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Abstract. Solar energy as a clean, renewable, and sustainable energy source has considerable potential to meet global energy needs. However, the 
intermittent and uncertain character of the solar energy source makes the power balance management a very challenging task. To overcome these 
shortcomings, providing accurate information about future energy production enables better planning, scheduling, and ensures effective strategies to 
meet energy demands. The present paper aims to assess the performance of PV power output forecasting in PV systems using various machine 
learning models, such as artificial neural networks (ANN), linear regression (LR), random forests (RF), and Support Vector Machines (SVM). These 
learning algorithms are trained on two different datasets with different time steps: in the first one, a historical weather forecast with a one hour time 
step, and in the second one, a dataset of on-site measurements with a 5-minute time step. To provide a reliable estimation of prediction accuracy for 
different learning algorithms, a k-fold cross-validation (CV) is applied. Through a comparison analysis, an assessment of the accuracy of these 
algorithms based on various metrics such as RMSE, MAE, and MRE is performed, providing a detailed evaluation of their performance. Results 
obtained from this study demonstrate that the random forest algorithm (RF) outperformed other algorithms in predicting PV output, achieving the 
smallest prediction error, where the best values for RMSE, MRE, MAE, and R² for the weather dataset were 0.856 W, 0.256%, 0.364 W, and 0.99999, 
respectively, while thevalues for RMSE, MRE, MAE, and R² for the on-site measurements dataset were 8.525 W, 11.163%, 3.922 W, and 0.99922, 
respectively.  
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1. Introduction 

In the face of global warming and climate change concerns, the 
energy demand continues to rise worldwide. The energy 
transition from traditional energy sources to clean, renewable, 
and more sustainable energy sources is crucial and inevitable 
(Hoppe and van Bueren, 2015; Chen et al., 2020; Henderson and 
Sen, 2021). Solar PV energy is a clean, renewable, and 
sustainable energy source, which attracted many governments’ 
attention, and has considerable potential to meet global energy 
needs. Consequently, the total surface area of the installed 
photovoltaic panels has increased massively over the last 
decade, and based on statistics provided by the International 
Energy Agency (IEA), the generated PV power increased by 
26% in 2022, reaching almost 1,300 TWh. Among all renewable 
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technologies, it demonstrated the greatest absolute growth in 
2022 (IEA, 2023). 

However, solar energy is an intermittent, variable, and 
uncertain energy source, as it is strongly influenced by weather 
conditions (solar irradiance, ambient temperature, wind speed, 
etc.). These issues have a significant impact on network stability 
and make maintaining the balance of power a difficult and 
challenging task (Tarroja, Mueller and Samuelsen, 2013; 
McCormick and Suehrcke, 2018; Notton et al., 2018; Yin, Molini 
and Porporato, 2020). Therefore, having accurate information 
about future energy production is beneficial for the power 
balance management. It allows for better planning, better 
allocation of resources and provides efficient strategies to 
maintain grid stability based on anticipated energy production 
and consumption patterns (Arutyunov and Lisichkin, 2017; 
Zack, 2017; Iheanetu, 2022).  
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In the literature, there are many techniques and methods 
that have been widely discussed and used to predict 
photovoltaic power generation, including techniques which 
employ physical models, probabilistic and statistical methods, 
as well as machine learning (ML) techniques.  (Antonanzas et al., 
2016 ; Li, Zhou and Yang, 2018 ; Mellit et al., 2020 ; Dimd et al., 
2022). The authors in (De Giorgi, Congedo and Malvoni, 2014) 
developed an algorithm combining multi-regression and ANN 
used to predict the electrical output of 0.96 MW in an Italian 
grid-connected photovoltaic plant. According to the authors, 
using measured weather parameters improves historical 
forecasting accuracy. Based on ANN, the authors in (Gandelli et 
al., 2014) proposed a novel hybrid method called PHANN, 
which combines physical systems with ANN. They 
demonstrated that the PHANN method yields more accurate 
predictions compared to traditional methods. Both weather 
forecasts and historical data for one day ahead with one-hour 
time step were used to train an MLP-based forecaster in (Leva 

