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Abstract. With the national emphasis on building energy efficiency planning, energy efficiency optimization in existing buildings requires renovation 
measures based on multi-objective factors. In order to get the optimal solution in the multi-objective decision-making of renovation, the study 
proposes a class of improved grasshopper optimization algorithms. The process employs a systematic methodology to identify an optimal energy 
renovation method, taking into account the specific characteristics of the building environment. It then classifies and formulates the energy reduction 
substitution items for building renovation, and finally, it synchronizes the cost of the renovation project as a measure for decision-making. The elite 
inverse strategy approach enhances the grasshopper optimization algorithm to facilitate the multi-objective decision-making process associated with 
building renovation measures. The results showed that the improved grasshopper optimization algorithm could achieve a decision accuracy of 98.8% 
for the test samples, which was 5.5% higher than the accuracy of the particle swarm optimization algorithm. Repeated run tests of the research 
algorithm for multi-objective decision making yielded a mean decision fitness value of 2.34×104 and a data extreme value of 0.38×104. Compared to 
other algorithms improved grasshopper optimization algorithm converged in a lower range of fitness values, which indicated that the algorithm 
worked well for multi-objective optimization and the model repeatability was good. The research algorithm was used to decide the energy efficient 
renovation planning of the building and the power consumption of the renovated power supply system was reduced by 23.7%-49.6%. This indicates 
that the renovated building has better energy efficiency and can provide a reliable technical direction for decision-making optimization of building 
energy efficiency renovation. 
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1. Introduction 

With the rapid development of the construction industry, 
some of the old buildings are no longer in line with today's 
industry development concept (Han et al., 2023). Currently, the 
construction industry is being transformed towards energy 
sustainability, so energy-saving optimization and renovation 
measures are taken for earlier buildings (Deng et al., 2022). At 
the same time, the rationality of the energy structure of existing 
buildings is poor. Furthermore, with the energy consumption of 
human activities, it will cause a large amount of greenhouse gas 
emissions, leading to further deterioration of climate problems 
(Zheng et al., 2022). However, optimized renovation involves 
multiple aspects such as the resettlement of the original 
occupants, the selection of the optimized renovation area, the 
calculation of the renovation cost, and the prediction of the 
renovation effect (Nikas et al., 2022). To facilitate the 
coordination of multiple objective factors in the process of 
building renovation, the early linear programming method is 
employed to partition the calculation of multiple factors and 
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coordinate the overall optimal strategy after the completion of 
the local solution separately (Vijayan et al., 2022). However, this 
method is susceptible to difficulties in the resolution of complex 
data types (Khan et al., 2023). Therefore, the solution is 
introduced into the multi-objective intelligent optimization 
algorithm (Elsheikh et al., 2023). The Pareto optimization method 
compares the global optimal solution through mathematical 
operations on multiple objective functions. However, the 
calculation needs to prioritize the confirmation of global 
extreme values (Mart í n-Ortega et al., 2024). Intelligent 
algorithms continue to develop vector evaluation genetic 
algorithms and random weight genetic algorithms (Zhang et al., 
2022). Vector evaluation genetic algorithm generates local 
optimal solutions of sub-populations by prioritizing 
computation, and then forms new sub-populations to obtain the 
global optimal solution after cycling in a cross-mutation manner 
(Brahami et al., 2022). The stochastic weighted genetic 
algorithm, on the other hand, accomplishes the global 
evaluation of the optimal solution by accumulating data 
information during the search process. However, the above 
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algorithms are inadequate for structured multi-objective 
decision making (MODM). 

