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Building energy management model integrating rule-based control 
algorithm and genetic algorithm 
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Abstract. Energy is a crucial material foundation for the development of human society. Building energy consumption accounts for a significant 
proportion of global energy consumption. Optimizing building energy management is of great significance for achieving sustainable development. A 
building energy management model that integrates rule-based control algorithm and genetic algorithm is proposed, aiming to optimize building 
energy utilization and reduce operating costs. Mathematical models for different devices in the building energy system are established, and the rule-
based control algorithm is used to provide system decision support. Then, the genetic algorithm is integrated to address the complexity and 
uncertainty of energy optimization problems. The comparative test results showed that the proposed fusion algorithm had higher fitness values and 
faster convergence speed. The root mean square errors of the algorithm in the training and testing sets were 43.6544 and 43.6844, with the lowest 
error and highest accuracy among the four algorithms. The simulation experiment results showed that the building energy management model 
integrating rule-based control algorithm and genetic algorithm had energy expenditures of 788.3 yuan and 967.6 yuan for two types of buildings, 
respectively. Taking Building 1 as an example, compared with Supervisory Control and Data Acquisition (SCADA), Beetle Antennae Search and 
Particle Swarm Optimization (BAS-PSO) algorithm, and Long Short-Term Memory-Convolutional Neural Network (LSTM-CNN) algorithm, the 
proposed model reduced the cost of energy consumption optimization by 39.30%, 28.32%, and 20.20%, respectively. Overall, the proposed building 
energy management model effectively reduces operating costs, utilizes building energy, and contributes to daily building energy management and 
decision support. 
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1. Introduction 

With the continuous increase of global energy consumption 
and the increasingly severe environmental problems, intelligent 
technology has gradually made building energy management 
systems an effective means of optimizing energy utilization 
efficiency and reducing operating costs (Wu et al., 2023). Due to 
the complexity of the internal and external environment of 
buildings, traditional energy management methods are difficult 
to adapt to changing energy demands and supply conditions. 
Building energy management systems can optimize energy use, 
reduce resource waste, and achieve cost savings and 
environmental benefits (Ruiz et al., 2021). However, due to the 
complexity and dynamism of building systems, traditional 
energy management methods often struggle to meet the 
growing demand for energy optimization. The Rule-Based 
Control (RBC) algorithm has been widely used in building 
energy management due to its simple and intuitive 
characteristics (Feng et al., 2023; Romero et al., 2021). It can 
make quick decisions based on preset rules, but its performance 
may be limited when facing highly uncertain and nonlinear 
problems. As a heuristic search algorithm, Genetic Algorithm 
(GA) has shown great potential in solving complex optimization 
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problems with the global optimization ability and adaptability 
(Garud et al., 2021; Mishra & Jatti, 2024). 

Many experts have carried out research on this topic. 
Vašak et al. designed a modular building energy management 
strategy based on three-level hierarchical model. The building 
area, central air conditioning, and microgrid subsystems were 
independently controlled and integrated to form a layered 
coordinated control structure. This strategy provided important 
demand response services for buildings and maintained the 
independence of different building subsystems. Compared with 
RBC, the proposed method reduced overall building operating 
costs by 9%-12%, and reduced coordinated operations by 15%-
24% (Vašak et al., 2021). Gao et al. believed that reducing 
building energy consumption was key to achieve future climate 
and energy goals. Therefore, a learning and iterative Internet of 
Things (IoT) system was proposed to achieve the zero energy 
consumption of the boundary element method for 
interconnected buildings. The research first shared operational 
data in the IoT system, and then used an aggregator to collect 
historical data for model training, developing optimization 
iterative algorithms. Finally, simulation experiments were 
conducted to validate the proposed IoT system based on 
learning and iteration (Gao et al., 2022). Shi and Cui proposed a 
point-to-point energy sharing model for adjacent energy 
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buildings to promote sustainable energy development. Energy 
buildings with controllable loads and renewable equipment 
were analyzed. Under the constraint of energy balance, the total 
energy cost was minimized using the distributed algorithm. The 
simulation experiment results showed that the model improved 
energy efficiency and economic benefits (Shi & Cui, 2022). 
Giahchy et al. also believed that energy management systems 
were key to sustainable development. To this end, a quantitative 
and qualitative analysis based on amulti-criteria decision-
making was conducted, and a mixed multi-objective 
mathematical decision-making method was designed. The 
study selected optimal options for all building shell components 
to optimize costs and energy. The research results indicated 
that the model saved approximately 16% of energy during the 
lifespan of the building (Giahchy et al., 2023). 