et al., 2017). The authors proved that model performance was 
better on sunny days than partly cloudy days, as they found a 
normalized MAE of less than 15% in all investigated cases. (Liu 
et al., 2018) proposed an ultra-short-term forecasting of a 1.2 
kWp of PV plant installed in Beijing, China using SVM and ANN. 
This model was specially designed to meet specific 
environmental conditions, such as fog and mist. The input data 
includes measurements of air temperature, relative humidity 
and aerosol indices, collected directly from the source. (Zhou et 
al., 2020) developed a hybrid model combining genetic 
algorithms and extreme learning machines, based on similar 
day analysis (SDA-GA-ELM) predicting a day-ahead PV power 
generation, where they used GA to find the optimal hidden bias 
and input weight values. According to the obtained results, the 
proposed model demonstrated its efficiency in predicting PV 
power output with higher accuracy and more stability. The 
authors in (Khadke et al., 2023) proposed a model based on 
various machine learning techniques, including LR, RF, 
principal component analysis, and SVM with an RBF kernel, that 
accounts for the unpredictability of weather conditions when 
forecasting solar PV systems. The proposed model 
demonstrated high accuracy in solar energy prediction, 
achieving the highest R² value of 0.87.  

The present work focuses on the evaluation of forecasting 
accuracy of PV power output using various machine learning 
models trained on two different datasets. The main innovative 
aspect of this study lies in evaluating the effectiveness of various 
machine learning models for predicting the output power in PV 
systems using multiple performance metrics. In addition, a k-
fold cross-validation (CV) technique is applied to ensure reliable 
accuracy estimates for different learning algorithms. 

The key contributions of this paper are outlined as follows: 
− Data Source Integration: Unlike previous studies that often 

rely on limited or single-source datasets, this study 
integrates both historical weather forecasts and on-site 
measurements with different time steps to provide a more 
robust and comprehensive of model evaluation. This 
approach captures the impact of varying environmental 
conditions on PV power output forecasting, which is less 
commonly explored in existing literature. 

− Application of various machine learning models: Although 
various models have been used to predict PV power 
output, this study demonstrates the effectiveness of the 
Random Forest (RF) model, which is less commonly 
applied in PV forecasting compared to other models.  

− Use of k-fold Cross-Validation technique: To ensure robust 
model assessment, a k-fold cross-validation technique is 

employed. This method reduces bias and provides a more 
reliable understanding of each model’s accuracy.  

− Various Performance Metrics: While previous research 
typically focuses on a few metrics (such as RMSE or MAE) 
for model evaluation, in this study an assessment of the 
performance of algorithms across a broader range of 
metrics, including MAE, MRE, RMSE, and R². This 
comprehensive evaluation allows for a more depth analysis 
of each model's performance. 

In the rest of the paper, the following sections are presented: 
Section 2 introduces Materials and Methods, which includes the 
proposed model's structure of PV output power forecasting 
while a cross-validation technique is presented in section 3. 
Section 4 discusses the performance metrics. Section 5 presents 
an analysis and comparison of the obtained results. Section 6 
concludes the presented work. 

2. Materials and Methods 

The general structure of the forecasting model proposed in this 
paper is shown in Fig. 1 while Fig. 2 illustrates the description 
of the proposed PV output forecasting methodology. The 
following description provides a more detailed understanding of 
the proposed models. 

2.1 Data description 

In this study, two different datasets were used for training the 
proposed algorithms. In the first dataset, a weather forecast 
obtained from the NSRDB (“National Solar Radiation 
Database”) ((NREL, 2023) was used, while in the second dataset, 
actual solar power measurements of PV output (P, G, Tamb, and 
Ws) which collected from an installed PV system at the Higher 
School of Engineering of Puerto Real (University of Cadiz) was 
used. 

2.1.1 Weather forecast data 

The weather forecast data used in this study were obtained from 
the National Solar Radiation Database (NSRDB) (NREL, 2023), 
which is a publicly available dataset. These forecasts are based 
on the Physical Solar Model (PSM), which integrates multi-
channel measurements from the Geostationary Operational 
Environmental Satellite (GOES) to predict various meteo-
rological parameters, such as solar radiation, temperature, and 
wind speed, as well as other weather data. The dataset consists 
of one year of hourly data on solar irradiance (G), ambient 
temperature (Tamb), and wind speed (Ws), covering the 
geographical region of Skikda, in the northeast of Algeria [36.89; 
6.90]. As a result, the dataset contains 8760 samples (24 x 365). 

The target value, which is the PV power output, is calculated 
using the model presented in equations (1) and (2), and based 
on data from weather forecast data, including solar irradiance 
(G), ambient temperature (Tamb), and wind speed (Ws). 
(Tamizhmani et al., 2003; Chenni et al., 2007; Yona et al., 2013). 

