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management strategy and dynamic programming algorithm  
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Abstract. This study mainly analyses the fuel consumption of plug-in hybrid vehicles during operation. A new control method for automobiles based 
on energy management strategy and dynamic programming algorithm is proposed. The new method plans and analyses the minimum electricity 
consumption, and then uses dynamic programming algorithms to analyse this parameter. The research results indicated that the vehicle state was 
constantly changing with the variation of SOC value during driving. The energy mobilization of the vehicle was more obvious after adding dynamic 
programming strategy. The efficiency of the vehicle was relatively high in driving state 1, with a minimum value of 70%, which was about 20% higher 
than in driving state 4. The average fuel consumption in driving state 2 was 1.8L higher than in other driving states. The overall efficiency of 
automobiles after incorporating dynamic programming was improved, with a shorter time to reach the lowest efficiency point compared with not 
incorporating dynamic programming algorithms. The highest efficiency value was 7.86% higher than that of not incorporating dynamic programming 
models. The new control method can reduce energy consumption and improve the energy management and control effect. The study provides a 
better research direction for energy management and control of hybrid electric vehicles in the future. 
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1. Introduction 

With the acceleration of globalization and industrialization, 
energy consumption and environmental pollution issues are 
becoming increasingly severe. Carbon emissions in the 
transportation sector have caused enormous pressure on the 
environment (Jia et al., 2023). Plug in Hybrid Electric Vehicle 
(PHEV), as an energy-saving and emission reducing 
transportation vehicle, is a new type of vehicle that can work 
together through internal combustion engines and electric 
motors. This not only effectively reduces energy consumption, 
but also reduces vehicle emissions, which is crucial for 
achieving energy conservation and emission reduction in 
transportation (Song et al., 2020). The energy efficiency and 
environmental performance of PHEV largely depend on the 
optimization of energy management strategies. The Dynamic 
Programming (DP) algorithm has shown great advantages in 
optimizing PHEV energy management strategies due to its 
global optimal solution characteristics (Peng et al., 2020). 
However, DP still faces high computational complexity and a 
high demand for information in practical applications, which 
limits their application in real-time or near real-time energy 
management systems. Therefore, how to effectively apply DP 
to the energy management of PHEV has become an important 
direction in current PHEV energy management (Kashif et al., 
2021). 

Currently, many experts have carried out in-depth research 
on the energy management of PHEVs. Sidharthan et al. 
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proposed a novel adaptive intelligent hybrid Energy 
Management Strategy (EMS) to optimize the energy 
management of hybrid electric tricycles. The new strategy 
utilized absolute energy sharing algorithm and fuzzy logic 
controller to ensure efficient utilization of power source and 
motor power demand. Compared with BEV, the new strategy 
could significantly reduce battery peak power, reduce battery 
capacity loss, and lower total operating costs, demonstrating 
significant advantages in energy management of hybrid electric 
vehicles (Sidharthan et al., 2023). The strategy significantly 
reduces the peak battery power and decreases the battery 
capacity loss. However, the strategy may not have sufficient 
global optimisation capability compared to the DP algorithm. 
Belkhier et al. proposed a hybrid battery-FCS energy storage 
and management system and passive control technology to 
improve the power efficiency and response speed of hybrid 
electric vehicles. The research results indicated that the 
technology could ensure that hybrid electric vehicles obtained 
sustained electricity from hybrid energy resources. The 
research results indicated that the new method achieved high-
power integration and improved the operating speed of electric 
vehicles (Belkhier et al., 2024). The research proposes a hybrid 
battery-fuel cell system and passive control techniques that can 
improve the power efficiency and responsiveness of hybrid 
electric vehicles. However, the method has some problems with 
the stability and durability of the fuel cell under different driving 
conditions and environments. Yao et al. proposed a novel offline 
online hybrid deep reinforcement learning strategy to optimize 
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the powertrain control strategy of hybrid electric vehicles and 
improve fuel economy. The new strategy utilized offline vehicle 
data to establish an initial model and explored new control 
strategies through online learning algorithms. Compared with 
online learning algorithms, the new method could learn faster 
and more stably, significantly improving fuel economy (Yao et al., 

