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Abstract. The paper applies three cutting-edge algorithms - War Strategy Optimization Algorithm (WSO), Egret Swarm Optimization Algorithm 
(ESOA), and  Black Widow Optimization Algorithm (BWOA) - as potential tools to determining the optimal generation power of power plants in both 
the Economic Load Dispatch problem (ELD) and the New ELD problem (NELD), which incorporates renewable energy resources into the traditional 
power system. These algorithms underwent rigorous evaluation using various test systems with complex constraints, a multi-fuel objective function, 
and 24-hour load demands. In System 1, at various load levels, WSO method achieves a lower total minimum cost compared to BWOA and ESOA. 
Specifically, WSO outperforms BWOA and ESOA by $0.68 and $2.79 for a load of 2400 MW, by $0.49 and $4.41 for a load of 2500 MW, by $0.79 and 
$4.83 for a load of 2600 MW, and by $0.54 and $4.53 for a load of 2700 MW. In System 2, WSO method is less cost in a day than ESOA by $ 80.92 
and BWOA by $ 46.73, corresponding to 0.39% and 0.23%, respectively. Additionally, WSO excels in response capability, providing a quicker reaction 
time than BWOA and ESOA across all four subcases while maintaining the same control parameters. Moreover, WSO demonstrated comparable or 
superior results and improved search capabilities compared to previous methods. The comparison of these results underscored WSO's effectiveness 
in addressing these challenges and its potential for resolving broader engineering issues beyond ELD. Ultimately, the study aimed to offer valuable 
insights into the role of renewable energy resources in the traditional power system, particularly in cost savings. 
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1. Introduction 

In today's modern age, the consumption of fossil fuels by power 
plants, particularly thermal power plants (TPP), is substantial 
enough to generate electricity to support the growth of 
industrial and commercial sectors. It is well established that 
higher fuel consumption by TPPs increases fuel costs. Among 
the available fuels for each unit, the primary goal reduces the 
overall fuel cost while adhering to generation and load 
constraints. Even a modest decrease in electricity costs can 
yield a substantial positive effect on the entire power system. 
Therefore, ensuring proper load sharing plan among generating 
units is essential for lower generation costs. In the power 
system, ELD problem addresses this challenge by determining 
the optimal generation allocation among all generating units, 
thereby minimizing the overall fuel cost while ensuring 
compliance with all necessary inequality and equality 
constraints (Nguyen et al., 2016; Pham, An and Tam, 2018). 

The functions of an ELD problem are usually expressed as 
quadratic or convex functions. However, in practical operation, 
the design and operating constraints of the generating units 
complicate the ELD problem. For instances, the introduction of 
valve-point effects by multi-valve steam turbines results in a 
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highly nonlinear and non-convex function. Additionally, 
generators may be unable to operate in specific zones due to 
malfunctioning auxiliary systems or associated machine 
problems, which creates discontinuities in the solution space 
with multiple local optima (Pham et al., 2017). Moreover, steady 
power system conditions cannot eliminate transmission line loss 
or multiple fuel options are applied. As a result, with high 
dimensionality, nonlinearity, non-differentiability, and multiple 
constraints, the ELD problem has become an more challenging 
optimization problem.  

The conventional ELD problem with multiple fuel options 
has been addressed using traditional methods for several 
decades, disregarding environmental considerations. These 
methods include using gradient, base point, participation 
factors, and lambda-iteration methods. Compared to other 
solutions presented in (Thang, 2011), the lambda-iteration 
method was again employed and yielded the most significant 
result. This method is both simple and effective. However, a 
drawback of this method is the initial setup of the lambda value. 
The optimal solution was determined after many trial runs with 
different lambda values, and the fuel type k was initially 
selected. Although each trial's simulation period is brief, the 
overall time is extended. Despite its simplicity, implementing 
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the Hopfield neural network (HNN) (Park et al., 1993) has posed 
challenges when tackling large-scale problems with numerous 
specific inequality constraints. Moreover, the selection of 
penalty factors related to constraints affects the final solution of 
the HNN method. The dynamics of Lagrange multipliers, 
incorporating both equality and inequality constraints, have 
been refined to facilitate convergence to optimal solutions 
within the problem-solving framework of the enhanced 
Lagrangian neural network (ELANN) (Lee and Kim, 2002). 
Furthermore, the momentum technique was incorporated into 
its learning algorithm to achieve faster computational time. 
ELANN (Lee and Kim, 2002) and HNN (Park et al., 1993) 
necessitate numerous iterations for convergence. Two versions 
of HNN called augmented Lagrange Hopfield network (ALHN) 
(Dieu et al., 2013) and enhanced augmented Lagrange Hopfield 
network (EALHN) (Vo and Ongsakul, 2012) were proposed by 
Dieu et al. (2011), by using energy function based on augmented 
Lagrangian function. ALHN and EALHN have been effectively 
designed to address ELD problem with multiple fuel types 
represented by piecewise quadratic cost functions. The findings 
suggest that both ALHN and EALHN outperformed HNN and 
ELANN in terms of total cost and CPU time. However, further 
evaluation is needed to compare the results of two algorithms 
and determine which one is superior. The mentioned methods 
face challenges related to system characteristics, high 
oscillations, and non-differentiable functions. Although some 
progress has been made with ALHN and EALHN, they are still 
unable to solve non-differentiable functions. As a result, recent 
developments have focused on the advancement and 
application of meta-heuristic algorithms for addressing these 
complex ELD problems. In fact, meta-heuristic algorithms have 
seen ongoing advancements in their application to solve 
complex ELD problems. This signifies a sustained effort in 
refining and adapting these algorithms to address the intricate 
challenges of ELD problems.  One of the ancient methods is 
particle swarm optimization (PSO) (Jeyakumar et al., 2006). 
PSO draws inspiration from the social behaviors observed in 
bird flocks and fish schools. It is categorized as a swarm 
intelligence algorithm that harnesses collective behaviors to 
solve complex problems. However, the drawbacks of PSO 
consist of premature convergence, sensitivity to parameters, 
and challenges with constrained optimization, leading to the 
proposal of many improved versions of PSO like modified PSO 
(MPSO) (Park et al., 2005), new adaptive PSO (NAPSO) (Park et 
al., 2005) and double weighted PSO (DWPSO) (Kheshti et al., 
2018). In (Kheshti et al., 2018), authors have recomened two 
inertia weights (wk_head and wk_end) for updating the velocity 
of particle, in which wk_head is utilized at the start of the DWPSO 
iteration, while wk_end is employed at the end of the DWPSO loop 
during each iteration. In (Park et al., 2005), NAPSO was 
enhanced by incorporating two improvements from 
conventional PSO. Improvement 1 involves a new formula for 
the inertia weight in the velocity updating equation, while 
Improvement 2 applies the mutation mechanism of the 
differential evolution technique (DE) to construct the position 
equation. The numerical results unequivocally demonstrated 
that NAPSO and DWPSO outperform PSO in superior 
robustness and reduced computational efforts. Others in the 
family of meta-heuristic algorithm such as  DE (Noman and Iba, 
2008), self-adaptive differential evolution (SDE) algorithm 
(Balamurugan, 2007), two-phase hybrid real coded genetic 
algorithm (HGA) (Balamurugan, 2007), real-coded genetic 
algorithm (RCGA) (Amjady and Nasiri-Rad, 2009), harmony 
search (HS) algorithm (Fesanghary and Ardehali, 2009), chaotic 
firefly algorithm (CFA) (Arul et al., 2013), improved FA (IFA) 

