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Abstract. The paper applies three cutting-edge algorithms - War Strategy Optimization Algorithm (WSO), Egret Swarm Optimization Algorithm
(ESOA), and Black Widow Optimization Algorithm (BWOA) - as potential tools to determining the optimal generation power of power plants in both
the Economic Load Dispatch problem (ELD) and the New ELD problem (NELD), which incorporates renewable energy resources into the traditional
power system. These algorithms underwent rigorous evaluation using various test systems with complex constraints, a multi-fuel objective function,
and 24-hour load demands. In System 1, at various load levels, WSO method achieves a lower total minimum cost compared to BWOA and ESOA.
Specifically, WSO outperforms BWOA and ESOA by $0.68 and $2.79 for a load of 2400 MW, by $0.49 and $4.41 for a load of 2500 MW, by $0.79 and
$4.83 for a load of 2600 MW, and by $0.54 and $4.53 for a load of 2700 MW. In System 2, WSO method is less cost in a day than ESOA by $ 80.92
and BWOA by $ 46.73, corresponding to 0.39% and 0.23%, respectively. Additionally, WSO excels in response capability, providing a quicker reaction
time than BWOA and ESOA across all four subcases while maintaining the same control parameters. Moreover, WSO demonstrated comparable or
superior results and improved search capabilities compared to previous methods. The comparison of these results underscored WSO's effectiveness
in addressing these challenges and its potential for resolving broader engineering issues beyond ELD. Ultimately, the study aimed to offer valuable
insights into the role of renewable energy resources in the traditional power system, particularly in cost savings.

Keywords: Economic load dispatch, War Strategy Optimization, Egret Swarm Optimization Algorithm, Black Widow Optimization Algorithm

’m @ The author(s). Published by CBIORE. This is an open access article under the CC BY-SA license
Gheck for (http://creativecommons.org/licenses/by-sa/4.0/).
Lrdates Received: 5% Sept 2024; Revised: 29™ Oct 2024; Accepted: 25" Nov 2024; Available online: 18" Dec 20
1. Introduction highly nonlinear and non-convex function. Additionally,

generators may be unable to operate in specific zones due to
malfunctioning auxiliary systems or associated machine
problems, which creates discontinuities in the solution space
with multiple local optima (Pham et al., 2017). Moreover, steady
power system conditions cannot eliminate transmission line loss
or multiple fuel options are applied. As a result, with high
dimensionality, nonlinearity, non-differentiability, and multiple
constraints, the ELD problem has become an more challenging
optimization problem.

The conventional ELD problem with multiple fuel options
has been addressed using traditional methods for several
decades, disregarding environmental considerations. These
methods include using gradient, base point, participation
factors, and lambda-iteration methods. Compared to other
solutions presented in (Thang, 2011), the lambda-iteration
method was again employed and yielded the most significant
result. This method is both simple and effective. However, a
drawback of this method is the initial setup of the lambda value.
The optimal solution was determined after many trial runs with
different lambda values, and the fuel type k was initially
selected. Although each trial's simulation period is brief, the
overall time is extended. Despite its simplicity, implementing

In today's modern age, the consumption of fossil fuels by power
plants, particularly thermal power plants (TPP), is substantial
enough to generate electricity to support the growth of
industrial and commercial sectors. It is well established that
higher fuel consumption by TPPs increases fuel costs. Among
the available fuels for each unit, the primary goal reduces the
overall fuel cost while adhering to generation and load
constraints. Even a modest decrease in electricity costs can
yield a substantial positive effect on the entire power system.
Therefore, ensuring proper load sharing plan among generating
units is essential for lower generation costs. In the power
system, ELD problem addresses this challenge by determining
the optimal generation allocation among all generating units,
thereby minimizing the overall fuel cost while ensuring
compliance with all necessary inequality and equality
constraints (Nguyen et al., 2016; Pham, An and Tam, 2018).
The functions of an ELD problem are usually expressed as
quadratic or convex functions. However, in practical operation,
the design and operating constraints of the generating units
complicate the ELD problem. For instances, the introduction of
valve-point effects by multi-valve steam turbines results in a

* Corresponding author
Email: phamhuuly@tdtu.edu.vn (Ly. H. Pham)

https://doi.org/10.61435/ijred.2025.60618
ISSN: 2252-4940/© 2025.The Author(s). Published by CBIORE


https://doi.org/10.61435/ijred.2025.60618
https://doi.org/10.61435/ijred.2025.60618
https://ijred.cbiore.id/
mailto:phamhuuly@tdtu.edu.vn
https://orcid.org/0000-0001-7831-3814
https://orcid.org/0000-0001-9640-2247
http://crossmark.crossref.org/dialog/?doi=10.61435/ijred.2025.60618&domain=pdf