2023). The proposed offline-online hybrid deep reinforcement 
learning strategy is able to build an initial model from offline 
vehicle data. However, its performance may be insufficient in 
variable real-world road conditions with high real-time 
requirements. Younes et al. proposed a fuzzy logic controller 
ground on predetermined motor torque and battery charging 
state to optimize the renewable energy management of hybrid 
intelligent vehicles. The new controller could adjust energy 
consumption while maintaining driving performance. Through 
the implementation and evaluation of simulation models for in 
vehicle hybrid power systems, the research results showed that 
the new management algorithm could effectively reduce 
changes in battery charging status, improve power system 
efficiency, and perform outstandingly in different driving cycles 
and harsh environments (Younes et al., 2023). The controller 
proposed in the study is able to flexibly adjust the energy 
consumption according to the real-time conditions of the 
vehicle. However, the controller relies on predetermined motor 
torque and battery status parameters, which may be limited in 
practical applications. Cao et al. focused on hybrid electric 
vehicles as a reliable choice to improve fuel economy and 
reduce emissions. To fully leverage its advantages, energy 
management and torque distribution were important directions 
for control strategies. A comprehensive evaluation method was 
proposed based on relevant literature. The research results 
indicated that energy management strategies provided 
important references for the development, control, and 
optimization of hybrid vehicles (Cao et al., 2023). The 
methodology proposed in the study shows the potential to 
improve fuel economy and reduce emissions. However, the 
study may limit the credibility and replication of the 
methodology in practical applications. 

In summary, most of the current research on energy 
management in automobiles only focuses on power and fuel 
consumption management, and only includes one method for 
analysis. There are few directions for optimizing energy 
management in automobiles. Therefore, a novel method based 
on EMS and DP algorithm is designed. The automotive EMS is 
used to analyze the energy consumption status at different 
stages, fully understanding the energy consumption of the 

vehicle during driving. At the same time, DP is added to reduce 
fuel consumption during the driving process and improve the 
efficiency of the driving process. 
 
2.Method 

2.1 Construction of power vehicle model based on energy 
management strategy 

When PHEV performs power adaptive control, it is 
necessary to first conduct energy analysis on the vehicle model 
and working system to build a driving model for the vehicle's 
operation. The hybrid charging process of PHEVs mainly has 
three modes: series, parallel, and series parallel hybrid. In the 
series connection, when the vehicle's battery is low, it is 
transmitted through the engine to generate electricity. The 
parallel structure allows for direct control of the automotive 
system through the interaction between the generator and 
engine. The hybrid structure combines series and parallel 
structures (He et al., 2021). The hybrid structure vehicle model 
is shown in Figure 1. 

From Figure 1, in the hybrid structure, the engine and 
electric motor are connected through mechanical shafts. The 
power of the two engines is distributed through a power 
distribution system. Secondly, the motor is connected to the 
driving system of the vehicle through mechanical shafts, driving 
the hybrid vehicle and achieving vehicle operation. The 
vehicle's battery will be connected to the inverter through a 
connecting wire during charging, and then connected to the 
generator and electric motor through the inverter to achieve the 
charging. There are five operating modes in the PHEV system, 
including pure electric operation, engine operation, hybrid 
operation, engine charging for the motor, and regenerative 
braking mode. 

The pure electric working mode is where only the generator 
operates to provide the system power for the PHEV. However, 
in this mode, the operation needs to satisfy certain requirements 
for the speed of the motor. If the speed requirements cannot be 
met, the power drive of the vehicle will not be solely driven by 
the motor. The working mode of the generator is the process in 
which the engine drives the vehicle separately. In this mode, the 
generator and other motors of the vehicle do not work, which 
can minimize the consumption. The hybrid working mode is 
when the vehicle system rotates at a high speed and both the 
engine and generator cannot reach the operating speed of the 
motor, and both operate together. In this driving mode, the main 
engine is used as the auxiliary motor. When the power of the 

 

Fig 1 Hybrid structure vehicle model 
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engine cannot meet the system requirements, the remaining 
power is supplied by the motor. The vehicle charging mode is 
operated by the engine as the power drive system to charge the 
engine when the vehicle's battery is low. The braking mode of a 
vehicle is powered by a generator and stores energy. The 
vehicle is displayed in Figure 2. 