(Nguyen et al., 2018a), adaptive cuckoo search algorithm 
(ACSA) (Pham et al., 2016), modified CSA (MCSA) (Nguyen et 
al., 2018b), improved social spider optimization algorithm 
(ISSO) (Kien et al., 2019), and improved antlion optimization 
algorithm (IALO) (Dinh et al., 2020) have been recommended 
for ELD problem. Among methods, IALO is the latest method 
by suggesting four modifications based on the standard ALO 
from Bach et al. in 2020.  The performance of IALO was tested 
on different systems from 10 to 90 units together different 
constraints. Via obtained results, the method was better than 
ALO method. Its quicker computation times, faster 
convergence velocity, and more steady search capability 
explain this. Moreover, the IALO approach was noticeably 
better than almost every other approach to tackling difficulties 
for similar systems.  It is noted that in most studies, authors have 
only focused on dealing with the allocation of power generation 
from TPPs available but not considered emissions from burning 
fossil fuels (e.g., coal, natural gas, oil). Components of TPP’s 
emissions consist of carbon dioxide (CO2), sulfur dioxide (SO2), 
nitrogen oxides (NOx), particulate matter (PM), carbon 
monoxide (CO), heavy metals, ash, ect. As we know, these gases 
are the leading causes of a substantial increase in greenhouse 
gas (GHG) emissions, air pollution, global warming, and climate 
change. Taking proactive steps to reduce greenhouse gas 
(GHG) emissions and implementing effective carbon-lowering 
strategies is vital for successfully addressing climate change. 
Countries worldwide embrace diverse approaches tailored to 
their specific circumstances, resources, and commitments 
(Sebos et al., 2016; Losada-Puente et al., 2023; Martín-Ortega et 
al., 2024; Tsepi et al., 2024). By sharing best practices and 
collaborating on innovative solutions, we can collectively 
strengthen our efforts to combat this global challenge. In terms 
of air pollution, countries are aslo embracing innovative 
strategies to combat air pollution, united in their commitment 
to protect public health and preserve the environment for future 
generations (Progiou et al., 2023). Namely, specific strategies to 
cover these mentioned challenges, which are implemented by 
countries, include regulatory measures, renewable energy 
promotion, public transportation improvements, etc., for air 
pollution mitigation while renewable energy transition, energy 
efficiency improvements, afforestation, and reforestation, etc., 
for greenhouse gas mitigation and carbon lowering. Among 
strategies,  the use of renewable energy resource is considered 
the best potential sollution. Other factors, such as epidemics or 
floods, can also affect the emissions that countries worldwide 
have recently experienced. Specially, the restrictions imposed 
during the COVID-19 pandemic resulted in significant short-
term reductions in greenhouse gas emissions and 
improvements in air quality (Papadogiannaki et al., 2023; 
Yassine & Sebos, 2024) 

In recent years, renewable energies (RE) like wind and solar 
power have experienced rapid development and are making 
significant contributions to electricity generation. Their 
potential makes them promising resources for mitigating 
greenhouse gas effects, addressing global warming, and 
replacing the depletion of fossil energy sources. As a result, 
these energy sources are among the fastest-growing renewable 
ones and offer a viable alternative to traditional fossil fuels 
worldwide.  The integration of renewable energy into the 
traditional power system transforms the economic load 
dispatch problem into a new one, named the new economic load 
dispatch (NELD) problem. For dealing with NELD problem, the 
author (Li et al., 2016) described a solution for a mechanism 
using virtual power plants, which were made up of wind farms. 
However, the authors overlooked the impact of penalty factors 
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for over and underestimations by considering the cost of wind-
based plants as zero. In (Liang et al., 2018), authors have 
adopted a random wind power model by considering three cost 
functions: direct, overestimation, and underestimation. As a 
result, the objective function of the NELD problem is the costs 
of TPP and wind power plant. Study (Ellahi and Abbas, 2020) 
has put forth three distinct combinations of power plants. These 
configurations involved the integration of RES with TPPs, the 
implementation of small-scale thermal power systems with 
constraints, and the operation of large-scale power systems with 
the valve point loading (VPL) effect in the aim at identifying the 
most effective operational parameters for these power plants.  
In (Basu, 2019), the cost formulation for integrating both 
photovoltaic (PV) power plant and wind-based power 
generation systems with TPPs was presented, with a primary 
emphasis on analyzing the cost of TPPs, while the authors in 
(Lai et al., 2017) have introduced a power system incorporating 
solar PV and biofuel as an alternative to fossil fuels. And their 
focus was on calculating the cost associated with the 
degradation of energy storage.  