H.D.Nguyen and Ly.H.Pham

the Hopfield neural network (HNN) (Park et al., 1993) has posed
challenges when tackling large-scale problems with numerous
specific inequality constraints. Moreover, the selection of
penalty factors related to constraints affects the final solution of
the HNN method. The dynamics of Lagrange multipliers,
incorporating both equality and inequality constraints, have
been refined to facilitate convergence to optimal solutions
within the problem-solving framework of the enhanced
Lagrangian neural network (ELANN) (Lee and Kim, 2002).
Furthermore, the momentum technique was incorporated into
its learning algorithm to achieve faster computational time.
ELANN (Lee and Kim, 2002) and HNN (Park et al., 1993)
necessitate numerous iterations for convergence. Two versions
of HNN called augmented Lagrange Hopfield network (ALHN)
(Dieu et al., 2013) and enhanced augmented Lagrange Hopfield
network (EALHN) (Vo and Ongsakul, 2012) were proposed by
Dieu et al. (2011), by using energy function based on augmented
Lagrangian function. ALHN and EALHN have been effectively
designed to address ELD problem with multiple fuel types
represented by piecewise quadratic cost functions. The findings
suggest that both ALHN and EALHN outperformed HNN and
ELANN in terms of total cost and CPU time. However, further
evaluation is needed to compare the results of two algorithms
and determine which one is superior. The mentioned methods
face challenges related to system characteristics, high
oscillations, and non-differentiable functions. Although some
progress has been made with ALHN and EALHN, they are still
unable to solve non-differentiable functions. As a result, recent
developments have focused on the advancement and
application of meta-heuristic algorithms for addressing these
complex ELD problems. In fact, meta-heuristic algorithms have
seen ongoing advancements in their application to solve
complex ELD problems. This signifies a sustained effort in
refining and adapting these algorithms to address the intricate
challenges of ELD problems. One of the ancient methods is
particle swarm optimization (PSO) (Jeyakumar et al.,, 2006).
PSO draws inspiration from the social behaviors observed in
bird flocks and fish schools. It is categorized as a swarm
intelligence algorithm that harnesses collective behaviors to
solve complex problems. However, the drawbacks of PSO
consist of premature convergence, sensitivity to parameters,
and challenges with constrained optimization, leading to the
proposal of many improved versions of PSO like modified PSO
(MPSO) (Park et al., 2005), new adaptive PSO (NAPSO) (Park et
al., 2005) and double weighted PSO (DWPSO) (Kheshti et al,,
2018). In (Kheshti et al,, 2018), authors have recomened two
inertia weights (wk_head and wk_end) for updating the velocity
of particle, in which wx_reas is utilized at the start of the DWPSO
iteration, while wk_erq is employed at the end of the DWPSO loop
during each iteration. In (Park et al., 2005), NAPSO was
enhanced by incorporating two improvements from
conventional PSO. Improvement 1 involves a new formula for
the inertia weight in the velocity updating equation, while
Improvement 2 applies the mutation mechanism of the
differential evolution technique (DE) to construct the position
equation. The numerical results unequivocally demonstrated
that NAPSO and DWPSO outperform PSO in superior
robustness and reduced computational efforts. Others in the
family of meta-heuristic algorithm such as DE (Noman and Iba,
2008), self-adaptive differential evolution (SDE) algorithm
(Balamurugan, 2007), two-phase hybrid real coded genetic
algorithm (HGA) (Balamurugan, 2007), real-coded genetic
algorithm (RCGA) (Amjady and Nasiri-Rad, 2009), harmony
search (HS) algorithm (Fesanghary and Ardehali, 2009), chaotic
firefly algorithm (CFA) (Arul et al.,, 2013), improved FA (IFA)
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(Nguyen et al, 2018a), adaptive cuckoo search algorithm
(ACSA) (Pham et al., 2016), modified CSA (MCSA) (Nguyen et
al., 2018b), improved social spider optimization algorithm
(ISSO) (Kien et al.,, 2019), and improved antlion optimization
algorithm (IALO) (Dinh et al., 2020) have been recommended
for ELD problem. Among methods, IALO is the latest method
by suggesting four modifications based on the standard ALO
from Bach et al. in 2020. The performance of IALO was tested
on different systems from 10 to 90 units together different
constraints. Via obtained results, the method was better than
ALO method. Its quicker computation times, faster
convergence velocity, and more steady search capability
explain this. Moreover, the IALO approach was noticeably
better than almost every other approach to tackling difficulties
for similar systems. Itis noted that in most studies, authors have
only focused on dealing with the allocation of power generation
from TPPs available but not considered emissions from burning
fossil fuels (e.g., coal, natural gas, oil). Components of TPP’s
emissions consist of carbon dioxide (CO2), sulfur dioxide (SO2),
nitrogen oxides (NOx), particulate matter (PM), carbon
monoxide (CO), heavy metals, ash, ect. As we know, these gases
are the leading causes of a substantial increase in greenhouse
gas (GHG) emissions, air pollution, global warming, and climate
change. Taking proactive steps to reduce greenhouse gas
(GHG) emissions and implementing effective carbon-lowering
strategies is vital for successfully addressing climate change.
Countries worldwide embrace diverse approaches tailored to
their specific circumstances, resources, and commitments
(Sebos et al., 2016; Losada-Puente et al., 2023; Martin-Ortega et
al., 2024; Tsepi et al, 2024). By sharing best practices and
collaborating on innovative solutions, we can collectively
strengthen our efforts to combat this global challenge. In terms
of air pollution, countries are aslo embracing innovative
strategies to combat air pollution, united in their commitment
to protect public health and preserve the environment for future
generations (Progiou et al., 2023). Namely, specific strategies to
cover these mentioned challenges, which are implemented by
countries, include regulatory measures, renewable energy
promotion, public transportation improvements, etc., for air
pollution mitigation while renewable energy transition, energy
efficiency improvements, afforestation, and reforestation, etc.,
for greenhouse gas mitigation and carbon lowering. Among
strategies, the use of renewable energy resource is considered
the best potential sollution. Other factors, such as epidemics or
floods, can also affect the emissions that countries worldwide
have recently experienced. Specially, the restrictions imposed
during the COVID-19 pandemic resulted in significant short-
term reductions in greenhouse gas emissions and
improvements in air quality (Papadogiannaki et al., 2023;
Yassine & Sebos, 2024)

