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Abstract. The study proposed a new energy output prediction model based on long and short-term memory network (LSTM)-Bayesian network (BN) 
by combining the benefits of BN in uncertainty quantification with the processing power of LSTM network to address the issue of volatility and 
uncertainty of new energy output. Meanwhile, by introducing a price-based demand response mechanism, users were incentivized to increase 
electricity consumption when the new energy generation was in excess and reduce electricity consumption during the peak period, so as to realize 
the flexible regulation of loads and the efficient utilization of new energy. The new energy output prediction model developed in the study had the 
highest degree of match between the anticipated and actual values in various data sets, as demonstrated by the experimental findings, which were 
above 0.99. In the Google Earth Engin and GEFCom2014 datasets, the operation solution speed was quick and stabilized after 64 and 80 iterations, 
respectively. Additionally, the model’s predicted and actual curve values almost matched, and the actual new energy output power predication's 
largest prediction error was less than 1%. The implementation of a price-based demand response approach to control customers' power consumption 
behavior yielded a net benefit of up to 4.45 million yuan for the customers in the target area, based on the precise prediction of new energy output 
power. The aforementioned findings demonstrated that the LSTM-BN-based new energy output prediction model is capable of precisely projecting 
new energy output and efficiently matching supply and demand through a price-based demand response mechanism to increase the rate at which 
new energy is consumed instantly. 
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1. Introduction 

Since there is a lot of volatility and uncertainty associated 
with new energy generation, it is crucial to predict new energy 
output accurately and efficiently to optimize the demand 
response mechanism. This will help to maintain the power grid’s 
stability and increase the efficiency of energy utilization (Malek 
& Ichinomiya et al., 2023). An intelligent demand response 
program was created by Huang et al. to address the 
unpredictability associated with photovoltaic (PV) power 
generation in microgrids. The program optimized the 
manufacturing facility’s day-ahead production schedule and the 
battery storage system’s operation strategy in response to the 
probabilistic projections of time segment electric price and PV 
power generation. The method’s effectiveness in lowering 
manufacturing production's operational expenses was 
confirmed by the results (Huang et al., 2021). To achieve optimal 
scheduling, the framework takes into account the uncertainty 
associated with energy forecasts and employed mixed integer 
quadratic programming and stochastic model predictive control 
approaches. The results proved that the method could 
effectively manage uncertainty in complex microgrids and 
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enhance their flexibility and economic efficiency in the energy 
market (Garcia-Torres et al., 2021). Li et al. presented a Chance 
Constrained Programming-based dispatch model for 
community-based integrated energy systems that includes 
integrated demand response. The integrated demand response 
procedure minimized the system operating cost by exploring 
the potential interaction capability between electric-gas-heat 
flexible loads and electric vehicles. It can be known that by 
integrating the demand response procedure, the system is able 
to manage the demand side resources more efficiently (Li et al., 
2021). To achieve intelligent load management and energy 
allocation strategies, a team of scholars led by Priolkar and 
Sreeraj proposed a method combining the K-Medoids algorithm 
and the elephant swarm optimization algorithm. Using this 
strategy, a price-based demand response program was 
implemented, and consumers were grouped according to their 
load consumption habits. The findings indicated that the 
approach can reduce energy costs and balancing grid loads 
(Priolkar et al., 2024).  

According to the studies of domestic and foreign scholars on 
new energy grids, the supply side of power generators and the 
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demand side of users are unable to promptly modify their power 
consumption strategies due to the fluctuations and uncertainties 
in new energy output, which results in a significant waste of 
energy. Traditional methods such as time series analysis and 
regression analysis have limitations in dealing with nonlinear 
and long-term dependence problems. Long and short-term 
memory network (LSTM), as a unique type of recurrent neural 
network (RNN), effectively addresses the long-term 
dependence problem by introducing mechanisms such as 
memory units, input gates, forgetting gates, as well as output 
gates, and shows great potential in new energy output 
prediction. Bilgili et al. used LSTM network to forecast short-
term energy consumption. The results indicated that the LSTM 
model had a root mean squared error value of 80.14 GWh and 
a mean absolute percentage error value of 4.47%. It showed that 
the short-term daily electric energy consumption using LSTM 
method time series could provide highly accurate results (Bilgili 
et al., 2022). A power load forecasting technique based on bi-
directional LSTM networks and empirical modal decomposition 
was presented by Gundu et al. for power consumption data that 
exhibited non-stationary and non-linear time series 
characteristics. The results indicated that the method overcome 
the limitations of traditional forecasting methods in dealing with 
nonlinear and non-stationary time series data, and could 
provide strong support for decision making in power supply 
companies (Gundu et al., 2021). 

Meanwhile, as a black-box function optimization technique 
that gradually approaches the ideal solution by examining and 
taking advantage of the outcomes of earlier parameter 
selections, the Bayesian optimization process is widely used in 
model parameter tuning. To deal with the uncertainty in PV 
prediction, Abedinia and Bagheri proposed a new synthetic 
prediction method based on Bayesian network (BN) model 

averaging and integrated learning. The method first initializes 
the training process by utilizing enhanced self-organizing 
mapping clustering K-fold cross-validation. The outcomes 
attested that the strategy can significantly raise the accuracy 
and reliability of PV prediction (Abediniaet al., 2022). Huang et 
al. introduced a landslide susceptibility prediction model based 
on incremental learning bayesian network (ILBN). The model 
improved the accuracy and timeliness of landslide susceptibility 
prediction by considering continuously updated landslide data. 
Regarding the current status and shortcomings of the above 
research, the study proposed a new energy output prediction 
and demand response optimization method based on LSTM-
BN. By constructing the LSTM-BN prediction model, the new 
energy output can be predicted with high accuracy. In addition 
to helping users make sensible adjustments to their electricity 
consumption patterns, it also increases the power grid’s 
capacity to accept new energy sources and preserve operational 
stability when paired with demand response mechanism 
optimization.  