From Figure 2, the vehicle model framework includes 
vehicle driving, vehicle control, and vehicle power modules. 
The vehicle control module is mainly driven by the driver's 
operation. The control module consists of several modules, 
including the vehicle's engine, generator, transmission, and 
power battery. The driving module is the main signal emitting 
module of the vehicle model, which analyzes the parameters of 
the decision-maker through a PI controller and transmits the 
parameters into the vehicle control system to achieve vehicle 
control. The relationship between automotive control 
parameters is shown in equation (1) (Rasool et al., 2023). 

𝜃 = 𝐾𝑝(𝑣𝑐𝑢𝑟 − 𝑣𝑟𝑒𝑓) + 𝐾𝑝
1

𝑇𝑖
∫(𝑣𝑐𝑢𝑟 − 𝑣𝑟𝑒𝑓)𝑑𝑡   (1) 

In equation (1), 𝜃 represents the parameter value of the vehicle 

brake plate. 𝐾𝑝 signifies the proportional value of the parameter. 

𝑇𝑖  signifies the integral constant of time. 𝑣𝑐𝑢𝑟  represents the 

current driving speed. 𝑣𝑟𝑒𝑓  signifies the target driving speed. 
The model needs to manage and analyze its energy. Therefore, 
the power system is subjected to pattern analysis, which is to 
analyze the fuel consumption of the power system. The fuel 
consumption of a vehicle is shown in equation (2) (Punyavathi 
et al., 2024). 

𝑏𝑒 = 𝑓(𝑇𝑒𝑛𝑔, 𝑛𝑒𝑛𝑔)     (2) 

In equation (2), 𝑏𝑒  represents the fuel consumption 

efficiency of power reduction. 𝑇𝑒𝑛𝑔  represents the rotational 

torque.(𝑁 ∗ 𝑚).𝑛𝑒𝑛𝑔 represents the rotational speed, measured 
by (𝑔/(𝑘𝑤 ∗ ℎ) ). The power of the engine is displayed in 
equation (3) (Zhang et al., 2023; Mohammed et al., 2023). 

𝑃𝑒 =
𝑇𝑒𝑛𝑔∗𝑛𝑒𝑛𝑔

9550
      (3) 

In equation (3), 𝑃𝑒  represents the engine power. To obtain a 
more effective power output, the product of torque and speed is 
divided by 9550. The 9550 in the formula is obtained through 
unit conversion, which is used to convert the product of torque 
and speed into a value in kilowatts (kW). The efficiency of the 
electric motor is shown in equation (4) (Venkitaraman & Kosuru, 
2023; Milbradt et al., 2023). 

𝜂𝑚𝑜𝑡 = 𝑓(𝑇𝑚𝑜𝑡, 𝑛𝑚𝑜𝑡) (4) 

In equation (4), 𝜂𝑚𝑜𝑡  represents the efficiency of the electric 
motor. 𝑇𝑚𝑜𝑡  represents the rotational moment of the electric 
motor. 𝑛𝑚𝑜𝑡  represents the rotational speed of the electric 
motor. The working efficiency of the electric motor at this time 
consists of two parts. When the rotational moment of the 
electric motor is greater than 0, it means that the vehicle is in 
the electric motor working mode. At this time, the power is 
shown in equation (5) (Gao et al., 2023; Wang et al., 2023). 

 

𝑃𝑚 =
𝑇𝑚𝑜𝑡∗𝑛𝑚𝑜𝑡

9550∗𝜂𝑚𝑜𝑡
      (5) 

In equation (5), 𝑃𝑚  represents the working power of the 
generator. When the electric motor is working for the engine, its 
power magnitude is shown in equation (6) (Usman & Abdullah, 
2023; Song et al., 2023, Ma et al., 2024; Shi et al., 2023). 

