2021b; 
Saravanakumar et al., 2023). Owing to these positive gains, 
biomass is receiving a lot of interests in the conversion of 
biomass to value-added chemicals and biofuels (Hoang et al., 
2022e; Rathore and Singh, 2022; Seo et al., 2022). The broad 
classification of biomass conversion to energy can take the 

route of any of the following: pyrolysis, torrefaction, 
hydrothermal treatment, gasification, and combustion (Chen et 
al., 2022a; V. G. Nguyen et al., 2024f; Umer et al., 2024). At 300–
650 °C in the absence of air, biomass feedstock pyrolyzes to 
produce bio-oil, charcoal, and pyrolytic gas (Chen et al., 2024a; 
Hoang et al., 2021d). Torrefied biomass is produced when 
pyrolysis, a milder kind, takes place without oxygen at 200–320 
°C under air pressure (Niu et al., 2019; Tang et al., 2020). 
Depending on the intended products such as bio-oil, bio-gas, or 
bio-char, parameters for hydrothermal treatment are varied 
between 250 and 374 °C and 4 and 22 MPa (Tekin et al., 2014). 
In regulated oxygen flow at high temperatures (550–1000 °C), 
gasification converts carbon-based materials into synthetic gas. 
Burning biomass with too much air causes a chain of chemical 
processes that produce heat (García Nieto et al., 2019; Hoang et 
al., 2022b; V. G. Nguyen et al., 2024c).  

The energy recovered from biomass and waste feedstock 
may be economically recovered using these thermal conversion 
techniques to produce biochar, bulk chemicals, liquid transport 
fuels, heat, and electricity (Emenike et al., 2024; Gil, 2022; 
Okolie et al., 2022; Yang et al., 2017). These solutions provide 
more demand management options and may significantly 
lessen the carbon footprint of related activities (Nguyen and Le, 
2023; V. N. Nguyen et al., 2024a). The environmental effect of 
the transportation industry may be reduced by using efficient 
manufacturing methods for fuels like biodiesel. The combined 
heat and power (CHP) system also employs syngas from 
biomass gasification as an appropriate substitute for fossil fuel 
(J. Singh et al., 2020; Thi et al., 2024; Zhang et al., 2022). The 
byproduct of biomass gasification, a porous organic residue 

Table 3 
Application of ML in the biofuel sector   

ML/AI used 
The main theme of the 

research 
Main outcomes Source 

ANN 
Biodiesel yield and properties 
estimation 

A high-precision model having R as 0.958 
could be achieved 
 

(Giwa et al., 2015) 

RSM and ANN Biodiesel yield from castor oil 
The developed model could predict well within 
8% of the actual yield. 

(Banerjee et al., 2017) 

ANN 
Alage-Jatropha Biodiesel yield 
model prediction 

R2 = 0.9976 could be achieved in this study. (Kumar et al., 2019) 

ANFIS Biodiesel synthesis employing 

The model's high R-squared value (0.9978) 
along with a small absolute deviation (1.14%) 
indicate the recommended ANFIS model as an 
effective technique for predicting biodiesel 
yields. 

(Guo and Baghban, 
2017) 

Genetic Algorithm (GA) + 
SVM 

Biodiesel blends properties 
A highly precise model with 97.4% accuracy 
was established. 

(Cheng et al., 2016) 

GA + ANN +RSM Biodiesel production output 
This approach helped in the identification of 
the best setting for the highest yield for 
Simarouba glauca methyl ester. 

(Sivamani et al., 2019) 

GBDT and ANN 
Ethanol fermentation 
prediction 

Yeast morphological data was employed. The 
model could predict with more than 90% 
accuracy. 

(Itto-Nakama et al., 
2021) 

XGBoost, kNN, RF, SVM, 
and logistic regression 

Biogas production prognostics 

Boruta wrapper feature selection was used to 
extract critical meteorological data for wind 
speed predictions (BFS), forecasting wind 
speed based on previous and subsequent time 
steps. 

(De Clercq et al., 
2019) 

Continuous wavelet 
transformation (CWT) 

Cycle-to-cycle variation in 
biodiesel-powered engine 

Statistical as well as CWT helped in the 
analysis of the coefficient of variation during 
biodiesel-diesel combustion 

(Sharma and Sharma, 
2022) 

Taguchi L 16 and RSM 
Water Hyacinth biodiesel-
powered engine model 
prediction 

Models could predict in the range of 0.849 to 
0.9985 as measured in terms of R2. 

