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Peng Wu  and Zongze Li*   

Hebei Suntien New Energy Technology Co., Ltd., Zhangjiakou 075000, China 

Abstract. As renewable energy continues to rise in the global energy mix, wind energy is gradually increasing its share in the power system as a 
clean, renewable form of energy. However, the volatility and uncertainty of wind power bring new challenges to power system operation, making the 
need for its efficient prediction and intelligent dispatch more and more urgent. Based on this, a method combining genetic algorithm and 
backpropagation neural network is proposed for wind power prediction and energy storage scheduling. In this study, the improved genetic algorithm-
backpropagation algorithm was generated by optimizing the weights and thresholds of the backpropagation neural network through the genetic 
algorithm, and optimizing the crossover and mutation processes of the genetic algorithm using similar block-order single-point crossover operator 
and shift mutation operator. Moreover, the improved genetic algorithm-backpropagation Neural Network wind energy prediction model was 
successfully constructed. Subsequently, the improved genetic algorithm was applied to search for the parameters of support vector machine and an 
improved genetic algorithm-support vector machine photovoltaic power generation prediction model was established. The experimental results 
showed that the average absolute percentage error of the improved genetic algorithm backpropagation neural network algorithm was 2.4%, and the 
accuracy was significantly higher than that of the traditional backpropagation neural network algorithm. The maximum photovoltaic prediction error 
of the autoregressive integral moving average model was about 80MW, while the photovoltaic prediction error of the improved genetic algorithm 
support vector machine photovoltaic prediction model was only about 12kW. In addition, the average absolute percentage error of the improved 
genetic algorithm support vector machine photovoltaic prediction model was only 1.53%, which was only 0.2% higher than the support vector machine 
prediction model. This study not only improves the stability of the power grid but also provides a practical and feasible method for realizing the large-
scale application of clean energy, making a positive contribution to the sustainable development of the energy industry. 
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1. Introduction 

Currently, the power system is undergoing a profound 
transformation from traditional energy sources to renewable 
energy sources. While the use of renewable energy sources, 
including wind power (WP), has significantly lessened the 
impact on the environment, its unpredictability and 
intermittency complicate power system operation and planning 
(Gurhanli 2020; Saravi et al. 2021; Yang et al. 2021). In this 
context, wind power prediction (WPP) has become an 
important part of solving the problem of WP volatility. 
Traditional mathematical models and algorithms perform 
poorly in handling the complex nonlinear relationships of WTG 
output. Many traditional models are based on linear 
assumptions and cannot effectively capture the complex 
nonlinear relationship between wind speed and WP output. 
Meanwhile, traditional algorithms rely heavily on historical data 
and lack flexibility. When data is scarce or of poor quality, the 
predictive power of the model is significantly reduced. There is 
a significant gap in the existing research in the field of WPP, 
especially in terms of model flexibility, adaptability, and 
accuracy. Therefore, there is an urgent need to explore more 
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advanced methods to improve the performance of WPP to 
better meet the needs of the power system. On the other hand, 
genetic algorithm (GA) can enhance the adaptability of WPP 
model by simulating biological evolution and globally searching 
the parameter space (Kshirsagar et al. 2021). Backpropagation 
(BP) neural network, on the other hand, can accurately capture 
the effect of wind speed (WS) variation on WP output by 
learning historical data patterns (Dawid and Kopel, 2019). For a 
result, combining GA and BP and using GA to optimize the BP 
network parameters can enhance the prediction model's 
capacity for generalization even further. 