This research paper makes use of WSO, a population-based 
optimization algorithm by (Ayyarao et al., 2022) for solving ELD 
and NELD problems. This method models the strategic 
movement of army troops during war, focusing on attack and 
defense strategies. This work introduces an innovative weight-
updating mechanism and a strategic approach for relocating 
underperforming soldiers, aiming to enhance convergence and 
robustness significantly, which help WSO get a balance between 
exploration and exploitation stages. Its efficacy is tested on 50 
benchmark functions and four engineering problems, and its 
superiority is proven through experimental results. Since the 
algorithm appeared, it has been applied by many researchers to 
solve electrical engineering problems such as estimating 
parameters for solar PV models (Ayyarao and Kumar, 2022), 
enhancing the generated power for PV array (Alharbi et al., 
2023), classifying air pollutant species (Gehad Ismail Sayed and 
Aboul Ella Hassanein, 2023), controlling load frequency for the 
power system (Ayyarao et al., 2023), and establishing an optimal 
configuration model for a voltage sag monitor (Shou et al., 
2023). Along with WSO, Egret swarm optimization algorithm 
(ESOA) (Chen et al., 2022) and black widow optimization 
algorithm (BWOA) (Peña-Delgado et al., 2020) were also utilized 
for such problems. The application of WSO, BWOA, and ESOA 
to two types of ELD presents an opportunity to optimize the 
power output of power plants, ultimately reducing the overall 
operating costs of the system. Additionally, this approach 
provides a valuable framework for assessing the effectiveness of 
recently proposed metaheuristic methods. The results of the 
three applied methods were compared to those of other 
competitors.  

The followings are the study’s novelties and contributions :  
a) The study successfully applies WSO (created in 2022) and 

takes into consideration the ESOA and BWOA algorithms 
(suggested in 2020 and 2022, respectively), to address 
ELD and NELD problems.  

b) The study presents compelling numerical data and 
graphics that effectively demonstrate the advantages of 
the WSO algorithm compared to earlier techniques. 
Moreover, the results indicate that the WSO algorithm 
outperforms both the ESOA and BWOA in obtaining 
optimal and high-quality solutions, highlighting its 
potential for further advancements in the field. 

c) The study provides how to compute the daily power 
production of solar power plants connected to the 

conventional power grid using accurate solar radiation 
data from two locations in Vietnam. 

d) The study provides short discussions and strategies 
regarding greenhouse gas (GHG) emissions, air pollution, 
global warming, and climate change. 

2. Problem Model 

2.1 The objective 

The paper carefully examines ELD and NELD problems. These 
problems are designed to minimize costs by meeting the load 
demand and various equality and inequality constraints. 
Specifically, the ELD problem focuses on minimizing the fuel 
cost of the TPP, while the NELD problem incorporates both the 
TPP fuel cost and the cost of photovoltaic power plant (PVP). 
The formulations for two problems are explicitly expressed in 
Eqs. (1) and (2), respectively. 

𝑀𝑖𝑛 (𝐶𝑇𝑃𝑃) (1) 

𝑀𝑖𝑛 (𝐶𝑇𝑃𝑃 , 𝐶𝑃𝑉) (2) 

Subject to  

Equality constraints 

𝑔(𝑉𝑇𝑃𝑃 , 𝑉𝑃𝑉) = 0  (3) 

Inequality constraints: 

ℎ(𝑉𝑇𝑃𝑃 , 𝑉𝑃𝑉) < 0  (4) 

• Photovoltaic power plant: 

When the system operator has possession of the PVP, the cost 
function for a PVP may not be directly applicable because it 
does not apply fossil fuel. However, determining the cost of PVP 
generation becomes necessary through specific contracts if a 
state company does not possess the PVP (Huu Pham et al., 
2021). This study undertakes an investigation into the total cost 
function of PVP (CPV), which is represented linearly (Reddy, 
2017). 

𝐶𝑃𝑉 =∑(𝑝. 𝑉𝑃𝑉,𝑣  ; 𝑣 = 1,… , 𝑃)

𝑃

𝑣=1

 (5) 

where p stands for the PV generator price in ($/MWh); 𝑽𝑷𝑽,𝒗 

stands for the power ouput of the vth PV generator, which is 
given by 

𝑉𝑃𝑉(PV𝑏)=

{
 
 

 
 𝑉𝑃𝑉,𝑟×

PV𝑏
2

PVstd+Rc
 0<PV𝑏<Rc

𝑉𝑃𝑉,𝑟×
PV𝑏
PVstd

               PV𝑏>Rc

; 

                           𝑏 = 1,… ,8760 ℎ𝑜𝑢𝑟𝑠 

(6) 

 It is observed that solar radiation (PVb) variations, including 
hourly, daily, monthly, and annual ones, are crucial for 
determining optimal placement and rated power of photovoltaic 
power systems. If Eq. (6) is applied to calculate the power output 
of PVP, then we need a powerful enough tool, which will take 
much time. This causes grid operators' decision-making to fail 
to keep up with load changes. In addition, current optimization 
methods need help handling the large data volume efficiently. 
To cover the obstacle, the study suggests using global solar data 
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to analyze solar radiation patterns in two southern Vietnamese 
provinces, where two PVPs will be adopted to optimize the cost 
of the standard 10-unit IEEE system. The data accurately 
reports average radiation for each hour of every month, 
indicating the mean solar radiation for a year is 6 o'clock to 18 
o'clock for every 12 months, with one year represented by 12 
days instead of the standard 365 days. This approach will help 
determine the power output of PVPs integrated easily into 
traditional thermal power plant systems. 