Currently there are proposals to rectify the high energy 
consumption part of old buildings, but the actual building 
rectification program involves many influencing factors. To 
solve this challenge, researchers have studied MODM 
programs. Wang et al. proposed a decision-making renovation 
method based on a four party evolutionary game model for 
energy-saving renovation of old residential buildings. The 
process took different groups as decision branches, explored 
suitable execution methods through the evolution of stable 
strategies in the model, and combined auxiliary solutions to 
achieve the goal of building energy-saving optimization. The 
research results indicated that the proposed method could 
effectively improve the energy-saving renovation progress of 
buildings (Wang et al., 2024). Balezentis et al. proposed energy-
saving methods for replacing renewable energy sources in 
household buildings to address energy conservation issues. The 
process took measures such as building energy renovation, 
replacement of renewable energy technologies, and 
replacement of energy-saving appliances as decision-making 
options. Moreover, it implemented renovation measures in 
combination with the willingness of households to renovate. 
The research results indicatedthat the proposed method 
achieved the energy-saving goals of buildings within the range 
of residents' willingness (Balezentis et al., 2024). Bhuyan et al. 
proposed a research method based on frame balancing for the 
multi-objective optimization problem of data privacy. The 
method calculated the surrogate value of the cost of maintaining 
user privacy steps in real time by setting a bijective framework 
of user requirements and optimization cost, and balanced the 
relationship between the two to obtain the optimal solution by 
computational methods such as Gaussian distribution. The 
results demonstrated that the proposed method effectively 
protects user privacy while measuring the cost (Bhuyan et al., 
2022). Liu et al. proposed a research method based on hesitant 
fuzzy entropy algorithm for the multi-objective problem of 
micro EDM machining. The method evaluated the suitability of 
the process factors through numerical testing of the machining 
parameters, and decided the actual thread of machining based 
on the numerical range of the suitability. The results 
demonstrated that the proposed method decided a better 
quality machining process (Liu et al., 2024). Zheng et al. 
proposed a research method based on the combination of 
physical and data systems for the operational MODM problem 
of smart steel mills. The method determined the decision-
making priority through network hierarchy assignment. 
Moreover, the final operation mode was determined by unit 
operation sub-line evaluation strategy. The results indicated 
that the decision making of the proposed method optimized the 
operational effectiveness of the steel plant (Zheng et al., 2022). 

Yildiz et al. proposed a research model based on 
grasshopper optimization algorithm (GOA) for practical 
engineering problems. The model proposed a multi-category 
approach through domain exploration and completed feasibility 
test based on simulated decisions. The results indicated that the 
proposed method had a better optimization effect for structural 
coordination of engineering problems (Yildiz et al., 2022). Reddy 
and Bojja proposed a GOA based research model for visual 
tracking problem. The method transformed the actual decision 
variables through differential evolutionary approach and 
performed vision tracking with the help of capture capability of 
the algorithm. The results indicated that the proposed method 
could effectively carry out the real time tracking behavior of 
vision (Reddy & Bojja, 2022). Deng and Liu adopted a GOA 

based research model for the numerical optimization problem 
of engineering. The method accomplished multiple numerical 
attempts through intelligent self-adjustment of search technique 
to improve the model inertia weights with butterfly optimization 
algorithm. The results showed that the proposed method had 
significant optimization effect on engineering problems (Deng & 
Liu, 2023). Badr et al. proposed a new variant of GOA based 
research method for the optimization problem of management 
side reform of power grids. The method defined the parameters 
through grouping mechanism, and the defined parameters were 
tested in comparison of variants and standard. The results were 
used to optimize the operation model. The outcomes indicated 
that the proposed method had a better effect on the 
management side reform of the power grid (Badr et al., 2023). 
Hosseini et al. proposed a model based on GOA with gene 
expression algorithms for the decision-making problem of 
blasting mining programs. The model established a relational 
equation by detecting the dust diffusion of blasting and the real 
environmental problems to control the harmful factors of 
blasting by training simulation. The results demonstrated that 
the proposed method has a more accurate guidance effect for 
mining blasting (Hosseini et al., 2022). 

In summary, the current research methods for MODM 
optimization are prone to be constrained by local optimal 
solutions during the exploration process. Therefore, the study 
proposes a GOA with an improved population exploration range 
for energy efficiency renovation decision-making in buildings. 
The algorithm innovatively introduces an elite inverse learning 
strategy into GOA, which enables the promotion of energy-
efficient retrofit strategies by coordinating conflicts between 
retrofit projects. The use of chaotic sequence mechanism 
enhances the motion activity of the initial population of the 
algorithm and provides more coordinated directions for 
studying algorithmic decisions. Moreover, it optimizes the 
energy structure and climate environment of the building 
through retrofit measures, with a view to establishing effective 
theoretical support for multifunctional building models in 
building retrofit. 

 
2. Method 

In this chapter, the renovation value is calculated by analyzing 
the building energy efficiency methods. The value of the 
renovation generation is calculated based on the cost of the 
renovation measure. The energy efficiency is calculated by 
comparing the energy consumption of the retrofit item with that 
of the original item. The MODM of the energy efficiency retrofit 
is performed with the improved GOA. Finally, the GOA is 
optimized using the elite inverse learning strategy. 

