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Abstract. As renewable energy continues to rise in the global energy mix, wind energy is gradually increasing its share in the power system as a
clean, renewable form of energy. However, the volatility and uncertainty of wind power bring new challenges to power system operation, making the
need for its efficient prediction and intelligent dispatch more and more urgent. Based on this, a method combining genetic algorithm and
backpropagation neural network is proposed for wind power prediction and energy storage scheduling. In this study, the improved genetic algorithm-
backpropagation algorithm was generated by optimizing the weights and thresholds of the backpropagation neural network through the genetic
algorithm, and optimizing the crossover and mutation processes of the genetic algorithm using similar block-order single-point crossover operator
and shift mutation operator. Moreover, the improved genetic algorithm-backpropagation Neural Network wind energy prediction model was
successfully constructed. Subsequently, the improved genetic algorithm was applied to search for the parameters of support vector machine and an
improved genetic algorithm-support vector machine photovoltaic power generation prediction model was established. The experimental results
showed that the average absolute percentage error of the improved genetic algorithm backpropagation neural network algorithm was 2.4%, and the
accuracy was significantly higher than that of the traditional backpropagation neural network algorithm. The maximum photovoltaic prediction error
of the autoregressive integral moving average model was about 80MW, while the photovoltaic prediction error of the improved genetic algorithm
support vector machine photovoltaic prediction model was only about 12kW. In addition, the average absolute percentage error of the improved
genetic algorithm support vector machine photovoltaic prediction model was only 1.53%, which was only 0.2% higher than the support vector machine
prediction model. This study not only improves the stability of the power grid but also provides a practical and feasible method for realizing the large-
scale application of clean energy, making a positive contribution to the sustainable development of the energy industry.
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1. Introduction advanced methods to improve the performance of WPP to

better meet the needs of the power system. On the other hand,
genetic algorithm (GA) can enhance the adaptability of WPP
model by simulating biological evolution and globally searching
the parameter space (Kshirsagar et al. 2021). Backpropagation
(BP) neural network, on the other hand, can accurately capture
the effect of wind speed (WS) variation on WP output by
learning historical data patterns (Dawid and Kopel, 2019). For a
result, combining GA and BP and using GA to optimize the BP
network parameters can enhance the prediction model's
capacity for generalization even further.

With the challenges posed by the rapid growth of renewable
energy sources, especially the volatility of wind energy,
researchers have worked on the development of WPP
techniques and energy storage scheduling (ESS) strategies.
Through advance knowledge of WP volatility trends and
intelligent energy storage (ES) system scheduling, the aim is to
optimize power system operation and improve the efficiency of
renewable energy utilization while ensuring system stability and
reliability. Keynia and Memarzadeh (2022) proposed a method
based on the combination of WP production, tariff and financial
gain/loss (FLG) forecasting with ES, aiming to address the