(Jain et al., 2023) 

Bayesian optimized GPR 
Prognostic of biogas-biodiesel 
powered engine 

The Bayesian hyperparameter-optimized 
models achieved 99.9% accuracy in predicting 
engine emission and performance. 

(Said et al., 2023a) 
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known as biochar finds use in soil carbon sequestration, 
pollution absorption, pollution remediation, and the synthesis of 
carbon-based products (Fiore et al., 2020; Gonçalves et al., 2019; 
Hoang et al., 2022c; Richardson et al., 2015). 

Since these conversion processes are very complex and 
contain non-linear factors, process design, optimization, and 
intensification depend on mathematical models. Through the 
use of these models, one may forecast important process 
performance metrics, enable improved management and 
optimization, and evaluate the effect of different variables on 
outputs (Elmaz et al., 2020; Liu et al., 2024; W. Zhang et al., 
2023). However, the conventional approaches are time-
consuming and difficult, and the data-derived ML is an 

attractive option (Agrafiotis et al., 2014; Kousheshi et al., 2020). 
ML and AI have shown to be very helpful in the area of biomass-
to-energy conversion (García-Nieto et al., 2023; Wang and Yao, 
2023). This is attributed to their ability to handle complex, high-
dimensional data and enhance nonlinear processes (V. G. 
Nguyen et al., 2024d; Tang et al., 2023). Accurate simulation of 
conversion processes like as pyrolysis, gasification, and 
combustion made possible by these technologies enables one to 
predict and enhance system performance (Alruqi et al., 2024; Ge 
et al., 2023). AI-powered models may be able to identify the best 
operating conditions, which might increase productivity and 
efficiency while reducing expenses at the same moment. 
Furthermore, real-time process control and monitoring made 

 
Fig. 12 ML-based modeling architecture for biomass gasification (dos Santos Junior et al., 2023) 

 
Table 4 
ML-based investigation in biomass to the energy sector  

ML/AI used 
The main theme of the 

research 
Main outcomes Source 

SVR, ANFIS, and ANN 
Biomass higher heating value 
(HHV) forecasting 

An adaptive neuro-fuzzy inference system is 
superb in prediction model development. 

(Dodo et al., 2022b) 

MLR, ANFIS, SVM, and 
ANN 

Prediction of HHV 

Not one of the proximate analysis elements can 
individually provide an accurate HHV prediction 
provided they are coupled as input to the 
established models. 

(Dodo et al., 2022a) 

SVR, polynomial 
egression, Decision tree 
(DT), and ANN 

Prognostic models for the 
biomass gasification process 

R2 > 0.9 for almost all outputs of the process could 
be achieved in this study. 

(Elmaz et al., 2020) 

ANN Biomass gasification process 

The model's high R-squared value (0.99) in the 
case of methane and carbon monoxide and 0.98 in 
the case of hydrogen and CO2 was attained using 
ANN. 

(Baruah et al., 2017) 

ANN 
Prediction of tar formation in 
bubbling fluidized gasifier 

R2 > 0.9 for the tar prediction model developed 
using ANN showed as robust model. 

(Serrano and Castelló, 
2020) 

ANN 
Effect of bed material on 
bubbling fluidized-based 
gasification 

R2 > 0.9 for the tar prediction model developed 
using ANN showed as robust model. 

(Serrano et al., 2020) 

ANN 
Estimation and prediction of 
producer gas in fluidized bed 
gasifier 

R = 0.987 and MSE was 0.71 for the models 
developed with ANN. 

(George et al., 2018) 

ANN 
Exergy prediction of raw 
biomass using ML 

For the exergy model, the R2 value was higher 
than 0.92 in model training and 0.79 in the testing 
phase.   The mean absolute percentage error was 
less than 4%. 

(Kartal and Özveren, 
2022) 

RF, SVM, DT, and MLR 
Biomass to Bio-oil yield 
prognostic model using 
pyrolysis data 

RF-based bio-oil yield prediction model with R = 
0.98 was superior to the other three ML 
approaches. 