In recent years, renewable energies (RE) like wind and solar
power have experienced rapid development and are making
significant contributions to electricity generation. Their
potential makes them promising resources for mitigating
greenhouse gas effects, addressing global warming, and
replacing the depletion of fossil energy sources. As a result,
these energy sources are among the fastest-growing renewable
ones and offer a viable alternative to traditional fossil fuels
worldwide. The integration of renewable energy into the
traditional power system transforms the economic load
dispatch problem into a new one, named the new economic load
dispatch (NELD) problem. For dealing with NELD problem, the
author (Li et al.,, 2016) described a solution for a mechanism
using virtual power plants, which were made up of wind farms.
However, the authors overlooked the impact of penalty factors
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for over and underestimations by considering the cost of wind-
based plants as zero. In (Liang et al., 2018), authors have
adopted a random wind power model by considering three cost
functions: direct, overestimation, and underestimation. As a
result, the objective function of the NELD problem is the costs
of TPP and wind power plant. Study (Ellahi and Abbas, 2020)
has put forth three distinct combinations of power plants. These
configurations involved the integration of RES with TPPs, the
implementation of small-scale thermal power systems with
constraints, and the operation of large-scale power systems with
the valve point loading (VPL) effect in the aim at identifying the
most effective operational parameters for these power plants.
In (Basu, 2019), the cost formulation for integrating both
photovoltaic (PV) power plant and wind-based power
generation systems with TPPs was presented, with a primary
emphasis on analyzing the cost of TPPs, while the authors in

(Lai et al., 2017) have introduced a power system incorporating

solar PV and biofuel as an alternative to fossil fuels. And their
focus was on calculating the cost associated with the
degradation of energy storage.

This research paper makes use of WSO, a population-based
optimization algorithm by (Ayyarao et al., 2022) for solving ELD
and NELD problems. This method models the strategic
movement of army troops during war, focusing on attack and
defense strategies. This work introduces an innovative weight-
updating mechanism and a strategic approach for relocating
underperforming soldiers, aiming to enhance convergence and
robustness significantly, which help WSO get a balance between
exploration and exploitation stages. Its efficacy is tested on 50
benchmark functions and four engineering problems, and its
superiority is proven through experimental results. Since the
algorithm appeared, it has been applied by many researchers to
solve electrical engineering problems such as estimating
parameters for solar PV models (Ayyarao and Kumar, 2022),
enhancing the generated power for PV array (Alharbi et al.,
2023), classifying air pollutant species (Gehad Ismail Sayed and
Aboul Ella Hassanein, 2023), controlling load frequency for the
power system (Ayyarao et al., 2023), and establishing an optimal
configuration model for a voltage sag monitor (Shou et al,
2023). Along with WSO, Egret swarm optimization algorithm
(ESOA) (Chen et al, 2022) and black widow optimization
algorithm (BWOA) (Pefia-Delgado et al., 2020) were also utilized
for such problems. The application of WSO, BWOA, and ESOA
to two types of ELD presents an opportunity to optimize the
power output of power plants, ultimately reducing the overall
operating costs of the system. Additionally, this approach
provides a valuable framework for assessing the effectiveness of
recently proposed metaheuristic methods. The results of the
three applied methods were compared to those of other
competitors.