With the challenges posed by the rapid growth of renewable 
energy sources, especially the volatility of wind energy, 
researchers have worked on the development of WPP 
techniques and energy storage scheduling (ESS) strategies. 
Through advance knowledge of WP volatility trends and 
intelligent energy storage (ES) system scheduling, the aim is to 
optimize power system operation and improve the efficiency of 
renewable energy utilization while ensuring system stability and 
reliability. Keynia and Memarzadeh (2022) proposed a method 
based on the combination of WP production, tariff and financial 
gain/loss (FLG) forecasting with ES, aiming to address the 
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forecasting and scheduling challenges posed by the uncertainty 
of WP generation with wind. The experimental results indicated 
that with this method, the expected profit could be improved by 
4.44-27.69% in a given forecast month by adjusting the initial 
offer based on the FLG forecast. Wan found that the 
intermittency and volatility of WP posed a great threat to the 
safety of power system operation, and proposed a control 
scheme based on probability prediction. This method combined 
probabilistic WPP with multivariate Gaussian copula to 
generate time-dependent WP scenarios. Simultaneously, the 
adaptive variational mode decomposition method was used to 
extract frequency components. The results showed that this 
method could effectively reduce the fluctuation of WP (Wan et 
al., 2021). Semero et al., (2020) proposed an optimal unit 
commitment and dispatch model for distributed generation in 
the grid in a grid-connected microgrid system. The model 
aimed to optimize ES equipment and combined heat and power 
(CHP) generating units through load and renewable generation 
forecasts to minimize the overall system operating costs. 
Simulation results revealed that optimal scheduling of ES 
system and CHP units using this strategy could significantly 
reduce the system operating costs. Li and Chen (2019) proposed 
an optimal control strategy for wind farms with battery ES 
system centered on an optimal control model. The strategy 
aimed to minimize the number of battery energy storage system 
(BESS) orders, taking into account statistical control effects and 
battery ES system operational constraints, including charging 
states and dead zones. Simulation results demonstrated that the 
control strategy reduced the number of BESS orders while 
improving the accuracy of the WP tracking plan, and had an 
anti-interference function to prevent the ultra-short-time WPP 
error. Martinez Rico et al., (2020) proposed a hybrid renewable 
energy system optimization method based on energy arbitrage 
to address the randomness and intermittency issues of 
renewable energy sources such as wind and solar power. This 
method utilized storing energy at low electricity prices and 
selling it at high electricity prices to maximize the profit of the 
power plant and reduce the loss of battery value. By fitting the 
particle swarm optimization algorithm to solve the multi-
objective cost function, the results showed that considering 
energy efficiency significantly improved battery life, while 
profitability was similar to not considering value loss. Xia et al., 
(2020) proposed a multi period coordinated scheduling model 
to address the power balance challenges posed by intermittent 
renewable energy sources such as WP and photovoltaics. The 
model was divided into three time scales: day ahead scheduling, 
one hour ahead scheduling and 15 minutes ahead scheduling. 
The simulation results showed that the model effectively utilized 
the regulation capabilities of different power generation 
methods, successfully tracked changes in active power, and 
achieved the economic operation of the system. Liu et al., (2023) 
proposed an energy optimization scheduling method for 
distribution networks with a source load storage aggregation 
group to address the energy imbalance caused by large-scale 
distributed generation access. First, a system model of the 
distribution network layer and the SAGs layer was established, 
and then a load forecasting method based on Adaboost 
integrated convolutional neural network and bidirectional long 
short-term memory was adopted. The simulation results 
verified the accuracy of the load forecasting model and the 
effectiveness of the proposed optimization strategy in energy 
optimization scheduling. 

On the other hand, BP is able to capture more accurately the 
effect of WS changes on WP output by learning complex 
patterns in historical data. Many scholars launched a series of 

researches on it. Scholars such as Wright et al., (2022) proposed 
a method based on direction propagation algorithm for the 
training problem of deep neural networks. The process analyzed 
the execution efficiency of the neural network in the 
classification task using different physics techniques, and added 
expandable modules to the method. Experimental results 
demonstrated that the proposed method had good training 
efficiency. Leung et al., (2023) proposed a BP based method for 
the problem of signal timing logic analysis. The research process 
used a systematic approach to transform robust formulas, 
utilized computational graphs and automatic differentiation 
tools to complete the BP, and added gradient methods for 
integration. Experimental results indicated that the proposed 
method had a wide range of applicability. Park and Lee (2022) 
proposed a method based on BP algorithm for the problem of 
stereo matching. The process maintained the spatial resolution, 
adjusted the number of parallax planes, and excluded the large 
difference pixels between the real ground parallax. According 
to experimental data, the suggested approach offers a high 
accuracy for stereo matching. Khehra et al., (2022) have 
proposed a technique based on BP algorithm for the problem of 
x-ray image classification. The process could preset the possible 
image types of x-ray images, statistical texture features are 
extracted and the performance of the technique is analyzed 
using accuracy. According to the findings, the suggested 
strategy had a high categorization efficiency. Colak (2021) 
proposed an assistive technique based on BP algorithm for the 
research problem of nanofluids. The process utilized 
experimental data as a data source, incorporated multilayer 
perfusers in the network structure and calculated the thermal 
conductivity. The findings demonstrated the effectiveness of the 
suggested strategy in connecting the experimental findings. 