(Ullah et al., 2021) 
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feasible by ML algorithms ensures the stability and quality of the 
manufacturing process (khan et al., 2023; H. Li et al., 2023). AI 
may be used to develop new catalysts and materials that will 
further increase the rate of conversion and product quality. 
Huge data from many sources is integrated using ML and 
artificial intelligence to provide predictive maintenance and 
fault identification. That reduces operational risks and 
downtime. A summary of studies showing the application of ML 
& AI in the domain of biomass to energy is given in Table 4. The 
flowchart of how the ML models are developed in biomass 
energy is depicted in Figure 12 (dos Santos Junior et al., 2023).  

7. ⁠Application of ML in waste-to-energy path  

Waste management in the present era is not just concerned 
with its disposal but also has been already acknowledged as a 
crucial asset for the circular economy (Atabani et al., 2022; 
Salmenperä et al., 2021; Son Le et al., 2022). Every year, around 
2 billion tons of municipal solid waste (MSW) are created across 
the world, with nearly one-third of this material not being 
properly handled from an environmental aspect (Hoang et al., 
2022f; Kahan, 2020). Most countries are facing major waste 
management challenges as a result of the huge amount of MSW 
being generated. Meanwhile, population expansion and a desire 
for higher living standards have driven up energy consumption 
(Dong et al., 2014). According to the EU's waste hierarchy 
principle, reuse of materials and recovery take precedence 
above energy recovery from trash, generally known as 'Waste-
to-Energy' (WtE). Nonetheless, WtE is needed to valorize and 
treat waste portions which may not be financially or technically 
recoverable, to divert streams away from garbage dumps, and 
to function as a safe sink for hazardous substances (Gil, 2022; 
Sharma et al., 2020). WtE is an umbrella term used for several 
types of processes of transforming waste materials into usable 
energy, like heat energy, electricity, or fuel (Dal Pozzo et al., 
2023). However, the generation of greenhouse gases, gaseous 
pollutants, and toxic ash fractions along with comparatively 
poor energy efficiency provide a major obstacle for WtE in the 
shift to a circular and climate-neutral economy (Gautam and 
Agrawal, 2021; Kumar et al., 2020). Incineration facilities have 
been established since the late nineteenth century to improve 

cleanliness and reduce waste volume/weight (Reis, 2011). Since 
the late 1960s, the duty of guaranteeing safe garbage disposal 
was combined with energy recovery, using incinerators being 
outfitted with industrial steam boilers (Kaltschmitt, 2019). 
Electricity and heat created from the produced steam; may be 
utilized to replace an equivalent quantity of energy generated 
locally. This may provide an indirect environmental advantage 
by avoiding emissions from power grids and heat networks that 
have a greater carbon intensity than energy generated from 
garbage (Ferraz de Campos et al., 2021). As the carbon intensity 
of electricity and heat output decreases in the future, owing to 
climate legislation, the advantages of replacing carbon-intensive 
power or heat generation are projected to reduce (O. Khan et 
al., 2024; Lisbona et al., 2023). However, WtE plants are 
expected to continue to play an important role as heat suppliers, 
such as in industrial steam networks, while also maximizing the 
additional value that may be derived from the material 
recuperation of unrecyclable waste streams (Makarichi et al., 
2018; Ronda et al., 2023). The different routes of WtE in the case 
of MSW are depicted in Figure 13 (Rezania et al., 2023).  

ML has emerged as a quite useful technology in different 
aspects of life, including the WtE domain. Integrating ML into 
WtE processes may improve efficiency, optimize operations, 
and contribute to sustainable energy solutions (Zhu et al., 2023). 
The sorting of garbage is one of the significant phases in the 
WtE process. The reliability and efficiency of a WtE process are 
hugely dependent on the quality of waste sorting (Kumar and 
Samadder, 2017). Efficient sorting ensures that the most 
recyclable and combustible material is recovered from the 
waste stream. The conventional methods of waste sorting 
methods are time-consuming and labor-intensive. In these 
circumstances, ML is found useful approach for enhancing the 
quality and reliability of the process (Li et al., 2020; Zhihong et 
al., 2017). Initially, the prognostic model is trained on massive 
waste image-based datasets to identify between constituents of 
waste items like organic waste, plastics, metals, and non-
recyclables (Hossen et al., 2024). The classification approach of 
ML especially image recognition techniques enables the model 
to accurately recognize and categorize various sorts of garbage. 
The ML-enhanced automated sorting systems help accelerate 
the waste sorting system without much human intervention. It 
also improves the purity of the sorted materials, which is a 

 

Fig. 13. Different WtE routed for MSW (Rezania et al., 2023) 
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worthy parameter for effective energy conversion (Jin et al., 
2023; Lv et al., 2023). 