𝑃𝑚 =
𝑇𝑚𝑜𝑡∗𝑛𝑚𝑜𝑡∗𝜂𝑚𝑜𝑡

9550
     (6) 

To simplify the energy management process of 
automobiles, the influencing factors of automobiles are 
simplified to only consider the impact of the remaining 
electricity of the automobile. The remaining power of a vehicle 
is shown in equation (7) (Hua et al., 2023; Yang et al., 2024). 

𝑆𝑂𝐶 = 𝑠𝑜𝑐𝑖𝑛 −
∫ 𝐼𝑏𝑎𝑡(𝑡)𝑑𝑡
𝑡

0

𝑄𝑏𝑎𝑡
     (7) 

In equation (7), 𝑆𝑂𝐶 represents the current charging status 
of the battery. 𝑠𝑜𝑐𝑖𝑛 represents the initial amount of remaining 
electricity in the vehicle. 𝑄𝑏𝑎𝑡  represents the battery charge 
loading capacity of the vehicle. 𝐼𝑏𝑎𝑡 represents the current of the 
battery at time 𝑡. The EMS for automobiles has two directions: 
automobile power utilization and power maintenance (Tian et 
al., 2024; Millo Fetal, 2023). 

 

2.2 Control strategy of stage dynamic programming algorithm for 
automobiles 

DP is an optimization control model for solving multi-stage 
operation decisions of automobiles, mainly for planning energy 
decision-making strategies of automobiles. By conducting 
functional analysis on the minimum nodes in the automotive 
phase, the optimal decision-making method for each 
operational phase of the vehicle can be obtained. The decision-
making process of the algorithm is shown in Figure 3. 

 

Fig 2 Automotive system structure 
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From Figure 3, when the state parameters are input, the 
state parameters of the vehicle are first judged. Then, stage 
decisions are made through the DP. Aftermaking the decision, 
the state is judged before entering the next DP stage. Its state 
can be represented by equation (8) (Vignesh et al., 2023; Cao et 
al., 2023; Abd-Elhaleem et al., 2023).  

𝑥𝑘+1 = 𝑓(𝑥𝑘 , 𝑢𝑘)      (8) 

In equation (8), 𝑥𝑘  represents the discrete system of the 
DP. 𝑢𝑘 represents the control method in the system variable. 𝑢𝑘 
belongs to a set of variables in system space. When the 
algorithm performs control at different stages, the objective 
function size of the current stage can be obtained by solving the 
state function of the algorithm, as shown in equation (9) (Ruan 
et al., 2023; Gnanaprakasam et al., 2023; Chen et al., 2024). 

𝐽𝜓(𝑥0) = 𝑙𝑁(𝑥𝑁, 𝑢𝑁) + 𝑔𝑁(𝑥𝑁, 𝑢𝑁) + ∑ [𝑙𝑘(𝑥𝑁, 𝑢𝑁) +
𝑁−1
𝑘=0

𝑔𝑘(𝑥𝑁, 𝑢𝑁)]      (9) 

In equation (9), 𝐽𝜓(𝑥0) denotes the cost function starting 

from the initial state 𝑥0.𝑥0 denotes the initial state vector of the 
system.𝑙𝑘(𝑥𝑁, 𝑢𝑁) denotes the immediate cost function at stage 
𝑘.𝑁 denotes the total number of time steps. 𝑥𝑁 denotes the final 
state at state 𝑁, and 𝑢𝑁 denotes the control inputs at state 𝑁. 
𝑔𝑘(𝑥𝑁, 𝑢𝑁) denotes the immediate additional cost function at 
stage 𝑘. 𝑔𝑁(𝑥𝑁, 𝑢𝑁) denotes the additional cost function at state 
𝑁 . 𝑙𝑁(𝑥𝑁, 𝑢𝑁)  denotes the additional cost function at state 
𝑁 . 𝑙𝑘(𝑥𝑁, 𝑢𝑁) + 𝑔𝑘(𝑥𝑁 , 𝑢𝑁)  represents the instantaneous cost 
and punishment level at the end of the stage. ∑ [𝑙𝑘(𝑥𝑁, 𝑢𝑁) +

𝑁−1
𝑘=0

𝑔𝑘(𝑥𝑁, 𝑢𝑁)] represents the total cost at that time. If the driving 
status is already known at this point, then, the vehicle status is 
controlled to obtain more suitable parameters and kinetic 

energy. The energy control equation of the vehicle at this time 

is shown in equation (10) (Cui et al., 2024; Hao et al., 2023). 