Currently, the power system is undergoing a profound
transformation from traditional energy sources to renewable
energy sources. While the use of renewable energy sources,
including wind power (WP), has significantly lessened the
impact on the environment, its unpredictability and
intermittency complicate power system operation and planning
(Gurhanli 2020; Saravi et al. 2021; Yang et al. 2021). In this
context, wind power prediction (WPP) has become an
important part of solving the problem of WP volatility.
Traditional mathematical models and algorithms perform
poorly in handling the complex nonlinear relationships of WTG
output. Many traditional models are based on linear
assumptions and cannot effectively capture the complex
nonlinear relationship between wind speed and WP output.
Meanwhile, traditional algorithms rely heavily on historical data
and lack flexibility. When data is scarce or of poor quality, the
predictive power of the model is significantly reduced. There is
a significant gap in the existing research in the field of WPP,
especially in terms of model flexibility, adaptability, and
accuracy. Therefore, there is an urgent need to explore more
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forecasting and scheduling challenges posed by the uncertainty
of WP generation with wind. The experimental results indicated
that with this method, the expected profit could be improved by
4.44-27.69% in a given forecast month by adjusting the initial
offer based on the FLG forecast. Wan found that the
intermittency and volatility of WP posed a great threat to the
safety of power system operation, and proposed a control
scheme based on probability prediction. This method combined
probabilistic 'WPP with multivariate Gaussian copula to
generate time-dependent WP scenarios. Simultaneously, the
adaptive variational mode decomposition method was used to
extract frequency components. The results showed that this
method could effectively reduce the fluctuation of WP (Wan et
al, 2021). Semero et al, (2020) proposed an optimal unit
commitment and dispatch model for distributed generation in
the grid in a grid-connected microgrid system. The model
aimed to optimize ES equipment and combined heat and power
(CHP) generating units through load and renewable generation
forecasts to minimize the overall system operating costs.
Simulation results revealed that optimal scheduling of ES
system and CHP units using this strategy could significantly
reduce the system operating costs. Li and Chen (2019) proposed
an optimal control strategy for wind farms with battery ES
system centered on an optimal control model. The strategy
aimed to minimize the number of battery energy storage system
(BESS) orders, taking into account statistical control effects and
battery ES system operational constraints, including charging
states and dead zones. Simulation results demonstrated that the
control strategy reduced the number of BESS orders while
improving the accuracy of the WP tracking plan, and had an
anti-interference function to prevent the ultra-short-time WPP
error. Martinez Rico et al,, (2020) proposed a hybrid renewable
energy system optimization method based on energy arbitrage
to address the randomness and intermittency issues of
renewable energy sources such as wind and solar power. This
method utilized storing energy at low electricity prices and
selling it at high electricity prices to maximize the profit of the
power plant and reduce the loss of battery value. By fitting the
particle swarm optimization algorithm to solve the multi-
objective cost function, the results showed that considering
energy efficiency significantly improved battery life, while
profitability was similar to not considering value loss. Xia et al.,
(2020) proposed a multi period coordinated scheduling model
to address the power balance challenges posed by intermittent
renewable energy sources such as WP and photovoltaics. The
model was divided into three time scales: day ahead scheduling,
one hour ahead scheduling and 15 minutes ahead scheduling.
The simulation results showed that the model effectively utilized
the regulation capabilities of different power generation
methods, successfully tracked changes in active power, and
achieved the economic operation of the system. Liu et al., (2023)
proposed an energy optimization scheduling method for
distribution networks with a source load storage aggregation
group to address the energy imbalance caused by large-scale
distributed generation access. First, a system model of the
distribution network layer and the SAGs layer was established,
and then a load forecasting method based on Adaboost
integrated convolutional neural network and bidirectional long
short-term memory was adopted. The simulation results
verified the accuracy of the load forecasting model and the
effectiveness of the proposed optimization strategy in energy
optimization scheduling.

On the other hand, BP is able to capture more accurately the
effect of WS changes on WP output by learning complex
patterns in historical data. Many scholars launched a series of
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researches on it. Scholars such as Wright et al., (2022) proposed
a method based on direction propagation algorithm for the
training problem of deep neural networks. The process analyzed
the execution efficiency of the neural network in the
classification task using different physics techniques, and added
expandable modules to the method. Experimental results
demonstrated that the proposed method had good training
efficiency. Leung et al., (2023) proposed a BP based method for
the problem of signal timing logic analysis. The research process
used a systematic approach to transform robust formulas,
utilized computational graphs and automatic differentiation
tools to complete the BP, and added gradient methods for
integration. Experimental results indicated that the proposed
method had a wide range of applicability. Park and Lee (2022)
proposed a method based on BP algorithm for the problem of
stereo matching. The process maintained the spatial resolution,
adjusted the number of parallax planes, and excluded the large
difference pixels between the real ground parallax. According
to experimental data, the suggested approach offers a high
accuracy for stereo matching. Khehra et al, (2022) have
proposed a technique based on BP algorithm for the problem of
x-ray image classification. The process could preset the possible
image types of x-ray images, statistical texture features are
extracted and the performance of the technique is analyzed
using accuracy. According to the findings, the suggested
strategy had a high categorization efficiency. Colak (2021)
proposed an assistive technique based on BP algorithm for the
research problem of nanofluids. The process utilized
experimental data as a data source, incorporated multilayer
perfusers in the network structure and calculated the thermal
conductivity. The findings demonstrated the effectiveness of the
suggested strategy in connecting the experimental findings.