2.1 Modeling of multi-objective renovation measures based on 
building energy efficiency 

As the pace of modernization continues to move forward, 
buildings have become a common landscape in people’s lives 
(Xiao et al., 2023). In the current development of the 
construction industry, it is necessary to consider not only the 
intrinsic properties of the building itself, but also the energy-
saving and environmental protection of buildings (Usman & 
Abdullah, 2023). For the completed building, it is also need to 
ensure that people use the basis of energy-saving 
transformation (Verma et al., 2023). The target point of energy-
saving renovation is mainly divided into two aspects, user 
experience and energy consumption degradation (Ren et al., 
2023). Based on these two goals can be sub-categorized 
according to the building structure and energy, the specific 
energy classification items are shown in Fig. 1. 
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Fig. 1 shows the conventional energy system of the building, 
including the ventilation system, lighting system, temperature 
control system, hot water system and power supply system. The 
main functions of the building rely on the power system to 
provide security. Therefore, the energy conservation can be 
carried out through both open-source and cost-saving. 
Environmentally friendly new energy is currently an effective 
method for building energy conservation (Wang et al., 2024), 
which can simultaneously balance environmental protection 
and energy conservation with electricity demand (Goyal, 2022). 
The study replaces part of the building's power supply demand 
with new energy, and the specific process is shown in Fig. 2. 

Fig. 2 shows the energy supply process incorporating two 
types of new energy methods, wind power and solar power. 
Solar power is used during daytime hours. Wind power supply 
is used as a back-up supplemental energy supply, taking into 
account the size and duration of the wind (Kiss & Szalay, 2023). 
The energy-saving modification of the building can also be done 
by changing the facilities of the building (Lin & Yang, 2022). For 
example, replacing the power of non-essential appliances with 
low power ones (Liu et al., 2023). Therefore, the overall 
renovation measures for designing the building for energy 
efficiency are shown in Fig. 3. 

Fig. 3 shows the transformation program divided into broad 
direction and refined classification. Pre-screening is performed 
with broad direction and screening classification is performed 
with single-item categorization. Based on the specific 
categorization, a renovation initiative is proposed, and the 

renovation initiative is expressed as a single-item decision to 
participate in the design of the program. Consider the scope of 
decision-making based on the designed renovation items. 
Consider the energy rating with the equipment based on 
necessity (Noorzai et al., 2023). The set of decision variables to 
summarize the overall is shown in Equation (1). 

𝑥 = (𝑥1
1, … , 𝑥𝑘1

1 , … , 𝑥1
𝑛, … 𝑥𝑘𝑛

𝑛 )   (1) 

In Equation (1), x denotes as the decision set. n denotes the total 
number of remodeling items. i represents the i-th transformation 
item variable k denotes the corresponding renovation measure, 

and 𝑥𝑘𝑛
𝑖 denotes the replacement of the original i measure with 

the k change measure. Considering that there is a renovation 
cost exceeding the energy-saving budget in the actual 
renovation, the restriction term is set as shown in Equation (2). 

∑⬚𝑘=1
𝑘𝑖 𝑥𝑘

𝑖 ≤ 𝑄𝑖     (2) 

In Equation (2), ki represents the number of other options for the 
renovation measure. Qi represents the number of final 
executable projects for the renovation item i number. The 
remaining renovation items that can be performed can be 
calculated based on the qualifying circumstances of the 
condition, as shown in Equation (3). 
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𝑥𝑟
𝑖 = 𝑄𝑖 −∑⬚𝑘=1

𝑘𝑖 𝑥𝑘
𝑖     (3) 

In Equation (3), 𝑥𝑟
𝑖  denotes the number of unmodified items in 

the i position of the remodeling project. Counting the current 
implementation or changes to the renovation program yields 
the overall number of unrenovated items in the program, and 
the set of unrenovated items is represented in Equation (4). 

𝑥𝑟 = (𝑥𝑟
1, 𝑥𝑟

2, … , 𝑥𝑟
𝑛)    (4) 

To assess the effectiveness of the building's remodeling 
program more intuitively, the set of statistical original and 
remodeling items is expressed as Equation (5). 