The study mainly consists of three sections. The first section 
constructs a new energy generation prediction model based on 
LSTM-BN, and then uses this prediction result as an input to 
further construct an optimization model for price and demand 
response, to improve the utilization efficiency of new energy. 
The second section mainly describes the dataset and operation 
environment used for model training, and verifies the 
performance of the model. The third section mainly summarizes 
the experimental results in section two and describes the 
shortcomings of the research method. The study innovatively 
combines the advantages of LSTM and BN to construct a new 
energy output prediction model. Meanwhile, a price-based 
demand response mechanism is introduced to realize the 
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flexible regulation of load and the efficient utilization of new 
energy. 

2. Methods and Materials 

2.1 New energy output prediction model construction based on 
LSTM-BN 

To enhance the prediction performance of new energy 
output probability distribution, the study proposes a prediction 
method based on LSTM and BN. The study takes the prediction 
of PV output of a random user in a typical day as the object, and 
the new energy output prediction step of LSTM-BN constructed 
is shown in Figure 1. 

In Figure 1, accurately prediction the output of wind farms 
and PV power plants over a given time period in the future is 
the primary objective of new energy prediction. The steps for 
predicting the output of new energy are divided into four steps. 
First is to collect meteorological information near PV power 
plants and wind farms, including temperature and the speed and 
direction of the wind. The second step uses pass path analysis 
to examine the meteorological information of new energy base 
on the correlation of meteorological factors and derive the 
characteristics of meteorological information. The third step 
uses LSTM to extract the time-series characteristics of new 
energy output on a typical day in history. In the fourth step, a 
BN-based prediction model is constructed, and the 
meteorological and time-series features are used as inputs to 
obtain the probability distribution of the output of new energy. 
Then, sampling is performed according to the probability 
distribution to generate multiple possible forecast values. 

For the analysis and screening of new energy meteorological 
characteristics, firstly, the meteorological factor information 
required for 𝑄  new energy is collected in the user’s T-side 
period, setting the 𝑞 type of meteorological information as 𝑥𝑞, 

the class 𝑞 meteorological information at the t moment as 𝑥𝑞𝑡, 

and the solar power output data as 𝑦𝑡. The correlation 𝐶𝑥𝑞→𝑦𝑡 

between 𝑥𝑞 and 𝑦𝑡 is calculated as shown in Eq. (1) (Huang et 

al., 2022). 

𝐶𝑥𝑞𝑡→𝑦𝑡 =
∑ (𝑥𝑞𝑡−𝑥̄𝑞)(𝑦𝑡−𝑦̄𝑡)
𝑇
𝑡=1

∑ (𝑥𝑞𝑡−𝑥̄𝑞)
2𝑇

𝑡=1

√
∑ (𝑥𝑞𝑡−𝑥̄𝑞)
𝑇
𝑡=1

∑ (𝑦𝑡−𝑦̄𝑡)
𝑇
𝑡=1

            (1) 

The correlation coefficients 𝐶𝑥𝑞→𝑥𝑝→𝑦𝑡  of type 𝑞 

meteorological information 𝑥𝑞  with PV output data after the 

influence of type 𝑝 meteorological 𝑥𝑝 information are shown in 

Eq. (2). 

𝐶𝑥𝑞→𝑥𝑝→𝑦𝑡 =
∑ (𝑥𝑞𝑡−𝑥̄𝑞)(𝑥𝑝𝑡−𝑥̄𝑝)
𝑇
𝑡=1

√∑ (𝑥𝑞𝑡−𝑥̄𝑞)
2
∑ (𝑥𝑝𝑡−𝑥̄𝑝)

2𝑇
𝑡=1

𝑇
𝑡=1

𝐶𝑥𝑝→𝑦𝑡 
(2) 

Solar irradiance, illumination duration, temperature, 
humidity, and other variables are among the data chosen for 
new energy PV (Dong et al., 2022). Wind direction, wind 
intensity, temperature, humidity, and other factors are among 
the data chosen for new energy wind farms (Dhiman et al., 
2021). The correlation between new energy PV output and 
meteorological information in the study area is analyzed using 
Eq. (1) and Eq. (2). A total of z groups of meteorological 
information are selected to form the meteorological feature 
vectors required by the model 𝑋𝑡

𝑤𝑒𝑎 = (𝑥1𝑡, 𝑥2𝑡, … , 𝑥𝑛𝑡) 
The temporal features of the meteorological information of 

the study area are then extracted using the construction of the 
LSTM, setting the model to have L network units, and at 
moment t, the output of the 𝑎 LSTM network unit is predicted 

to be 𝑋𝑎𝑡
𝑖𝑛, as shown in Eq. (3) (Liu et al., 2022). 

