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Abstract. The study proposed a new energy output prediction model based on long and short-term memory network (LSTM)-Bayesian network (BN)
by combining the benefits of BN in uncertainty quantification with the processing power of LSTM network to address the issue of volatility and
uncertainty of new energy output. Meanwhile, by introducing a price-based demand response mechanism, users were incentivized to increase
electricity consumption when the new energy generation was in excess and reduce electricity consumption during the peak period, so as to realize
the flexible regulation of loads and the efficient utilization of new energy. The new energy output prediction model developed in the study had the
highest degree of match between the anticipated and actual values in various data sets, as demonstrated by the experimental findings, which were
above 0.99. In the Google Earth Engin and GEFCom2014 datasets, the operation solution speed was quick and stabilized after 64 and 80 iterations,
respectively. Additionally, the model’s predicted and actual curve values almost matched, and the actual new energy output power predication's
largest prediction error was less than 1%. The implementation of a price-based demand response approach to control customers' power consumption
behavior yielded a net benefit of up to 4.45 million yuan for the customers in the target area, based on the precise prediction of new energy output
power. The aforementioned findings demonstrated that the LSTM-BN-based new energy output prediction model is capable of precisely projecting
new energy output and efficiently matching supply and demand through a price-based demand response mechanism to increase the rate at which
new energy is consumed instantly.
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1. Introduction enhance their flexibility and economic efficiency in the energy
market (Garcia-Torres et al., 2021). Li et al. presented a Chance
Constrained Programming-based dispatch model for
community-based integrated energy systems that includes
integrated demand response. The integrated demand response
procedure minimized the system operating cost by exploring
the potential interaction capability between electric-gas-heat
flexible loads and electric vehicles. It can be known that by
integrating the demand response procedure, the system is able
to manage the demand side resources more efficiently (Li et a/.,
2021). To achieve intelligent load management and energy
allocation strategies, a team of scholars led by Priolkar and
Sreeraj proposed a method combining the K-Medoids algorithm
and the elephant swarm optimization algorithm. Using this
strategy, a price-based demand response program was
implemented, and consumers were grouped according to their
load consumption habits. The findings indicated that the
approach can reduce energy costs and balancing grid loads
(Priolkar et al., 2024).

According to the studies of domestic and foreign scholars on
new energy grids, the supply side of power generators and the

Since there is a lot of volatility and uncertainty associated
with new energy generation, it is crucial to predict new energy
output accurately and efficiently to optimize the demand
response mechanism. This will help to maintain the power grid’s
stability and increase the efficiency of energy utilization (Malek
& Ichinomiya et al., 2023). An intelligent demand response
program was created by Huang et al to address the
unpredictability associated with photovoltaic (PV) power
generation in microgrids. The program optimized the
manufacturing facility’s day-ahead production schedule and the
battery storage system’s operation strategy in response to the
probabilistic projections of time segment electric price and PV
power generation. The method’s effectiveness in lowering
manufacturing production's operational expenses was
confirmed by the results (Huang et al., 2021). To achieve optimal
scheduling, the framework takes into account the uncertainty
associated with energy forecasts and employed mixed integer
quadratic programming and stochastic model predictive control
approaches. The results proved that the method could
effectively manage uncertainty in complex microgrids and
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demand side of users are unable to promptly modify their power
consumption strategies due to the fluctuations and uncertainties
in new energy output, which results in a significant waste of
energy. Traditional methods such as time series analysis and
regression analysis have limitations in dealing with nonlinear
and long-term dependence problems. Long and short-term
memory network (LSTM), as a unique type of recurrent neural
network (RNN), effectively addresses the long-term
dependence problem by introducing mechanisms such as
memory units, input gates, forgetting gates, as well as output
gates, and shows great potential in new energy output
prediction. Bilgili et al. used LSTM network to forecast short-
term energy consumption. The results indicated that the LSTM
model had a root mean squared error value of 80.14 GWh and
a mean absolute percentage error value of 4.47%. It showed that
the short-term daily electric energy consumption using LSTM
method time series could provide highly accurate results (Bilgili
et al., 2022). A power load forecasting technique based on bi-
directional LSTM networks and empirical modal decomposition
was presented by Gundu et al. for power consumption data that
exhibited non-stationary and non-linear time series
characteristics. The results indicated that the method overcome
the limitations of traditional forecasting methods in dealing with
nonlinear and non-stationary time series data, and could
provide strong support for decision making in power supply
companies (Gundu et al., 2021).