𝑃𝑝𝑣 = 𝑃𝑆𝑇𝐶 ∙
𝐺

𝐺𝑆𝑇𝐶
∙ (1 − 𝛾(𝑇𝑐 −  𝑇𝑐−𝑆𝑇𝐶)) ∙ 𝑁              (1)                                    

𝑇𝑐 = 0.943 ∙ 𝑇𝑎𝑚𝑏 + 0.028 ∙ 𝐺 − 1.528 ∙ 𝑊𝑠 + 4.328     (2)                                        

where: 𝑃𝑆𝑇𝐶, 𝐺𝑆𝑇𝐶, 𝑇𝑐−𝑆𝑇𝐶 are respectively the rated output 
power of PV generator, the solar irradiance and the PV cell 
temperature at standard test conditions (GSTC=1000 W/m²; 
Tc_STC = 25 °C). 𝑇𝑐 is the PV cell temperature, 𝛾 is the power 
temperature coefficient which equal to 4.3e-3 (1/°C) and N 
present the number of PV panels. 
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2.1.2 On-site measurements data 

The on-site measurements were obtained using Solar-Log 1200 
interface with an RS485 Modbus sensors measure solar 
irradiation, temperature and wind speed. The accuracy of these 
devices is around ±1% for irradiation and ±1°C for temperature, 
ensuring reliable and high-quality data. These measurements 
were collected from April 14-2018 to May14-2018 at the 
installation site of one kWp of PV system located in the College 
of Engineering University of Cadiz in the south of Spain (36.53, 
-6.20). Those measurements consist of 30 days of data with a 5-
minute time step, meaning 8640 measurements (12 x 24 x 30). 
 
2.2 Forecasting methodology description 

In this study, a forecasting of PV power generation is performed 
using various supervised ML algorithms. The aim is to leverage 
ML algorithms to accurately predict PV power output, which 
enables effective energy management strategies. As a result, the 
forecasting methodology used in this study as presented in Fig. 
3 consists of the following steps: 

Step 1: Selecting training dataset:  The first step involves 
selecting a representative set of datasets to train the machine 
learning models. This dataset encompasses two different 
datasets (weather forecast and on-site measurements) and 
covers most variables that influence PV power output (global 
horizontal irradiation, temperature and wind speed).In this 
study, three main variables were used as input features X= {G, 
Tamb, Ws} and a PV power output  Y={PPV} as the target output. 
For this study, a total PV power output of 1 kW was used in on-
site measurements. The same rated power was used to model 
photovoltaic production in the weather forecast dataset. 

Step 2: Selecting ML algorithm: to compare the prediction 
accuracy, various ML algorithms were chosen for the prediction 
task. Therefore, a various algorithms including ANN, LR, RF, 
and SVM, are considered. 

Step 3: Using k-fold cross-validation: compared to the single 
training-testing split method, the 10-CV method provides more 
reliable and robust estimation of predictive accuracy of the 

 
Fig. 1 The general architecture of PV output power forecasting. 

 

 

Fig. 2 The description of the proposed forecasting methodology. 
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algorithms under consideration. A more explanation of the 
method is provided in Section 3. 

Step 4: Fitting training data: a MSE is used to evaluate the 
accuracy of the proposed models. The MSE calculates the 
difference between predicted and observed values on the 
training data, thus providing a quantitative measure of 
prediction error. 

Step 5: Visualizing and evaluating prediction results: once the 
machine learning models are trained, their performance is 
evaluated and assessed using various metrics. In addition, a 
comparative analysis of the accuracy of the model is performed. 

2.3 PV power forecasting models 

For PV power output forecasting, the performance of different 
learning models is compared. The aim of this comparative study 
is to identify which model gives the most accurate results for 
each PV dataset. A brief presentation of each model is provided 
below. 

2.3.1 Linear regression model 

One of the fundamentals of statistics and machine learning is 
linear regression. In linear regression, it is assumed that the 
independent variables x (features) and the dependent variable y 
(target value), are linearly related as indicted by equations (3-4): 
(Hope, 2020)  

𝒙 =  (𝒙𝟏, … , 𝒙𝒏)                                                                (3) 

𝑦 = 𝛽₀ + 𝛽₁𝑥₁ + ⋯ + 𝛽n𝑥n + 𝜀                                            (4) 
 

Where: n is the number of predictors, 𝛽₀, 𝛽₁,… 𝛽n are the 
regression coefficients, and 𝜀 is the random error. 