𝑋𝑡
𝑤𝑒𝑎 = 𝑐𝑜𝑛𝑐𝑎𝑡(𝑋1𝑡 , 𝑌2𝑡)   

(3) 

In Eq. (3), 𝑋𝑡  is the meteorological information feature 

vector, yt is the PV outflow data, 𝑋𝑎𝑡
𝑖𝑛  is the splicing of the 

previous two, and 𝑐𝑜𝑛𝑐𝑎𝑡(⋅)  is the splicing operation. The 
minimum cell structure of LSTM is shown in Figure 2 (Kumar et 
al., 2021). 

In Figure 2, 𝐶𝑡, 𝐶𝑡−1, 𝐶𝑡−2, ℎ𝑡, ℎ𝑡−1, and ℎ𝑡−2 are the status of 
each learning units, 𝑖𝑡 is the input gate, as shown is Eq. (4) (Ma 
et al., 2021). 

𝑖𝑡 = 𝛿 [[𝑊𝑖(ℎ𝑡), 𝑋𝑎𝑡
𝑖𝑛] + 𝑏𝑖]   

(4) 

In Eq. (4), 𝛿 is the activation function, 𝑏𝑖 is the bias constant, 
𝑊𝑖 is the weight matrix of the input gates, and 𝑓𝑖 is the forgetting 
gate, as denoted in Eq. (5). 

𝑓𝑡 = 𝛿 [[𝑊𝑓(ℎ𝑡), 𝑋𝑎𝑡
𝑖𝑛] + 𝑏𝑓]

   
(5) 

In Eq. (5), 𝑊𝑓 is the weight matrix of the forgetting gate and 

𝑜𝑡 is the output gate, as denoted in Eq. (6). 

𝑜𝑡 = 𝛿 [[𝑊𝑜(ℎ𝑡), 𝑋𝑎𝑡
𝑖𝑛] + 𝑏𝑜]   

(6) 

In Eq. (6), 𝑊𝑜 in z is the weight matrix of the output gate. The 
learnable unit states 𝐶𝑡 and ℎ𝑡 are shown in Eq. (7). 

{
𝐶𝑡 = 𝑓𝑡𝐶𝑡 + 𝑖𝑡 𝑡𝑎𝑛ℎ[𝑊𝑐[ℎ𝑡 ,𝑋𝑡

𝑖𝑛] + 𝑏𝑐]

ℎ𝑡 = 𝑜𝑡 𝑡𝑎𝑛ℎ(𝐶𝑡)   
(7) 

In Eq. (7), ℎ𝑡  is the state of the learnable unit, 𝑊𝑐  is the 
weight matrix of the learnable unit.The LSTM network unit 
captures the long-term dependencies in the time series through 
the gating mechanism to realize the extraction of new energy 
weather information features, see Figure 3 (Liu et al., 2021) 
(Kong et al., 2021). 
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Fig. 2. LSTM minimum cell structure 
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As shown in Figure 3, the unit state of the a LSTM network 
unit is set to ℎ𝑎𝑡. The new energy weather timing feature vector 

𝑋𝑡
ℎ𝑖𝑠 is output after the LSTM network.  

Then the BN is constructed to predict the new energy output, 
and the meteorological information feature vector 𝑋𝑡

𝑤𝑒𝑎 of the 
study area at the moment of 𝑡  and the new energy 

meteorological time-series feature vector 𝑋𝑡
ℎ𝑖𝑠 output after the 

LSTM network are spliced as the input feature vector 𝑋𝑡
𝑏 =

𝑐𝑜𝑛𝑐𝑎𝑡(𝑋𝑡
𝑤𝑒𝑎 , 𝑋𝑡

ℎ𝑖𝑠) of the BN, which is used as the basis for the 

prediction of new energy output value. The prior distribution of 
the BN constructed by the study is Gaussian distribution, as 
denoted in Eq. (8) (Sharma et al., 2021) (Fortuin et al., 2022). 

𝑝(𝑊) = ∏ 𝜋𝑁(𝑤𝑗; 0, 𝛾01
2 )

𝑁𝑤
𝑗=1 + (1 − 𝜋)𝑁(𝑤𝑗; 0, 𝛾02

2 )
 

(8) 

In Eq. (8), 𝑊 is the probability layer parameter of the BN, 𝜋 
is the mixing proportion of the Gaussian distribution, 𝑤𝑗 is the 𝑗 

parameter of the probability layer of the BN, 𝛾01
2  and 𝛾02

2  are the 
variances under the normal distribution, and Nw is the total 
number of parameters of the probability layer of the network. In 
the BN prediction model, the input feature splicing vector is 𝑋, 
the output new energy output prediction is 𝑌 , and the a 
posteriori probability of the BN is 𝑝(𝑊 𝑋⁄ , 𝑌). The approximate 
distribution 𝑞(𝑊;𝜗)  of the new energy output prediction is 
introduced, which is shown in Eq. (9) (Jia et al., 2020) (Moe et 
al., 2021). 

𝑞(𝑊;𝜗) = ∏ 𝑁(𝑤𝑗; 𝜇𝑗; 𝛿𝑗
2)

𝑁𝑤
𝑗=𝑛   

(9) 

In Eq. (9), 𝜗 is the learned parameter of the model, 𝜇𝑗 is the 

mean value of the 𝑗  parameter, and 𝛿𝑗
2  is the parameter 

variance. The 𝑎 sampling value of the 𝑗 parameter in the model 
is calculated according to the approximate distribution, as 
shown in Eq. (10) (Feng et al., 2021). 