In conclusion, while WPP and ESS research is currently
advancing at a rapid pace, several challenges remain. These
include the unpredictability of wind energy, which is difficult to
fully eliminate, and the optimization of ES system capacity and
efficiency. To achieve the comprehensive development of
intelligent renewable energy applications, further in-depth
research is necessary (Fan et al., 2024; Graca Gomes et al., 2021;
Muttaqi and Sutanto, 2021). On the other hand, GA simulates
biological evolution and globally searches the parameter space
to optimize the WPP model, which can improve the adaptability.
BP can accurately capture the impact of WS changes on WP
output by learning historical data patterns (Li and Li, 2020).
Therefore combining the two, GA optimizes the BP network
parameters, which can make the prediction model more
generalized and perform better in WPP (Nikoobakht et al., 2020;
Xue et al.,, 2022; Watabe et al., 2021). Based on this, the study
proposes a WPP with ESS method that fuses GA with BP neural
network. At the same time, in response to the problem of long
computation time for WPP, the study introduced similar block
order single point and code shift mutation to optimize the
crossover and mutation process of GA, and proposed an
improved genetic algorithm (IGA). First, the BP was optimized
by IGA, and by modifying the initial weights and thresholds, the
WPP model of GA-BP was effectively built. Then, the GA was
used to determine the Support Vector Machine (SVM) kernel
function parameters and penalty factor, and finally, the IGA-
SVM Photovoltaic (PV) power generation prediction model was
built. The innovation of the research is to fully combine GA with
BP neural network, and optimize the initial weights and
thresholds of BP neural network. Meanwhile, the crossover and
mutation process of GA was optimized, and an IGA based on
similar block order single point and code shift burst was
proposed to construct an efficient WPP model. The IGA was
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applied to optimize the penalty factor and kernel function
parameters of SVM, and an ESS model was successfully
constructed. This novel algorithm can achieve higher accuracy
and efficiency in actual WPP and ESS. Compared with existing
methods, the model proposed in this study has been deeply
optimized for the accuracy of WP generation prediction and can
better adapt to the volatility of WP generation. At the same time,
the combination of algorithm efficiency and prediction models
is more flexible, which can effectively improve the economic
operation efficiency of the system. In addition, the IGA-SVM
photovoltaic power generation prediction model created by the
research is beneficial for further improving the scheduling
capabilities.

This study consists of five parts. The first part presents the
research background, problems, and solutions related to WPP
and ESS. The second part reviews the previous research results
on WPP and ESS, and summarizes the difficulties and
shortcomings of the methods. The third part presents the
improvement of BP algorithm by combining GA. To compare
the effectiveness of the new method with the traditional method,
a comparison experiment is designed in the fourth part. The fifth
part summarizes the research method, analyzes the
experimental results, and puts forward the shortcomings and
prospects of the method.

2. Wind Power Prediction and Energy Storage
Scheduling Method Based on BP

In order to increase prediction accuracy, this study investigates
the joint usage of BP and GA to optimize the WPP model's
parameters through GA and BP further training. In the
meantime, in order to accomplish the goals of increasing the
power system's dispatchability and lowering operating costs,
the GA is introduced to improve the scheduling strategy of the
ES system by achieving the synergistic operation of WP and ES.

2.1 GA Improved BP Prediction Method Design

WP energy prediction is to analyze and simulate the
meteorological conditions, such as WS and direction, of a WP
site for a certain period of time in the future through the use of
techniques such as meteorology, statistics and machine
learning, in order to predict the power generation energy of the
WP system (Garai et al., 2023; Hebbi and Mamatha, 2023; Kim
et al., 2020). The WS will directly effect the wind turbine (WT)'s
power because the fundamental idea of wind energy is that the
wind turns mechanical energy into electrical energy through the
WT's rotation and then through the generator (Bandewad et al.,
2023). Equation (1) provides the mathematical expression for
the power of a WT. The most significant parameters influencing
a WT's power output are its features and the WS.

1
p:;-p-CP'A'US’ (1)

In equation (1), p denotes the output power of the WT (kW)
and p denotes the air density (kg/m3). Cp indicates the power
coefficient of the WT, and A indicates the swept area of the WT
(m?). v is the WS (m/s). Equation (1) states that the fan power is
directly proportional to the air density. Since temperature and
air pressure also have an impact on air density, equation (2)
provides a quantitative expression for air density.

p= 3.48’;—‘1(1 -0. 387%) )

Pq
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In equation (2), p; denotes the standard atmospheric
pressure (kPa) and ¢ denotes the relative humidity of the air
(%rh). p,, is the saturated water vapor pressure (kPa) and T is
the thermodynamic temperature of air (K). Turbulence is a
common phenomenon in nature p;, and reflects the change in
WS. WTs are affected by turbulence, which affects the full
utilization of wind energy. Therefore, it is crucial to study the
effect of turbulence on WT power. The mathematical
expression for the turbulence intensity I is given in equation

(3).

a
Ir =3 3)

In equation (3), o denotes the standard deviation of WS
(m/s) and V is the average WS (m/s). The WPP deviates from
the actual value and cannot be completely 100% accurate. BP is
a multilayer feed forward neural network that minimizes the
output error at a given input through learning and training
(Gomes et al., 2020; Guo et al, 2020). The study uses BP for
network correction to minimize the error until the desired
accuracy is achieved. Figure 1 illustrates the BP structure.