The RBC algorithm is a control strategy that uses 
predefined rules to guide the decision-making process, which is 
widely used in fields such as automation control systems, 
artificial intelligence, expert systems, etc (Maier et al., 2024). 
Yuan et al. designed a model free control strategy for optimizing 
air conditioning operation systems by combining reinforcement 
learning methods with RBC algorithms. The RBC and 
proportional integral derivative were used as control strategies. 
The case study validated the optimization performance of the 
controller. The results indicated that the reinforcement learning 
controller performed the best in non-comfort time and energy 
cost in air conditioning systems (Yuan et al., 2021). Begam et al. 
designed an RBC controller that combined adaptive neural 
fuzzy and hybrid energy storage systems to adjust the power 
flow of electric vehicle propulsion. The performance analysis of 
the RBC controller was conducted under three load conditions. 
The performance tracking was performed using battery currents 
greater than or equal to 90%. The proposed RBC controller 
reduced the non-linearity generated by the hybrid energy 
storage system, with good smooth tracking performance 
(Begam et al., 2023). Due to the lack of a clear objective function 
in the RBC algorithm, it is mainly suitable for situations with a 
single control objective and cannot balance multiple control 
objectives well. GA is a gradient free heuristic search technique, 
demonstrating strong problem-solving ability, and also 
effectively avoiding the risk of getting stuck in local optima 
(Yuan et al., 2022). Elghamrawy and Hassanien proposed a 
optimized strategy to design fuzzy systems, combining GA and 
Grey Wolf Optimization (GWO). This algorithm used genetic 
crossover and mutation operators to accelerate the exploration 
process, overcoming the premature convergence and poor 
solution utilization of GWO. Compared with existing 
optimization algorithms, the designed method had higher 
accuracy in Root Mean Square Error (RSME) and computation 
time (Elghamrawy & Hassanien, 2022). Hamdia et al. developed 

a GA-based integer optimization method for deep neural 
networks and adaptive neural fuzzy inference systems to 
overcome the design challenges of machine learning models. 
The selected variables were hidden layers, neurons, and 
activation functions to minimize the mean square error between 
the prediction and the target output for optimization. The results 
indicated that the algorithm improved the prediction accuracy 
of deep neural network models, while significantly reducing the 
number of generations in GA (Hamdia et al., 2021). 

In summary, many scholars have conducted research on 
the combination of zero energy building energy management 
with different methods. However, at present, building energy 
modeling and control systems are separated, making it difficult 
to implement real-time control management models. Based on 
this background, this study innovatively combines the building 
model and control system into a highly adaptable unified 
architecture. Depending on the fast response of RBC algorithm 
and the superior global search ability of GA in multi-objective 
optimization problems, a RBC-GA that can control algorithm 
efficiency is proposed to achieve more efficient and intelligent 
energy management. This study aims to optimize building 
energy utilization efficiency, reduce operating costs, and offer 
enhanced decision support for building energy management. 

This study proposes multiple innovative points. Firstly, this 
study combines RBC with GA for the first time to solve multi-
objective optimization and uncertainty problems. Secondly, this 
article constructs a unified model architecture that organically 
integrates the building model with the control system. By 
directly integrating the building energy consumption model 
with the control system, this study greatly improves 
computational efficiency and enhances the real-time control 
capability of the system, making it possible to optimize energy 
consumption in complex and changing building environments. 
Finally, the uncertainty problem of the system is addressed and 
a more efficient control strategy is achieved through multi-
objective optimization methods. By combining GA and RBC, the 
system can flexibly adjust the control scheme when facing 
multiple uncertain factors, ensuring efficient balance between 
multiple objectives. Through these innovations, this study 
effectively fills the gap in the current field of building energy 
management, providing reference for the design of future 
intelligent building energy management systems. 

2. Method 

The study first introduces the main components of building 
energy systems and establishes mathematical models for 
different devices to complete the mathematical model 
construction. The control performance of RBC algorithm and 
the global optimization of GA are combined to manage and 
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control the building energy model, in order to optimize the 
building energy utilization efficiency and reduce costs. 

2.1 Mathematical model construction of building energy system 

According to different functions, buildings can be divided 
into different categories such as residential, industrial, and 
commercial. Each type of building requires energy services such 
as electricity, heating, cooling, and hot water supply, which are 
all met by the internal energy supply system of the building. The 
energy supply system also constitutes the main part of building 
energy consumption, as shown in Figure 1 (Jayashankara et al., 
2023). 