𝑤𝑗
𝑎 = 𝜇𝑗 + 𝑙𝑜𝑔(1 + 𝑒

𝑝𝑗)⊗ 𝑧𝑖𝑠
  

(10) 

In Eq. (10), ⊗  is the Hadamard product and 𝑧𝑖𝑠  is the 
multidimensional distribution of meteorological information in 
the normal distribution. Based on Eq. (10), the 𝑎  sampling 

parameter 𝑊𝑗
𝐴 = (𝑤1

𝑎 , 𝑤2
𝑎 , . . . , 𝑤𝑁𝑤

𝑎 ) in the BN network model 

(Hebbi et al., 2023) is obtained.The new energy outflow 
prediction 𝑌 of the output can be obtained by taking the feature 
splicing vector 𝑋  as input in the BN network model and 
propagating it forward in the model, see Eq. (11). 

𝑌 = 𝑓(𝑋𝑡;𝑊𝑗
𝐴)

    
(11) 

2.2 Optimization model construction for user-side price demand 
response 

A appropriate demand response strategy can be developed 
to balance the power supply and demand relationship once the 
new energy output has been effectively predicted(Xia et al., 
2021). By optimizing the demand response strategy, the power 

system’s uncertainty about the new energy output can also be 
decreased (Sharma et al., 2022). Figure 4 depicts the processes 
of the customer-side price demand response optimization 
model. 

As illustrated in Figure 4, the study is based on the forecast 
data of new energy output, and then the price demand response 
optimization model is established with the aim of minimizing the 
total cost of user energy overhead. Electricity user demand 
response optimization strategies can mainly split into price-type 
and incentive-type. The study adopts the price-based demand 
response optimization strategy, which guides users to adjust 
their energy use behavior through the signal of electricity price 
changes to achieve power optimization (Mokayed et al., 2023). 
The power load transfer in the customer-side price demand 
response optimization model is shown in Eq. (12). 

𝑝𝑙 = 𝑝0 + 𝛥𝑝
    

(12) 

The user load matrices 𝑝𝑙 and 𝑝0 in Eq. (12) are the user load 
matrices following and prior to the price-demand ring 
optimization model adoption, respectively. 𝛥𝑝 denotes the user 
load transfer matrix, and 𝛥𝑝 is shown in Eq. (13).  

𝛥𝑝 = 𝐸 • 𝛥[𝑝]⊕ 𝑝0
   

(13) 

In Eq. (13), 𝐸 is the matrix of elasticity coefficients of users 
for multiple time periods. 𝛥[𝑝] is the normalized matrix of the 
rate of change of the indicated time-of-day tariffs. These two 
matrices are calculated in Eq. (14) (Huang et al., 2023).  

{
 
 

 
 𝛥[𝑝] = [

𝛥𝑝2

𝑝1
0 ,

𝛥𝑝2

𝑝2
0 , . . . ,

𝛥𝑝𝑇

𝑝𝑇
0 ]

𝐸 = [

𝑒11 𝑒12 . . . 𝑒1𝑇
𝑒21 𝑒22 . . . 𝑒2𝑇
. . . . . . . . . . . .
𝑒𝑇1 𝑒𝑇2 . . . 𝑒𝑇𝑇

]

𝑇

  
(14) 

In Eq. (14), ∆𝑝𝑇 is the difference between the tariff used by 
the customer at moment 𝑇 and the benchmark tariff, 𝑝𝑇

0 is the 
benchmark tariff of the electricity used by the customer at 
moment 𝑇, and 𝑒𝑇𝑇  is the auto-elasticity coefficient of row 𝑇, 
column 𝑇  in the matrix of the multi-temporal elasticity 
coefficients of the customer. For the target study area, users of 
different load types (electricity, heat, and gas) each enjoy 
different forms of output from new energy sources. The electric 
load users integrate their own PV generation and share the 
electricity from the regional wind power, the thermal load users 
receive the thermal part of the energy converted by the wind 
power, and the gas load users are allocated the gas energy 
converted by the wind power (Iweh et al., 2021). For each time 
𝑡(𝑠 = 1,2, …𝑇) , within each season 𝑠(𝑠 = 1,2,… 𝑆) , the new 
energy output of these three load types for user 𝑖 is calculated 
as shown in Eq. (15). 
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Fig. 3. New energy weather time series feature vector extraction process 
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{

𝑝𝑠,𝑡,𝑖
𝑒,𝑁𝐸 = 𝑝𝑠,𝑡,𝑖

𝑃𝑉 + 𝑤𝑝𝑠,𝑡,𝑖
𝑊𝑃

𝑝𝑠,𝑡,𝑖
ℎ,𝑁𝐸 = 𝑣(1 − 𝑤)𝑝𝑠,𝑡,𝑖

𝑊𝑃𝜂𝑃2𝐺𝜂𝐺𝐵

𝑝𝑠,𝑡,𝑖
𝑔,𝑁𝐸

= (1 − 𝑣)(1 − 𝑤)𝑝𝑠,𝑡,𝑖
𝑊𝑃𝜂𝑃2𝐺

   (15) 