The followings are the study’s novelties and contributions :

a) The study successfully applies WSO (created in 2022) and
takes into consideration the ESOA and BWOA algorithms
(suggested in 2020 and 2022, respectively), to address
ELD and NELD problems.

b) The study presents compelling numerical data and
graphics that effectively demonstrate the advantages of
the WSO algorithm compared to earlier techniques.
Moreover, the results indicate that the WSO algorithm
outperforms both the ESOA and BWOA in obtaining
optimal and high-quality solutions, highlighting its
potential for further advancements in the field.

c) The study provides how to compute the daily power
production of solar power plants connected to the
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conventional power grid using accurate solar radiation
data from two locations in Vietnam.

d) The study provides short discussions and strategies
regarding greenhouse gas (GHG) emissions, air pollution,
global warming, and climate change.

2. Problem Model

2.1 The objective

The paper carefully examines ELD and NELD problems. These
problems are designed to minimize costs by meeting the load
demand and various equality and inequality constraints.
Specifically, the ELD problem focuses on minimizing the fuel
cost of the TPP, while the NELD problem incorporates both the
TPP fuel cost and the cost of photovoltaic power plant (PVP).
The formulations for two problems are explicitly expressed in
Egs. (1) and (2), respectively.

Min (Crpp) (1)
Min (Crpp, Cpy) (2)
Subject to

Equality constraints

9Wrpp,Vpy) =0 (3)
Inequality constraints:
h(Vrpp, Vpy) <0 (4)

e Photovoltaic power plant:

When the system operator has possession of the PVP, the cost
function for a PVP may not be directly applicable because it
does not apply fossil fuel. However, determining the cost of PVP
generation becomes necessary through specific contracts if a
state company does not possess the PVP (Huu Pham et al,
2021). This study undertakes an investigation into the total cost
function of PVP (Cpy), which is represented linearly (Reddy,
2017).

P
Cpy =Z(P-va,viv = 1'---,P) (5)
v=1

where p stands for the PV generator price in ($/MWh); Vpy,,
stands for the power ouput of the vth PV generator, which is
given by

2

Pb
Vpy  X——— O0<PV, <R,
LT PYg R T TS
Vey (PV) = P, ; (6)
va,rx% PV, >R,

b=1,..,8760 hours

It is observed that solar radiation (PV%) variations, including
hourly, daily, monthly, and annual ones, are crucial for
determining optimal placement and rated power of photovoltaic
power systems. If Eq. (6) is applied to calculate the power output
of PVP, then we need a powerful enough tool, which will take
much time. This causes grid operators' decision-making to fail
to keep up with load changes. In addition, current optimization
methods need help handling the large data volume efficiently.
To cover the obstacle, the study suggests using global solar data
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to analyze solar radiation patterns in two southern Vietnamese
provinces, where two PVPs will be adopted to optimize the cost
of the standard 10-unit IEEE system. The data accurately
reports average radiation for each hour of every month,
indicating the mean solar radiation for a year is 6 o'clock to 18
o'clock for every 12 months, with one year represented by 12
days instead of the standard 365 days. This approach will help
determine the power output of PVPs integrated easily into
traditional thermal power plant systems.

o Thermal power plant:

The formulation for TPP cost function (Czrr) can be described
mathematically as a second-order function. This means it can
be represented by an equation involving a second-degree
polynomial. This allows for a more detailed analysis of the fuel
cost function, providing a deeper understanding of its behavior
and implications. The function is formulated by (Ismaeel et al.,
2023)

T
Crpp = Z(Pt +0Vrppe + TeVippy ) t =1,..,T (7)

t=1

The mathematical formula for TPP’s cost with multiple fuel
choices is shown in Eq. (8)

per + 0e1Vrppe + Te1 Vipp s

For fuell, Vrpptmin < Vrepe < Vrpptimax
Pez + 0c2Vrppe + Te2Vipp,

Crep = For fuel 2,Vrpp tamin < Vrep: < Vrpptzmax (8)
Pew + OewVrepe + TewVirp s

For fuel w,Vrpp twmin < Vrppt < Vrpptwmax

Where, the cost coefficients for type wth of unit tth are denoted
by prw, Opw and Ty,

2.2. The considered constraints

This paper addresses ELD and NELD problems by ensuring that
generators and systems meet various equality and inequality
constraints as follows.

o Restriction on the actual active power balancing

The constraint is one of these constraints in such a problem, in
which the power produced by these power plants must be
adequate to satisfy both the combined demand (PD) and
transmission losses (LP) as stipulated by the specific equation.
This means that the power generated should be capable of
meeting the total power demand and accounting for any losses
during transmission

T P
Z VTPP,t + Z VPV,U = PD +LP (9)
t=1 v=1

where, LP is determined in Eq. (9) using Krone's reduction
model.

T T T
LP = 2 2 Vrpp,e XAy XVrpp,j+ 2 Ape XVrpp e +Ago (10)
1 =1

=1 j=
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e Restriction on power generated:

For the optimal functioning of the unit, it is crucial to adhere to
the specified minimum and maximum generation capacities
strictly. This ensures that the unit operates within its designated
power, allowing for efficient and sustainable power generation
while minimizing the risk of overloading or underutilization
(Deb et al., 2021).