Another aspect of ML application in the WtE domain is to 
improve the energy conversion process from sorted waste to 
useful energy (Al-Ruzouq et al., 2022). This is achieved by 
employing a variety of techniques, including gasification, 
incineration, and anaerobic digestion. Each one of these 
approaches has its own set of inherent characteristics that need 
to be modeled to optimize the energy output while minimizing 
the negative environmental effect caused by these processes 
(Chiu et al., 2022; Peng and Karimi Sadaghiani, 2024). In this 
scenario, ML can play an important role in the WtE process 
optimization (Taki and Rohani, 2022a). For example, in the case 
of the incineration process, ML algorithms are employed to 
monitor and control the combustion process in real-time. ML 
assistance ensures that waste is burnt at the optimized oxygen 
level and ideal temperature for best results (Ali et al., 2023; Zaki 
et al., 2023). Similarly, in the case of the anaerobic digestion 
process, the ML approaches can assist in maintaining optimal 
microbial conditions, such optimized settings help in increasing 
the biogas output (Andrade Cruz et al., 2022). The continuous 
process data evaluation employing advanced ML approaches 
helps in the detection of trends and abnormalities (Ge et al., 
2021). It thus offers a solution in the form of proactive 
modifications, in turn helping to improve overall efficiency. An 
intelligent framework in this regard is depicted in Figure 14 (A. 
Gabbar and Ahmad, 2024).  

The process as well as system reliability is crucial in WtE 
plants because equipment downtime can lead to significant 
energy loss. ML helps in efficient predictive maintenance to 
offer a robust solution to this challenging issue.  ML algorithms 
can help in the near accurate forecast when a piece of 
equipment may break by examining data from sensors installed 
in it (Achouch et al., 2023; Saraswat and Agrawal, 2023). This 

enables prompt maintenance, preventing unexpected 
malfunctions and increasing the life of the equipment. 
Furthermore, predictive maintenance eliminates the need for 
frequent inspections, which may be disruptive and expensive. 
The use of ML in this context not only assures continuous 
operation but also improves the safety and sustainability of the 
WtE plant (J. Li et al., 2022; Pehlken et al., 2022). 

The environmental effect of waste-to-energy operations is a 
key problem, particularly in terms of emissions and residue 
management. ML can help to reduce these consequences by 
improving process control and optimization. For example, 
emission control systems can utilize machine learning 
algorithms to continually monitor and regulate the quantities of 
pollutants released throughout the energy conversion process 
(V. Sharma et al., 2023a; Ünal Uyar et al., 2023). This guarantees 
that the facility complies with environmental laws while 
minimizing its carbon footprint. Furthermore, machine learning 
may optimize the treatment and disposal of leftovers, such as 
incinerator ash, ensuring that these byproducts are managed in 
an ecologically sustainable manner (Ghosh et al., 2023; Zhang et 
al., 2024). 

The use of ML in WtE goes beyond operational gains to 
drive research and innovation. By evaluating massive volumes 
of data from diverse WtE processes, ML can discover insights 
that lead to new approaches and technologies (Huang and 
Koroteev, 2021; Li et al., 2024). For example, machine learning 
can aid in the identification of the most efficient biogas 
feedstocks or the development of novel gasification catalysts. 
These developments have the potential to improve WtE 
processes' efficiency, cost-effectiveness, and scalability. 
Furthermore, ML can help integrate WtE systems with other 
renewable energy sources like solar and wind, resulting in a 
more robust and sustainable energy infrastructure. The 

 

Fig. 14. Intelligent framework for the pyrolysis process (A. Gabbar and Ahmad, 2024) 
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following studies listed in Table 5 summarize recent works 
showing the application of ML for effective WtE transformation. 