In Eq. (15),  𝑠 is the meteorological season, 𝑡 is the time, 𝑖 is 

the user, 𝑝𝑠,𝑡,𝑖
𝑒,𝑁𝐸  is the 𝑡 time to provide electrical load of new 

energy output, 𝑝𝑠,𝑡,𝑖
𝑃𝑉  is the 𝑡  time of its own PV power 

generation, 𝑝𝑠,𝑡,𝑖
𝑊𝑃  is the 𝑡  time of wind power in the 

apportionment of the power, 𝑤 is the apportionment coefficient, 

𝑝𝑠,𝑡,𝑖
ℎ,𝑁𝐸  is the  𝑡  time to provide thermal load of new energy 

output, 𝑣 is the apportionment coefficient, 𝑝𝑠,𝑡,𝑖
𝑔,𝑁𝐸

 is the  𝑡 time to 

provide gas load of new energy output. The function of the 
sharing coefficient is to allocate the total output of new energy 
to different types of loads, and its calculation method differs 
based on the system, which may be ascertained using empirical 
formulas (Baik et al., 2022). Meanwhile, the new energy output 
has uncertainties, and the need for energy storage and loading 
when there is a surplus of energy, also, the need for external 
energy supplementation when there is a shortage of energy 
(Song et al., 2023). Therefore, the study introduces a multi-
energy cloud energy storage model for users, which makes use 
of the big data and real-time information in the cloud platform 
to formulate and optimize the charging and discharging 
strategies. The cloud energy storage user meets its load demand 
by leasing the right to use the energy storage from the cloud 
energy storage provider, thus avoiding the fixed cost of directly 

purchasing and operating and maintaining physical energy 
storage equipment (Su et al., 2024). The total cost to the 
subscriber consists of two components: firstly, the leasing 
service fee to the equipment service as the initial investment 
cost of using the cloud energy storage technology, and 
secondly, the operational overheads borne by the additional 
energy procurement from the electricity, heat and natural gas 
networks required to safeguard the operation in the face of 
power shortages or cloud energy storage resource constraints 
(Zhang & Lyu et al., 2021). According to different user selection 
methods, it can be divided into three scenarios. In scenario one, 
electricity, heat, and gas users operate independently, each with 
their own energy storage system. These energy storage systems 
are used to balance the uncertainty of new energy output, 
ensuring that sufficient energy can be provided when new 
energy output is insufficient, and excess energy can be stored 
when new energy output is surplus. Users can independently 
decide how to use energy based on their own energy needs and 
the status of the energy storage system. In scenario two, the 
users give up building their own energy storage system and 
instead purchases cloud energy storage services. Cloud energy 
storage service providers are responsible for the construction 
and operation of energy storage systems, and users only need 
to pay rental and usage fees. Users decide how to use energy 
based on the status of cloud energy storage services and their 
own energy needs. When cloud energy storage resources are 
limited or energy is insufficient, users need to purchase 
additional energy from electricity, heat, and natural gas 

Start

Correlation analysis of 

meteorological data

Time series feature extraction based 

on long short-term memory network

New energy output prediction based 

on Bayesian neural network

Sampling values of new energy 

output

New Energy Output 

Prediction Model

Input electrical, thermal, and gas 

load data

Input time of use electricity price

Enter the number of users N

Data initialization

With the goal of minimizing the 

total cost for users,

Establish a user behavior model

Model linearization

Price based demand response model

Demand response 

optimization

i=1

No

Is it the total cost 

for the user?

Output result End

Yes

 
Fig. 4. Steps for running the user-side price demand response optimization model 
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networks. In scenario three, users further introduce a demand 
response optimization model on the basis of purchasing cloud 
energy storage services. This model guides users to adjust their 
energy consumption behavior through electricity price change 
signals, achieving electricity optimization. Users use demand 
response optimization models to adjust energy usage based on 
electricity price change signals and their own energy needs. For 
example, increasing energy use when electricity prices are low, 
reducing energy use or transferring loads when electricity prices 
are high. To maximize economic benefits, the user aims to 
minimize their equivalent annual cost, accounting for the cost of 
leasing cloud storage services and the additional cost of 
purchasing energy from other energy networks (natural gas, 
heat, and electricity) due to energy shortages or limited cloud 
storage resources, as indicated in Eq. (16). 

{
  
 

  
 

𝑚𝑖𝑛 𝐶1 = 𝑘𝑝𝑎𝐶𝑖𝑛𝑣,𝑖 + 𝐶2

𝑘𝑝𝑎 =
𝑟(1+𝑟)𝑑

(1+𝑟)𝑑−1

𝐶𝑖𝑛𝑣,𝑖 = 𝑘𝑓1𝑝𝑓,𝑖
𝑚𝑎𝑥2𝑒,𝑗

𝑚𝑎𝑥1𝑒,𝑗

𝑚𝑎𝑥2𝑒,𝑗

𝑚𝑎𝑥1𝑒,𝑗

𝑚𝑎𝑥2𝑒,𝑗
𝑚𝑎𝑥  (16) 

In Eq. (16), 𝑘𝑝𝑎  is the equal annual value coefficient, 𝐶1  is 

equivalent annual value cost , 𝑑 is the length of time the energy 
storage device is used, 𝑟 is the annual interest rate, 𝐶2  is the 
operating cost of the user using the cloud energy storage, 𝐶𝑖𝑛𝑣,𝑖 

is the investment cost, 𝑘𝑓1  and 𝑘𝑓2  are the lithium battery’s 
service charge per unit of power and per unit of capacity, 
respectively, 𝑝𝑓,𝑖