The objective in linear regression is to find the values of the 
regression coefficients that minimize the difference between the 
predicted and actual values of 𝑦. This is typically achieved by 
applying Ordinary Least Squares (OLS), which aims to minimize 
the sum of the squared differences between 𝒚𝒊 and 𝒚𝒊̂ that 
represent the actual and predicted PV power outputs, 

respectively. The objective function of this method which called 

Residual Sum of Squares (RSS) is written as follows:  

𝑅𝑆𝑆 = ∑ (𝑦𝑖 − 𝑦𝑖̂)
2𝑛

𝑖=1                                                       (5) 

2.3.2 Random Forest model 

A random forest (RF) (Breiman, 2001) is a learning method that 
consists of many decision trees constructed during training time 
to perform classification, regression, and other tasks.  In 
regression tasks, the average prediction from all the trees is 
returned.  

The first step consists of fitting the random forest to the 
dataset Dn defined as: 

𝐷𝑛 =  {(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑛                                                                 (6) 

Where 𝒙𝒊 represents the input feature vector and 𝒚𝒊 the 
corresponding target value (PV power output) for i-th 
observation.  

The objective function minimized for Random Forest model 
is the Mean Square Error (MSE) for each decision tree. This 
measure is utilized to assess the quality of the splits made in the 
tree. The objective is to identify splits that give the lowest MSE 
in each node of the tree.  

 

Fig. 3 Methodology for forecasting PV output power. 
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At every node, the algorithm searches for the split point that 
minimizes the MSE of the child nodes created by the split: 

𝑴𝑺𝑬𝒏𝒐𝒅𝒆 =
𝟏

𝑵𝒍𝒆𝒇𝒕

∑ (𝒚𝒊 − 𝒚̂𝒍𝒆𝒇𝒕)𝟐
𝒊∈𝒍𝒆𝒇𝒕 +

𝟏

𝑵𝒓𝒊𝒈𝒉𝒕

∑ (𝒚𝒊 −𝒊∈𝒓𝒊𝒈𝒉𝒕

𝒚̂𝒓𝒊𝒈𝒉𝒕)𝟐                                                             (7) 

Where 𝑵𝒍𝒆𝒇𝒕 and 𝑵𝒓𝒊𝒈𝒉𝒕 are the number of samples in the left and 

right child nodes, respectively and 𝒚̂𝒍𝒆𝒇𝒕 and 𝒚̂𝒓𝒊𝒈𝒉𝒕 are the mean 

predictions of the left and right nodes. 

2.3.3 Support vector machines 

Support Vector Machines (SVM) is a commonly learning 
algorithm used to perform both classification and prediction. 
SVM models are particularly powerful for forecasting, 
demonstrating an excellent performance in predicting 
regression, especially in time series analysis. (Thissen et al., 
2003; Setiawan, Koprinska and Agelidis, 2009). 

Suppose Dn is training time series dataset which consist of n 
simples of a tuple (xi, yi) where xi is the p-dimensional vector 
presenting features of each data point i, and yi presents the 
target value for the same point. Essentially, In SVM, a nonlinear 
mapping 𝝋 is used to map x into a high-dimensional feature 
space, and linear regression is applied to find the function f(x) 
presented by the equation 8 (Müller et al., 1997; Rana, 
Koprinska and Agelidis, 2016). 

𝒇(𝒙) = 𝝎 ∙ 𝝋(𝒙) + 𝒃                                                  (8)   

where: 𝝎 and b are the regression parameters that present the 
vector of weights and the threshold, respectively. These 
regression parameters are determined by minimizing the 
function presented by equation 9:   

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 
𝜆

2
‖𝜔‖2 + 𝐶

1

𝑛
∑ 𝐿(𝑦𝑖 , 𝑓(𝑥𝑖

𝑛
𝑖=1 , 𝜔))                (9) 

The first term of the model is weight decay, which 
determines the model complexity. The regularization constant 
𝝀 is used to adjust the weight sizes. In the second part of the 
equation, a loss function L used to penalize the large errors 
based on how the training data well fitted by the model, 
depending on the tolerance of the error. C is a positive constant 
used to control the magnitude of deviations from the tolerated 
error. 

2.3.3 Artificial neural network  

Artificial neural networks are highly popular prediction 
algorithms. They can learn complex patterns and relationships 
from data, making them particularly effective at forecasting 
solar power.  (Abuella and Chowdhury, 2015; Rodríguez et al., 
2018; Nasuha et al., 2023). 