The input layers (IL), hidden layers (HL), and output layers
(OL) of the BP network in Figure 1 are made up of linked
neurons. The input signal is processed to produce an output
value in the OL and the error is calculated by comparing it with
the desired output. The weights and thresholds are adjusted
between neurons by error BP and the network is modified to
reduce the error until the desired accuracy is achieved (El
Bourakadi et al., 2022; Zhu et al., 2022). The first information is
transmitted by the IL, and the activation function is a constant
function. Equation (4) displays the expression for the buried
layer's activation function, which is the tansig function.

2
f) == 4

In equation (4), e denotes the Euler number. Equation (5)
provides the expression for the logsig function, which is used as

the activation function in the OL.

1
1+e™*

fo) =

—_
1
~

The input signal of a BP network introduces a certain
amount of systematic error as it is passed layer by layer through
the HL, IL, and OLs. By passing the error in the reverse
direction, this process is repeated so that the error gradually
satisfies a specific condition (Xing et al., 2022). The definition
expression of the systematic error E is detailed in equation (6).

0 ’( >
Input layer

Hidden layer Output layer Expected output

Fig. 1 Structure diagram of BP neural network
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E = YRET | di — il (6)

In equation (6), num denotes the total amount of training
data, dj, denotes the expected value, and y;, denotes the output
value. The BP network algorithm consists of two stages: forward
propagation and BP. In forward propagation, the input
expression of the | th node of the HL is shown in equation (7).

mput;- Xz, wX; + y; @

In equation (7), x; denotes the input value of the IL, y;
denotes the deviation value of the implied layer, and uj
denotes the connection weights between the nodes of the IL and
implied layers. Equation (8) displays the expression for the
implicit layer's jth node's output value.

out; = f(input;) = f(Xi= wjix; +¥;) ®)

In equation (8), out; denotes the output value of the jth

node of the implicit layer. The input of the kth node of the OL
is shown in equation (9).

q 1 n
input, = kajCj +b, = kaj f (Zujixi +y,)+b,
= =1 i1
(9)

In equation (9), f(x) denotes the transfer function of the
implicit layer, vy ; denotes the weights between the nodes of the
implicit layer and OL, and b, denotes the OL node threshold.
Where i=1,23,...... ,n o, j=123,...... ,q , k=
1,2,3,...... ,m. Equation (10) displays the output value of the
OL's kth node.

Oy = g(inputy) = g(Z;Ll VG + by) = Q(Z?ﬂ vyjf
Xie1 wjix; + ;) + by (10)

In equation (10), g(x) denotes the transfer function of OL and

Oy is the output of the OL node. a; denotes the deviation value

of the hidden function. The standard algorithm for network

weight adjustment is based on the error gradient descent

method. To begin, the precise computation in equation (11) is
Wind power

( Start ) raw data

2 v

Data
preprocessing

*4
Input data

v

Initialize
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applied by computing the error table between each sample's
actual and intended output.

Ey = STy, — 0y)? (11)

In equation (11), Tj represents the intended result.
Reducing the error function is the aim of network training. Error
BP's primary task is to update the weights and thresholds in
order to minimize error. To make sure the weights and
thresholds meet the requirements, the network is trained
repeatedly. Figure 2 depicts the BP-based WPP method.

The steps involved in using BP in WPP are shown in Figure
2, where the error between the output and the predicted value
is calculated, the error BP is used to update the weights and
thresholds, and the error is reduced by iterative training. The
initial weights and thresholds of BP are usually chosen randomly
within a certain range, but improper selection may lead to
problems. GA can be used to determine the optimal initial
weights and thresholds to increase prediction accuracy and
prevent the local minimum problem. Firstly, the derivative of
the systematic error E is defined as the meta-adaptation
function. Equation (12) displays the mathematical expression as
well.

f=as (12)

In equation (12), a denotes the coefficient. Selection,
crossover and mutation, and looping are carried out until the
computation is finished once the fitness function has been
established. In addition, the GA-BP neural network algorithm
has the problem of long computation time when predicting WP.
In response to this issue, research has optimized the crossover,
mutation, and local search stages of the GA. The effectiveness
of the GA method largely depends on the population
initialization process, and the selection of crossover and
mutation, as well as the probability of their adoption, will also
greatly affect the effectiveness of the algorithm. Therefore, the
study adopts an operator called similar block order single-point
crossover to optimize the GA method. This operator first
considers at least two consecutive blocks with the same order,
and only the same blocks occupying the same position in the

Error
backpropagation

End

Meet the
termination
condition?