In Figure 1, building energy consumption is affected by 
multiple factors, including climate, user habits, and equipment 
performance (Lv et al., 2022). The research mainly focuses on 
constructing mathematical models of building energy systems 
for production capacity, energy storage, heating and cooling, 
and transportation equipment. The production capacity 
equipment covers renewable energy technologies such as solar 
panels, which convert solar energy into electrical energy. The 
study assumes that the solar panel operates in an ideal state, 
ignoring the influence of changes in the angle of the sun. 
Assuming that all radiated energy is completely absorbed, the 
power generation efficiency can be linearly described by 
equation (1) (Li., 2024). 

𝑃𝑃𝑉 = 𝜂𝑃𝑉𝐴𝑃𝑉𝐺[1 − 0.005(𝑇𝑎𝑚𝑏 − 25)]  (1) 

In equation (1), 𝑃𝑃𝑉  represents the power from the solar 
panel. 𝜂𝑃𝑉  represents the photoelectric conversion rate. 𝐴𝑃𝑉 
represents the solar panel area. 𝐺  represents the intensity of 
light radiation. 𝑇𝑎𝑚𝑏 represents the ambient temperature. The 
secondary production capacity model is shown in equation (2). 

{
𝑃𝑃𝑉 =

𝐺

1000
(1 + 𝛼𝑐𝑢𝑟∇𝑇)(1 + 𝛼𝑣𝑜𝑙∇𝑇)𝑃𝑃𝑉,𝑟

∇𝑇 = 𝑇𝑐𝑒𝑙𝑙 − 25
  (2) 

In equation (2), 𝛼𝑐𝑢𝑟  represents the thermal sensitivity of 
the solar panel to generate current. 𝛼𝑣𝑜𝑙 represents the thermal 
sensitivity of the solar panel to generate voltage. 𝑇𝑐𝑒𝑙𝑙 signifies 
the temperature of the solar panel. 𝑃𝑃𝑉,𝑟  signifies the power 

generation under experimental conditions. Except for 
converting solar energy into electricity, wind energy, as a 
common renewable energy source, also has important 
utilization value (Akporhonor et al., 2024). Wind turbines can 
convert wind energy into electrical energy through their unique 
design, providing another efficient way to obtain clean energy. 

The production capacity model is shown in equation (3) 
(Emeksiz, 2022). 

𝑃𝑊𝑇= {

0 𝜐𝑓 ≤ 𝜐𝑤𝑖𝑛𝑑𝑜𝑟𝜐𝑤𝑖𝑛𝑑 ≤ 𝜐𝑐
𝜐𝑤𝑖𝑛𝑑
3 −𝜐𝑐

3

𝜐𝑟
3−𝜐𝑐

3 𝑃𝑊𝑇,𝑟 𝜐𝑐 < 𝜐𝑤𝑖𝑛𝑑 < 𝜐𝑟

𝑃𝑊𝑇,𝑟 𝜐𝑟 ≤ 𝜐𝑤𝑖𝑛𝑑 ≤ 𝜐𝑓

  (3) 

In equation (3), 𝑃𝑊𝑇,𝑟  signifies the rated power of wind 

power generation. 𝜐𝑤𝑖𝑛𝑑  signifies the outdoor wind speed. 𝜐𝑟 
signifies the rated wind speed. 𝜐𝑐  signifies the cut-in wind 
speed. 𝜐𝑓 signifies the cut-out wind speed. After changing the 

input parameters, the second model for wind power generation 
is shown in equation (4). 

𝑃𝑊𝑇= {

0 𝜐𝑓 ≤ 𝜐𝑤𝑖𝑛𝑑𝑜𝑟𝜐𝑤𝑖𝑛𝑑 ≤ 𝜐𝑐
1

2
𝜌𝑎𝑖𝑟𝜋𝑅𝑊𝑇

2 𝜐𝑤𝑖𝑛𝑑
3 𝐶𝑊𝑇 𝜐𝑐 < 𝜐𝑤𝑖𝑛𝑑 < 𝜐𝑟

𝑃𝑊𝑇,𝑟 𝜐𝑟 ≤ 𝜐𝑤𝑖𝑛𝑑 ≤ 𝜐𝑓

 (4) 

In equation (4), 𝜌𝑎𝑖𝑟 stands for the air density. 𝜋 is pi. 𝑅𝑊𝑇 
represents the blade radius. 𝐶𝑊𝑇  stands for the dynamic 
coefficient. Energy storage devices include electric and thermal 
storage devices, with electric storage devices being batteries 
(Lu et al., 2023). Buildings equipped with battery systems can 
store energy when electricity demand is low and release energy 
during peak hours to alleviate grid pressure and achieve 
demand side management. Battery simulation includes both 
linear and nonlinear models. Considering that linear models 
accurately reflect the battery state and have better 
computational efficiency than nonlinear models, the study 
adopts linear models for analysis, as shown in equation (5) 
(Shakeri Kebria et al., 2024). 