• Thermal power plant: 

The formulation for TPP cost function (CTPP) can be described 
mathematically as a second-order function. This means it can 
be represented by an equation involving a second-degree 
polynomial. This allows for a more detailed analysis of the fuel 
cost function, providing a deeper understanding of its behavior 
and implications. The function is formulated by (Ismaeel et al., 
2023) 

𝐶𝑇𝑃𝑃 =∑(𝜌𝑡 + 𝜎𝑡𝑉𝑇𝑃𝑃,𝑡 + 𝜏𝑡𝑉𝑇𝑃𝑃,𝑡
2  )

𝑇

𝑡=1

;  𝑡 = 1,… , 𝑇 (7) 

The mathematical formula for TPP’s cost with multiple fuel 
choices is shown in Eq. (8) 

𝐶𝑇𝑃𝑃 =

{
 
 
 

 
 
 
𝜌𝑡1 + 𝜎𝑡1𝑉𝑇𝑃𝑃,𝑡 + 𝜏𝑡1𝑉𝑇𝑃𝑃,𝑡                                         

2   

For  𝑓𝑢𝑒𝑙 1, 𝑉𝑇𝑃𝑃,𝑡𝑚𝑖𝑛 ≤ 𝑉𝑇𝑃𝑃,𝑡 ≤ 𝑉𝑇𝑃𝑃,𝑡1𝑚𝑎𝑥

𝜌𝑡2 + 𝜎𝑡2𝑉𝑇𝑃𝑃,𝑡 + 𝜏𝑡2𝑉𝑇𝑃𝑃,𝑡                                            
2   

For 𝑓𝑢𝑒𝑙 2, 𝑉𝑇𝑃𝑃,𝑡2𝑚𝑖𝑛 ≤ 𝑉𝑇𝑃𝑃,𝑡 ≤ 𝑉𝑇𝑃𝑃,𝑡2𝑚𝑎𝑥
………

 𝜌𝑡𝑤 + 𝜎𝑡𝑤𝑉𝑇𝑃𝑃,𝑡 + 𝜏𝑡𝑤𝑉𝑇𝑃𝑃,𝑡
2                                  

𝐹𝑜𝑟 𝑓𝑢𝑒𝑙 𝑤, 𝑉𝑇𝑃𝑃,𝑡𝑤𝑚𝑖𝑛 ≤ 𝑉𝑇𝑃𝑃,𝑡 ≤ 𝑉𝑇𝑃𝑃,𝑡𝑤𝑚𝑎𝑥

 (8) 

Where, the cost coefficients for type wth of unit tth are denoted 
by 𝜌𝑡𝑤,  𝜎𝑡𝑤 and 𝜏𝑡𝑤 

2.2.  The considered constraints 

This paper addresses ELD and NELD problems by ensuring that 
generators and systems meet various equality and inequality 
constraints as follows. 

• Restriction on the actual active power balancing 

The constraint is one of these constraints in such a problem, in 
which the power produced by these power plants must be 
adequate to satisfy both the combined demand (PD) and 
transmission losses (LP) as stipulated by the specific equation. 
This means that the power generated should be capable of 
meeting the total power demand and accounting for any losses 
during transmission  

∑𝑉𝑇𝑃𝑃,𝑡

𝑇

𝑡=1

+∑𝑉𝑃𝑉,𝑣

𝑃

𝑣=1

= 𝑃𝐷+LP (9) 

where, LP is determined in Eq. (9) using Krone's reduction 
model. 

LP =∑∑𝑉𝑇𝑃𝑃,𝑡×𝐴tj×𝑉𝑇𝑃𝑃,𝑗+∑𝐴0t

𝑇

t=1

𝑇

j=1

𝑇

t=1

×𝑉𝑇𝑃𝑃,𝑡+𝐴00 (10) 

• Restriction on power generated: 

For the optimal functioning of the unit, it is crucial to adhere to 
the specified minimum and maximum generation capacities 
strictly. This ensures that the unit operates within its designated 
power, allowing for efficient and sustainable power generation 
while minimizing the risk of overloading or underutilization 
(Deb et al., 2021). 

𝑉𝑇𝑃𝑃,𝑚𝑖𝑛 ≤ 𝑉𝑇𝑃𝑃,𝑡 ≤ 𝑉𝑇𝑃𝑃,𝑚𝑎𝑥 (11) 

𝑉𝑃𝑉,𝑚𝑖𝑛 ≤ 𝑉𝑃𝑉,𝑣 ≤ 𝑉𝑃𝑉,𝑚𝑎𝑥 (12) 

 

3. War Strategy Optimization 

In 2022, Ayyarao et al. suggested an innovate revolutionary 
meta-heuristic algorithm called War Strategy Optimization 
(WSO). The algorithm models the strategic movement of army 
troops during war, focusing on attack and defense strategies. In 
the battlefield, every soldier constantly adjusts his positions 
based on the strategy's success influenced by King, 
Commander, and soldier rank. In order to replicate an 
optimization procedure, every soldier rushes dynamically to the 
target, which is the optimal position. When the war begins, each 
soldier holds the same rank and weight to them and depending 
on how well they perform in terms of assault force and fitness 
level, their weight is modified. Two common military strategies 
used to enhance soldier positions and solutions are the attack 
and defense strategies. To improve new solutions, two 
approaches will be described as below: 

• The attack strategy 

The fundamental strategy involves the king leading soldiers in a 
coordinated attack against the opposition, with the soldiers' 
positions adjusting based on the orders of the king and the 
commander. When the attacking force gains an advantage, the 
soldiers move forward; however, if the advantage diminishes, 
they return to their original positions. This approach enables the 
army to effectively cover the entire search area by making 
substantial progress initially and more incremental advances 
later. 