Wind power
forecast results

The signal is o
transmitted forward g

Calculation error

Fig. 2 Wind power prediction flow diagram based on BP neural network
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Meet Selection,
the termination <> crossover, [«— Computational fitness
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Fig. 3 Flow chart of WPP based on IGA-BP network

parent are directly copied to the child. Then, based on
maintaining the same blocks, a single-point sequential crossover
method is used to cross the parent. In addition, in the selection
of mutation operators, the study selected shift mutation, which
randomly selects a workpiece to be inserted in another random
position. Similar block order single-point crossover operators
and shift mutation operators can better utilize information in the
population and reduce unnecessary computation, which can
solve the problem of long computation time to some extent.
Figure 3 illustrates the flowchart of the IGA-BP algorithm based
WPP.

First, to improve the model's initial performance, Figure 3
illustrates how IGA optimization is applied to set the weights
and thresholds of the first BP. The weights and thresholds are
then continuously adjusted using the error BP approach to
reduce the difference between the expected and actual values
and, ultimately, produce correct WPP. The BP is then employed
for training. Photovoltaic power prediction utilizes existing and
past PV output data through modeling in order to obtain future
PV power. Figure 4 depicts the battery's performance at various
irradiance levels at a standard temperature of 25°C. Solar
irradiance is a measure of the energy of solar radiation that
reaches the earth's surface.

In Figure 4, under constant temperature conditions, Figure
4(a) clearly demonstrates the trend of increasing the current of
the photovoltaic cell as the irradiance is enhanced.
Correspondingly, Figure 4(b) shows that the output power of the

—_—

Current (A)

Photovoltaic Array

0 Photovoltaic Array Voltage (V) 600

(a) Constant temperature and variable
irradiance | characteristics

Pv Array Output

photovoltaic cell also tends to increase with increasing
irradiance, which in turn leads to a corresponding change in the
maximum power point of the photovoltaic cell.

2.2 Energy Scheduling of Energy Storage System Based on IGA
Optimized SVM

Autoregressive integrated moving average model (ARIMA) is a
method for dealing with non-stationary time series that
combines regression, differencing and moving average (Bali et
al,, 2020; Lochmann et al., 2023). Differencing is one of the key
steps, which can improve the stability of the series, but too much
differencing may lead to information loss. The loss of
information needs to be minimized while maintaining the
stability of the series. PV forecasting based on the ARIMA
model starts with the processing of the time series, which is
formulated in equation (13).

Vxy = xpxe-q = (1-B)x, (13)

In equation (13), B denotes the delay factor, V=1—B
denotes the ordered difference operator of the incoming, and
the expression of the time series after order difference is shown
in equation (14).

Ve x, = (1 —B)4x, (14)
4000
_ — <=—R=1000
/ \
— — - ~<——R=800
< -7 N
g 7~ 4—'R=600
Gg-) Vs (/ e g .\ X
e 277 R=400
Sl - |

|4
0 Photovoltaic Array Voltage (W) 600
(b) Mild variation P characteristics

Fig. 4 Characteristic change curve of photovoltaic cells (constant temperature)
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Fig. 5 IGA-SVM prediction model flow chart

In equation (14), d denotes the number of differences. B
denotes the delay operator and V=1 —B denotes the
introduced ordered difference operator. After the time series
processing, the next step is to perform model identification. In
order to select the model that matches the sequence {x;}, the
autocorrelation function (ACF) and partial autocorrelation
function (PACF) of the sequence can be utilized for model
identification. After determining the sequence model type, the
appropriate N and m values need to be selected. Usually, the
Information criterion function method is used to determine the
model order, while in the study, Akaike information criterion
(AIC) is chosen to be used for the model order determination.
In equation (15), the precise mathematical formula is also
displayed.