{
𝑥(𝑘) = 𝑆𝑂𝐶(𝑘)

𝑢(𝑘) = [𝑇𝑚(𝑘), 𝑔𝑒𝑎𝑟(𝑘)]
     (10) 

In equation (10), 𝑆𝑂𝐶(𝑘) represents the remaining power 
of the transmission. 𝑇𝑚 represents the rotational moment of the 
generator. 𝑔𝑒𝑎𝑟(𝑘)  represents the variable size that the 
algorithm system can manipulate. 𝑥(𝑘)  signifies the system 
state. 𝑢(𝑘) signifies its control variable. At this point, the state 
of SOC is shown in equation (11) (Gao et al., 2024; Vignesh & 
Ashok, 2023). 

𝑆𝑂𝐶(𝑘 + 1) = 𝑆𝑂𝐶(𝑘) −
𝑈𝑜𝑐(𝑘)−√𝑈𝑜𝑐

2 (𝑘)−4∗𝑅𝑜(𝑆𝑂𝐶(𝑘)∗𝑃𝑏𝑜𝑡(𝑘))

2∗𝑅𝑜(𝑆𝑂𝐶(𝑘))∗𝑄𝑏𝑜𝑡
 (11) 

In equation (11), 𝑈𝑜𝑐(𝑘) signifies the open circuit voltage of the 
battery. 𝑅𝑜  signifies the battery resistance. 𝑄𝑏𝑜𝑡  represents its 
charge capacity. 𝑃𝑏𝑜𝑡  represents the electrical power of the 
battery. Therefore, for the stage DP of automobiles, it is 
necessary to first discretize the remaining driving power of the 
vehicle, as shown in equation (12) (He et al., 2024). 

𝑋𝑘 = {𝑥𝑘
0, 𝑥𝑘

1,⋯ , 𝑥𝑘
𝑁+1} = {𝑆𝑂𝐶𝑘

0, 𝑆𝑂𝐶𝑘
1, ⋯ , 𝑆𝑂𝐶𝑘

𝑁+1} (12) 

In equation (12), 𝑆𝑂𝐶𝑘
𝑁+1 represents the 𝑁 + 1-th state of stage 

𝑘 . 𝑋𝑘  represents the discrete processing state of remaining 
electricity. After completing the discrete processing, the optimal 
parameters for each charging stage are solved to obtain the 
optimal control cost for each stage. Finally, the control state 
parameters of the vehicle during the operation phase are 
obtained by calculating the state. After continuously repeating 
this process, the DP for the automotive phase is completed. DP 
can provide energy control optimization for the entire stage 
(Jung et al., 2024). However, there is also a prerequisite for using 

 

Fig 3 Algorithm decision process 

 

Fig 4 Driving state process 
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this optimization method, which is to determine the driving 
state. Due to the uncertainty of the driving status, there is 
uncertainty in the DP of automobiles, making it more difficult 
for DP algorithms to control and manage energy strategies. 
Therefore, the driving status of automobiles need to be 
recognized (Cipek et al., 2023). The driving process is shown in 
Figure 4. 

From Figure 4, the driving state requires first extracting the 
state data of the vehicle, followed by calculating the feature 
parameters of the current driving state. By mapping the 
parameter data to the main space, the spatial driving state is 
obtained. The approximate value of the driving state is 
calculated, and the driving state is classified and recognized. 
Finally, the characteristic state data of the driving state are 
output. Therefore, there are two calculation methods for 
identifying the driving status of a vehicle. One approach is to 

analyze past data on the driving status of a vehicle and obtain 
characteristic parameters of its historical state. Another way is 
to map its parameters through past driving states, obtain 
different parameter components, and finally calculate similar 
values to obtain the driving state through similar values (He et 
al., 2024). The driving state recognition process is shown in 
Figure 5. 