In conclusion, while WPP and ESS research is currently 
advancing at a rapid pace, several challenges remain. These 
include the unpredictability of wind energy, which is difficult to 
fully eliminate, and the optimization of ES system capacity and 
efficiency. To achieve the comprehensive development of 
intelligent renewable energy applications, further in-depth 
research is necessary (Fan et al., 2024; Graça Gomes et al., 2021; 
Muttaqi and Sutanto, 2021). On the other hand, GA simulates 
biological evolution and globally searches the parameter space 
to optimize the WPP model, which can improve the adaptability. 
BP can accurately capture the impact of WS changes on WP 
output by learning historical data patterns (Li and Li, 2020). 
Therefore combining the two, GA optimizes the BP network 
parameters, which can make the prediction model more 
generalized and perform better in WPP (Nikoobakht et al., 2020; 
Xue et al., 2022; Watabe et al., 2021). Based on this, the study 
proposes a WPP with ESS method that fuses GA with BP neural 
network. At the same time, in response to the problem of long 
computation time for WPP, the study introduced similar block 
order single point and code shift mutation to optimize the 
crossover and mutation process of GA, and proposed an 
improved genetic algorithm (IGA). First, the BP was optimized 
by IGA, and by modifying the initial weights and thresholds, the 
WPP model of GA-BP was effectively built. Then, the GA was 
used to determine the Support Vector Machine (SVM) kernel 
function parameters and penalty factor, and finally, the IGA-
SVM Photovoltaic (PV) power generation prediction model was 
built. The innovation of the research is to fully combine GA with 
BP neural network, and optimize the initial weights and 
thresholds of BP neural network. Meanwhile, the crossover and 
mutation process of GA was optimized, and an IGA based on 
similar block order single point and code shift burst was 
proposed to construct an efficient WPP model. The IGA was 
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applied to optimize the penalty factor and kernel function 
parameters of SVM, and an ESS model was successfully 
constructed. This novel algorithm can achieve higher accuracy 
and efficiency in actual WPP and ESS. Compared with existing 
methods, the model proposed in this study has been deeply 
optimized for the accuracy of WP generation prediction and can 
better adapt to the volatility of WP generation. At the same time, 
the combination of algorithm efficiency and prediction models 
is more flexible, which can effectively improve the economic 
operation efficiency of the system. In addition, the IGA-SVM 
photovoltaic power generation prediction model created by the 
research is beneficial for further improving the scheduling 
capabilities. 

This study consists of five parts. The first part presents the 
research background, problems, and solutions related to WPP 
and ESS. The second part reviews the previous research results 
on WPP and ESS, and summarizes the difficulties and 
shortcomings of the methods. The third part presents the 
improvement of BP algorithm by combining GA. To compare 
the effectiveness of the new method with the traditional method, 
a comparison experiment is designed in the fourth part. The fifth 
part summarizes the research method, analyzes the 
experimental results, and puts forward the shortcomings and 
prospects of the method. 

2. Wind Power Prediction and Energy Storage 
Scheduling Method Based on BP 

In order to increase prediction accuracy, this study investigates 
the joint usage of BP and GA to optimize the WPP model's 
parameters through GA and BP further training. In the 
meantime, in order to accomplish the goals of increasing the 
power system's dispatchability and lowering operating costs, 
the GA is introduced to improve the scheduling strategy of the 
ES system by achieving the synergistic operation of WP and ES. 

2.1 GA Improved BP Prediction Method Design 

WP energy prediction is to analyze and simulate the 
meteorological conditions, such as WS and direction, of a WP 
site for a certain period of time in the future through the use of 
techniques such as meteorology, statistics and machine 
learning, in order to predict the power generation energy of the 
WP system (Garai et al., 2023; Hebbi and Mamatha, 2023; Kim 
et al., 2020). The WS will directly effect the wind turbine (WT)'s 
power because the fundamental idea of wind energy is that the 
wind turns mechanical energy into electrical energy through the 
WT's rotation and then through the generator (Bandewad et al., 
2023). Equation (1) provides the mathematical expression for 
the power of a WT. The most significant parameters influencing 
a WT's power output are its features and the WS. 
 

𝑝 =
1

2
⋅ 𝜌 ⋅ 𝐶𝑃 ⋅ 𝐴 ⋅ 𝑣

3                                                              (1) 

 

In equation (1), 𝑝 denotes the output power of the WT (kW) 

and 𝜌 denotes the air density (kg/m3). 𝐶𝑃 indicates the power 

coefficient of the WT, and 𝐴 indicates the swept area of the WT 
(m2). 𝑣 is the WS (m/s). Equation (1) states that the fan power is 
directly proportional to the air density. Since temperature and 
air pressure also have an impact on air density, equation (2) 
provides a quantitative expression for air density. 
 

𝜌 = 3.48
𝑝𝑞

𝑇
(1 − 0．387

𝜑𝑝𝑏

𝑝𝑞
)                                              (2) 

 

In equation (2), 𝑝𝑞  denotes the standard atmospheric 

pressure (kPa) and 𝜑 denotes the relative humidity of the air 

(%rh). 𝑝𝑏 is the saturated water vapor pressure (kPa) and T is 
the thermodynamic temperature of air (K). Turbulence is a 

common phenomenon in nature 𝑝𝑏 and reflects the change in 
WS. WTs are affected by turbulence, which affects the full 
utilization of wind energy. Therefore, it is crucial to study the 
effect of turbulence on WT power. The mathematical 

expression for the turbulence intensity 𝐼𝑇 is given in equation 
(3). 
 