𝑚𝑎𝑥 and 𝑒𝑓,𝑖
𝑚𝑎𝑥 are the maximum power provided 

by the cloud energy storage and the maximum limit value of the 
cloud gas storage capacity, respectively, 𝑘𝑔1  and 𝑘𝑔2  are the 
energy conversion rate of the heat storage tank and the capacity 
cost, respectively, 𝑘𝑣1 and 𝑘𝑣2 are the energy conversion rate 
and capacity cost of the gas storage tank, respectively. Because 
the cost minimization model contains segmented functions, it is 
difficult to solve it conventionally. Therefore, the nonlinear 
constraints containing segmented functions are linearized using 
the “Big M method”, which is mainly realized by introducing 
auxiliary variables and 0-1 variables. It is assumed that one of 
the segmented functions in the solution function is 𝑓(𝑥), see Eq. 
(17) (Jayaprakash et al., 2023) (Cao et al., 2024). 

𝑓(𝑥) = {
𝑚𝑎𝑥{𝑥, 0}

𝑚𝑖𝑛{𝑥, 0}
    (17) 

To represent 𝑓(𝑥), an auxiliary variable 𝑦 is introduced such 
that 𝑦 = 𝑚𝑎𝑥(𝑥, 0). The 0-1 variable is then used to indicate the 
sign of 𝑥. Assuming that the 0-1 variable is 𝑢, the representation 
is shown in Eq. (18). 

{

𝑦 ≤ 𝑥 + 𝑀(1 − 𝑢1)

𝑦 ≤ 𝑀(1 − 𝑢2)

𝑢1 + 𝑢2 ≥ 1

𝑢1, 𝑢2 ∈ {0,1}

   (18) 

In Eq. (18), 𝑀  is a large constant. 𝑢1  and 𝑢2  are both 0-1 
variables. Finally, all these constraints are integrated into the 
new energy user cost minimization solving problem. The 
original problem is converted to a mixed integer linear 
programming (MILP) problem, which is then solved using a 
standard MILP solver to solve the user-minimized annual value 
cost, and the new energy output demand response optimization 
can be realized. It is capable of achieving the optimization of 
new energy output demand response. 

To demonstrate the prediction accuracy of the LSTM-BN 
model constructed in the study, three evaluation indexes, 
namely, normalized root mean square error (NRMSE), 
correlation coefficient between predicted and real values (𝑅2), 

and average percentage error (APE) are selected to 
quantitatively evaluate the prediction ability of the model. 
NRMSE is a significant statistic for determining the difference 
between projected and actual values, with a smaller value 
indicating a more accurate prediction. The calculation method 
is displayed in Eq. (19) (Viktor et al., 2023). 

NRMSE=√
∑(𝑦true-ypred)

2

∑(𝑦true-ymean)
2
   (19) 

In Eq. (19), 𝑦true、𝑦pred、𝑦mean stand for the mean of the true 

value, predicted value, and true value, respectively. APE 
directly reflects the percentage of prediction error to the actual 
value, and a lower APE value denotes a more accurate 
prediction. The calculation method is as denoted in Eq. (20) 
(Irfan et al., 2021). 

APE=√
𝑦actual-ypred

𝑦actual
×100%   (20) 

In Eq. (20), 𝑦actual and 𝑦pred stand for the mean of the true 

value, predicted value, respectively. The 𝑅2  value is used to 
quantify the degree of correlation between the predicted values 
and the actual observed values of the model. The calculation 
method is in Eq. (21) (Long et al., 2023). 

𝑅2=1-(∑(𝑦true-ypred)
2)/(∑(𝑦true-ymean)

2) (21) 

The model’s predictive power increases with the 𝑅2 value’s 
proximity to 1. 

3. Result and Discussion 

3.1 Performance analysis and application testing of new energy 
output prediction models 

To validate the effectiveness of the new energy output 
prediction model constructed in the study with the LSTM-BN, 
the Google Earth Engin dataset and GEFCom2014 dataset were 
selected as the training data for the model. The Google Earth 
Engin dataset is an open and unified spatial dataset for wind and 
solar installations, which records the location, capacity, and 
historical output data of wind and solar installations in a certain 
region. The GEFCom2014 dataset contains multiple dimensions 
of data, including actual and predicted values of new energy 
loads in a certain region, fluctuations in electricity prices, real-
time data on wind power, and predicted and actual output of 
solar power generation. The study first preprocessed two 
datasets, performing tasks like data cleansing, addressing 
missing values, and detecting and processing outliers, to ensure 
data quality and consistency when using the Google Earth Engin 
dataset and GEFCom2014 dataset for the detection and 
validation of new energy output prediction models (Borrohou et 
al., 2023). Next, it was divided into a training set and a testing 
set in a 4:1 ratio. The training set is used for model training, and 
the testing set is used to evaluate the predictive performance of 
the model. The operating environment and parameter settings 
of the model are displayed in Table 1. 

The fitting degree of the predicted and actual values of the 
LSTM-BN model was first determined in the two datasets 
respectively, and to illustrate the superiority of the research 
methodology, the BN model, the SEAM-LSTM model, and the 
CL-LSTM model were selected to form a control experiment 
with the research-constructed model under the same 
experimental conditions. The results are shown in Figure 5. 