The phase known as exploitation involves updating the 
soldier's position as follows: 

𝐴𝑖
𝑛𝑒𝑤 = 𝐴𝑖 + 2 × ℰ × (𝐴

𝐾 − 𝐴𝐶) 

              +𝑟𝑎𝑛𝑑 × (𝑊𝑖 × 𝐴
𝐾 − 𝐴𝑖) 

(13) 

In Eq. (13), the new and old locations of soldier i denote 𝐴i  and 
𝐴𝑖
𝑛𝑒𝑤 are; 𝐴𝐾and 𝑋𝐶 the location of the king and commander; ℰ 

signifies a random value; Wi is the weight factor which is give 

by: 

𝑊𝑖 = 𝑊𝑖 × ( 1 −
𝐵𝑖
𝑀𝑋

)𝛼 (14) 

Where MX is the maximum iteration; Bi is the soldier’s order 
which is formulated by: 

𝐵𝑖 = {
𝐵𝑖 + 1    If (𝐹𝑛𝑒𝑤 ≥ 𝐹𝑜𝑙𝑑) 
𝐵𝑖             If (𝐹𝑛𝑒𝑤 < 𝐹𝑜𝑙𝑑)

 (15) 

In Eq. (15), 𝐹𝑛𝑒𝑤 and 𝐹𝑜𝑙𝑑   stands for the fitness of 𝐴𝑖
𝑛𝑒𝑤and 𝐴𝑖 

 

• The defense strategy 

The central aim of this strategic approach is to ensure the safety 
of the King. It involves a commander leading the way, with 
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soldiers positioned in a chain formation to promptly respond to 
threats based on the King's movements. 

The exploration phase is the name of the tactic. Equation (8) is 
applied to update the soldier's position during this phase. 

𝐴𝑖
𝑛𝑒𝑤 = 𝐴𝑖 + 2 × ℰ × (𝐴

𝐾 − 𝐴𝑟𝑎𝑛𝑑) 

               +𝑟𝑎𝑛𝑑 ×𝑊𝑖(𝐴
𝐶 − 𝐴𝑖) 

(16) 

In Eq. (17),  𝐴𝑟𝑎𝑛𝑑 is a radom location of soldier among the army.  
 
 
4.   Results and Dicussion 

In the section, two primary power systems – System 1 with ten 
TPPs and System 2 with TPPs and two PVPs – are utilized to 
assess the performance, resilience, and convergence rate of 
three applied methods. The details of these systems will be 
revealed in the following sub-sections, in which Section 4.1 
gives information about the investigation of control parameters 
of WSO, BWOA, and ESOA, Section 4.2 discusses the results of 
System 1, and Section 4.3 discusses the results of System 2.  The 
proposed algorithms-WSO, BWOA, and ESOA-will each be 
subjected to 50 independent trials for Systems 1 and 2. These 
trials will be conducted on a 2.4 GHz PC with 4 GB of RAM and 
a Matlab platform with R2018a version. 

4.1. The investigation of control parameters: 

To find the optimal solution for any problems, researchers must 
carefully implement the process of investigating control 
parameters for the applied methods. This work may be carried 
out based on various factors, including the mechanism of 
generating solutions (one or more times), the number of fitness 
evaluations, and the findings from previous researches. In this 
study, two parameters of WSO, BWOA and ESOA consisting of 
population size (PZ) and maximum iteration (MX) will be 
checked on the first system with PD of 2400 MW. In order to 
conduct a fair comparison, it is imperative to ensure that the 
total fitness evaluations (TFE) for all three methods are 
equivalent. The TFE for a method with solution generating once 
is calculated as (PZ × MX), where PZ represents a specific value, 
and MX represents another specific value. The TFE is calculated 
as (2 × PZ × MX) for a method with solution generating twice.  

In this study, three methods that were applied to such problems 
are a meta-heuristic algorithm with solution generating once. 

For the survey, PZ is changed from 10 to 100, while MX 
varies from 50 to 150. Results from three methods: minimum 
cost (Min. C), average cost (Aver. C), maximum cost (Max. C), 
and standard deviation (STD) are collected and noted in Figure 
1. Out of the four comparison criteria, the first one is crucial as 
it provides information about the performance of the applied 
method. If the method's Min. C is the smallest, it is considered 
the strongest. Otherwise, the method is considered the weakest. 
The second and fourth ones show the stable ability of the 
method in searching solutions.  In Figure 1, the minimum costs 
of BWOA and ESOA are $ 482.398 and $ 484,514, respectively, 
and the value is the best that the ability of BWOA and ESOA can 
reach. To reach the Min. C, the PZ, MX, and TFE settings for the 
two methods are 70, 100, and 7000, respectively. If PZ is under 
70, the method cannot find this value; otherwise, the Min. C 
remains unchanged. In terms of WSO, Min. C is $481.723 
corresponding to PZ, MX, and TFE of 30, 100, and 3000, in 
turns. If the PZ of WSO continuously increases to 70, its costs, 
such as Min. C, Aver. C, Max. C and STD are $ 481.723, $ 
481.765, $ 485.092, and 0.337, respectively. For PZ from 30 to 
70, WSO’s Min. C is the same value. From here, we conclude 
that the PZ significantly affects the speed and quality of each 
iteration's solutions. On the other hand, MX substantially affects 
both the time it takes to run independently and the quality of the 
solution. Therefore, setting high PZ value will increase the 
solutions' quality and time for each iteration. Similarly, setting a 
high MX value will improve the solution quality at the final 
independent runs but will also lead to longer run times. Notably, 
if both PZ and MX are set to high levels, the same optimal 
solutions will be produced, but it will take longer to achieve 
them. 