8. ⁠Challenges and perspective 

ML is making rapid inroads in the domain of the renewable 
energy sector. However, there exist some challenges in 
employing ML and intelligent algorithms to improve the energy 
production from RES. Data gathering, interpretability, model 
consistency, computation capabilities, and solution scalability 
are only a few of the problems. This section provides an 
examination of these issues and also discusses how these 
challenges can be overcome. 

8.1 Data Quality and Acquisition  

Obtaining and relying on the data is a major challenge for 
employing ML in renewable energy installations. With the use 
of sensors and monitoring equipment, renewable energy 
sources like solar and wind generate large amounts of data 
(Koutroulis and Kalaitzakis, 2003). Still, this data often runs into 
issues like noise, inaccuracy, and incompleteness. Training ML 
models that provide accurate results requires giving top priority 
to gathering data of outstanding quality and dependability. The 
solutions to these issues need data preparation techniques like 
as cleansing, normalization, and imputation, but they may be 
resource- and complexity-demanding (Aslam et al., 2021; 
Qaiyum et al., 2023).  

Another significant challenge is the variety of data sources. 
Several sources—including weather stations, satellite 
photography, and Internet of Things devices—provide data on 
renewable energy, all in different forms and standards. The 
integration of this heterogeneous data into a single dataset 
suitable for ML applications requires sophisticated techniques 

and presents significant technical and logistical difficulties 
(Kahia et al., 2022; J. Li et al., 2023).  

8.2 Model Validation and Accuracy  

High model accuracy is essential for ML to be used in RES 
effectively. Nevertheless, this project has a great difficulty 
because of the complex and varied features of renewable energy 
sources. Because solar and wind energy is intermittent and 
affected by weather and geography, building prediction models 
is made more difficult. Using a wide range of datasets that cover 
a wide range of scenarios, models must be thoroughly trained 
to guarantee accurate predictions of energy demand and output 
(Hu and You, 2022; Pan et al., 2023).  

Another important aspect is the model validation. ML 
models need to be rigorously validated using techniques like 
split-sample testing, bootstrapping, and cross-validation. Still, 
this process is made more difficult by the lack of globally 
recognized standards for RES. To properly evaluate the 
efficiency of ML models, recognized validation procedures and 
standards must be established (Ahmad et al., 2022).  

8.3 Transparency and Interpretability   

The acceptance of ML models in applications related to 
renewable energy depends on their understandability. 
Engineers, legislators, and investors are among the stakeholders 
who need to understand how models come up with their 
predictions and suggestions. Nevertheless, several advanced 
ML techniques, notably deep learning, operate as "black boxes," 
making it difficult to understand their underlying principles 
(Hassija et al., 2024; Shams Amiri et al., 2021).  

A lack of openness may lead to mistrust and hesitation to 
use ML technology. Explainable AI (XAI) and other 
comprehensible ML models and techniques are being 
developed more and more by researchers in response to this 

Table 5 
A summary of recent ML based WtE studies 

Main theme ML used Main outcomes Source 

Higher heating value model 
prediction of waste biomass 

ANN and Multivariate linear 
regression  

1. Well précised and robust prediction models were 
developed.   
2. ANN model had only 1.17527 root mean squared error 
(RMSE) 

(Ezzahra Yatim et 
al., 2022) 

Higher heating value of MSW 
MLP-ANN, Radial bias 
function-ANN, ANFIS, SVM  

1. RBF-ANN-based model was superior to others.  
2. RBF-ANN had RMSE as just 0.02 during training and 
0.03 during model test.  

(Taki and 
Rohani, 2022b) 

Forecasting of gas yield from 
MSW 

Deep NN and Moth-flame 
optimization (MFO) 

1. DNN was used for prognostic and MFO was used to 
improve the precision of DNN. 

(Yang et al., 
2021) 

Waste sorting  
You only look once (YoLo5s) 
and ShuffleNet V2 

The proposed model was 62% more efficient in 
prediction compared with model developed with YoLo5s 
based model alone  

(Y. Chen et al., 
2023) 

Garbage classification for 
effective sorting  

RestNet-34 
The results shows that classification accuracy was as 
high as 99%. 