From Figure 5, among the two methods, the parameter 
clustering state obtained by the first method can be transmitted 
into the principal component of the second method to connect 
the two methods. The second method can continuously judge 
the parameters by clustering analysis, and finally obtain the 
optimal parameters of the vehicle's driving state. This means 
that the second method has a better data parameter processing 
method compared to the first method. Finally, if the vehicle is 
powered by an electric motor throughout its journey, there is no 
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need to plan the vehicle's energy throughout the entire process. 
When the driving state of a vehicle exceeds its total mileage, it 
is also necessary to plan the energy of the vehicle. The process 
of this special state is shown in Figure 6. 

From Figure 6, during the planning process, firstly, the 
driving status information of the vehicle is obtained to 
determine whether energy planning for the vehicle is currently 
required. If so, the driving status and distance of the vehicle are 
evaluated in stages. Then, the dynamic trajectory planning is 
performed again. Secondly, it is necessary to determine whether 
the energy allocation in the current state is within a reasonable 
range. If so, the electricity in each stage is allocated. Then, the 
DP is performed again. If not, the driving status planning will be 
directly carried out. If electricity planning is required, the 
process will be ended directly. 

 
 
3. Result and discussion  

3.1 Results analysis of automotive energy management strategies 

To prove the feasibility of the EMS, the MATLAB software 
is used to simulate and analyze the EMS. The initial value of 
remaining electricity is 0.95. The limit value of remaining 
electricity during energy phase switching is 0.30. The common 
NEDC driving state is selected as the driving state. Strategies 
based on DP, Deep Reinforcement Learning (DRL) (He et al., 
2024) and Model Predictive Control (MPC) (Jung et al., 2024) 

combined with dynamic planning are compared, respectively. 
He H et al. found that traditional energy management and 
control methods for electric vehicles were hindered by 
technological bottlenecks, resulting in poor real-time 
generalization ability of control strategies. Therefore, the DRL 
method was used for control. The results indicated that this 
method effectively improvedthe traditional generalization 
ability (He et al., 2024). Jung et al. proposed a tram energy 
control strategy based on MPC to address the limitations of 

traditional tram energy control methods and enhance the 
practical application of tram energy control strategies. The new 
method reducedthe energy consumption of vehicles and 
improved the energy control effect of trams (Jung et al., 2024). 
It can be seen that the traditional tram energy control method 
cannot control the tram energy well, so it is necessary to use 
more advanced control strategy for control. The remaining 
power consumption process and energy strategy planning 
during the driving state of the vehicle are shown in Figure 7. 

From Figure 7 (a), the SOC value of the vehicle decreased 
with time during driving. When the remaining battery was high, 
the battery decreased significantly. When the driving time 
reached around 5500s, the SOC value reached the set minimum 
value. At this time, the SOC value began to fluctuate. When the 
SOC value dropped to the set threshold, the vehicle began to 
enter the energy storage state. When the SOC value exceeded 
the set threshold, the vehicle engaged in a hybrid braking state. 
From Figure 7 (b), during the driving, when the rotational 
moment of the vehicle was large, the vehicle was mainly 
powered by the generator. Therefore, the rotational moment of 
the vehicle at this time remained high, and the entire variation 
was between -50 Nm and 100 Nm. When the driving time 
reached 1000s, the rotational moment of the vehicle was larger. 
The power supply of the vehicle was completed jointly by the 
generator and the engine. This indicates that as the wheelbase 
increases, the vehicle begins to operate in an engine powered 
state. Compared with Figure 7 (a), at around 5500s, the SOC 
value of the vehicle decreased. At this time, the vehicle's energy 
was mainly supplied by the engine, so the engine's rotational 
torque started to be at a high value and lasted for a relatively 
long time. The driving process conforms to the EMS process. 
The vehicle data in different energy management strategies is 
displayed in Figure 8. 