Vrppmin < Vrppe < Vrppmax (11)

VPV,min < VPV,v < VPV,max (12)

3. War Strategy Optimization

In 2022, Ayyarao et al. suggested an innovate revolutionary
meta-heuristic algorithm called War Strategy Optimization
(WSQO). The algorithm models the strategic movement of army
troops during war, focusing on attack and defense strategies. In
the battlefield, every soldier constantly adjusts his positions
based on the strategy's success influenced by King,
Commander, and soldier rank. In order to replicate an
optimization procedure, every soldier rushes dynamically to the
target, which is the optimal position. When the war begins, each
soldier holds the same rank and weight to them and depending
on how well they perform in terms of assault force and fitness
level, their weight is modified. Two common military strategies
used to enhance soldier positions and solutions are the attack
and defense strategies. To improve new solutions, two
approaches will be described as below:

o The attack strategy

The fundamental strategy involves the king leading soldiers in a
coordinated attack against the opposition, with the soldiers'
positions adjusting based on the orders of the king and the
commander. When the attacking force gains an advantage, the
soldiers move forward; however, if the advantage diminishes,
they return to their original positions. This approach enables the
army to effectively cover the entire search area by making
substantial progress initially and more incremental advances
later.
The phase known as exploitation involves updating the

soldier's position as follows:

AW = A; 4+ 2 X E x (AK — A9) (13)

+rand x (W; x AK — A))

In Eq. (13), the new and old locations of soldier i denote 4; and
AT are; AKand X¢ the location of the king and commander; £
signifies a random value; W; is the weight factor which is give
by:

B;
W,=W; x(1—-——)* 14
L= Wix (1-75) (14
Where MX is the maximum iteration; B; is the soldier’s order
which is formulated by:

B: = {Bi +1 If (Fnew 2 Fold)
P =

15
Bi If (Fnew < Fold) ( )

In Eq. (15), Fe and F,;4 stands for the fitness of A7°*and A;

o The defense strategy

The central aim of this strategic approach is to ensure the safety
of the King. It involves a commander leading the way, with

ISSN: 2252-4940/© 2025. The Author(s). Published by CBIORE



H.D.Nguyen and Ly.H.Pham

soldiers positioned in a chain formation to promptly respond to
threats based on the King's movements.

The exploration phase is the name of the tactic. Equation (8) is

applied to update the soldier's position during this phase.

AW = A; + 2 X E X (AK — Argng) (16)
+rand X W;(4A¢ — 4;)

InEq. (17), Ayqnaq is aradom location of soldier among the army.

4. Results and Dicussion

In the section, two primary power systems — System 1 with ten
TPPs and System 2 with TPPs and two PVPs — are utilized to
assess the performance, resilience, and convergence rate of
three applied methods. The details of these systems will be
revealed in the following sub-sections, in which Section 4.1
gives information about the investigation of control parameters
of WSO, BWOA, and ESOA, Section 4.2 discusses the results of
System 1, and Section 4.3 discusses the results of System 2. The
proposed algorithms-WSO, BWOA, and ESOA-will each be
subjected to 50 independent trials for Systems 1 and 2. These
trials will be conducted on a 2.4 GHz PC with 4 GB of RAM and
a Matlab platform with R2018a version.

4.1. The investigation of control parameters:

To find the optimal solution for any problems, researchers must
carefully implement the process of investigating control
parameters for the applied methods. This work may be carried
out based on various factors, including the mechanism of
generating solutions (one or more times), the number of fitness
evaluations, and the findings from previous researches. In this
study, two parameters of WSO, BWOA and ESOA consisting of
population size (PZ) and maximum iteration (MX) will be
checked on the first system with PD of 2400 MW. In order to
conduct a fair comparison, it is imperative to ensure that the
total fitness evaluations (TFE) for all three methods are
equivalent. The TFE for a method with solution generating once
is calculated as (PZ x MX), where PZ represents a specific value,
and MX represents another specific value. The TFE is calculated
as (2 x PZ x MX) for a method with solution generating twice.

= Min.C AverC m=mmMax.C e STD
530 10
9
520
8
510 7
500 6 a
S 5
490 4
480 3
470 % 2
8 1
460 0
BWOA ESOA WSO
Pz 70 70 30
MX 100 100 100
TFE 7000 7000 3000

Fig 1. The investigated results obtained from three methods

Int. J. Renew. Energy Dev 2025, 14(1), 124-135

| 128

In this study, three methods that were applied to such problems
are a meta-heuristic algorithm with solution generating once.