In this study, a Multi-Layer Perceptron (MLP), one of the 
most commonly used ANN, is utilized. The MLP used here 
consists of three layers (see Fig.4) and each comprising a set of 
neurons. A neuron is considered the fundamental building block 
of various neural networks. The three layers are: 

Input layer:  this layer comprises three features essential for PV 

power output prediction, namely, solar irradiance (G), ambient 
temperature (Tamb), and wind speed (Ws).  

Hidden layer: it processes the input data to capture complex 
relationship between the inputs and the output. A grid search 
method is employed to determine the number of the neurons in 
this layer.  

The following expression calculates the activation of each 
neuron in the hidden layer (Haykin, 2009): 

ℎ𝑖 = 𝑓(∑ 𝑤𝑖𝑗𝑥𝑖
𝑛
𝑖=1 + 𝑏𝑗)                                          (10) 

Where: 

𝒘𝒊𝒋 : Weight associated with the input 𝒙𝒊 and hidden neuron j. 

𝒃𝒋: Bias term for neuron j 

f: activation function (Rectified Linear Unit (ReLU)).   

Output layer: consists of a single neuron that calculates the 
predicted PV power output 𝑷𝑷𝑽 using the following expression:  

𝑃𝑃𝑉 = 𝑓(∑ 𝑤𝑜𝑗ℎ𝑗 + 𝑏𝑜
𝑚
𝑗=1 )                                (11) 

Where: 

𝒘𝒐𝒋: Weight that connects hidden neuron j to the output neuron. 

𝒃𝒐: Bias term for the output neuron.   

The activation function f in the output layer is a linear function.  
The MLP model is trained using the backpropagation 

algorithm, which adjusts the weights of the network to minimize 
the error. The training process continues until either the 
specified number of epochs is reached or the targeted error 
value is achieved. The error measure used during the MLP 
model training is the Mean Square Error (MSE), which is 
calculated using the following formula: 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑛
𝑖=1                                             (12) 

Where 𝑦𝑖 and 𝑦𝑖̂ represent the actual and predicted PV power 
outputs, respectively. N: the total number of observations in 
data set.  

3. Cross-validation technique   

Cross-validation (CV) is one of the most widely techniques used 
in machine learning and statistical analysis for evaluating model 
generalization performance and selecting the best model based 
on performance metrics (Bergmeir and Benítez, 2012). Cross-
validation, involves splitting the dataset several times into equal 
parts, with the major portion used to train models and the rest 
used to validate them. A k-fold CV is the common cross-
validation method, where k represents the number of folds, 
usually 5 or 10 folds. (Deng, 2023). In 10-folds cross-validation, 

 
Fig. 4 Multilayer perceptron (MLP) for PV power forecasting. 
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the data is partitioned into ten equal sized splits, called folds (F) 
as presented in Fig. 5. For each model, nine folds (90%) are used 
to train models and one-fold (10%) is utilized for validation (the 
process is repeated ten times). In the next step, an evaluation of 
the performance of each model based on metrics such as 
accuracy rate or MSE is performed. A model final performance 
is typically reported as the average of its 10-fold performance 
metrics. 

4.   Model performance metrics 

In this paper, an assessment of model performance based on 
various accuracy metrics is carried out. Metrics such as MAE 
and MRE are used to quantify the average magnitude of 
prediction errors. Additionally, metrics such as RMSE and 
coefficient of determination are used to calculate the linear fit of 
regression models. 

2.1 4.1 The prediction errors 

Prediction errors, also called residuals in a statistical or machine 
learning model, present the difference between a predicted and 
the observed value across all data points. In other words, the 
residual measures the error in predictions made by the model. 
The residual is a diagnostic metric used to assess quality of a 
model. This error is expressed using the equation 13 
(Botchkarev, 2018).   
 