Meanwhile, as a black-box function optimization technique
that gradually approaches the ideal solution by examining and
taking advantage of the outcomes of earlier parameter
selections, the Bayesian optimization process is widely used in
model parameter tuning. To deal with the uncertainty in PV
prediction, Abedinia and Bagheri proposed a new synthetic
prediction method based on Bayesian network (BN) model
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averaging and integrated learning. The method first initializes
the training process by utilizing enhanced self-organizing
mapping clustering K-fold cross-validation. The outcomes
attested that the strategy can significantly raise the accuracy
and reliability of PV prediction (Abediniaet al., 2022). Huang et
al. introduced a landslide susceptibility prediction model based
on incremental learning bayesian network (ILBN). The model
improved the accuracy and timeliness of landslide susceptibility
prediction by considering continuously updated landslide data.
Regarding the current status and shortcomings of the above
research, the study proposed a new energy output prediction
and demand response optimization method based on LSTM-
BN. By constructing the LSTM-BN prediction model, the new
energy output can be predicted with high accuracy. In addition
to helping users make sensible adjustments to their electricity
consumption patterns, it also increases the power grid’s
capacity to accept new energy sources and preserve operational
stability when paired with demand response mechanism
optimization.

The study mainly consists of three sections. The first section
constructs a new energy generation prediction model based on
LSTM-BN, and then uses this prediction result as an input to
further construct an optimization model for price and demand
response, to improve the utilization efficiency of new energy.
The second section mainly describes the dataset and operation
environment used for model training, and verifies the
performance of the model. The third section mainly summarizes
the experimental results in section two and describes the
shortcomings of the research method. The study innovatively
combines the advantages of LSTM and BN to construct a new
energy output prediction model. Meanwhile, a price-based
demand response mechanism is introduced to realize the
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flexible regulation of load and the efficient utilization of new
energy.

2. Methods and Materials

2.1 New energy output prediction model construction based on
LSTM-BN

To enhance the prediction performance of new energy
output probability distribution, the study proposes a prediction
method based on LSTM and BN. The study takes the prediction
of PV output of a random user in a typical day as the object, and
the new energy output prediction step of LSTM-BN constructed
is shown in Figure 1.

In Figure 1, accurately prediction the output of wind farms
and PV power plants over a given time period in the future is
the primary objective of new energy prediction. The steps for
predicting the output of new energy are divided into four steps.
First is to collect meteorological information near PV power
plants and wind farms, including temperature and the speed and
direction of the wind. The second step uses pass path analysis
to examine the meteorological information of new energy base
on the correlation of meteorological factors and derive the
characteristics of meteorological information. The third step
uses LSTM to extract the time-series characteristics of new
energy output on a typical day in history. In the fourth step, a
BN-based prediction model is constructed, and the
meteorological and time-series features are used as inputs to
obtain the probability distribution of the output of new energy.
Then, sampling is performed according to the probability
distribution to generate multiple possible forecast values.

For the analysis and screening of new energy meteorological
characteristics, firstly, the meteorological factor information
required for Q new energy is collected in the user’s 7-side
period, setting the g type of meteorological information as xg,
the class g meteorological information at the t moment as x4,
and the solar power output data as y;. The correlation Cx -y,

between x, and y; is calculated as shown in Eq. (1) (Huang et
al., 2022).

C =2f=1(xqf—fq)(yt—37t) Yrea(Xqe=%q) (1)
Xqt=Ye ST (xqe=%)° N ey

The correlation

coefficients Cx >y of type gq
meteorological information x,; with PV output data after the
influence of type p meteorological x,, information are shown in

Eq. (2).