4.2. Discussion on System 1 

This section evaluates the efficacy of three methods on a system 
comprising ten units, utilizing various fuel choices for 4 sub-
cases: sub-case 1.a assesses a 2400 MW load, sub-case 1.b 
assesses a 2500 MW load, sub-case 1.c assesses a 2600 MW 
load, and sub-case 1.d assesses a 2700 MW load. The data 
source for System 1 is from (Dieu et al., 2013).  To effectively 
run WSO, BWOA, and ESOA, it is important to configure PZ and 
MX with the parameters outlined in Section 4.1. Furthermore, it 
is essential to ensure that other control parameters, such as the 
step size factors of ESOA (stepa for Egret A and stepb for Egret 
C), float numbers of BWOA, and the weight of WSO, are 
adjusted to match the values of the original methods.  In Table 
1, the results from three methods are presented for comparison. 
Upon comparison with the BWOA and ESOA methods, it is 
evident that the WSO method demonstrates the smallest Min. 
C, the smallest Aver. C, and the smallest STD, except. for ESOA 
for 2700 MW load. This provides compelling evidence for the 
WSO method's superior performance in terms of search ability 
for the global optimal solution, stability in search ability, and 
quick convergence to the global solution. For further 
demonstrations, 50 fitness values of three methods for four 
demand loads are also found by running 50 trial runs and these 
values are then displayed in Figure 2a with 2400 MW, Figure 2b 
with 2500 MW, Figure 2c with 2600 MW, and Figure 2d with 
2700 MW, respectively.  In these figures, the results of WSO in 
red are under those from ESOA and BWOA in black and blue, 
respectively. In terms of fluctuation, both methods exhibit 
significant variability in their results. However, the variance 
between the worst and best WSO solutions is deemed   

Fig 1. The investigated results obtained from three methods 
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negligible. The searchability of the optimal solutions for ESOA 
and BWOA has stabilized at a very high level.  

In addition, the best run among 50 runs of three methods are 
collected and depicted Figure 3a with 2400 MW, Figure 3b with 
2500 MW, Figure 3c with 2600 MW, and Figure 3d with 2700 
MW, for showing the convergence features to global solutions. 
The data from the curves suggests that WSO consistently 
surpasses the other methods when the fitness function 
experiences a significant decrease in the initial five iterations. 
However, this decrease becomes almost negligible in the final 
iterations. On the other hand, the other methods exhibit only 
minor improvements in the initial iterations, with noticeable 
improvements still occurring in the final iteration.  

For more explanation, in Figure 3a, most fitness values are 
on the straight line from 40 to 100 iterations, while those from 
Figures 3b, 3c, and 3d are from 20 to the end iterations. 
Consequently, WSO method outperforms the ESOA and BWOA 
ones in terms of effectiveness for System 1 with different 
choices of fuels and is a strong contender against previous 
methods.  

To further illustrate the effectiveness of WSO, we have 
compared its performance with previous methods such as HNN 
(Park et al., 1993), ELANN (Lee and Kim, 2002), ALHN (Dieu et 
al., 2013), EALHN (Vo and Ongsakul, 2012), MPSO (Park et al., 
2005), DE (Noman and Iba, 2008), SDE (Balamurugan, 2007), 
HGA (Baskar et al., 2003), HHS (Fesanghary and Ardehali, 

 
(a) 

 
(b)  

 
(c)  

 
(d) 

Fig 2. Fifty runs with PD (a) 2400 MW, (b) 2500 MW, (c) 2600 MW, (d) 2700 MW 

 

Table 1 
The results achieved by WSO, ESOA and BWOA for subcases of System 1. 

PD (MW) Methods Min. C ($/h) Aver. C ($/h) Max. C ($/h) STD ($/h) TFE 

2400 

BWOA 482.398 494.036 517.754 9.273 7000 

ESOA 484.514 495.561 512.702 5.207 7000 

WSO 481.723 481.885 485.434 0.657 3000 

2500 

BWOA 526.731 538.419 569.321 10.510 7000 

ESOA 530.649 541.660 553.272 5.804 7000 

WSO 526.239 528.011 541.608 2.523 3000 

2600 

BWOA 575.180 588.039 614.528 11.695 7000 

ESOA 579.221 589.201 603.625 5.245 7000 

WSO 574.390 576.534 600.499 3.926 3000 

2700 

BWOA 624.363 635.365 659.332 9.155 7000 

ESOA 628.352 637.946 647.270 3.978 7000 

WSO 623.819 627.318 648.051 5.373 3000 
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2009), IFA (Nguyen et al., 2018a), MCSA [21], and IALO (Dinh 
et al., 2020). The comparison results are presented in various 
Figures for a better understanding, in which the Min. C 
comparison is presented in Figure 4 and the Aver. C and Max. 
C comparisons are shown in Figure 5. From Figure 4, the Min. 