For the survey, PZ is changed from 10 to 100, while MX
varies from 50 to 150. Results from three methods: minimum
cost (Min. C), average cost (Aver. C), maximum cost (Max. C),
and standard deviation (STD) are collected and noted in Figure
1. Out of the four comparison criteria, the first one is crucial as
it provides information about the performance of the applied
method. If the method's Min. C is the smallest, it is considered
the strongest. Otherwise, the method is considered the weakest.
The second and fourth ones show the stable ability of the
method in searching solutions. In Figure 1, the minimum costs
of BWOA and ESOA are $ 482.398 and § 484,514, respectively,
and the value is the best that the ability of BWOA and ESOA can
reach. To reach the Min. C, the PZ, MX, and TFE settings for the
two methods are 70, 100, and 7000, respectively. If PZ is under
70, the method cannot find this value; otherwise, the Min. C
remains unchanged. In terms of WSO, Min. C is $481.723
corresponding to PZ, MX, and TFE of 30, 100, and 3000, in
turns. If the PZ of WSO continuously increases to 70, its costs,
such as Min. C, Aver. C, Max. C and STD are $ 481.723, $
481.765, $ 485.092, and 0.337, respectively. For PZ from 30 to
70, WSO’s Min. C is the same value. From here, we conclude
that the PZ significantly affects the speed and quality of each
iteration's solutions. On the other hand, MX substantially affects
both the time it takes to run independently and the quality of the
solution. Therefore, setting high PZ value will increase the
solutions' quality and time for each iteration. Similarly, setting a
high MX value will improve the solution quality at the final
independent runs but will also lead to longer run times. Notably,
if both PZ and MX are set to high levels, the same optimal
solutions will be produced, but it will take longer to achieve
them.

4.2. Discussion on System 1

This section evaluates the efficacy of three methods on a system
comprising ten units, utilizing various fuel choices for 4 sub-
cases: sub-case l.a assesses a 2400 MW load, sub-case 1.b
assesses a 2500 MW load, sub-case 1.c assesses a 2600 MW
load, and sub-case 1.d assesses a 2700 MW load. The data
source for System 1 is from (Dieu et al.,, 2013). To effectively
run WSO, BWOA, and ESOA, it is important to configure PZ and
MX with the parameters outlined in Section 4.1. Furthermore, it
is essential to ensure that other control parameters, such as the
step size factors of ESOA (step. for Egret A and steps for Egret
C), float numbers of BWOA, and the weight of WSO, are
adjusted to match the values of the original methods. In Table
1, the results from three methods are presented for comparison.
Upon comparison with the BWOA and ESOA methods, it is
evident that the WSO method demonstrates the smallest Min.
C, the smallest Aver. C, and the smallest STD, except. for ESOA
for 2700 MW load. This provides compelling evidence for the
WSO method's superior performance in terms of search ability
for the global optimal solution, stability in search ability, and
quick convergence to the global solution. For further
demonstrations, 50 fitness values of three methods for four
demand loads are also found by running 50 trial runs and these
values are then displayed in Figure 2a with 2400 MW, Figure 2b
with 2500 MW, Figure 2c with 2600 MW, and Figure 2d with
2700 MW, respectively. In these figures, the results of WSO in
red are under those from ESOA and BWOA in black and blue,
respectively. In terms of fluctuation, both methods exhibit
significant variability in their results. However, the variance
between the worst and best WSO solutions is deemed
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Fig 2. Fifty runs with PD (a) 2400 MW, (b) 2500 MW, (c) 2600 MW, (d) 2700 MW

Table 1

The results achieved by WSO, ESOA and BWOA for subcases of System 1.
PD (MW) Methods Min. C ($/h) Aver. C ($/h) Max. C ($/h) STD ($/h) TFE
BWOA 482.398 494.036 517.754 9.273 7000
2400 ESOA 484.514 495.561 512.702 5.207 7000
WSO 481.723 481.885 485.434 0.657 3000
BWOA 526.731 538.419 569.321 10.510 7000
2500 ESOA 530.649 541.660 5563.272 5.804 7000
WSO 526.239 528.011 541.608 2.523 3000
BWOA 575.180 588.039 614.528 11.695 7000
2600 ESOA 579.221 589.201 603.625 5.245 7000
WSO 574.390 576.534 600.499 3.926 3000
BWOA 624.363 635.365 659.332 9.155 7000
2700 ESOA 628.352 637.946 647.270 3.978 7000
WSO 623.819 627.318 648.051 5.373 3000

negligible. The searchability of the optimal solutions for ESOA
and BWOA has stabilized at a very high level.

In addition, the best run among 50 runs of three methods are
collected and depicted Figure 3a with 2400 MW, Figure 3b with
2500 MW, Figure 3c with 2600 MW, and Figure 3d with 2700
MW, for showing the convergence features to global solutions.
The data from the curves suggests that WSO consistently
surpasses the other methods when the fitness function
experiences a significant decrease in the initial five iterations.
However, this decrease becomes almost negligible in the final
iterations. On the other hand, the other methods exhibit only
minor improvements in the initial iterations, with noticeable
improvements still occurring in the final iteration.