max max

min max

0 ,0

0

ch ch dis dis

ch dis

loss ch ch dis dis

Q Q Q Q

Q Q

S S Q Q

S S S

  

    


=


= − + −
  

   (5) 

In equation (5), 𝑄̇𝑐ℎ and 𝑄̇𝑑𝑖𝑠 represent the charging and 

discharging speeds of the battery. 𝑄̇𝑐ℎ
𝑚𝑎𝑥  and 𝑄̇𝑑𝑖𝑠

𝑚𝑎𝑥  represent 
the maximum power of battery charging and discharging. 𝜂𝑙𝑜𝑠𝑠 
represents the energy loss coefficient. 𝜂𝑐ℎ  and 𝜂𝑑𝑖𝑠  represent 
the efficiency of battery charging and discharging, respectively. 
Usually, 𝜂𝑐ℎ < 1 < 𝜂𝑑𝑖𝑠. 𝑆 is the battery storage state. 𝑆𝑚𝑎𝑥 and 
𝑆𝑚𝑖𝑛  represent the limits of the storage state. In addition to 
electricity, thermal energy is also an important form of energy 
for buildings, playing a crucial role in various aspects such as 
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heating, cooling, and hot water supply. Hot water storage tank 
is an efficient thermal storage device (Handy & Coughlin, 2024). 
The research mainly explores the layered hot water storage tank 
model, as shown in Figure 2 (Huang et al., 2021). 

Figure 2 displays a layered hot water storage tank model 
consisting of 5 nodes, with each node representing an 
independent layer. The variation of inter-layer thermal energy 
is influenced by factors such as equipment heating, water flow 
transfer, and inner wall heat exchange (Guo et al., 2022). Based 
on the principle of energy conservation, a mathematical model 
applicable to building water circulation systems is constructed, 
and heating and cooling equipment are evaluated. Unlike 
electric heaters, air source heat pumps use electricity to drive 
compression and condensation processes, elevating low 
thermal energy to high thermal energy. The performance 
coefficient of the air source heat pump is modeled and 
approximated as a linear function of 𝑇𝑎𝑚𝑏 , as displayed in 
equation (6) (Maleki Dastjerdi et al., 2023). 

𝐶𝑂𝑃𝐴𝑆𝐻𝑃 = 6.1189 + 0.676𝑇𝑎𝑚𝑏 − 0.0632𝑇𝐴𝑆𝐻𝑃,𝑖𝑛 (6) 

In equation (6), 𝐶𝑂𝑃𝐴𝑆𝐻𝑃  represents the performance 
coefficient of the air source heat pump. 𝑇𝐴𝑆𝐻𝑃,𝑖𝑛 represents the 

inlet water temperature. The heat generation power of the air 
heat source pump is shown in equation (7). 

𝑄𝐴𝑆𝐻𝑃 = 𝐶𝑂𝑃𝐴𝑆𝐻𝑃𝑊𝐴𝑆𝐻𝑃 = 𝑚̇𝐴𝑆𝐻𝑃𝐶𝑤(𝑇𝐴𝑆𝐻𝑃,𝑜𝑢𝑡 − 𝑇𝐴𝑆𝐻𝑃,𝑖𝑛)(7) 

In equation (7), 𝑄𝐴𝑆𝐻𝑃  represents the heat generation 
power of the air heat source pump. 𝑊𝐴𝑆𝐻𝑃  represents the 
electrical power of the air heat source pump compressor. 
𝑇𝐴𝑆𝐻𝑃,𝑜𝑢𝑡 is the outlet water temperature. 𝑚̇𝐴𝑆𝐻𝑃  refers to the 

flow rate of water in the device. 𝐶𝑤 refers to the specific heat 
capacity of water. The structure of the combined cooling, 
heating and power equipment is shown in Figure 3 (Atiz et al., 
2022). 

In Figure 3, the system integrates cogeneration and 
refrigeration technology, using the electricity and waste heat 
generated during the power generation process to drive the 
refrigeration mechanism for cooling. The heat generated while 
using natural gas and other fuels for power generation is reused 
through a heat recovery process (Si et al., 2023). The system 
uses water as the medium to regulate indoor temperature 
through the flow of water. The water heating system, as the 
main way of heat transfer in buildings, provides heating through 
cooling devices. Assuming that the energy equipment inside the 
building is directly connected, ignoring the influence of auxiliary 
components such as water pumps, the heating power of the 
water heating system is shown in equation (8) (Bayendang et al., 
2023). 