C of WSO is $ 481.723 for PD of 2400MW, $ 526.239 for PD of 
2500MW, $ 574.381 for PD of 2600MW, and $ 623.810 for PD 
of 2700MW. These values are considered the best cost for 
System 1. From here, it can be concluded that WSO can find the 
same or less Min. C than other methods, excluding HHS 

 
(a) 

 
(b)  

 
(c)  

 
(d) 

Fig 3. The best run with PD of (a) 2400 MW, (b) 2500 MW, (c) 2600 MW, (d) 2700 MW 
 

Table 2 
The optimal solution obtained by WSO for System 2 

Unit 1 2 3 4 5 6 7 8 9 10 11 12 

P1 218.33 214.84 214.08 207.48 207.53 215.57 218.98 228.21 243.08 241.15 244.09 236.58 

P2 211.70 210.19 209.74 206.88 206.89 210.46 211.98 216.07 222.65 221.76 222.97 219.77 

P3 280.94 276.39 275.42 267.05 267.08 277.31 281.64 500.00 500.00 500.00 500.00 500.00 

P4 239.61 238.59 238.29 236.26 236.24 238.77 239.90 242.74 247.33 246.78 247.80 245.42 

P5 278.40 272.57 271.08 259.65 259.79 273.56 279.83 295.82 350.46 318.43 351.62 310.40 

P6 239.60 238.58 238.34 236.24 236.28 238.84 239.87 242.74 247.43 246.78 247.65 245.24 

P7 288.76 282.92 281.46 270.64 270.48 284.16 289.89 305.27 354.40 351.14 356.16 343.78 

P8 239.63 238.53 238.32 236.26 236.31 238.78 239.89 242.75 247.43 246.76 247.76 245.38 

P9 428.29 418.28 415.43 332.81 332.63 342.12 430.62 440.00 440.00 440.00 440.00 440.00 

P10 274.75 269.12 267.85 256.73 256.78 270.43 276.08 291.62 316.78 313.51 318.60 305.79 

PVP1 0.00 0.00 0.00 0.00 0.00 0.00 0.64 7.58 16.05 23.24 28.49 30.96 

PVP2 0.00 0.00 0.00 0.00 0.00 0.00 0.67 7.20 14.38 20.46 24.86 26.68 

Unit 13 14 15 16 17 18 19 20 21 22 23 24 

P1 242.46 239.23 238.81 238.95 244.49 236.71 240.65 244.64 236.84 243.27 227.46 228.32 

P2 222.43 220.81 220.74 220.90 223.47 219.80 221.62 223.29 220.03 222.72 215.80 216.19 

P3 500.00 500.00 500.00 500.00 500.00 500.00 500.00 500.00 500.00 500.00 500.00 293.55 

P4 247.17 246.11 246.06 246.13 247.93 245.40 246.68 247.77 245.41 247.22 242.47 242.77 

P5 320.66 314.58 314.27 314.64 324.43 310.60 317.72 352.18 311.44 350.54 294.51 296.08 

P6 247.24 246.09 246.07 246.14 247.82 245.39 246.75 247.89 245.49 247.44 242.54 242.75 

P7 489.81 463.67 462.45 463.84 356.36 446.66 477.05 356.81 449.27 354.39 304.24 305.63 

P8 247.29 246.11 246.07 246.13 247.82 245.41 246.76 248.02 245.51 247.44 242.49 242.81 

P9 440.00 440.00 440.00 440.00 440.00 440.00 440.00 440.00 440.00 440.00 440.00 440.00 

P10 315.63 490.00 490.00 490.00 319.63 306.16 312.77 319.40 306.02 316.97 290.49 291.91 

PVP1 31.00 28.77 24.16 17.55 9.35 1.97 0.00 0.00 0.00 0.00 0.00 0.00 

PVP2 26.31 24.64 21.36 15.73 8.70 1.89 0.00 0.00 0.00 0.00 0.00 0.00 
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(Fesanghary and Ardehali, 2009) and HNN (Park et al., 1993), 
which have smaller Min. C than WSO. Namely, the Min. C of 
HHS is $ 481.650 for 2400 MW load, $ 526.080 for 2500 MW 
load, $ 574.381 for 2600 MW load, and $ 623.810 for 2700 MW 
load, and that of HHN is $ 526.130 for PD of 2500MW and $ 
574.260 for PD of 2600MW.  In Figure 5, only ALHN, SDE, 

MCSA, and WSO have reported the Aver. C and Max. C while 
others have not declared. This Figure showed the outstanding 
height of ALHN, corresponding to the highest value, while the 
height of others is the same. According to the analysis, WSO 
demonstrates a high degree of efficacy in solving the problem 
associated with System 1. 

 
(a) 

  
(b) 

 

 
(c)  

 
(d) 

Fig 4. The minimum cost comparison from different methods with PD of (a) 2400 MW, (b) 2500 MW, (c) 2600 MW, (d) 2700 MW 
 
 
 

 

Fig 5. The average and maximum costs comparison from different methods 
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4.2. Discussion on System 2 

In this section, we will conduct an in-depth evaluation of the 
suggested methods (BWOA, ESOA, and WSO) to determine 
their effectiveness in finding the optimal solution and assess the 
stability of their search process on System 2 as the basis for our 

evaluation. System 2 is built from System 1, which is the 
combination operation of thermal power and photovoltaic 
power plants. In the system, data of TPPs is similar to those 
from System 1; data for calculating the power output of PVPs, 
located in two provinces of Vietnam, are accessed from Solar 
Global as displayed in Figure 6. Load demands of System 2 in 
one day are built from data of the electricity national control 
Centre as shown in Figure 7. 