{
𝑥(𝑡𝑚) = (𝑥1

1(𝑡𝑚),… , 𝑥𝑘1
1 (𝑡𝑚),… , 𝑥1

𝑛(𝑡𝑚)… , 𝑥𝑘𝑛
𝑛 (𝑡𝑚))

𝑥𝑟(𝑡𝑚) = (𝑥𝑟
1(𝑡𝑚), 𝑥𝑟

2(𝑡𝑚),… , 𝑥𝑟
𝑛(𝑡𝑚))

 (5) 

In Equation (5), tm denotes the current point in time. m is the 
value taken at the time point. m=0,1,2,…,T, S denote the 
maintenance frequency under the time period. The change 
process of appliance population under the two groups is shown 
in Equation (6). 

{
𝑥(𝑡𝑚+1) = 𝐺(𝑥(𝑡𝑚),𝑢(𝑡𝑚), 𝑡𝑚)
𝑥𝑟(𝑡𝑚+1) = 𝐺(𝑥𝑟(𝑡𝑚), 𝑢𝑟(𝑡𝑚), 𝑡𝑚)

   (6) 

In Equation (6), G denotes the population change function for 
the program. u(tm) denotes the repair process function. The 
population change of non-repairable appliances in the process 
is calculated as shown in Equation (7). 

𝐺𝑘
𝑖 (𝑥𝑘

𝑖 (𝑡𝑚+1)) = 𝜇𝑘
𝑖 𝜈𝑘

𝑖 𝑥𝑘
𝑖 (𝑡𝑚)2

𝑥𝑘
𝑖 (𝑡0)

− 𝜇𝑘
𝑖 𝑥𝑘

𝑖 (𝑡𝑚) + 𝑥𝑘
𝑖 (𝑡𝑚) + 𝑢𝑘

𝑖 (𝑡𝑚) (7) 

In Equation (7), 𝐺𝑘
𝑖 (𝑥𝑘

𝑖 𝑡𝑚+1
⬚ ))denotes the population change 

function for the appliance. (tm-1,tm) denotes the set time period 

period. 𝜇𝑘
𝑖 (𝑡𝑚

⬚)denotes the number of repairs during the time 

period. 𝜇𝑘
𝑖 and𝜈𝑘

𝑖 denote the two adjustment parameters of the 
function, respectively.The constant failure probability algorithm 
is introduced for the types of appliances that can be restored by 
repair. The calculation is shown in Equation (8). 

𝐺𝑘
𝑖 (𝑥𝑘

𝑖 (𝑡𝑚+1)) = (1 −
1

𝜃𝑘
𝑖 )𝑥𝑘

𝑖 (𝑡𝑚) + 𝑢𝑘
𝑖 (𝑡𝑚)   (8) 

In Equation (8), 𝜃𝑘
𝑖 represents the calculated mean failure period 

of the appliance. The purpose of energy-saving and cost saving 
in the renovation process are divergent (Farghali et al., 2023), so 
the relationship between multiple objectives needs to be 
measured to arrive at an optimal solution (Han et al., 2023). 

2.2 Optimization of building energy efficiency renovation decision 
based on GOA 

With the progress of social development, engineers began 
to consider the energy-saving and environmental protection of 
buildings (Sharma & Kumar, 2022). In the energy-saving 
renovation problem of buildings, the study must reach the 
energy-saving purpose but also must pay attention to the cost 
of renovation and the user's willingness (Xu & Juan, 2022), so 
the specific implementation plan needs to be optimized in a 
number of objectives in the decision-making to optimize a 
suitable path (Decorte et al., 2023). Therefore, the study 
introduces the improved GOA to optimize the building energy-
saving renovation problem. The specific algorithm works as 
shown in Fig. 4. 

In Fig. 4, the algorithm uses the grasshopper traveling 
position as a decision point and sets multiple decision directions 
as survival or consumption factors during grasshopper 
movement. The relationship between the single strategy and the 
suitable range is measured to simulate the grasshopper behavior 
to decide the optimization method (Zhang et al., 2023). The 
research method represents the set of grasshopper populations 
as shown in Equation (9). 

𝑋 = {𝑋𝑖}. 𝑖 = 1,2,3, … , 𝑁 (9) 

In Equation (9), X serves as the set grasshopper population set. 
N represents the number of individual grasshoppers in the 
population. The random number generation is used to set the 
grasshopper individual coordinate points, and the dimension 
space is the search range of grasshoppers (Ma et al., 2023). The 
rule of random number generation is shown in Equation (10). 