𝐼𝑇 =
𝜎

𝑉
                                                                                     (3) 

 

In equation (3), 𝜎  denotes the standard deviation of WS 

(m/s) and 𝑉 is the average WS (m/s). The WPP deviates from 
the actual value and cannot be completely 100% accurate. BP is 
a multilayer feed forward neural network that minimizes the 
output error at a given input through learning and training 
(Gomes et al., 2020; Guo et al., 2020). The study uses BP for 
network correction to minimize the error until the desired 
accuracy is achieved. Figure 1 illustrates the BP structure. 

The input layers (IL), hidden layers (HL), and output layers 
(OL) of the BP network in Figure 1 are made up of linked 
neurons. The input signal is processed to produce an output 
value in the OL and the error is calculated by comparing it with 
the desired output. The weights and thresholds are adjusted 
between neurons by error BP and the network is modified to 
reduce the error until the desired accuracy is achieved (El 
Bourakadi et al., 2022; Zhu et al., 2022). The first information is 
transmitted by the IL, and the activation function is a constant 
function. Equation (4) displays the expression for the buried 
layer's activation function, which is the tansig function. 
 

𝑓(𝑥) =
2

1+𝑒−2𝑥
− 1                                                                  (4) 

 

In equation (4), 𝑒 denotes the Euler number. Equation (5) 
provides the expression for the logsig function, which is used as 
the activation function in the OL. 
 

𝑓(𝑥) =
1

1+𝑒−𝑥
                                                                         (5) 

 
The input signal of a BP network introduces a certain 

amount of systematic error as it is passed layer by layer through 
the HL, IL, and OLs. By passing the error in the reverse 
direction, this process is repeated so that the error gradually 
satisfies a specific condition (Xing et al., 2022). The definition 
expression of the systematic error E is detailed in equation (6). 
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Fig. 1 Structure diagram of BP neural network 
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𝐸 = ∑ |𝑛𝑢𝑚
𝑘=1 𝑑𝑘 − 𝑦𝑘|                                                              (6)

          

In equation (6), 𝑛𝑢𝑚 denotes the total amount of training 

data, 𝑑𝑘 denotes the expected value, and 𝑦𝑘  denotes the output 
value. The BP network algorithm consists of two stages: forward 
propagation and BP. In forward propagation, the input 
expression of the j th node of the HL is shown in equation (7). 

 

𝑖𝑛𝑝𝑢𝑡𝑗=∑ 𝑢𝑗𝑖𝑥𝑖 + 𝑦𝑗
𝑥
𝑖=1                                              (7) 

 

In equation (7), 𝑥𝑖  denotes the input value of the IL, 𝑦𝑗 

denotes the deviation value of the implied layer, and 𝑢𝑗𝑖 
denotes the connection weights between the nodes of the IL and 
implied layers. Equation (8) displays the expression for the 

implicit layer's 𝑗th node's output value. 
 

𝑜𝑢𝑡𝑗 = 𝑓(𝑖𝑛𝑝𝑢𝑡𝑗) = 𝑓(∑ 𝑢𝑗𝑖𝑥𝑖 +
𝑥
𝑖=1 𝑦𝑗)                              (8)

          
 

In equation (8), 𝑜𝑢𝑡𝑗  denotes the output value of the 𝑗th 

node of the implicit layer. The input of the 𝑘th node of the OL 
is shown in equation (9). 
 

1

1 1 1

( )
q n

k kj j k kj ji i j k

j j i

input v C b v f u x y b
= = =

= + = + +                   

(9) 
 

In equation (9), 𝑓(𝑥) denotes the transfer function of the 

implicit layer, 𝑣𝑘𝑗  denotes the weights between the nodes of the 

implicit layer and OL, and 𝑏𝑘  denotes the OL node threshold. 

Where 𝑖 = 1,2,3, . . . . . . , 𝑛 , 𝑗 = 1,2,3, . . . . . . , 𝑞 , 𝑘 =
1,2,3, . . . . . . ,𝑚. Equation (10) displays the output value of the 

OL's 𝑘th node. 
 

𝑂𝑘 = 𝑔(𝑖𝑛𝑝𝑢𝑡𝑘) = 𝑔(∑ 𝑣𝑘𝑗𝐶𝑗 + 𝑏𝑘) = 𝑔(
𝑞
𝑗=1 ∑ 𝑣𝑘𝑗𝑓

𝑞
𝑗=1

(∑ 𝑢𝑗𝑖𝑥𝑖 + 𝑎𝑗
𝑛
𝑖=1 ) + 𝑏𝑘         (10) 

 
In equation (10), g(x) denotes the transfer function of OL and 

𝑂𝑘 is the output of the OL node. 𝑎𝑗 denotes the deviation value 

of the hidden function. The standard algorithm for network 
weight adjustment is based on the error gradient descent 
method. To begin, the precise computation in equation (11) is 

applied by computing the error table between each sample's 
actual and intended output. 
 