T . .
Tt=1(%qe=%q) (¥pe—%p) _— 2)

Cx 55X, oY
q2Xp7 Ve _ 2z X
\/E;r=1(xqt_xq)2Z.tr=1(xpt_xp)

X1
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Solar irradiance, illumination duration, temperature,
humidity, and other variables are among the data chosen for
new energy PV (Dong et al, 2022). Wind direction, wind
intensity, temperature, humidity, and other factors are among
the data chosen for new energy wind farms (Dhiman et al.,
2021). The correlation between new energy PV output and
meteorological information in the study area is analyzed using
Eq. (1) and Eq. (2). A total of z groups of meteorological
information are selected to form the meteorological feature
vectors required by the model X}"¢% = (x1¢, Xo¢, e Xnt)

The temporal features of the meteorological information of
the study area are then extracted using the construction of the
LSTM, setting the model to have L network units, and at
moment t, the output of the a LSTM network unit is predicted

to be X, as shown in Eq. (3) (Liu et al., 2022).
£/%% = concat(Xy¢, Yzr) (3)

In Eqg. (3), X; is the meteorological information feature
vector, y; is the PV outflow data, X[} is the splicing of the
previous two, and concat(-) is the splicing operation. The
minimum cell structure of LSTM is shown in Figure 2 (Kumar et
al., 2021).

In Figure 2, C;, C—q, Ci—3, hy, he—4, and h,_, are the status of
each learning units, i, is the input gate, as shown is Eq. (4) (Ma
etal., 2021).

ic = 8 [[Wi(he), Xi2] + b (4

In Eq. (4), § is the activation function, b; is the bias constant,
W; is the weight matrix of the input gates, and f; is the forgetting
gate, as denoted in Eq. (5).

fo = 8 [[Wy (o), XE2] + b | (5)

In Eq. (5), Wy is the weight matrix of the forgetting gate and
o; is the output gate, as denoted in Eq. (6).

o = & [[Wo(he), X22] + b, | (6)

In Eq. (6), W, in z is the weight matrix of the output gate. The
learnable unit states C; and h; are shown in Eq. (7).

{Ct = ftCt + it tanh[VVC [ht,Xgn] + bC]

ht = 0t tanh(Ct) (7)

In Eq. (7), h; is the state of the learnable unit, W, is the
weight matrix of the learnable unit.The LSTM network unit
captures the long-term dependencies in the time series through
the gating mechanism to realize the extraction of new energy
weather information features, see Figure 3 (Liu et al., 2021)
(Kong et al., 2021).
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Fig. 2. LSTM minimum cell structure
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Fig. 3. New energy weather time series feature vector extraction process

As shown in Figure 3, the unit state of the a LSTM network
unit is set to h,;. The new energy weather timing feature vector
X[ is output after the LSTM network.

Then the BN is constructed to predict the new energy output,
and the meteorological information feature vector X'¢® of the
study area at the moment of t and the new energy
meteorological time-series feature vector X*’* output after the
LSTM network are spliced as the input feature vector X? =
concat(X®%, X[S) of the BN, which is used as the basis for the
prediction of new energy output value. The prior distribution of
the BN constructed by the study is Gaussian distribution, as
denoted in Eq. (8) (Sharma et al., 2021) (Fortuin et al., 2022).

p(W) = T2, N (wj; 0,v8;) + L —mON(w;; 0.vF,)  (8)

In Eq. (8), W is the probability layer parameter of the BN, ©
is the mixing proportion of the Gaussian distribution, w; is the j
parameter of the probability layer of the BN, yZ, and y32, are the
variances under the normal distribution, and N is the total
number of parameters of the probability layer of the network. In
the BN prediction model, the input feature splicing vector is X,
the output new energy output prediction is Y, and the a
posteriori probability of the BN is p(W /X, Y). The approximate
distribution q(W;9) of the new energy output prediction is
introduced, which is shown in Eq. (9) (Jia et al., 2020) (Moe et
al., 2021).

qw;9) =TT, N(wj; 5 67) 9

In Eq. (9), 9 is the learned parameter of the model, y; is the
mean value of the j parameter, and 6]-2 is the parameter
variance. The a sampling value of the j parameter in the model
is calculated according to the approximate distribution, as
shown in Eq. (10) (Feng et al.,, 2021).

wé =+ log(l+ePi) ® z's 10
j j

In Eq. (10), ® is the Hadamard product and z* is the
multidimensional distribution of meteorological information in
the normal distribution. Based on Eq. (10), the a sampling
parameter WA (W1 ,WZ,...,WI‘\J'IW) in the BN network model
(Hebbi et al 2023) is obtained.The new energy outflow
prediction Y of the output can be obtained by taking the feature
splicing vector X as input in the BN network model and
propagating it forward in the model, see Eq. (11).