𝐸𝑟𝑟𝑜𝑟𝑖 =  𝑌̂𝑖 − 𝑌𝑖                                                         (13) 

4.2 The mean absolute error 

Mean absolute error is a metric used to measure the average of 
absolute error values.  Errors in MAE are not weighted, but 
scores increase linearly when errors increase. MAE is calculated 
using the equation (14) (Qi et al., 2020) (Botchkarev, 2018): 

𝑀𝐴𝐸 =  
1

𝑛
× ∑ |Errori|

n
i=1                                               (14) 

4.3 The mean relative error 

The mean relative error is an extension of MAE, which 
calculates the percentage error of a prediction. MRE is defined 
as the ratio between the MAE and the amplitude of the reference 
E-field in the corresponding target region. The MRE is 
calculated by the equation (15) (Botchkarev, 2018): 

 

𝑀𝑅𝐸 =  100 × ∑
|𝐸𝑟𝑟𝑜𝑟𝑖|

𝑌𝑖

𝑛
𝑖=1                                           (15) 

4.4 The root mean squared error 

Root Mean Squared Error (RMSE) is a common metric used to 
calculate the average squared of the prediction errors in a 
regression problem. It quantifies the average magnitude of the 
error, highlighting the discrepancy between predicted values 
and actual values. By squaring the error values, RMSE penalizes 
larger errors more than smaller errors, which has a greater 
impact on the overall score. The RMSE calculated using the 
formula given by equation (16) (Botchkarev, 2018): 

𝑅𝑀𝑆𝐸 =  √
∑(𝐸𝑟𝑟𝑜𝑟𝑖)2

𝑛
                                                    (16) 

4.5 The coefficient of determination 

In regression analysis, the coefficient of determination R², is a 
key measure for assessing the quality of a regression model. R² 
is used to quantify the proportion of variation in the dependent 
variable that is explained by the predictor variables included in 
the regression model. It is given by the equation (17) (Ozer, 
1985): 

𝑅2 =   1 − ∑
(𝐸𝑟𝑟𝑜𝑟𝑖)2

(𝑌𝑖−𝑌̅)2
𝑛
𝑖=1                                            (17) 

5.   Results and discussion 

This section is dedicated to present the PV power output 
forecasting results using the learning models, namely ANN, LR, 
RF and SVM. Different simulations based on the two datasets 
were performed, in order to assess the performance of each 
model and to examine the impact of the input variables 
(features) on the model accuracy. The obtained results from the 
models are compared and evaluated using various performance 
metrics. The results of training algorithms were implemented in 
Python 3.11 environment and performed using a personal 
computer with the following characteristics: windows 10 OS 

 

Fig. 5 10-fold Cross-Validation process. 
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with 64 bits; a processor Intel(R) Core (TM) i5-6200U CPU @ 
2.30GHz   2.40 GHz; and 8.00 GB of RAM. The forecast results 
obtained for both datasets are summarized in Table 1. The R² 
reports how well the model explains the variation in the 
response in both datasets, while the metrics RMSE, MRE and 
MAE asses how accurately a regression model can predict the 
values of a response variable. 

Based on the results of Table 1, it is notably, when models 
trained on weather forecast dataset, the RF recorded the lowest 
values for MAE, MRE and RMSE equal to 0.364 W, 0.256% and 
0.856 W, respectively. Compared to ANN, which gave MAE, 
MRE and RMSE values equal to 0.651 W, 0.889% and 1.310 W 
and LR model that recorded the values of MAE, MRE and RMSE 
equal to 10.299 W, 19.541% and 14.085 W, respectively. Lastly, 
the SVM gave the worst RMSE value at 20.056 W, even though 
its other MAE and MRE values were lower than those of the LR 
model at 7.411W and 9.046%, respectively. This was because 
the SVM model exhibited a large gap between the actual and 
predicted values (discussed above). As a result, the RMSE 
penalizes them more harshly than MAE and MRE. When the 

models were trained on on-site measurements, a significant 
increase in RMSE, MRE and MAE values was recorded. 
Furthermore, there was a convergence in the values recorded 
for the different models trained on on-site measurements 
dataset, except that the RF model, which yielded the lowest 
values of MAE, MRE and RMSE at 3.922 W, 11.163 % and 8.825 
W, respectively.  For the ANN model, there was a significant 
increase in MAE, MRE and RMSE values to 10.822 W, 30.326 % 
and 22.256 W. Similar observations were made for the MAE and 
RMSE indicators for the LR model, which recorded values of 
16.596 W and 29.353 W, respectively, with a significant increase 
in MRE, reaching 104.824%, because the linear regression 
model struggled to capture the complex patterns present in the 
on-site data. In contrast, the MAE, MRE, and RMSE values of 
the SVM model have increased slightly and outperformed the 
LR model in this case with 10.822 W, 57.446%, and 26.655 W 
respectively. 

Fig.6 shows a comparison between the actual and predicted 
PV power output of each model using a weather forecast 

Table 1 
PV power output forecasting results. 