{
𝑄𝐻𝑅 = 𝐾𝐻𝑅(𝑇𝐻𝑅,𝑤 − 𝑇𝑧𝑜𝑛𝑒)

𝑀𝐻𝑅,𝑤𝐶𝑤𝑇𝐻𝑅,𝑤 = 𝑚̇𝐻𝑅𝐴𝐻𝑅𝐶𝑤𝑇𝐻𝑅,𝑖𝑛 − 𝑚̇𝐻𝑅𝐴𝐻𝑅𝐶𝑤𝑇𝐻𝑅,𝑜𝑢𝑡 − 𝑄𝐻𝑅
 (8) 

In equation (8), 𝑄𝐻𝑅 represents the heating power of the 
water heating system. 𝐾𝐻𝑅  represents the heat transfer 
coefficient between the hot water and indoor temperature 
difference in the plumbing system. 𝑀𝐻𝑅,𝑤 represents the quality 
of hot water inside the device. 𝑇𝐻𝑅,𝑖𝑛 and 𝑇𝐻𝑅,𝑜𝑢𝑡  respectively 
represent the inlet and outlet water temperatures of the water 
heating system. 𝑇𝐻𝑅,𝑤 stands for the mean temperature of the 
hot water inside the device. 𝑇𝑧𝑜𝑛𝑒 and 𝐴𝐻𝑅 represent the surface 
area of the radiator and equipment, respectively. 𝑚̇𝐻𝑅 
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represents the internal water flow rate of the device. In 
refrigeration systems, the cold beam system is widely used in 
air conditioning systems of various buildings and transportation 
vehicles, divided into passive and active types. The working 
principle is shown in Figure 4 (Mao et al., 2024). 

Figure 4 (a) displays the working principle of a passive 
cooling beam system. The passive cooling beam system 
transfers cold energy through heat exchange between internal 
cold water pipes and indoor warm air. After the temperature 
drops, the warm air rises to the cold beam due to the decrease 
in density. After coming into contact with the cold water 
pipeline, the temperature decreases. Subsequently, the cold air 
sinks back indoors due to the increase in density. Figure 4 (b) 
displays the active cooling beam system. The active cooling 
beam system uses forced convection to introduce indoor air 
through equipment, allowing it to exchange heat with the cold 
water pipeline and transfer cold energy. 

2.2 Building energy management system based on RBC-GA 

To improve building energy efficiency and achieve specific 
management goals, an energy system control strategy 
combining RBC and GA is proposed based on a mathematical 
model that integrates building modeling and control processes. 
This strategy utilizes the RBC algorithm to intelligently regulate 
the internal temperature setting of buildings and the start stop 
of energy equipment. Meanwhile, the GA is applied to 
accurately set the temperature of hot water storage tanks and 
the proportion of battery energy storage (Ren et al., 2022). To 
improve computational efficiency while ensuring optimization 
results, the RBC-GA hybrid algorithm is adopted in the study, 
which separately processes the multi-dimensional control 
variables that are interrelated in the system. The algorithm flow 
is detailed in Figure 5. 

In Figure 5, the building model integrates price data from 
the energy supply side, climate parameters, and target settings 
of hot water storage tanks and battery energy storage set by GA. 
The model utilizes the RBC algorithm to intelligently manage 
the energy system of buildings, predict and report daily energy 
costs (Darshi et al., 2023). The GA is used to further optimize the 
data and determine the ideal temperature of the hot water 
storage tank and the optimal configuration of battery energy 
storage. When setting the indoor temperature, the RBC 
algorithm assumes that there is continuous human activity 
inside the building. The temperature setting during the heating 
season is shown in equation (9) (Gan et al., 2023). 

𝑇𝑧𝑜𝑛𝑒
𝑠𝑒𝑡,ℎ(𝑡) =

{
 

 
26 𝑝𝑏𝑢𝑦(𝑡) < 𝑝1
24 𝑝1 ≤ 𝑝𝑏𝑢𝑦(𝑡) < 𝑝2
20 𝑝𝑏𝑢𝑦(𝑡) ≥ 𝑝2
18 𝑜𝑡ℎ𝑒𝑟

  (9) 

In equation (9), Tzone
set,h represents the temperature set point 

during the building heating season. 𝑡  refers to time. pbuy 
represents the price of energy on the supply side. 𝑝2  and 𝑝1 
respectively represent the limits of energy prices. The 
temperature set point for the cooling season is shown in 
equation (10) (Shayan et al., 2023). 