𝑋𝑖𝑑 = 𝑙𝑑 + 𝑟𝑎𝑛𝑑(𝑢𝑑 − 𝑙𝑑) (10) 

Equation (10), Xid denotes a random number in d-dimensional 
space. rand denotes the random function. ud denotes the upper 
bound of the dimension space. Id denotes the lower bound of 
the dimension space. The values of the process parameters are 
updated and adjusted by iteratively varying the exploration 
expenditure and mining revenue of the exploring grasshopper, 
after a two-stage dynamic relationship equilibrium. The formula 
for parameter updating is Equation (11). 

max min

max
( )

c c
c c t

L

−
= −     (11) 

In Equation (11), c represents the process parameters. t 
represents the current iteration round. cmin represents the lower 
limit of the parameter. cmax represents the upper limit of the 
parameter. L represents the total number of iteration rounds of 
the algorithm. The process calculates the interaction behavior 
between individuals with the gravity function. When the value 
of the gravity function is 0, the individuals are in the comfort 
zone. The position information of the population is deduced by 
calculating the behavior between individuals. The update of the 
position is expressed through Equation (12). 

𝑋𝑖(𝑡 + 1) = 𝑐 {∑ 𝑐
𝑢−1

2
𝑆(|𝑋𝑗 −𝑋𝑖|)

𝑁
𝑗=1
𝑗≠𝑖

𝑋𝑗−𝑋𝑖

𝑑𝑖𝑗
} + 𝑇 (12) 

In Equation (12), Xi denotes the current position of the i-th 
individual. Xj denotes the current position of the j-th individual. 
u denotes the upper boundary of the exploration range. l 
denotes the lower boundary of the exploration range. Si denotes 
the force between individuals of the population. dij represents 
the Euclidean distance between individuals. T represents the 
optimal individual value. The optimal individual under the next 
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Fig.4 Grasshopper optimization algorithm 
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move is updated by iteration. The iteration of GOA is shown in 
Fig. 5. 

In Fig. 5, the algorithm prioritizes the calculation of the 
current optimal individual to attract other individuals to 
approach with the current optimal individual position. The 
optimal individual is computed iteratively each time until the 
current optimal solution is output when it satisfies the decision 
condition. However, the population carries out individual 
actions with a random number method of search may lead to 
the problem of uneven moving range (Yan et al., 2023). 
Therefore, the study introduces an elite reverse learning 
strategy to strengthen the individual's moving aggressiveness 
and complete the global exploration as balanced as possible. 
The research process uses chaos theory to calculate the change 
of the population. Moreover, the population generation process 
is transformed to the chaotic space through the mapping 
function. Logistic fully chaotic iterative method is chosen to 
calculate, and the process is shown in Equation (13). 

1
4 (1 ), 1, 2, , 1

t t t
S S S t N

+
= − = −

   
(13) 

In Equation (13), St+1 is the fully chaotic iterative function. S1, 
S2,…SN is denoted as a sub-variable. The chaotic variables are 
transformed and dispersed in the exploration range, avoiding 
small-scale activities of individuals. In order to ensure the 
locomotor activity of grasshopper individuals, an elite decision-
making algorithm is introduced to optimize the GOA 
(Srinivasulu et al., 2023). In this case, the elite weights of the elite 
reverse learning strategy are expressed as shown in Equation 
(14). 

 
*

( )

*

1

        1, 2,   

( )
      1, 2,   

( )

i

g n i

i n

gj

j

w w i n

f X
w j n

f X

−

=

= =


 == =






(14) 

In Equation (14), 𝑋𝑔
∗  denotes the set of elite individuals after 

strategy practice. 𝑋𝑔𝑗
∗ denotes the i th elite individual generated 

after optimization. wi denotes the weight of the i th individual. 

w denotes the weight of the fitness value for the individual. f 
denotes the reverse learning strategy function. The research 

methods determine the renovation term through multi-factor 
analysis of building energy efficiency renovation, and calculate 
the renovation cost of the renovation measures as the limiting 
term. The energy consumption and cost factors are 
synchronously placed in the improved GOA for population 
evolution, and the optimal solution for renovating is obtained 
through the iteration of the algorithm. 