(Kang et al., 
2020) 

Hydrothermal gasification of 
waste biomass:  optimization  

Adaptive multivariate 
random forest + Adaptive 
weighted rank aggregation + 
Tunable decision support 
system  

The hybrid approach helped in achieving 94% accuracy 
in hydrothermal gasification process   

(Gopirajan et al., 
2021) 

Olive pit waste gasification 
for hydrogen fuel 

Supervised ML (kNN, LR, 
DT, and SVM) 

LR and SVR were superior to other two ML approaches 
based on R2 and MSE values. 
LR and SVR achieved  R2 values of 0.999 and 0.997, 
respectively while MSE was 0.008 and 2.66, respectively.  

(Ozbas et al., 
2019) 

MSW gasification model-
prediction  

SVM, RF and Gradient 
Boosting Regression (RGR) 

GBr was superior in prediction with R2 more than 0.926 
and RMSE less than 6.318.  

(Yang et al., 
2023) 

Model-prediction of 
polyethylene waste  

Central composite design of 
RSM  

Model could be developed with less than 5% error.  
(Hasanzadeh et 
al., 2023) 
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problem. These tactics are meant to provide an understanding 
of the model's decisions and guarantee that the projections are 
precise and understandable. It is somewhat difficult to strike the 
ideal balance between interpretability and model complexity 
(Cortiñas-Lorenzo and Lacey, 2024; Qin et al., 2023).  

8.4 Computational infrastructure   

ML techniques in RES often need large computer resources 
to be implemented. Complex models, particularly those using 
large neural networks, need a significant amount of memory and 
processing power to develop. This may be problematic, 
especially for smaller companies and research groups with less 
access to powerful computer technology (Kapp et al., 2023; 
Khan et al., 2020). 

Moreover, applications that need fast processing of 
enormous amounts of data include dynamic energy 
management and predictive maintenance. Accurately achieving 
the necessary computer efficiency is a complex process. Using 
hardware developments like Tensor Processing Units (TPUs) 
and Graphics Processing Units (GPUs) as well as optimization 
techniques like distributed computing and parallel processing is 
essential to meeting these demands (Chammas et al., 2023; 
Routis et al., 2024).  

8.5 Scalability  

ML technology deployment in RES is heavily reliant on 
scalability. The solutions have to be able to handle an increasing 
volume of data and expand to cover larger geographic areas or 
include more renewable energy sources. Achieving scalability 
while maintaining dependability and performance calls for 
careful planning and robust structures (Cerquitelli et al., 2019; 
Torres et al., 2018).  

For instance, when used for other wind farms with different 
characteristics, an ML model built with data from one wind farm 
may not perform as well. It will be necessary to develop models 
that can be used in many contexts and modified as needed. 
Though they still require more research and development, 
transfer learning and federated learning are potential new 
approaches for addressing scaling issues.  

8.6 Easy Integration with Existing Systems  

Using ML models in the present renewable energy 
infrastructure and operational processes is another significant 
challenge (Resch et al., 2014). Complex networks of renewable 
energy comprise a number of stakeholders, including grid 
operators, energy providers, and regulatory bodies. It takes a 
thorough understanding and efficient coordination to integrate 
ML solutions smoothly without interfering with ongoing 
activities.  

Different technological stacks, data formats, and 
communication protocols make it difficult to integrate current 
ML solutions with outmoded systems (Raschka et al., 2020). 
Integration cannot be enabled until compatibility and standard 
interfaces are ensured. Moreover, sufficient training of 
employees is necessary to guarantee their effective use and 
administration of these recently acquired instruments, which is 
necessary for the project to be completed successfully.  

8.7 Protection and Privacy  

Concerns about privacy and security also arise when ML is 
included in RES. IoT sensors and devices are widely used in 
these systems, which creates several cyberattack weaknesses. 
Achieving data and ML model security is crucial to prevent 

unauthorized access and modification (Kokila and Reddy K, 
2025).  

Furthermore, privacy issues arise from the collecting and 
usage of large amounts of data. It takes careful balance to 
effectively use data for ML applications while nevertheless 
adhering to regulations like the General Data Protection 
Regulation (GDPR) (Hoofnagle et al., 2019). Differential privacy 
and secure multi-party computing are two techniques being 
looked at to address these issues, but they complicate the 
development and deployment of ML systems even more.  