𝑇𝑧𝑜𝑛𝑒
𝑠𝑒𝑡,𝑐(𝑡) =

{
 

 
26 𝑝𝑏𝑢𝑦(𝑡) < 𝑝1
24 𝑝1 ≤ 𝑝𝑏𝑢𝑦(𝑡) < 𝑝2
22 𝑝𝑏𝑢𝑦(𝑡) ≥ 𝑝2
20 𝑜𝑡ℎ𝑒𝑟

  (10) 

In equation (10), 𝑇𝑧𝑜𝑛𝑒
𝑠𝑒𝑡,𝑐  represents the temperature set 

point during the cooling season. During the transitional season, 
if the indoor temperature is not below 18℃ or exceeds 26℃, 
heating or cooling equipment is usually not turned on, and the 
Heating, Ventilation, and Air Conditioning system remains 
turned off. The control rules for the air conditioning system 
switch are shown in equation (11) (Guo et al., 2023). 

𝑆𝐻𝑉𝐴𝐶(𝑡) = {

1 𝑇𝑧𝑜𝑛𝑒(𝑡) ≤ 𝑇𝑧𝑜𝑛𝑒
𝑠𝑒𝑡 (𝑡) − 0.5

0 𝑇𝑧𝑜𝑛𝑒(𝑡) > 𝑇𝑧𝑜𝑛𝑒
𝑠𝑒𝑡 (𝑡) − 0.5

𝑆𝐻𝑉𝐴𝐶(𝑡 − 1) 𝑜𝑡ℎ𝑒𝑟

 (11) 

In equation (11), 𝑆𝐻𝑉𝐴𝐶(𝑡) represents the variable of system 
operating status. When 𝑆𝐻𝑉𝐴𝐶(𝑡)  is 1, it indicates that the 
system is in an open state. When 𝑆𝐻𝑉𝐴𝐶(𝑡) is 0, the system shuts 
down. To ensure that the energy storage device can respond 
promptly to the needs of the air conditioning system, GA is used 
to set a fixed temperature for the hot water storage tank. The 
operating status of the device is shown in equation (12). 

𝑆ℎ𝑒𝑎𝑡𝑒𝑟(𝑡) = {

1 𝑇tank(𝑡) ≤ 𝑇tank
𝑠𝑒𝑡 (𝑡) − 1

0 𝑇tank(𝑡) > 𝑇tank
𝑠𝑒𝑡 (𝑡) + 1

𝑆ℎ𝑒𝑎𝑡𝑒𝑟(𝑡 − 1) 𝑜𝑡ℎ𝑒𝑟

 (12) 

In equation (12), Sheater  is the binary variable for the 
operation of the thermal storage device, and Ttank represents its 
internal temperature. In addition to thermal storage equipment, 
GA also precisely sets the proportion of battery energy storage 
in buildings. The adjustment mechanism of battery energy 
storage capacity is shown in equation (13). 
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Fig.5 Schematic diagram of RBC-GA 

 



J. Gong Int. J. Renew. EnergyDev 2025, 14(1), 136-145 

| 141 

 

ISSN: 2252-4940/© 2025. The Author(s). Published by CBIORE 

𝑆(𝑡 + 1) = {
𝑆𝑓𝑢𝑙𝑙𝑆𝑠𝑒𝑡(𝑡)

𝑆(𝑡) + 𝑠𝑖𝑔𝑛[𝑆𝑓𝑢𝑙𝑙𝑆𝑠𝑒𝑡 − 𝑆(𝑡)]𝑄̇𝑐ℎ/𝑑𝑖𝑠 (13) 

In equation (13), S represents the proportion of the battery 
capacity. Sfull stands for the capacity of the battery at full load. 
Sset  represents the setting state of the battery capacity ratio. 
Within the allowable range of battery charging and discharging 
c apacity, the system adjusts the battery's charging and 
discharging status to achieve the set capacity target (Zhao et al., 
2 022). The battery control logic is crucial for the storage, use, 
or trading of renewable energy. The core principle is to first 
ensure that the charging and discharging needs of the battery 
are met, and then sell or supplement the insufficient power 
supply with the remaining electricity. The final architecture of 
the RBC-GA-based management model is displayed in Figure 6. 