3. Results and Discussion 

This chapter examines the adaptive variations of the algorithm 
through test set testing, with the objective of evaluating the 
accuracy of the algorithm's decision-making capabilities 
through sample predictions. The operational stability of the 
algorithm is evaluated through repeatability tests. A comparison 
of the energy consumption of the building before and after 
renovating demonstrates the energy-savings achieved by the 
algorithm. Furthermore, the decision-making advantage of the 
research algorithm is determined by comparing the cost of 
renovating under iterative changes. 

3.1 Performance test of improved GOA 

To decide the optimal design solution from the multi-objective 
of building renovation, the improved GOA method is used, and 
the algorithm parameters cmax =1 and cmin=0.00001 are set. The 
number of elites in the decision-making is 10% of the number of 
populations. Two test sets are selected to test the performance 
of the algorithm for adaptation. The content of the dataset 
includes energy efficiency data of buildings and the 
performance and price of building materials. The ratio of the 
training set to the dataset is fixed at 10:1, and the number of 
iterations is set to 120. The specific results are shown in Fig. 6. 

In Fig. 6(a), the fitness of the GOA gradually increases with 
the number of iterations in test set 1. The optimal fitness 
calculated in the test reaches more than 80% after 10 iterations, 
while the actual average fitness coincides with the optimal 
fitness after the number of iterations reaches 40, with its fitness 
converging to 100%. In Fig. 6(b), in test set 2, the trend of the 
algorithm's fitness is consistent with that in test set 1, while the 
best fitness curve in test set 2 converges more slowly. The best 
fitness reaches more than 80% when the number of iterations is 
carried out to 30 times. However, the actual average fitness 
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Fig.5 Algorithm flowchart of GOA 
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change is more stable. When the number of iterations reaches 
40 times after the best fitness curve coincides with the best 
fitness curve, the fitness tends to be close to 100%. It indicates 
that the actual decision-making results of the algorithm are 
more stable. The algorithm can basically search for the optimal 
solution when the number of iterations is carried out after 40 
times. Concurrently, the test setting incorporates energy 
efficiency data and material energy-saving effects associated 
with the research focus, which can effectively reflect the 
enhancement of building energy efficiency by the research 
algorithm. To evaluate the decision-making ability of the 
algorithm, the prediction accuracy of the algorithm is compared 
with other methods. The specific results are shown in Fig. 7. 

In Fig. 7(a), the samples used for testing are randomly 
distributed in the coordinate axis interface, and the predicted 
positions of the MODM samples calculated by the GOA 
accurately coincide with the actual sample positions, and the 
prediction accuracy of the GOA can reach 98.8%. In Fig. 7(b), 
under particle swarm optimization (PSO), the predicted 
positions of MODM samples and the actual sample positions 
can also reach the basic coincidence, and the prediction 
accuracy of PSO algorithm can reach 93.3%. The research 
algorithm has improved prediction accuracy by 5.5% compared 
to this algorithm. It indicates that the optimization effect of GOA 
is better than PSO algorithm in the test set. The error rate of the 

GOA during the test is only 1.2%, while the error rate of the PSO 
algorithm is at 6.7%, showing a significant difference. Therefore, 
the GOA performs better for the MODM effect of the building. 
In order to determine the decision stability of the algorithm, the 
GOA and PSO algorithm are selected to be taken 
simultaneously for 300 tests. The fitness values of the two 
groups of models in the experiment are shown in Fig. 8. 

In Fig. 8(a), the change in the fitness value of the improved 
GOA over 300 repetitions of the experiment shows a regional 
fluctuation. The upper and lower limits of the predicted fitness 
values are 2.56×104 and 2.18×104, respectively. The mean value 
of the improved GOA during the calculation of the fitness values 
is 2.34×104, and the extreme deviation of the data is 0.38×104. 
In Fig. 8 (b), the fluctuation of the fitness values of the PSO 
algorithm in 300 repeated experiments is much larger. The 
upper and lower limits of the fitness values predicted by the PSO 
algorithm are 3.87×104 and 2.36×104, respectively. The mean 
value of the improved GOA in the process of moderation value 
calculation is 3.01×104, and the extreme value of the data is 
1.51×104. It indicates that the improved GOA model has less 
variability of decision-making results under multiple repetitions, 
and the actual decision-making behavior is closer to the optimal 
solution. In comparison to the PSO algorithm, the improved 
GOA is more advantageous for multi-project decision-making 
regarding building renovation measures. It is also more 
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applicable to the integrated decision-making process, whereby 
the actual energy-saving effect and renovation spending are 
taken into account. 