Firstly, we set PZ and MX for BWOA, ESOA, and WSO as 
the setting of System 1. Next, three methods are run 50 trial 
times to reach the cost for comparison.  The best costs from the 
best run are then collected and presented in Figure 8 while the 
average and the maximum costs are showed in Figures 9 and 
10. Figure 8 shows the Min. C from three methods under three 
colors (green for WSO, orange for ESOA, and blue for BWOA) 
over 24 hours. In Figure 8, the height of orange bars is higher 
than that of green bars and blue bars, and that of green bars is 
lower than that of blue bars at each hour. In other words, the 
best cost of WSO is always less than ESOA and BWOA's over 
24 hours. As a result, the saving cost of WSO compared to ESOA 
is from $ 0.56 at the 16th hour to $ 6.08 at the 4th hour and as 
compared to BWOA is from $ 0.29 at the 4th hour to $ 4.91 at 
the 13th hour. Figures 9 and 10 report the Aver. C and Max. C 
of three methods. The shape of such figures is similar to that of 
Figure 8; however, the values of the three methods in Figures 9 
and 10 are always bigger. To show the difference, 24 numbers 
above orange bars (ESOA) are outlined. Figure 11 shows one 
day costs from WSO, ESOA, and BWOA, in which the one-day 
Min. C of WSO is $ 20,542. 190 and less than ESOA by $ 80.92 
and BWOA by $ 46.73. These values converted in % are 0.39% 
and 0.23%, respectively. Like Min. C, the rest of costs of WSO 
are smaller than those from ESOA and BWOA methods. Once 
again, it demonstrates that WSO has a high degree of efficacy in 
solving the problem associated with System 2 with the presence 
of RE, more constraints and load demands. 

The optimal solution obtained by WSO is given in Table 2. 
In the table, the best solution consisting of power output from 
TPPs and PVPs, which is given by WSO in one day, is reported. 
Additionally, the power values of these power plants are within 
their boundaries as shown in Eqs. (11) and (12).  

 
5. Conclusion 

The study effectively employed three methods (WSO, ESOA, 
and BWOA) to attain optimal solutions for ELD and NELD 
problems. Two testing systems were used in the analysis: 
System 1 focused on thermal power plant operation. In contrast, 

 
Fig 6. Output power of PVPs 

 

 
Fig 7. Load demand 

 

 
Fig 8. The Min. C comparison from three methods over 24 hours 
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System 2 addressed the combined operation of thermal and 
photovoltaic power plants, taking into account fluctuating load 
demands over 24 hours. When examining the solutions to ELD 
problem in System 1, it was found that the WSO method 
outperformed both ESOA and BWOA in terms of minimum cost, 
average cost, maximum cost, and standard deviation. Notably, 
WSO consistently produced results equaling to or better than 

other methods, confirming its effectiveness as a reliable search 
technique. In the solutions to the NELD problem for System 2, 
the minimum cost achieved by WSO, ESOA, and BWOA varies 
each hour. Notably, the minimum cost for WSO is consistently 
the lowest, while this is not the case for ESOA and BWOA. 
Consequently, WSO incurs costs that are lower than those of 
ESOA and BWOA over the course of a day. Furthermore, WSO 

 
Fig 9. The Aver. C comparison from three methods over 24 hours 

 

Fig 10. The Max. C comparison from three methods over 24 hours 

 
Fig 11. The one day Min. C, Aver. C and max. C from three methods 

 

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

6
3
7
.0
7
2

6
1
8.2

8
5

6
1
3
.8
7
3

5
4
4
.6
7
3

5
4
3
.7
7
5

5
8
2
.9
5
0

64
8
.7
0
2

8
4
9
.3
7
9

9
9
2
.2
0
7

1
0
1
1
.3
0
2

10
7
0
.6
5
6

1
0
37
.5
3
9

1
1
3
9
.4
6
3

1
2
0
4
.4
8
0

1
1
7
7
.72

8

1
1
3
9
.7
1
3

9
4
2
.5
1
8

9
2
0
.4
3
9

9
3
9
.4
9
1

8
9
9
.3
9
9

9
1
1
.2
1
2

8
9
2
.3
3
9

7
9
8
.9
4
1 6
9
0
.2
0
1

WSO ESOA BWOA

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

640.110

620.058

613.325

542.656

542.526

582.557

648.190

858.338

1004.598

1022.178

1080.179

1046.491

1151.716

1213.438

1182.802

1145.839

951.397

931.427

950.047

911.239

921.026

903.890 805.881 693.781

WSO ESOA BWOA

19800

20000

20200

20400

20600

20800

21000

21200

21400

21600

21800

22000

Min. C ($) Aver. C ($) Max. C ($)

20542.190

20610.536

20814.861

20623.112

20806.335

21031.678

20588.917

20963.687

21874.571

WSO ESOA BWOA



H.D.Nguyen and Ly.H.Pham Int. J. Renew. Energy Dev 2025, 14(1), 124-135 

| 134 

 

ISSN: 2252-4940/© 2025. The Author(s). Published by CBIORE 

has demonstrated a high degree of effectiveness in addressing 
problems associated with systems, whether or not they involve 
RE. As a result, we see that RE has an important role in dealing 
with decreasing fossil fuel use. To do this, the manager must 
correctly adjust the power generation allocation from power 
plants by exploring more power from renewable power plants. 
The strategy of more RE use not only applies in the power 
system but also implements in different fields, leading to reduce 
carbon emission and air pollution and improved life quality. This 
requires collaboration and commitment at both national and 
international levels with resolutions and laws calling on 
individuals and organizations to participate.  
Moving forward, we can improve WSO's performance by 
updating how it integrates new solutions. The updated version 
of WSO will be applied to address the ELD problem and other 
issues. 
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