In Figure 6, the system utilizes advanced control 
optimization algorithms to collect thermal comfort and energy 
consumption data within the building, and completes control 
tasks through intelligent adjustment of energy and energy 
storage devices. Control parameters include energy flow, 
temperature setting, and continuous adjustment variables. 

3 Results and discussion 

On the basis of establishing a building energy system 
model, the proposed RBC-GA is compared with Supervisory 
Control and Data Acquisition (SCADA), Beetle Antennae Search 
and Particle Swarm Optimization (BAS-PSO), and Long Short- 
Term Memory-Convolutional Neural Network (LSTM-CNN) 
algorithm to verify the superiority of RBC-GA. Finally, four 
methods are used to validate the actual application effects. 

3.1 RBC-GA performance testing 

To verify whether the RBC-GA has good performance, a 
computer using Windows 10 operating system and Intel (R) 
Core (TM) i5-9400F CPU is adopted. Energy NLP is used as the 
dataset, dividing into training and testing sets in a 7:3 ratio. The 
experimental parameters are set to 200 iterations. The 
convergence performance on the two sets is shown in Figure 7. 

Figure 7 (a) shows the fitness convergence curves of RBC-
GA, SCADA (Fazlollahtabar, 2022), BAS-PSO (Zhang & Zhang, 
2022), and LSTM-CNN (Liu et al., 2024) in the training set. 
Overall, the fitness convergence curves showed an increasing 
trend. RBC-GA and BAS-PSO had the highest fitness values, 
followed by the LSTM-CNN model, and the SCADA model had 
the lowest fitness. In terms of convergence speed, although the 
maximum fitness values of RBC-GA and BAS-PSO were the 
same, RBC-GA reached its optimal fitness value before the 20th 
iteration and gradually stabilized. Figure 7 (b) displays the 
fitness convergence results of four algorithms in the testing set. 
RBC-GA had the highest fitness value and the fastest 
convergence speed. Therefore, the RBC-GA model has a faster 
convergence speed and a higher fitness value, indicating that 
RBC-GA has a significant advantage in optimization speed and 
better optimization performance. The Precision-Recall (PR) of 
different algorithms is displayed in Figure 8. 

Figure 8 shows the recall curves of RBC-GA, SCADA, BAS-
PSO, and LSTM-CNN in the training and testing sets, 
respectively. A large area enclosed by curves and coordinate 
axes demonstrates better performance. Figure 8 (a) displays the 
PR curves of the four methods in the training set. RBC-GA had 
the largest curve area, followed by BAS-PSO and LSTM-CNN, 
while SCADA had the smallest area. Figure 8 (b) displays the 
recall results of the four methods in the testing set. The area of 
RBC-GA was once again larger than the other three models. 
Overall, RBC-GA has the best performance, with good precision 
and recall. The RSME, Mean Absolute Percentage Error 
(MAPE), and coefficient of determination 𝑅2  are displayed in 
Table 1. 

In Table 1, the RMSE of RBC-GA was 43.6544 and 43.6844 
in the two datasets, which were 3.6% and 7.0% lower than 
SCADA, respectively. RBC-GA had the smallest and highest 
prediction accuracy among the four algorithms. RBC-GA had 𝑅2 
of 0.9886 and 0.9981, respectively. In the test results, it was 
closest to 1, with the highest model fitness, significantly better 
than the other three models. RBC-GA model had lower MAPE 
values in both datasets, demonstrating good stability. This 
indicates that the RBC-GA can provide more reliable prediction 
results and higher accuracy. 
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Fig.6 Architecture of building energy management model 
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3.2 The effect of building energy management model based on RBC-
GA 

To analyze the application effect of the building energy 
management model based on RBC-GA, the MATLAB 
simulation platform is used to compare the actual application 
effect of building energy management models based on four 
different algorithms. The ideal temperature setting results of 

different management models for hot water storage tanks within 
24 hours are shown in Figure 9. 

In Figure 9, (a), (b), (c), and (d) show the results of SCADA, 
BAS-PSO, LSTM-CNN, and RBC-GA building energy 
management models for the temperature changes of hot water 
storage tanks within 24 hours. When setting the temperature 
point with the same purchase price, the SCADA and BAS-PSO 
algorithms in Figure 9 (a) and Figure 9 (b) mainly set it based on 
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Fig.8 Recall results of different algorithms 

 
 