Parameters used Prediction algorithm MAE (W) MRE (%) RMSE (W) R² 

Weather forecast (GHI, 
temperature, wind speed)  

(Time step: 1 h) 

Data points (n = 8760) 

LR 10.299 19.541 14.085 0.99683 

RF 0.364 0.256 0.856 0.99999 

SVM 7.411 9.046 20.056 0.99357 

ANN 0.651 0.889 1.310 0.99997 

On-site measurements (GHI, 
temperature, wind speed) 

(Time step: 5 min) 

Data points (n = 8640) 

LR 16.596 104.824 29.353 0.99077 

RF 3.922 11.163 8.525 0.99922 

SVM 14.193 57.446 26.655 0.99239 

ANN 10.822 30.326 22.256 0.99464 

 

 

 

 

 

Fig. 6 PV power output (weather forecast) 
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dataset. While Fig.7 shows the comparison of PV power output 
forecast errors of different models based on the input 
meteorological dataset. Based on Fig. 6 and Fig.7, it is clear that 
the RF model accurately predicted PV power output with a 
minimum error that did not exceed 10 W compared to other 
models. Following RF is the ANN model, which has an absolute 
error range between 0 and 15 W then the LR model with an 
error reaching 90 W. Finally, the SVM model presents the least 
accuracy in PV power output forecasting with a forecasting 
error greater than 240 W. Moreover, forecasting errors 

increased between time steps 2000 and 6000. This period 
represents the period of high PV power output. 

Fig.8 shows a comparison between the actual and predicted 
PV power of each model using the on-site measurements 
dataset. On the other hand, Fig.9 illustrates the comparison of 
PV power output forecast errors for the on-site measurement’s 
dataset. According to the figures, the RF model presents the 
most accurate model in PV power output forecasting. Moreover, 
as can be seen, forecasting errors have almost the same 

 

 

Fig. 7 PV energy production forecast error (weather forecast). 

 

 

 

Fig. 8 PV power output (On-site measurements). 
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amplitude during all time steps range between [-200,200], 
except for several sudden drops in power output were recorded 
at time steps 3882, 5656 and 6478. These errors represent a 
sudden change in the output power that usually occurs due to 
the shading effect (discussed previously. Fig.10 shows a zoom 
in view on the results for the three points that represent these 
errors in each regression model. As can be seen, the RF model 
predicted with high accuracy and responded well to sudden 
changes in output power. In contrast, the other models could 
not able to predict these changes in power output. 

Fig.11 presents a comparison of MAE, MRE, and RMSE 
accuracy metrics for both datasets for each model, which aims 
to quantify forecasting errors, and evaluate the model's 
performance. These metrics showed low errors in the weather 
forecast dataset compared to the on-site measurement dataset. 
Additionally, when the models were trained on weather forecast 
datasets, there was a clear variation in the values of different 
models. Additional validation results, including detailed 
forecasts based on these datasets, are included in Appendix A. 

According to the obtained results, the choice of data source 
(weather forecast or on-site measurements) and time step (5-
minute or 1-hour step) visibly affects the models’ performance, 
with the former (weather forecast with a 1-hour step) resulting 
in more accurate prediction models. This may be attributed to 
the high variability characterizing the 5-minute time step data 
and the challenge it poses in capturing these variations 
compared to the 1-hour step dataset (sensitivity to data 
variability). Moreover, the number of features used to train the 
models influence forecast accuracy. As a result, the on-site PV 
power output could be affected by various variables other than 
GHI, Tamb and Ws (e.g., shading effect, air pressure, panel 
degradation, etc.). In contrast, in the weather forecast dataset, 
the model was based on only three variables (GHI, Tamb and 
Ws). 

In addition, across both datasets (weather forecast and on-
site measurements), RF consistently outperforms other 
prediction models by obtaining minimal error in MAE, MRE, 
and RMSE and with near-perfect R² values which indicates its 
ability to capture complex and non-linear relationships with 

datasets (especially when dealing with highly variable weather 
data). Furthermore, ANN achieved the second-best results for 
both datasets, which is not surprising, giving its ability to 
approximate complex non-linear relationships. SVM has 
generally obtained comparable results to LR but the latter has 
clear advantage that can be crucial in certain scenarios: it is 
simple and understandable. In cases were understanding the 
reasoning behind the decision of prediction models is important, 
LR can play a significant role in providing interpretable 
predictions. 