For more explanation, in Figure 3a, most fitness values are
on the straight line from 40 to 100 iterations, while those from
Figures 3b, 3c, and 3d are from 20 to the end iterations.
Consequently, WSO method outperforms the ESOA and BWOA
ones in terms of effectiveness for System 1 with different
choices of fuels and is a strong contender against previous
methods.

To further illustrate the effectiveness of WSO, we have
compared its performance with previous methods such as HNN
(Park et al., 1993), ELANN (Lee and Kim, 2002), ALHN (Dieu et
al.,, 2013), EALHN (Vo and Ongsakul, 2012), MPSO (Park et al,,
2005), DE (Noman and Iba, 2008), SDE (Balamurugan, 2007),
HGA (Baskar et al, 2003), HHS (Fesanghary and Ardehali,
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Table 2
The optimal solution obtained by WSO for System 2
Unit 1 2 3 4 5 6 7 8 9 10 11 12
P1 218.33 214.84 214.08 207.48 207.53 215.57 218.98 228.21 243.08 241.15 244.09 236.58
P2 211.70 210.19 209.74 206.88 206.89 210.46 211.98 216.07 222.65 221.76 222.97 219.77
P3 280.94 276.39 275.42 267.05 267.08 277.31 281.64 500.00 500.00 500.00 500.00 500.00
P4 239.61 238.59 238.29 236.26 236.24 238.77 239.90 242.74 247.33 246.78 247.80 245.42
P5 278.40 272.57 271.08 259.65 259.79 273.56 279.83 295.82 350.46 318.43 351.62 310.40
P6 239.60 238.58 238.34 236.24 236.28 238.84 239.87 242.74 247.43 246.78 247.65 245.24
P7 288.76 282.92 281.46 270.64 270.48 284.16 289.89 305.27 354.40 351.14 356.16 343.78
P8 239.63 238.53 238.32 236.26 236.31 238.78 239.89 242.75 247.43 246.76 247.76 245.38
P9 428.29 418.28 415.43 332.81 332.63 342.12 430.62 440.00 440.00 440.00 440.00 440.00
P10 274.75 269.12 267.85 256.73 256.78 270.43 276.08 291.62 316.78 313.51 318.60 305.79
PVP1 0.00 0.00 0.00 0.00 0.00 0.00 0.64 7.58 16.05 23.24 28.49 30.96
PVP2 0.00 0.00 0.00 0.00 0.00 0.00 0.67 7.20 14.38 20.46 24.86 26.68
Unit 13 14 15 16 17 18 19 20 21 22 23 24
P1 242.46 239.23 238.81 238.95 244.49 236.71 240.65 244.64 236.84 243.27 227.46 228.32
P2 222.43 220.81 220.74 220.90 223.47 219.80 221.62 223.29 220.03 222.72 215.80 216.19
P3 500.00 500.00 500.00 500.00 500.00 500.00 500.00 500.00 500.00 500.00 500.00 293.55
P4 247.17 246.11 246.06 246.13 247.93 245.40 246.68 247.77 245.41 247.22 242.47 242.77
P5 320.66 314.58 314.27 314.64 324.43 310.60 317.72 352.18 311.44 350.54 294.51 296.08
P6 247.24 246.09 246.07 246.14 247.82 245.39 246.75 247.89 245.49 247.44 242.54 242.75
P7 489.81 463.67 462.45 463.84 356.36 446.66 477.05 356.81 449.27 354.39 304.24 305.63
P8 247.29 246.11 246.07 246.13 247.82 245.41 246.76 248.02 245.51 247.44 242.49 242.81
P9 440.00 440.00 440.00 440.00 440.00 440.00 440.00 440.00 440.00 440.00 440.00 440.00
P10 315.63 490.00 490.00 490.00 319.63 306.16 312.77 319.40 306.02 316.97 290.49 291.91
PVP1 31.00 28.77 24.16 17.55 9.35 1.97 0.00 0.00 0.00 0.00 0.00 0.00
PVP2 26.31 24.64 21.36 15.73 8.70 1.89 0.00 0.00 0.00 0.00 0.00 0.00

2009), IFA (Nguyen et al., 2018a), MCSA [21], and IALO (Dinh
et al., 2020). The comparison results are presented in various
Figures for a better understanding, in which the Min. C
comparison is presented in Figure 4 and the Aver. C and Max.
C comparisons are shown in Figure 5. From Figure 4, the Min.