Table 1 
Comparison of errors among various algorithms 

Algorithm Data set RMSE MAPE  𝑅2 

SCADA 
Training set 45.2678 8.6451 0.9722 
Testing set 46.9685 8.6854 0.9675 

LSTM-CNN 
Training set 46.1325 8.5432 0.9721 
Testing set 45.9846 7.6146 0.9715 

BAS-PSO 
Training set 44.6516 7.3542 0.9776 
Testing set 45.6544 6.9841 0.9821 

RBC-GA 
Training set 43.6544 6.3135 0.9886 
Testing set 43.6844 6.1332 0.9981 
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Fig.9 Temperature setting result of building hot water storage tank 
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the peak electricity consumption period, without considering 
changes in electricity prices. In Figure 9 (c), the LSTM-CNN 
model did not consider the fluctuation of electricity prices when 
setting temperature points, and continued to purchase 
electricity even when electricity prices rose, resulting in 
unnecessary expenses. In Figure 9 (d), the RBC-GA building 
energy management model selected a time period with low 
electricity prices to purchase and store electricity for use in high 
electricity prices or insufficient local power supply when setting 
the temperature point. To verify the practical application effect 
of the RBC-GA integrated building energy management model, 
a residential building with an older structure and poor 
airtightness is selected as the first building model, and a 
residential building with advanced building equipment and 
better airtightness is selected as the second building model. The 
average running time of building energy management models 
with different algorithms for 24 hours is shown in Figure 10. 

Figures 10 (a) and (b) respectively show the actual running 
time of different algorithms in two building models. During the 
24-hour running process, the overall average running time of the 
four models also increased with the increase of running time. 
The average running time of RBC-GA was always lower than the 
other three models. This model has faster speed and can meet 
the requirements of real-time control. Compared with existing 
research, the building ener gy management strategy based on 
three-level hierarchical model predictive control proposed by 
Vašak et al. (2021) not only focuses on multi-objective 
optimization of energy, but also emphasizes the system's ability 
to respond quickly to changes in energy demand. The 
cumulative energy expenditure of the building energy 
management model based on four algorithms within 20 days is 
shown in Figure 11. 

Figures 11 (a) and 11 (b) show the cumulative energy 
expenditure changes of different models in Building 1 and 
Building 2 within 20 days. In Building 1, the cumulative energy 
expenditure of building energy management models based on 
SCADA, BAS-PSO, LSTM-CNN, and RBC-GA within 20 days 
was 1298.6 yuan, 1099.7 yuan, 987.8 yuan, and 788.3 yuan, 
respectively. The cumulative energy expenditures in Building 2 
were 1301.5 yuan, 1197.4 yuan, 1025.3 yuan, and 967.6 yuan, 
respectively. In the two types of buildings, the building energy 
management model based on RBC-GA has the lowest cost 
consumption. According to the comparative experimental 
results, this algorithm can effectively control and efficiently 
utilize building energy to save expenses. Compared with 
existing research, Shi et al. (2022) mainly focused on improving 
energy efficiency and economic benefits in the research of 
energy sharing models. This study further expanded its 
application in complex building systems and performed well in 
improving management efficiency. 

4 Conclusion 

A building energy management model based on RBC-GA 
was proposed to response the energy optimization of building 
energy management systems. The digital model of the energy 
system was established and connected to the control system, 
combing RBC  and GA to manage and control the operation of 
various devices. The proposed model effectively solved multi-
objective optimization problems due to its powerful global 
search and optimization capabilities, but the computing speed 
and real-time response ability of GA are still challenges. Based 
on the fast response advantage of RBC and GA optimization, 
multi-objective problems in energy management were 
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Fig.10 Actual operating time of building energy management model 
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Fig.11 Cumulative building energy expenditure results of different models 
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effectively controlled under high complexity conditions. The 
results indicated that the maximum fitness value of RBC-GA was 
significantly higher than the other three algorithms. It 
converged and stabilized before the 20th iteration. In the 
simulation experiment, the RBC-GA model considered the real-
time changes in the purchase price when setting the 
temperature point for the hot water storage tank in the building 
energy management model. RBC-GA prioritized purchasing 
more electricity for storage when prices were low, and 
replenishing electricity when electricity prices rose or power 
supply was insufficient. During operation, the RBC-GA building 
energy management model had the shortest average running 
time, which achieved real-time control. Finally, from the 
cumulative energy expenditure of different models within 20 
days, the results showed that the building energy management 
model based on RBC-GA had energy expenditures of 788.3 
yuan and 967.6 yuan in Building 1 and Building 2, respectively. 
Compared with other models, this model achieves the minimum 
energy expenditure, indicating that it can efficiently manage and 
save building energy, thereby effectively reducing operating 
costs. Although the model can efficiently utilize resources, 
further improvement is necessary for its security. 
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