3.2 Optimization effect of improved GOA for multi-objective decision 
making for building energy efficiency renovation 

The adaptability of the improved GOA in building remodeling 
decision-making is confirmed after the performance test of the 
model to compare the multi-project decision-making with 

multiple algorithms for real application scenarios. The running 
operating system in the setup algorithm is Windows 10 and the 
\running memory is 8GB. The results of the comparison of the 
fitness value and the remodeling cost are shown in Fig. 9. 

In Fig. 9(a), the fitness values of all four groups of 
algorithms in the early stage show a decreasing trend with the 
number of iterations. The stochastic diffusion search (SDS) 
algorithm, ant colony optimization (ACO) and PSO algorithms 
basically finish convergence after the number of iterations 
reaches 50, and its fitness value no longer decreases with the 
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number of iterations. The improved GOA also consistently 
optimizes the fitness at a later stage and the final fitness value is 
reduced to 1.13×104. In Fig. 9(b), the four groups of algorithms 
before 50 iterations have similar reduction in renovation cost. 
After 50 iterations, the SDS algorithm, the ACO algorithm, and 
the PSO algorithm basically stop decreasing, while the GOA 
maintains continued optimization. At this point, the global 
optimal renovation cost decreases to 4.07×105 yuan. It indicates 
that in the improvement of GOA has the strongest global search 
ability, and stably maintains the reduction of the renovation cost 
with the optimization of the moderate value during the iteration 
process. To compare the energy-saving effect before and after 
the GOA decision optimization, the power consumption graph 
is plotted as shown in Fig. (10). 

In Fig. 10(a), the trend of the electrical load in the building 
is rising and then falling. The power load of the building is 
significantly higher during the daytime than the night time. The 
supply curve of the power also exhibits a first rise and then a 
fall. In Fig. 10(b), the average power load of the building in a day 
after renovating with the improved GOA exhibits 2.45 MW. The 
magnitude of the power supply curve of the actual power supply 
system decreases significantly after the inclusion of the wind-
powered and solar-powered pathways. The average power 
supply of the power supply system is 1.76 MW, which is 23.7%-

49.6% lower than the power consumption before the 
modification. The average power supply of the wind power 
supply in the whole day is 1.19 MW. The power supply of the 
solar power supply method in the daytime is significantly higher, 
with an average of 1.51 MW under the daytime hours. It shows 
that the energy consumption of the building after the renovation 
of the improved GOA has been significantly reduced. However, 
considering the constraints of the new energy supply, a long-
term observation of the energy change of the building is carried 
out. The data results are shown in Fig. 11. 

In Fig. 11, the energy consumption of the building 
renovated by the improved GOA decision-making under long 
time period shows a significant decrease. The average daily 
power consumption of electricity power of the building before 
renovation is 109.61 MW, while the average daily power 
consumption of electricity power of the optimized building is 
76.47 MW. The lowest daily power consumption of electricity 
power of the building after renovation is 47.62 MW, and the 
actual energy-saving is shown as 15.34%-38.29%. The 
optimization estimation with PSO algorithm shows that the 
average value of electricity consumption of the renovated 
building is 92.53 MW, with energy-savings ranging from 8.94% 
to 18.16%. It shows that the energy-saving effect of the building 
optimized by the improved GOA is more obvious and more 
stable. The improved GOA exhibits obvious advantages over 
the optimization effect of PSO algorithm, and makes better 
decisions on energy-saving measures for buildings. The 
environmental quality of the building after renovation is also 
evaluated to confirm the user experience in the building. The 
data results are shown in Fig. 12. 

In Fig. 12(a), the air quality index (AQI) of the building 
before renovating is in the range of 155-250, and the AQI after 
renovating is maintained in the range of 104-215. The AQI of 
the building after renovation is optimized compared to the pre-
renovation. In Fig. 12(b), the ambient temperature of the 
building before remodeling is between 25-26°C, while the 
ambient temperature after remodeling is between 24-26°C. The 
ambient temperature has decreased compared to the pre-
renovation of the building. This indicates that the actual air 
quality of the building has been optimized accordingly after the 
renovation. At the same time, the ambient temperature of the 
building after the energy-saving renovation is also reduced, 

Time (day)
0

45

P
o

w
e

r

75

95

115

135

155

15 30 45 60

After renovation by GOA

Before renovation

After renovation by PSO

(MW)