𝐸𝑝 =
1

2
∑ (𝑇𝑘
𝑛𝑢𝑚
𝑘=1 −𝑂𝑘)

2                                                       (11) 

 

In equation (11), 𝑇𝑘  represents the intended result. 
Reducing the error function is the aim of network training. Error 
BP's primary task is to update the weights and thresholds in 
order to minimize error. To make sure the weights and 
thresholds meet the requirements, the network is trained 
repeatedly. Figure 2 depicts the BP-based WPP method. 

The steps involved in using BP in WPP are shown in Figure 
2, where the error between the output and the predicted value 
is calculated, the error BP is used to update the weights and 
thresholds, and the error is reduced by iterative training. The 
initial weights and thresholds of BP are usually chosen randomly 
within a certain range, but improper selection may lead to 
problems. GA can be used to determine the optimal initial 
weights and thresholds to increase prediction accuracy and 
prevent the local minimum problem. Firstly, the derivative of 

the systematic error 𝐸  is defined as the meta-adaptation 
function. Equation (12) displays the mathematical expression as 
well. 
 

𝑓 = 𝑎
1

𝐸
                                                                                 (12) 

 

In equation (12), 𝑎  denotes the coefficient. Selection, 
crossover and mutation, and looping are carried out until the 
computation is finished once the fitness function has been 
established. In addition, the GA-BP neural network algorithm 
has the problem of long computation time when predicting WP. 
In response to this issue, research has optimized the crossover, 
mutation, and local search stages of the GA. The effectiveness 
of the GA method largely depends on the population 
initialization process, and the selection of crossover and 
mutation, as well as the probability of their adoption, will also 
greatly affect the effectiveness of the algorithm. Therefore, the 
study adopts an operator called similar block order single-point 
crossover to optimize the GA method. This operator first 
considers at least two consecutive blocks with the same order, 
and only the same blocks occupying the same position in the 
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Fig. 2 Wind power prediction flow diagram based on BP neural network 
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parent are directly copied to the child. Then, based on 
maintaining the same blocks, a single-point sequential crossover 
method is used to cross the parent. In addition, in the selection 
of mutation operators, the study selected shift mutation, which 
randomly selects a workpiece to be inserted in another random 
position. Similar block order single-point crossover operators 
and shift mutation operators can better utilize information in the 
population and reduce unnecessary computation, which can 
solve the problem of long computation time to some extent. 
Figure 3 illustrates the flowchart of the IGA-BP algorithm based 
WPP. 

First, to improve the model's initial performance, Figure 3 
illustrates how IGA optimization is applied to set the weights 
and thresholds of the first BP. The weights and thresholds are 
then continuously adjusted using the error BP approach to 
reduce the difference between the expected and actual values 
and, ultimately, produce correct WPP. The BP is then employed 
for training. Photovoltaic power prediction utilizes existing and 
past PV output data through modeling in order to obtain future 
PV power. Figure 4 depicts the battery's performance at various 
irradiance levels at a standard temperature of 25°C. Solar 
irradiance is a measure of the energy of solar radiation that 
reaches the earth's surface. 

In Figure 4, under constant temperature conditions, Figure 
4(a) clearly demonstrates the trend of increasing the current of 
the photovoltaic cell as the irradiance is enhanced. 
Correspondingly, Figure 4(b) shows that the output power of the 

photovoltaic cell also tends to increase with increasing 
irradiance, which in turn leads to a corresponding change in the 
maximum power point of the photovoltaic cell. 

2.2 Energy Scheduling of Energy Storage System Based on IGA 
Optimized SVM 

Autoregressive integrated moving average model (ARIMA) is a 
method for dealing with non-stationary time series that 
combines regression, differencing and moving average (Bali et 
al., 2020; Lochmann et al., 2023). Differencing is one of the key 
steps, which can improve the stability of the series, but too much 
differencing may lead to information loss. The loss of 
information needs to be minimized while maintaining the 
stability of the series. PV forecasting based on the ARIMA 
model starts with the processing of the time series, which is 
formulated in equation (13). 
 

▽ 𝑥𝑡 = 𝑥𝑡-𝑥𝑡−1 = (1-𝐵)𝑥𝑡                                                  (13) 
 

In equation (13), 𝐵  denotes the delay factor, ▽= 1− 𝐵 
denotes the ordered difference operator of the incoming, and 
the expression of the time series after order difference is shown 
in equation (14). 
 