AIC = 2k—21n(L) (15)

In equation (15), k and L denote the number of model
parameters and the great likelihood function, respectively.

| Energy storage
| system

Photovoltaic
power generation

&

Rectifier

R

Wind power
generation

DC/DC
Distributed generation system

Finally, the parameter estimation is carried out, and the study
obtains the PV power generation prediction model based on
ARIMA. The study uses the IGA to optimize the SVM model,
taking the kernel function parameter g and the penalty factor C
as the optimization-seeking object to construct the IGA-SVM
prediction model (Chen et al., 2022; Patil et al., 2021; Sun et al.,
2024). The IGA-SVM prediction model's flow chart is displayed
in Figure 5.

In Figure 5, first, the optimal kernel function type and
parameters are selected by IGA. Subsequently, the trained SVM
model is utilized to predict the test data. The final goal of the
entire procedure is to maximize SVM performance and raise
prediction accuracy through IGA by assessing the model's
performance and making the required modifications.

The complimentary nature of solar and wind energy is fully
utilized by the wind and solar power generation system, which
can increase power supply stability and dependability. The
system is categorized into off-grid and grid-connected types.
The off-grid type is mainly used for microgrid, supplying

Grid-connected

FT?» @

Wind-wind V
complementary

I

|

I

I

| system controller

I

| NI
I

I

External grid

Fig. 6 Structure diagram of wind-solar complementary system
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Fig. 7 Energy management strategy flow chart

electricity to the load and storing the excess electricity. The
grid-connected type can be connected to a large power grid to
realize  self-generation, self-consumption and on-grid
connection of surplus electricity. Figure 6 shows the system
components.

In Figure 6, the wind-solar complementary system includes
several main parts such as solar PV battery bank, WT, ES
system, grid-connected inverter, and system controller. The
inconsistent energy output of the new energy grid-connected
presents difficulties for the wind-solar hybrid system. To solve
this problem, the research focuses on establishing a wind-solar
ES system. Combining wind and PV power forecasting models,
the optimal ES plan is finally obtained using IGA. Figure 7
illustrates the energy management strategy flow.

In Figure 7, the ES system enters the charging state when
the wind energy produces excess power. If the charging power
is within the constraints, the system continues to charge.
However, if the constraints are exceeded, the ES approaches the
upper limit of charging and the adjustable load consumes the
excess energy to balance the energy difference between time
periods. Conversely, if there is not enough wind and solar
energy to generate power, the ES enters the discharge state. If
the exported power is sufficient to make up the shortfall, the

system discharges. However, if the constraints are exceeded,
the ES approaches the lower limit of discharge and some of the
load must be removed. When the adjustable load reaches the
maximum regulation and there is still a shortfall, the back-up
power is activated.

3. Performance Validation of BP-Based Wind Power
Prediction and Energy Storage Scheduling

Comparative tests are designed to validate the prediction
accuracy performance of the IGA-BP approach with the classic
BP network, with the aim of thoroughly validating its
adaptability and generalization ability. Additionally, by
contrasting the discretization of the IGA-SVM PV prediction
model with the SVM prediction model, the study validates the
model's performance. This series of comparative experiments
aims to comprehensively assess the effectiveness of the
proposed method and ensure that its performance under
different conditions is fully validated.

3.1 Performance Validation of IGA-Improved BP Prediction Method

To further validate the performance of the IGA-BP neural
network algorithm, experiments are conducted using the

12+ — — Predicted value 44
— True value
2_
= 73
s s O%M
g g 5]
° £
o -4
T T T '6 T T T
0 100 200 300 0 100 200 300
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Fig. 8 Prediction error curve of grey model and comparison of prediction results with BP neural network prediction of random samples
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Fig. 9 Comparison of BP and IGA-BP neural network prediction of random samples, BP neural network error curve of random samples, and
IGA-BP prediction model prediction graph for 24h

Table 1
Name Environmental parameters
Processor Intel(R) Core(TM) i5-9500 CPU @ 3.00
GHz
System type 64 bit operating system
Memory 16GB
Software MATLAB 2020a
environment
Table 2
Parameter Value
Population size 50
Iterations 50
Cross probability 0.8
Mutation probability 0.2
Learning rate 0.001

measured WP data of a wind farm for the entire year of 2022.
The wind farm used is located in Shandong Province, which has
become an important area for WP development due to its
superior wind resources and suitable climate conditions. A total
of 3534 samples are collected and divided into training and
testing sets in an 8:2 ratio. Among them, the training set
contains 2827 samples, the test set consists of 707 samples. The
simulation environment is shown in Table 1.