In Figure 5, the predicted values of the LSTM-BN model 
constructed in the study fitted the real values to the highest 
degree, and the SEAM-LSTM model also has a higher degree of 
fit, but there is still a gap with the LSTM-BN model, which 
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reflects the effectiveness of the present model in dealing with 
the long term temporal dependence of the data. Comparing the 
results in Figures 5(a), (b), (e) and (f), as shown, the LSTM-BN 
model has the potential to greatly increase the prediction 
accuracy by capturing the features of meteorological 
information through the LSTM and then optimizing the 
prediction of new energy power generation using the BN 
technique. When the LSTM is missing in the LSTM-BN model, 
the deviation of the prediction results becomes larger and the 
prediction accuracy is reduced. Comparing the results in 
Figures 5(a) and (e), it can be obtained that the predicted values 
of the LSTM-BN model constructed by the study fitted well with 
the true values both in the GEFCom2014 dataset and in the 
Google Earth Engin dataset, which indicates that the model has 
some generalization, and it can produce better prediction 

results in various usage scenarios. The NRMSE, 𝑅2, and APE 
statistical results of the four algorithms are shown in Table 2. 

Table 2 shows the detailed results of the predictions of the 
four models in two kinds of data, and it can be found that the 
LSTM-BN model constructed by the study has the highest R² 
value and the lowest NRMSE and APE values, whether it is 
tested in the GEFCom2014 dataset or in the Google Earth Engin 
dataset. This indicates that the model constructed in the study 
can predict the new energy power output data more accurately. 

This is because the LSTM structure in the research and 
construction model is adept at handling long-term 
dependencies in time series data, and can effectively capture 
the temporal characteristics of new energy output. BN updates 
the posterior distribution of model parameters by combining 
prior knowledge and observation data, which helps improve the 
generalization ability and prediction accuracy of the model. 

Table 1 
Running environment and parameterization of the model 

Project Parameter 
System Window 10 
GPU NVIDIA Tesla H800 
CPU AMD Ryzen 9 7950X3D 
Memory DDR5 6400 32GB(16GBx2 
Development language Python 
Hidden layer output unit 25 
Initial learning rate 0.005 
Iterations 160 
Number of hidden layers 3 
Optimizer Adam 

loss function Cross-Entropy 

Epoch number 50 
Review window size 600 600 

 
 
Table 2 
Comparative results of the predictive power of the four models 

Method 
Google Earth Engin dataset GEFCom2014 dataset 

NRMSE R2 APE NRMSE R2 APE 

LSTM-BN 0.0088  0.9965 0.432 0.0075 0.9987 0.332 
SEAM-LSTM 0.0123 0.9901 0.521 0.0232 0.9712 0.421 
CL-LSTM 0.0235 0.8636 0.765 0.0325 0.8652 0.655 
BN 0.0560 0.8421 0.865 0.0456 0.8465 0.745 
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Fig. 5. Degree of match between the predicted and actual values of the four models 
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Although SEAM-LSTM and CL-LSTM also adopt the LSTM 
structure, their predictive performance is slightly inferior to the 
LSTM-BN model due to insufficient optimization of model 
parameters. The standalone BN model cannot fully capture the 
temporal features in the data, resulting in poor predictive 
performance.Then the prediction speeds of the four models are 
tested, and the results are shown in Figure 6. 

From Figure 6(a), in the Google Earth Engin dataset, the 
LSTM-BN model demonstrated excellent performance. It only 
needs about 64 iterations, and its fitness value quickly reaches 
a stable state, indicating that the model can efficiently capture 
data features and optimize the model. In contrast, the SEAM-
LSTM model requires 80 iterations to stabilize its fitness value, 
while the CL-LSTM model requires 82 iterations. Although the 
convergence speed of these two models is slightly slower than 
that of the LSTM-BN model, they still demonstrated some 
optimization ability when processing this dataset. However, the 
BN model faced significant optimization difficulties when 
processing this dataset, requiring 112 iterations to stabilize the 

fitness value, and its stable fitness value was higher than the first 
three models. In the GEFCOm2014 dataset, the LSTM-BN 
model also demonstrated efficient computational capability and 
excellent generalization ability. After about 82 iterations, the 
fitness value tended to stabilize. This further validates the 
stability and optimization efficiency of the LSTM-BN model on 
different datasets. However, SEAM-LSTM, CL-LSTM, and BN 
models performed poorly in this dataset. Their fitness values did 
not reached a stable state at the end of training, indicating that 
these models may face optimization difficulties and relatively 
weak generalization ability when processing certain datasets. 
The LSTM-BN model demonstrated excellent generalization 
ability in two different datasets. Its fitness value could quickly 
reach a stable state and maintain stable optimization effects in 
different data environments. This indicated that the LSTM-BN 
model had strong data adaptability and robustness, making it 
the preferred model for tasks such as time series prediction. In 
contrast, SEAM-LSTM, CL-LSTM, and BN models showed 
weaker generalization ability. 
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Fig. 6. Computational speed of the four models 
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Fig. 7. Prediction results of new energy output power by four models 
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The model was trained on data from January to December 
2023 from distributed new energy generation systems deployed 
on the rooftop of an industrial park, and the data sampling 
interval was set at once every minute to eliminate abnormal and 
invalid information. Finally, 12,568 high-quality data points are 
retained for subsequent research. At the same time, numerical 
weather forecast data from neighboring weather stations were 
introduced for training, and the trained model was utilized to 
forecast the new energy output power on a random day, and the 
results are shown in Figure 7. 