▽𝑑 𝑥𝑡 = (1 一𝐵)𝒅𝑥𝑡                                                            (14) 
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Fig. 3 Flow chart of WPP based on IGA-BP network 
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In equation (14), 𝑑 denotes the number of differences. B  

denotes the delay operator and ▽= 1 一𝐵  denotes the 
introduced ordered difference operator. After the time series 
processing, the next step is to perform model identification. In 

order to select the model that matches the sequence {𝑥𝑡}, the 
autocorrelation function (ACF) and partial autocorrelation 
function (PACF) of the sequence can be utilized for model 
identification. After determining the sequence model type, the 
appropriate n  and m  values need to be selected. Usually, the 

Information criterion function method is used to determine the 
model order, while in the study, Akaike information criterion 
(AIC) is chosen to be used for the model order determination. 
In equation (15), the precise mathematical formula is also 
displayed. 
 

𝐴𝐼𝐶 = 2𝑘一 21𝑛(𝐿)                                                             (15) 
 

In equation (15), 𝑘  and 𝐿  denote the number of model 
parameters and the great likelihood function, respectively. 

Finally, the parameter estimation is carried out, and the study 
obtains the PV power generation prediction model based on 
ARIMA. The study uses the IGA to optimize the SVM model, 

taking the kernel function parameter 𝑔 and the penalty factor 𝐶 
as the optimization-seeking object to construct the IGA-SVM 
prediction model (Chen et al., 2022; Patil et al., 2021; Sun et al., 
2024). The IGA-SVM prediction model's flow chart is displayed 
in Figure 5. 

In Figure 5, first, the optimal kernel function type and 
parameters are selected by IGA. Subsequently, the trained SVM 
model is utilized to predict the test data. The final goal of the 
entire procedure is to maximize SVM performance and raise 
prediction accuracy through IGA by assessing the model's 
performance and making the required modifications. 

The complimentary nature of solar and wind energy is fully 
utilized by the wind and solar power generation system, which 
can increase power supply stability and dependability. The 
system is categorized into off-grid and grid-connected types. 
The off-grid type is mainly used for microgrid, supplying 
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Fig. 5 IGA-SVM prediction model flow chart 
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Fig. 6 Structure diagram of wind-solar complementary system 
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electricity to the load and storing the excess electricity. The 
grid-connected type can be connected to a large power grid to 
realize self-generation, self-consumption and on-grid 
connection of surplus electricity. Figure 6 shows the system 
components. 

In Figure 6, the wind-solar complementary system includes 
several main parts such as solar PV battery bank, WT, ES 
system, grid-connected inverter, and system controller. The 
inconsistent energy output of the new energy grid-connected 
presents difficulties for the wind-solar hybrid system. To solve 
this problem, the research focuses on establishing a wind-solar 
ES system. Combining wind and PV power forecasting models, 
the optimal ES plan is finally obtained using IGA. Figure 7 
illustrates the energy management strategy flow. 

In Figure 7, the ES system enters the charging state when 
the wind energy produces excess power. If the charging power 
is within the constraints, the system continues to charge. 
However, if the constraints are exceeded, the ES approaches the 
upper limit of charging and the adjustable load consumes the 
excess energy to balance the energy difference between time 
periods. Conversely, if there is not enough wind and solar 
energy to generate power, the ES enters the discharge state. If 
the exported power is sufficient to make up the shortfall, the 

system discharges. However, if the constraints are exceeded, 
the ES approaches the lower limit of discharge and some of the 
load must be removed. When the adjustable load reaches the 
maximum regulation and there is still a shortfall, the back-up 
power is activated. 

3. Performance Validation of BP-Based Wind Power 
Prediction and Energy Storage Scheduling 

Comparative tests are designed to validate the prediction 
accuracy performance of the IGA-BP approach with the classic 
BP network, with the aim of thoroughly validating its 
adaptability and generalization ability. Additionally, by 
contrasting the discretization of the IGA-SVM PV prediction 
model with the SVM prediction model, the study validates the 
model's performance. This series of comparative experiments 
aims to comprehensively assess the effectiveness of the 
proposed method and ensure that its performance under 
different conditions is fully validated. 

3.1 Performance Validation of IGA-Improved BP Prediction Method 

To further validate the performance of the IGA-BP neural 
network algorithm, experiments are conducted using the 
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Fig. 7 Energy management strategy flow chart 
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Fig. 8 Prediction error curve of grey model and comparison of prediction results with BP neural network prediction of random samples 
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measured WP data of a wind farm for the entire year of 2022. 
The wind farm used is located in Shandong Province, which has 
become an important area for WP development due to its 
superior wind resources and suitable climate conditions. A total 
of 3534 samples are collected and divided into training and 
testing sets in an 8:2 ratio. Among them, the training set 
contains 2827 samples, the test set consists of 707 samples. The 
simulation environment is shown in Table 1. 