From Figure 8 (a), the driving speed of the vehicle was the 
same under different strategies, so the energy use and 
mobilization of the vehicle were the same. From Figure 8 (b), 
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Fig 7 Remaining energy consumption process and energy strategy planning of automobile driving state 
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different energy management strategies had the same change 
trend, gradually decreasing with time. When the set threshold 
was reached, only the DP-based EMS decreased in magnitude. 
This shows that the strategy used in the study can better adjust 
the vehicle state after reaching the threshold. This method can 
better manage and analyze the energy of vehicles. From Figure 
8 (c), when the driving time of the vehicle reached 700s, the 
vehicle began to enter fuel consumption. At this stage, it 
indicates that the electric motor power of the vehicle enters a 
phased charging stage, and the fuel consumption begins to show 
an increasing trend with time. However, the fuel consumption 
of the research method is relatively low, and the consumption 
time is also relatively late. This indicates that the energy 
management method used in the study has better management 
strategies. 

3.2 Simulation results analysis of automotive dynamic programming 
algorithm 

To verify the effectiveness of vehicle energy management in 
various strategies, the initial goal of SOC is set to 0.95, and the 

threshold is set to 0.3. The driving state of the vehicle is also 
NEDC. Based on the comparison of parameters under different 
driving states, the driving state parameters are displayed in 
Table 1. Ave signifies the average value, std signifies the 
standard deviation, max represents the maximum value, dec 
represents the deceleration stage, acc represents the 
acceleration stage, idle represents the deceleration stage vehicle 
speed, and uni represents the rated power. 

From Table 1, in the first state of vehicle driving, the vehicle 
may be driving at a moderate speed, with a stable driving speed 
and relatively average deceleration and acceleration time. This 
situation generally belongs to urban driving sections. In the 
second vehicle driving state parameter analysis, the vehicle's 
driving speed is relatively fast, and the acceleration and 
deceleration time is relatively short. The vehicle speed is the 
highest among the three driving states, with 40.5246 km/h, 
indicating that this state may be high-speed driving. The 
average speed of the third state is low, with 13.4588 km/h, and 
the acceleration and deceleration time is relatively short. The 
speed of the driving state is not significantly different, indicating 
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Fig 8 Comparison of vehicle parameters with different energy management strategies 

Table 1  
Different driving state parameters 

Vehicle driving parameters NEDC 1 NEDC 2 NEDC 3 NEDC 4 

Vave 16.9076 40.5246 13.4588 3.6986 

uave 24.0884 46.9208 15.8051 6.9774 

Vstd 15.9368 25.9348 10.5941 5.2648 

Vmax 55.7117 89.1258 39.9595 18.3034 

aave 0.4066 0.3458 0.3684 0.2935 

adec -0.4563 -0.4485 -0.3660 -0.2839 

amax 0.8791 1.2238 0.6984 0.4898 

amin -1.1236 -1.6316 -0.8712 -0.5835 

astd 0.1912 0.2113 0.1475 0.0885 

P(tidle) 26.5996 15.7632 14.6452 46.9917 

P(tacc) 26.5996 24.6142 29.9457 13.9845 

P(tdec) 24.0577 22.2183 29.4171 15.0415 

P(tuni) 23.0321 38.3839 25.6024 23.9627 
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that the vehicle travels more evenly and the driving speed is not 
fast in this state. The average speed in the fourth driving state is 
3.6986 km/h. In this state, the driving speed is not fast, which 
m ay be the driving state when the roads in the city are relatively 
congested. Figure 9 displays the DP image of the vehicle in four 
driving states. 

From Figure 9 (a), during the driving process, the speed 
change did not gradually change with the increase of time, but 
there was a phased change. The speed may remain unchanged 
with the increase of time and may be in an upward or downward 
phase. This may be caused by different road conditions during 
the driving, such as acceleration, urban road driving, rural road 
driving, etc. From Figure 9 (b), the SOC value changed 
differently when the vehicle was in different driving states. In 
the first, third, and fourth vehicle conditions, the driving state 
showed a decreasing trend over time. However, the SOC value 
of the second vehicle condition first decreased to 0.6, then 
showed an upward trend, rising to 0.75, and finally decreased 
again. This may be because during this process, the vehicle first 
drives at low speed, then starts driving at high speed, and finally 
drives at low speed again. The EMS can manage the driving of 
vehicles in different states. Figure 10 displays the comparison of 

vehicle efficiency and fuel consumption under different states. 
From Figure 10 (a), in the three driving states of 1, 3, and 