The parameter settings for the IGA are shown in Table 2. To
verify the effectiveness of the IGA-BP-WPP model, the study
sets up a comparison experiment to compare the errors of the
gray WPP model, the traditional BP-WPP model and the IGA-
BP proposed in the study. Figure 8 demonstrates the gray model
prediction error curve compared with the prediction results.

In Figure 8(a), the color model's prediction results are more
accurate for the first 200 minutes or so. However, beyond that
time, the prediction value steadily increases while the real value
steadily drops. The two do not overlap, indicating a poor
prediction performance. In Figure 8(b), in the first 200 min or
so, the prediction error fluctuates above and below 0 MW, and
after 200 min, the prediction error shows a decreasing trend,
reaching a minimum of about -5 MW. The study further records
the random sample comparison of neural network prediction of
BP and IGA-BP, the random sample error curve of BP, and the
continuous 24h prediction of IGA-BP prediction model, which
are shown in Figure 9.

In Figure 9(a), the IGA-optimized IGA-BP is more consistent
with the test data, and the accuracy is significantly improved
despite the long computation time. In Figure 9(b), the traditional
BP improves the prediction accuracy, but the error is still
significant. In Figure 9(c), the BP predicts a smaller difference in
comparison of random samples, but there is still an error. In
Figure 9(d), the training effect of the model random samples is
supported by the good fit between the prediction and actual
curves. To evaluate the accuracy improvement of the prediction
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Fig. 11 Comparison of prediction results and error curve of ARIMA PV prediction model

algorithm in this study, Figure 10 compares the error 3.2 Performance Validation of IGA-SVM based Photovoltaic

assessment indices of the three prediction techniques. Prediction Models

Figure 10(a) sbows that the sray model's average absolut.e The study configured the IGA with a population size of 50, 50
percentage error is 41.9368 and its root mean square error is . . . . .
61.62. Figure 10(b) shows that the accuracy of the IGA-BP iterations, a crossover probability, and a variance probability of
méthé d is greatly improved, with an average absolute 4 to 1. The contrast between the error curve and the ARIMA PV
percentage error of 2.4%. Over’all, the improved BP with IGA prediction model's prediction outcomes is shown in Figure 11.

exhibits a stronger WPP capability.
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Fig. 12 Absolute error curve of IGA-SVM prediction model and prediction results for 24
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Fig. 13 Comparison of error evaluation indexes of the three forecasting methods

According to Figure 11(a), the ARIMA PV prediction error is
up to about 80 MW. Figure 11(b) shows that there is a significant
discrepancy between the true value and the anticipated value of
the ARIMA model PV forecast, with the difference getting closer
only at about 120 minutes. Taken together, the ARIMA PV
prediction model has a large error and cannot be used directly
in PV prediction. Figure 12 records the absolute error curve of
IGA-SVM prediction model with continuous 24h prediction
results.

The maximum inaccuracy of the IGA-SVM is approximately
12 kW, as shown in Figure 12(a). The reduced error fluctuation
range of the suggested model indicates that the IGA-SVM PV
prediction model is more stable and accurate. The IGA-SVM
prediction model essentially matches the true value in the
continuous 24-hour prediction, as shown by Figure 12(b),
indicating a greater prediction accuracy. To further confirm the
effectiveness of the proposed IGA-SVM PV prediction model in
the study, Figure 13 compares the error evaluation indices of
the three prediction strategies.

In Figure 13(a), the RMSE of the ARIMA model is around
24.6 and the MAPE is around 28%. According to Figure 13(b),
the MAPE is around 1.5%. The IGA-SVM PV prediction model
has an average absolute percentage error of 1.53%, which is just
0.2% more than the SVM prediction model. It is noteworthy that
the degree of dispersion in the outcomes produced by the IGA-
SVM PV prediction model is lower.