The parameter settings for the IGA are shown in Table 2. To 
verify the effectiveness of the IGA-BP-WPP model, the study 
sets up a comparison experiment to compare the errors of the 
gray WPP model, the traditional BP-WPP model and the IGA-
BP proposed in the study. Figure 8 demonstrates the gray model 
prediction error curve compared with the prediction results. 

In Figure 8(a), the color model's prediction results are more 
accurate for the first 200 minutes or so. However, beyond that 
time, the prediction value steadily increases while the real value 
steadily drops. The two do not overlap, indicating a poor 
prediction performance. In Figure 8(b), in the first 200 min or 
so, the prediction error fluctuates above and below 0 MW, and 
after 200 min, the prediction error shows a decreasing trend, 
reaching a minimum of about -5 MW. The study further records 
the random sample comparison of neural network prediction of 
BP and IGA-BP, the random sample error curve of BP, and the 
continuous 24h prediction of IGA-BP prediction model, which 
are shown in Figure 9. 

In Figure 9(a), the IGA-optimized IGA-BP is more consistent 
with the test data, and the accuracy is significantly improved 
despite the long computation time. In Figure 9(b), the traditional 
BP improves the prediction accuracy, but the error is still 
significant. In Figure 9(c), the BP predicts a smaller difference in 
comparison of random samples, but there is still an error. In 
Figure 9(d), the training effect of the model random samples is 
supported by the good fit between the prediction and actual 
curves. To evaluate the accuracy improvement of the prediction 
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Fig. 9 Comparison of BP and IGA-BP neural network prediction of random samples, BP neural network error curve of random samples, and 

IGA-BP prediction model prediction graph for 24h 

 

 

Table 1 
Name Environmental parameters 

Processor 
Intel(R) Core(TM) i5-9500 CPU @ 3.00 

GHz 
System type 64 bit operating system 

Memory 16GB 
Software 

environment 
MATLAB 2020a 

 

Table 2 

Parameter  Value 

Population size 50 
Iterations 50 

Cross probability 0.8 
Mutation probability 0.2 

Learning rate 0.001 
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algorithm in this study, Figure 10 compares the error 
assessment indices of the three prediction techniques. 

Figure 10(a) shows that the gray model's average absolute 
percentage error is 41.9368 and its root mean square error is 
61.62. Figure 10(b) shows that the accuracy of the IGA-BP 
method is greatly improved, with an average absolute 
percentage error of 2.4%. Overall, the improved BP with IGA 
exhibits a stronger WPP capability. 

3.2 Performance Validation of IGA-SVM based Photovoltaic 
Prediction Models 

The study configured the IGA with a population size of 50, 50 
iterations, a crossover probability, and a variance probability of 
4 to 1. The contrast between the error curve and the ARIMA PV 
prediction model's prediction outcomes is shown in Figure 11. 
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Fig. 10 Comparison of error evaluation indexes of the three forecasting methods 
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Fig. 11 Comparison of prediction results and error curve of ARIMA PV prediction model 
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According to Figure 11(a), the ARIMA PV prediction error is 
up to about 80 MW. Figure 11(b) shows that there is a significant 
discrepancy between the true value and the anticipated value of 
the ARIMA model PV forecast, with the difference getting closer 
only at about 120 minutes. Taken together, the ARIMA PV 
prediction model has a large error and cannot be used directly 
in PV prediction. Figure 12 records the absolute error curve of 
IGA-SVM prediction model with continuous 24h prediction 
results. 

The maximum inaccuracy of the IGA-SVM is approximately 
12 kW, as shown in Figure 12(a). The reduced error fluctuation 
range of the suggested model indicates that the IGA-SVM PV 
prediction model is more stable and accurate. The IGA-SVM 
prediction model essentially matches the true value in the 
continuous 24-hour prediction, as shown by Figure 12(b), 
indicating a greater prediction accuracy. To further confirm the 
effectiveness of the proposed IGA-SVM PV prediction model in 
the study, Figure 13 compares the error evaluation indices of 
the three prediction strategies. 

In Figure 13(a), the RMSE of the ARIMA model is around 
24.6 and the MAPE is around 28%. According to Figure 13(b), 
the MAPE is around 1.5%. The IGA-SVM PV prediction model 
has an average absolute percentage error of 1.53%, which is just 
0.2% more than the SVM prediction model. It is noteworthy that 
the degree of dispersion in the outcomes produced by the IGA-
SVM PV prediction model is lower. 