4, the utilization efficiency of the vehicle decreased with the 
increase of SOC value, with the lowest being driving state 4, 
which reached about 60%. Driving state 1 had higher efficiency, 
with a minimum value of 70%, which was about 20% higher than 
driving state 4. This may be due to the more reasonable energy 
planning in driving state 1. In driving state 2, the efficiency 
showed an upward trend, which may be due to the acceleration 
of the vehicle during this stage, causing an overall efficiency 
improvement. The lowest efficiency point was at 0.4SOC, which 
was 60%. From Figure 10 (b), the fuel consumption of the 
vehicle increased with the consumption of SOC, and its trend 
was the same in driving states 1, 3, and 4. The overall fuel 
consumption was about 3.4L per 100 Km. The fuel consumption 
per 100 Km in driving state 2 showed a significant upward trend 
at a 0.5SOC value, which may be due to the acceleration of this 
section. The average fuel consumption was about 5.2L, which 
was 1.8L higher than other driving states. The error comparison 
before and after using the DP model is shown in Table 2. 
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From Table 2, the overall efficiency of the vehicle was 
lower when the DP model was not used, and the trend gradually 
decreased with time, reaching the lowest value of 29.35% at 
6265s. The efficiency change of the vehicle after adding the DP 
model also decreased with the increase of time, but the overall 
decrease value was smaller. At the same time, when reaching 
the lowest value, the time was 6675s. It was longer than before 
adding the strategy, with an efficiency of 29.98%, which was 
higher than the model without the strategy. The maximum 
efficiency difference between the model before and after adding 
was 7.86%, which may be due to the vehicle starting to 
decelerate during this period, resulting in the main movement 
being the motor movement. Jia et al discussed adaptive model 
predictive control in the context of fuel cell hybrid electric 
vehicles, providing new ideas for advanced energy 
management strategies beyond DP algorithms (Jia et al., 2023). 
Peng et al. analyzed the efficiency of hybrid switches and 
inverters, which enhanced the analysis of vehicle efficiency and 
energy consumption, especially the effectiveness analysis with 
DP algorithm (Peng et al., 2020). Venkitaraman and Kosuru 
introduced a hybrid deep learning approach to managing 
electric vehicle charging, which provided a comparative 
perspective on DP-based energy management strategies 
(Venkitaraman & Kosuru, 2023). This indicates that different 
studies can provide better research ideas for proposing new 
methods and better technical support for current research. 

 
 

4. Conclusion  

The research mainly focused on the insufficient adaptability of 
energy management strategies and high energy consumption 
during the driving process of hybrid electric vehicles. Therefore, 
a vehicle energy automatic adaptation method based on EMS 
and DP was proposed. The study first analyzed the EMS. Then, 
the DP was usedto optimize the model based on the EMS. The 
research results indicated that after incorporating the DP 
strategy, the energy mobilization of vehicles was more 
apparent. The average speed in several driving states was 
16.9076 km/h, 40.5246 km/h, 13.4588 km/h, and 3.6986 km/h, 
respectively. Driving state 1 had a higher efficiency, with a 
minimum value of 70%, which was about 20% higher than 
driving state 4. In driving states 1, 3, and 4, the change was the 
same, and the overall fuel consumption was around 3.4L per 100 
kilometers. The average fuel consumption in driving state 2 was 
about 5.2L, which was 1.8L higher than other driving states. The 
overall efficiency of automobiles after incorporating DP was 

improved, with a shorter time to reach the lowest efficiency 
compared with not incorporating the DP model. The highest 
efficiency was 7.86% higher than not incorporating the DP 
model. From this, the EMS can effectively manage the energy 
mobilization of vehicles. After incorporating the DP model, 
vehicle energy consumption can be effectively controlled. 
Although the research has achieved many results, there are still 
some shortcomings. For example, the study only analyzes the 
dynamic model of the vehicle, which cannot obtain the real state 
of the vehicle. Therefore, it is necessary to further analyze real 
vehicle data. At the same time, the study only analyzes several 
driving states. Therefore, further analysis will be conducted on 
more driving states in the future. 
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