4, Discussion

To verify the effectiveness of the IGA-BP neural network WPP
model, the grey WPP model, the traditional BP neural network
WPP model, and the proposed IGA-BP neural network were
compared for errors. The results showed that the prediction
results of the grey model were close to the true values in the first
200 minutes, but showed poor prediction performance after 200
minutes. The root mean square error of the model was 61.62,
and the average absolute percentage error was 41.9368.
Although traditional BP neural networks improved their
prediction accuracy, the errors were still significant. The
predicted data from the IGA-BP neural network was more
consistent with the true values. The average absolute
percentage error of this algorithm was only 2.4%. The reason
was that the IGA-BP neural network combined IGA to optimize
the weights and biases of the BP neural network, which could
effectively avoid the problem of the BP neural network getting
stuck in local optimal solutions during training. In addition, the

IGA-BP neural network had stronger adaptability in dealing with
the nonlinear and time-varying characteristics in WPP. Zhang et
al., (2022) proposed the IGA-BP algorithm to address the
problem of inaccurate alcohol content detection in segmented
wine picking. The results showed that the average prediction
error of this method for alcoholic beverages was 0.381, which
was significantly better than the traditional BP neural network.
To verify the superiority of the IGA-SVM photovoltaic
prediction model, it was compared with the ARIMA
photovoltaic prediction model. The results showed that the
ARIMA photovoltaic prediction error was as high as about
80MW, and the predicted value differed significantly from the
true value, with a MAPE of about 28%. The MAPE of the IGA-
SVM photovoltaic prediction model was only 1.53%, and
compared with the SVM prediction model, the error only
increased by 0.2%. The IGA-SVM model used the IGA to
optimize SVM, which enabled the model to explore the
parameter space more effectively when selecting support
vectors and adjusting hyperparameters. At the same time, the
method optimized the selection of input features, which could
screen out the most influential features for photovoltaic power
generation prediction, fully explore the potential patterns in
photovoltaic power generation data, and significantly reduce
the prediction error. Huang et al., (2023) applied the IGA SVM
algorithm to the classification of agricultural products. The
results showed that the classification accuracy of the algorithm
was as high as 98%. This indicated that the algorithm had
significant advantages in feature selection, nonlinear
processing, global optimization, and adaptability, which made it
perform well in areas such as photovoltaic prediction and
agricultural product classification.

However, the study did not consider the impact of factors
such as climate change, load demand fluctuations, and policy
changes on ESS. Meanwhile, research on ESS mainly focuses on
economic benefits without fully analyzing the volatility of output
power. Future research should comprehensively analyze
various potential factors in the modeling process, especially in
the field of ESS. It is recommended to introduce research on
power fluctuation suppression to improve the stability and
adaptability of the system.

5. Conclusion

As the proportion of wind energy in the power system increases,
the demand for accurate prediction of WP and smart ES rises
sharply. However, traditional methods are difficult to meet the
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nonlinearity and time-varying nature of WP, and improving
WPP accuracy has become a top priority. This study explored
the combined application of IGA and BP to optimize the WPP
model parameters by IGA and then use BP for further training,
with a view to improving the prediction accuracy. Meanwhile,
the IGA was introduced to optimize the scheduling strategy of
the ES system, by realizing the cooperative operation of WP and
ES. The experimental results indicated that the error was
significantly reduced to 2.4% when using the IGA-BP algorithm
for WPP, which was an improvement of about 14.5% compared
to 16.9% for the traditional BP network. This algorithmic
improvement resulted in a significant increase in WPP accuracy.
The SVM prediction model demonstrated a high degree of
consistency over 24 consecutive hours, and the predicted
values were in good agreement with the true values. This
progress has profound implications for practical applications,
especially in renewable energy and power systems. Accurate
WPP can not only optimize power scheduling and enhance the
integration capability of renewable energy, but also effectively
improve the scheduling strategy of intelligent energy storage
systems, thus achieving the coordinated operation of WPP and
energy storage. At the same time, this research is beneficial for
promoting the wider application of clean energy and supporting
the construction of sustainable power systems. However, it has
limitations as other influencing factors were not fully considered
in the modeling process. In the study of ES energy scheduling,
researchers have primarily focused on economic benefits
without fully considering output power volatility. Future studies
should comprehensively analyze various potential factors in the
modeling process, particularly in ES energy scheduling, where
it is necessary to include the study of suppressing power
fluctuation to improve the system's robustness and stability.

Numenclature
Abbreviation Full name

WP Wind power
WPP Wind power prediction

GA Genetic algorithm

BP Backpropagation

ESS Energy storage scheduling
IGA Improved genetic algorithm

ES Energy storage
SVM Support vector machine
FLG Tariff and financial gain/loss
BESS Battery energy storage system

ARIMA Autoregressive integrated moving average model

WT Wind turbine

IL Input layers

HL Hidden layers

OL Output layers

PV Photovoltaic
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