 
Fig.11 Comparison of energy consumption optimization in 

building renovation 

 

Time (day)
0

50

A
ir

 Q
u

al
it

y
 I

n
d

ex

(a) Air Quality Index

100

150

200

250

300

3 6 9 12

0
22

am
b

ie
n

t 
te

m
p

er
at

u
re

 (
 

)

23

24

25

26

27

3 6 9 12
Time (day)

(b) ambient temperature

After renovation

Before renovation

After renovation

Before renovation

 
Fig.12 Changes in environmental indicators for building renovation 

 



X. Bao and J. Zhang Int. J. Renew. Energy Dev 2024, 13(6), 1058-1067 

| 1066 

 

ISSN: 2252-4940/© 2024. The Author(s). Published by CBIORE 

indicating that the energy reduction of electrical equipment in 
the building can affect the reduction of ambient temperature. In 
summary, the improved GOA decision-making building energy 
efficiency renovation is more effective in saving energy while 
providing a more comfortable environment for users in the 
building. 

3.3 Discussion 

Based on the above research results, it can be concluded that 
the renovated buildings have improved in terms of energy 
conservation and environmental optimization. After optimizing 
with the improved GOA algorithm, the energy consumption 
structure inside the building shifted from non renewable energy 
consumption to hybrid energy consumption. The changes in the 
energy structure of buildings also had corresponding impacts on 
the surrounding environment and climate. Jowkar et al. 
proposed energy-saving optimization methods for sustainable 
building renovations (SBR). However, this study did not 
consider the energy demand after building renovation, which 
may lead to a decrease in resident satisfaction (Jowkar et al., 
2022). The research algorithm for energy-saving renovation of 
buildings was based on the building's own energy demand, 
which was more suitable for the optimization purpose of existing 
buildings. From the perspective of energy-saving optimization, 
Xu et al. proposed an optimization decision model that 
evaluated both cost and renovation effectiveness. This study 
analyzed the energy-saving effect and climate improvement 
factors of renovated buildings through benefit evaluation (Xu & 
Juan, 2022). However, the environmental improvement effect of 
this method after cost coordination was not significant. 
However, after the research method was transformed, the 
temperature and air quality of the building environment are 
significantly optimized. It can be concluded that research 
methods had significant advantages in optimizing the energy-
saving renovation of buildings. Moreover, from the perspective 
of the decrease in environmental temperature after the 
renovation, the renovation measures may have reduced 
greenhouse gas emissions. The improvement of air quality also 
verified this optimization result, so the research method has also 
improved the air pollution problem through building renovation. 

4. Conclusion 

To ensure that both the energy-saving effect and the renovation 
cost of the building met the expectations, the study improved 
the GOA with the elite reverse learning method. The process 
employed a partitioning approach to categorize the scope of the 
building, monitoring the real-time electricity consumption of the 
building and identifying the equipment with the highest energy 
consumption based on the partition. Logistic complete chaos 
iterative method was used to calculate the population change in 
the process, and elite inverse strategy method was used to avoid 
the algorithm tends to local optimal solution. The performance 
test results showed that the improved GOA algorithm had stable 
decision results in the test set and could quickly search for the 
global optimal solution after short-term iterations. In practical 
application results, the addition of new energy transformation 
greatly reduced the energy consumption of buildings. The 
performance test results showed that the improved GOA 
algorithm had stable decision results in the test set, and could 
quickly search for the global optimal solution after short-term 
iterations. After the building renovation, the wind power supply 
system in a stable wind environment could provide an average 
power supply of 1.19MW, while the solar power supply system 
with sufficient solar energy could provide an average power 

supply of 1.51MW. For the energy consumption of the building 
under the long time period, it showed that the daily consumed 
electric power power of the renovated building was 62.47 MW 
on average. The actual energy-saving range performance was 
15.34%-38.29%, which indicated that the renovated building 
had a stable energy-saving effect was stable. However, there are 
still certain limitations in the research methods for energy-
efficient building retrofits. Due to the fact that the decision-
making objectives in renovation are more focused on objective 
quantitative factors, there is insufficient data collection on 
residents' renovation intentions, which may lead to a decrease 
in residents' satisfaction. Therefore, future research directions 
can increase the collection of user intention data and coordinate 
the renovation of buildings based on the renovation intentions 
of residents, in order to provide a better algorithm model for 
multi-objective decision making in energy-saving renovation of 
buildings. 
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