C of WSO is $ 481.723 for PD of 2400MW, $ 526.239 for PD of
2500MW, $ 574.381 for PD of 2600MW, and $ 623.810 for PD
of 2700MW. These values are considered the best cost for
System 1. From here, it can be concluded that WSO can find the
same or less Min. C than other methods, excluding HHS
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Fig 4. The minimum cost comparison from different methods with PD of (a) 2400 MW, (b) 2500 MW, (c) 2600 MW, (d) 2700 MW
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Fig 5. The average and maximum costs comparison from different methods

(Fesanghary and Ardehali, 2009) and HNN (Park et al., 1993),
which have smaller Min. C than WSO. Namely, the Min. C of
HHS is § 481.650 for 2400 MW load, $ 526.080 for 2500 MW
load, $ 574.381 for 2600 MW load, and $ 623.810 for 2700 MW
load, and that of HHN is $ 526.130 for PD of 2500MW and $
574.260 for PD of 2600MW. In Figure 5, only ALHN, SDE,

MCSA, and WSO have reported the Aver. C and Max. C while
others have not declared. This Figure showed the outstanding
height of ALHN, corresponding to the highest value, while the
height of others is the same. According to the analysis, WSO
demonstrates a high degree of efficacy in solving the problem
associated with System 1.
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4.2. Discussion on System 2

In this section, we will conduct an in-depth evaluation of the
suggested methods (BWOA, ESOA, and WSO) to determine
their effectiveness in finding the optimal solution and assess the
stability of their search process on System 2 as the basis for our
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evaluation. System 2 is built from System 1, which is the
combination operation of thermal power and photovoltaic
power plants. In the system, data of TPPs is similar to those
from System 1; data for calculating the power output of PVPs,
located in two provinces of Vietnam, are accessed from Solar
Global as displayed in Figure 6. Load demands of System 2 in
one day are built from data of the electricity national control
Centre as shown in Figure 7.

Firstly, we set PZ and MX for BWOA, ESOA, and WSO as
the setting of System 1. Next, three methods are run 50 trial
times to reach the cost for comparison. The best costs from the
best run are then collected and presented in Figure 8 while the
average and the maximum costs are showed in Figures 9 and
10. Figure 8 shows the Min. C from three methods under three
colors (green for WSO, orange for ESOA, and blue for BWOA)
over 24 hours. In Figure 8, the height of orange bars is higher
than that of green bars and blue bars, and that of green bars is
lower than that of blue bars at each hour. In other words, the
best cost of WSO is always less than ESOA and BWOA's over
24 hours. As a result, the saving cost of WSO compared to ESOA
is from $ 0.56 at the 16th hour to § 6.08 at the 4th hour and as
compared to BWOA is from $ 0.29 at the 4th hour to $ 4.91 at
the 13th hour. Figures 9 and 10 report the Aver. C and Max. C
of three methods. The shape of such figures is similar to that of
Figure 8; however, the values of the three methods in Figures 9
and 10 are always bigger. To show the difference, 24 numbers
above orange bars (ESOA) are outlined. Figure 11 shows one
day costs from WSO, ESOA, and BWOA, in which the one-day
Min. C of WSO is $ 20,542. 190 and less than ESOA by $ 80.92
and BWOA by $ 46.73. These values converted in % are 0.39%
and 0.23%, respectively. Like Min. C, the rest of costs of WSO
are smaller than those from ESOA and BWOA methods. Once
again, it demonstrates that WSO has a high degree of efficacy in
solving the problem associated with System 2 with the presence
of RE, more constraints and load demands.

The optimal solution obtained by WSO is given in Table 2.
In the table, the best solution consisting of power output from
TPPs and PVPs, which is given by WSO in one day, is reported.
Additionally, the power values of these power plants are within
their boundaries as shown in Egs. (11) and (12).

5. Conclusion

The study effectively employed three methods (WSO, ESOA,
and BWOA) to attain optimal solutions for ELD and NELD
problems. Two testing systems were used in the analysis:
System 1 focused on thermal power plant operation. In contrast,
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System 2 addressed the combined operation of thermal and
photovoltaic power plants, taking into account fluctuating load
demands over 24 hours. When examining the solutions to ELD
problem in System 1, it was found that the WSO method
outperformed both ESOA and BWOA in terms of minimum cost,
average cost, maximum cost, and standard deviation. Notably,
WSO consistently produced results equaling to or better than

other methods, confirming its effectiveness as a reliable search
technique. In the solutions to the NELD problem for System 2,
the minimum cost achieved by WSO, ESOA, and BWOA varies
each hour. Notably, the minimum cost for WSO is consistently
the lowest, while this is not the case for ESOA and BWOA.
Consequently, WSO incurs costs that are lower than those of
ESOA and BWOA over the course of a day. Furthermore, WSO
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has demonstrated a high degree of effectiveness in addressing
problems associated with systems, whether or not they involve
RE. As a result, we see that RE has an important role in dealing
with decreasing fossil fuel use. To do this, the manager must
correctly adjust the power generation allocation from power
plants by exploring more power from renewable power plants.
The strategy of more RE use not only applies in the power
system but also implements in different fields, leading to reduce
carbon emission and air pollution and improved life quality. This
requires collaboration and commitment at both national and
international levels with resolutions and laws calling on
individuals and organizations to participate.

Moving forward, we can improve WSO's performance by
updating how it integrates new solutions. The updated version
of WSO will be applied to address the ELD problem and other
issues.
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