8.8 Ethical issues  

ML applications in RES are increasingly requiring the 
consideration of ethical concerns. The decisions ML algorithms 
take might have a significant impact on the environment and 
communities. It is essential that these models work impartially 
and do not inadvertently exacerbate already-existing biases or 
inequalities (Malhotra et al., 2018; Stahl, 2021).  

Energy pricing and allocation ML models need to be 
designed especially to provide equitable and fair access to 
energy supply. Tackling these issues requires the establishment 
of ethical standards and frameworks for the use of ML in 
renewable energy. Important components of ethical ML 
adoption include also active engagement with stakeholders and 
ensuring transparency in decision-making processes.  

8.9 Regulating and policy issues  

Regulation and policy frameworks have a big impact on how 
ML is used in RES. One has to be completely aware of both 
national and international laws and regulations to properly 
negotiate the intricate regulatory environment. Finding the right 
mix between encouraging innovation and guaranteeing 
compliance is essential (Fernandes and Silva, 2022).  

Artificial intelligence and ML technologies integration in the 
renewable energy industry should be encouraged by the 
policies (Antonopoulos et al., 2020). This includes setting up 
standards and recommendations, allocating funds for research 
and development, and promoting collaboration between the 
corporate world and academic institutions (Nam et al., 2020). 
Still, the rapid advancement of ML technology often outpaces 
regulatory frameworks, leading to misunderstanding and major 
implementation barriers.  

A multidisciplinary approach including collaboration among 
data scientists, engineers, policymakers, and other stakeholders 
is required to address these challenges. Overcoming these 
obstacles and fully using the ability of ML in the RES need 
continuous research and development as well as the application 
of set standards and ethical guidelines (Malhotra et al., 2018; 
Ximenes and Ramalho, 2021). By efficiently overcoming these 
challenges, the renewable energy industry may employ ML to 
boost production, foster innovation, and significantly advance 
the cause of a more ecologically friendly future.  

9. ⁠Conclusion 

The integration of ML and intelligent algorithms in RES 
presents a transformative opportunity. It helps in enhancing 
reliability, efficiency, and sustainability. This review paper has 
explored the application of ML across several RES like solar, 
wind, biofuel, and biomass energy domains. The study 
highlights significant progress and concerning challenges. ML 
techniques are instrumental in addressing key issues like data 
variability, system optimization, predictive maintenance, and 
process control. However, to fully harness these benefits, 
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several challenges must be overcome through multidisciplinary 
collaboration, technological innovation, and supportive policy 
frameworks. ML contributes to the improvement of solar 
irradiance forecasts, which raises the precision of estimates of 
energy generation. The performance and efficiency of solar 
systems are maximized via optimization techniques. Inaddition, 
better wind speed forecasts made possible by advanced 
machine learning algorithms lead to increased turbine efficiency 
and energy dependability. Algorithms for predictive 
maintenance lowers wind farm downtime and operating 
expenses. For biofuels, by optimizing feedstock selection, 
process parameters, and yield forecasts, ML improves the 
production of biofuels. Data-driven strategies raise the 
economic and environmental sustainability of biofuel 
production. In the case of biomass energy, effective thermal 
conversion procedures made possible by machine learning 
guarantee increased energy production and stable operations. 
ML-based real-time process control lowers waste and improves 
system efficiency.  

In order to properly train machine learning models, it is 
necessary to offer data that is reliable and of high quality. 
Indeed, to win over stakeholders and be accepted, it is 
important to improve the understanding of complex machine 
learning models. Managing the high computational 
requirements of complex machine learning models is one of the 
computing demands that must be met. Establishing frameworks 
that will make it easier to incorporate machine learning into 
renewable energy sources is a requirement for receiving support 
from policy and regulation. Moreover, ensure the confidentiality 
and safety of the data stored in machine learning systems. This 
is an ethical issue. The future of renewable energy lies in the 
successful integration of ML and intelligent algorithms, 
promising a cleaner, more efficient, and resilient energy system. 
Continued research, innovation, and collaboration are 
imperative to overcome challenges and fully unlock the 
potential of renewable energy through ML. 
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