From Figure 7, it is evident that the new energy power 
system had a maximum output power of 18865W on sunny 
days, and it is concentrated between 11:00-14:00. And the 
highest power output power in rainy days was only 1356W, 
which was concentrated between 13:00-14:00. In terms of the 
overall prediction, the curve value between the predicted one 
and the true one of the LSTM-BN model constructed in the 
study almost overlapped, and the maximum prediction error 
does not exceed 1%. In contrast, the prediction curves of the 
SEAM-LSTM model, CL-LSTM model and BN model had 
relatively large errors with the true curves, and could not 
accurately predict the output power of the new energy power 
system. 

3.2 Analysis of user-side price demand response optimization results 

Once the new energy output power in the target area is 
accurately predicted using the LSTM-BN model, the 
corresponding demand response optimization strategy can be 
formulated based on the prediction results. The study set each 
season as a 91-day cycle, and for typical days, a 24-hour 
dispatch cycle was determined. Due to the characteristics of the 
cloud energy storage system that does not require frequent 
immediate response, the dispatch interval of the system was set 
to be 1 hour to optimize the energy allocation. In addition, the 
time-of-day tariff mechanism of a neighborhood was used, 
which was specifically divided into three time periods, namely, 
peak time, usual time, and valley time, and the impact of tariff 
changes on the scheduling strategy was simulated based on the 
specific tariff and time period divisions. The comparison of 
electricity load in a neighborhood after citing the demand 
response design methodology designed by the study is shown 
in Figure 8. 

In Figure 8, the peak period of electricity consumption in this 
neighborhood in either season was around 12:00-21:00 and the 
low period is from 0:00-6:00 every day. Before the study’s 
demand response plan was implemented, there was a lot of 
variation in the load profiles of the customers’ electricity usage. 
In contrast, the load volume curves began to flatten out 
regardless of the season after the study’s optimum scenario was 
added. The charge increases during the low peak period of 
power use and fell during the peak period. Next three 
comparison scenarios were set up to compare the impact of 
demand response and time-of-use tariff strategies. Scenario 1: 
Electricity, heat, and gas users are independent, their own 
energy storage systems are built, and a new energy output 
prediction model is used. Scenario 2: Users abandon their own 
energy storage and purchase cloud energy storage services. 
Scenario 3: Based on Scenario 2, a demand response 
optimization model is added, i.e., users adjust their energy use 
base on the price of electricity and their own needs. The 
comparison of one day’s electricity load for the three scenarios 
is shown in Figure 9. 

As shown in Figure 9, Scenario 2 exhibited a more significant 
peak shaving effect due to the configuration of the energy 
storage system. In contrast, the model of Scenario 3 not only 
reduced energy storage system’s operating costs but also better 
improved the fluctuation of the load curve by optimizing the 

energy storage capacity configuration and time-sharing tariff 
strategy, resulting in a smoother load curve. The results of the 
fixed investment cost and the whole life cycle net benefit of the 
users under the three scenarios are shown in Figure 10. 

In Figure 10(a), the fixed investment costs for users in 
Scenarios 1, 2 and 3 are $2.78 million, $3.52 million and $3.52 
million, respectively. This is due to the fact that the users of 
Scenarios II and III need to purchase the cloud storage power 
system as well as bear its maintenance costs. As shown in Figure 
10(b), the whole life cycle net benefits for users of Scenarios 1, 
2 and 3 are $2.15 million, $3.54 million, and $4.45 million, 
respectively. This indicated that the user's use of the cloud 
energy storage system reduces the overall operating cost and 
improves the energy use efficiency, thus increasing the net 
benefit. The use of a demand response optimization model 
considerably increases the net benefit. After optimization, users 
are able to better adapt to fluctuations in electricity prices and 
achieve more efficient energy use and greater economic 
returns. 

4. Conclusion 

Facing the strong uncertainty of new energy output, the 
study put forward a new energy output prediction method 
based on LSTM-BN. The approach used the BN for power 
forecasting after extracting the new energy weather quantity 
vector features using the LSTM network. It gave future energy 
system planning a strong data foundation. Next, considering the 
important influence of price-based demand response in the 
market mechanism on user behavior, a user-side demand 
response model was established. Users were guided to adjust 
their electricity consumption behavior through price signals. 
The LSTM-BN constructed in the study outperformed other 
algorithms both in prediction accuracy and budget speed. 
Regarding prediction accuracy, the NRMSE value of LSTM-BN 
model was less than 0.0090, 𝑅2 was more than 0.99, and APE 
was less than 0.5. In budget speed, the LSTM-BN model tended 
to stabilize with 64 iterations and 80 iterations in the Google 
Earth Engin and GEFCom2014 datasets, respectively, with the 
lowest value of the fitness. After the LSTM-BN model accurately 
predicted the new energy output, a price-based demand 
response strategy was introduced. The results indicated that the 
demand response method used in the study flattened the load 
curve and had an important role in peak shaving and valley 
filling. Meanwhile, after applying the demand response 
optimization model, the whole life cycle net benefit of the users 
in the region was maximized, which was 4.45 million RMB. It 
showed that the LSTM-BN model had very high prediction 
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Fig. 9. Comparison of power load in different scenarios 
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accuracy and fast convergence speed in new energy output 
prediction, which gave great support for the power system’s 
stability and efficiency. However, different users have 
geographic variability and potential volatility, and subsequent 
research will focus on modeling and analyzing user behavioral 
non-volatility to improve the applicability of the model. 
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