4. Discussion 

To verify the effectiveness of the IGA-BP neural network WPP 
model, the grey WPP model, the traditional BP neural network 
WPP model, and the proposed IGA-BP neural network were 
compared for errors. The results showed that the prediction 
results of the grey model were close to the true values in the first 
200 minutes, but showed poor prediction performance after 200 
minutes. The root mean square error of the model was 61.62, 
and the average absolute percentage error was 41.9368. 
Although traditional BP neural networks improved their 
prediction accuracy, the errors were still significant. The 
predicted data from the IGA-BP neural network was more 
consistent with the true values. The average absolute 
percentage error of this algorithm was only 2.4%. The reason 
was that the IGA-BP neural network combined IGA to optimize 
the weights and biases of the BP neural network, which could 
effectively avoid the problem of the BP neural network getting 
stuck in local optimal solutions during training. In addition, the 

IGA-BP neural network had stronger adaptability in dealing with 
the nonlinear and time-varying characteristics in WPP. Zhang et 
al., (2022) proposed the IGA-BP algorithm to address the 
problem of inaccurate alcohol content detection in segmented 
wine picking. The results showed that the average prediction 
error of this method for alcoholic beverages was 0.381, which 
was significantly better than the traditional BP neural network. 
To verify the superiority of the IGA-SVM photovoltaic 
prediction model, it was compared with the ARIMA 
photovoltaic prediction model. The results showed that the 
ARIMA photovoltaic prediction error was as high as about 
80MW, and the predicted value differed significantly from the 
true value, with a MAPE of about 28%. The MAPE of the IGA-
SVM photovoltaic prediction model was only 1.53%, and 
compared with the SVM prediction model, the error only 
increased by 0.2%. The IGA-SVM model used the IGA to 
optimize SVM, which enabled the model to explore the 
parameter space more effectively when selecting support 
vectors and adjusting hyperparameters. At the same time, the 
method optimized the selection of input features, which could 
screen out the most influential features for photovoltaic power 
generation prediction, fully explore the potential patterns in 
photovoltaic power generation data, and significantly reduce 
the prediction error. Huang et al., (2023) applied the IGA SVM 
algorithm to the classification of agricultural products. The 
results showed that the classification accuracy of the algorithm 
was as high as 98%. This indicated that the algorithm had 
significant advantages in feature selection, nonlinear 
processing, global optimization, and adaptability, which made it 
perform well in areas such as photovoltaic prediction and 
agricultural product classification. 

However, the study did not consider the impact of factors 
such as climate change, load demand fluctuations, and policy 
changes on ESS. Meanwhile, research on ESS mainly focuses on 
economic benefits without fully analyzing the volatility of output 
power. Future research should comprehensively analyze 
various potential factors in the modeling process, especially in 
the field of ESS. It is recommended to introduce research on 
power fluctuation suppression to improve the stability and 
adaptability of the system. 

5. Conclusion 

As the proportion of wind energy in the power system increases, 
the demand for accurate prediction of WP and smart ES rises 
sharply. However, traditional methods are difficult to meet the 
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Fig. 13 Comparison of error evaluation indexes of the three forecasting methods 
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nonlinearity and time-varying nature of WP, and improving 
WPP accuracy has become a top priority. This study explored 
the combined application of IGA and BP to optimize the WPP 
model parameters by IGA and then use BP for further training, 
with a view to improving the prediction accuracy. Meanwhile, 
the IGA was introduced to optimize the scheduling strategy of 
the ES system, by realizing the cooperative operation of WP and 
ES. The experimental results indicated that the error was 
significantly reduced to 2.4% when using the IGA-BP algorithm 
for WPP, which was an improvement of about 14.5% compared 
to 16.9% for the traditional BP network. This algorithmic 
improvement resulted in a significant increase in WPP accuracy. 
The SVM prediction model demonstrated a high degree of 
consistency over 24 consecutive hours, and the predicted 
values were in good agreement with the true values. This 
progress has profound implications for practical applications, 
especially in renewable energy and power systems. Accurate 
WPP can not only optimize power scheduling and enhance the 
integration capability of renewable energy, but also effectively 
improve the scheduling strategy of intelligent energy storage 
systems, thus achieving the coordinated operation of WPP and 
energy storage. At the same time, this research is beneficial for 
promoting the wider application of clean energy and supporting 
the construction of sustainable power systems. However, it has 
limitations as other influencing factors were not fully considered 
in the modeling process. In the study of ES energy scheduling, 
researchers have primarily focused on economic benefits 
without fully considering output power volatility. Future studies 
should comprehensively analyze various potential factors in the 
modeling process, particularly in ES energy scheduling, where 
it is necessary to include the study of suppressing power 
fluctuation to improve the system's robustness and stability. 
 

Numenclature  
Abbreviation  Full name 

WP Wind power 
WPP Wind power prediction 
GA Genetic algorithm 
BP Backpropagation 
ESS Energy storage scheduling 
IGA Improved genetic algorithm 
ES Energy storage 

SVM Support vector machine 
FLG Tariff and financial gain/loss 
BESS Battery energy storage system 

ARIMA Autoregressive integrated moving average model 
WT Wind turbine 
IL Input layers 
HL Hidden layers 
OL Output layers 
PV Photovoltaic 
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