Lastly, k-fold cross-validation was critical in avoiding 
overfitting and providing a more reliable assessment of the 
generalization performance of the models, especially with the 
on-site measurement dataset, which is characterized by its 
nonlinearity, complexity, and high variability. Cross-validation 
allowed the model to be trained and validated across multiple 
subsets of data given the unpredictable nature of on-site 
measurements, which include sudden fluctuations in weather 
conditions and local environmental factors. This process helped 
ensure that the models did not overfit any particular part of the 
dataset, especially in such a complex and variable environment. 
As a result of splitting the data into multiple folds, bias and 
variance are reduced, ensuring that the model can generalize to 
new, unseen data, even with complex on-site data. 

6. Conclusion 

In this paper, an assessment of the accuracy of power output 
forecasting in PV systems using ML techniques such as LR, RF, 
SVM and ANN was proposed.  To compare the performance of 
the proposed forecasting models, two different datasets with 
different time steps were used for training the learning 
algorithms; one consisted of historical forecasted weather while 
the other consists of on-site measurements. The performance 
evaluation of the proposed forecasting models was based on 
various metrics, namely MAE, MRE, RMSE and R-squared. 
After conducting a comparative analysis, and evaluating of the 
models’ performances, the following conclusions are drawn: 

 

 

Fig. 9 PV power output forecast error (On-site measurements). 
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− Dataset characteristics influenced model performance. As 
a result, models trained on historical weather forecasts 
performed better than models trained on on-site 
measurements reflected the specifics of their data source.  

This discrepancy may be due to inherent differences 
between datasets, including variations in the time intervals, 
data collection methods, and perhaps location-specific 
factors. 

 

 

 

 

Fig. 10 Illustration of PV power output drops in on-site measurements. 
 
 

   

Fig. 11 the MAE, MRE and RMSE forecasting performance metrics of models for different dataset. 
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− In the weather forecast dataset, error values were notably 
higher during periods of high PV power output. Conversely, 
in the on-site measurements dataset, errors were more 
than three times higher during periods of output power 
drops. Thus, forecast accuracy is affected by the power 
output rate and the behavior of the PV system. Therefore, 
it is recommended to provide more information about PV 
systems and to take into account additional input variables 
(such as the shading effects, PV system degradation, etc.) 
to improve forecast accuracy. 

− In comparison to the other proposed models, the RF 
algorithm demonstrated robustness in PV power output 
prediction accuracy by obtaining the minimal errors. In 
addition, the model exhibited a high degree of stability in 
its performance, and its ability to handle the non-linearities 
and complexities of the data particularly in adapting to 
drops in PV power output when trained on on-site 
measurements dataset. 

 
Nomenclature 

Abbreviations 

AI Artificial intelligence  
ANN Artificial neural networks 
CV Cross validation  
GHI Global horizontal irradiance  
LR Linear regression 
MAE Mean absolute error 
ML Machine learning 
MRE Mean relative error 
PHANN Physical Hybrid Artificial Neural Network 
RF Random forest 
RMSE Root mean squared error 
SVM Support victor machine 

Variables  

 G Solar irradiance (W/m²) 
Tamb Ambient temperature (C°) 
WS Wind speed (m/s) 
𝑃𝑃𝑉   actual PV power output (kW) 
𝑃̂𝑃𝑉   predicted PV power output (kW) 
𝑋  input features of learning model 
𝑌  Output target value of learning model 

𝑌̂  Predicted value of learning model 
Tc panel temperature (C°) 
N number of PV panel  
I  sample or data point index  
N  total number of samples or data points 
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. 

Appendix A. PV power forecasts validation using a new dataset 

This appendix provides a validation of the forecasting models used in this study, utilizing a newly acquired dataset. The dataset includes one 
month of weather forecast data and four days of on-site measurement data, comprising solar irradiance (G), temperature (T), and wind speed (Ws). 
These key variables are critical for accurately modeling the factors affecting PV power output. 

Figure A.1 displays the PV power output forecasts based on the one-month weather forecast dataset, while Figure A.2 shows forecasts using the 
more detailed four-day on-site measurement dataset, also containing G, T, and Ws. This second figure highlights how the models respond to short-
term fluctuations in weather conditions, providing insights into their ability to capture variations in power output. 

 
 

 

 

Fig. A.1 PV power output forecast (weather forecast: one month). 

 

 

 

Fig. A.2 PV power output forecast (on-site measurements: 4 days). 