Y= £t ) (1)

2.2 Optimization model construction for user-side price demand
response

A appropriate demand response strategy can be developed
to balance the power supply and demand relationship once the
new energy output has been effectively predicted(Xia et al.,
2021). By optimizing the demand response strategy, the power

system’s uncertainty about the new energy output can also be
decreased (Sharma et al., 2022). Figure 4 depicts the processes
of the customer-side price demand response optimization
model.

As illustrated in Figure 4, the study is based on the forecast
data of new energy output, and then the price demand response
optimization model is established with the aim of minimizing the
total cost of user energy overhead. Electricity user demand
response optimization strategies can mainly split into price-type
and incentive-type. The study adopts the price-based demand
response optimization strategy, which guides users to adjust
their energy use behavior through the signal of electricity price
changes to achieve power optimization (Mokayed et al., 2023).
The power load transfer in the customer-side price demand
response optimization model is shown in Eq. (12).

pt=p°+4p (12)

The user load matrices p' and p° in Eq. (12) are the user load
matrices following and prior to the price-demand ring
optimization model adoption, respectively. Ap denotes the user
load transfer matrix, and Ap is shown in Eq. (13).

Ap = E « Alp] @ p° (13)

In Eq. (13), E is the matrix of elasticity coefficients of users
for multiple time periods. 4[p] is the normalized matrix of the
rate of change of the indicated time-of-day tariffs. These two
matrices are calculated in Eq. (14) (Huang et al., 2023).

[p] 4Ap; 4ps Aﬂ] T

° ’ 2 JEERY p%
€11 312 . eqr (14)
€1 €32 ... €yr

E =
ery, €erp ... eéerr

In Eq. (14), Apr is the difference between the tariff used by
the customer at moment T and the benchmark tariff, p is the
benchmark tariff of the electricity used by the customer at
moment T, and ey is the auto-elasticity coefficient of row T,
column T in the matrix of the multi-temporal elasticity
coefficients of the customer. For the target study area, users of
different load types (electricity, heat, and gas) each enjoy
different forms of output from new energy sources. The electric
load users integrate their own PV generation and share the
electricity from the regional wind power, the thermal load users
receive the thermal part of the energy converted by the wind
power, and the gas load users are allocated the gas energy
converted by the wind power (Iweh et al., 2021). For each time
t(s =1,2,..T), within each season s(s =1,2,..5), the new
energy output of these three load types for user i is calculated
as shown in Eq. (15).
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In Eq. (15), s is the meteorological season, t is the time, i is
the user, pftNlE is the t time to provide electrical load of new
energy output, pfY; is the t time of its own PV power
generation, pgf; is the t time of wind power in the
apportionment of the power, w is the apportionment coefficient,

pftNLE is the t time to provide thermal load of new energy
g,N.

output, v is the apportionment coefficient, ps‘m-E is the t time to
provide gas load of new energy output. The function of the
sharing coefficient is to allocate the total output of new energy
to different types of loads, and its calculation method differs
based on the system, which may be ascertained using empirical
formulas (Baik et al., 2022). Meanwhile, the new energy output
has uncertainties, and the need for energy storage and loading
when there is a surplus of energy, also, the need for external
energy supplementation when there is a shortage of energy
(Song et al., 2023). Therefore, the study introduces a multi-
energy cloud energy storage model for users, which makes use
of the big data and real-time information in the cloud platform
to formulate and optimize the charging and discharging
strategies. The cloud energy storage user meets its load demand
by leasing the right to use the energy storage from the cloud
energy storage provider, thus avoiding the fixed cost of directly

purchasing and operating and maintaining physical energy
storage equipment (Su et al, 2024). The total cost to the
subscriber consists of two components: firstly, the leasing
service fee to the equipment service as the initial investment
cost of using the cloud energy storage technology, and
secondly, the operational overheads borne by the additional
energy procurement from the electricity, heat and natural gas
networks required to safeguard the operation in the face of
power shortages or cloud energy storage resource constraints
(Zhang & Lyu et al.,, 2021). According to different user selection
methods, it can be divided into three scenarios. In scenario one,
electricity, heat, and gas users operate independently, each with
their own energy storage system. These energy storage systems
are used to balance the uncertainty of new energy output,
ensuring that sufficient energy can be provided when new
energy output is insufficient, and excess energy can be stored
when new energy output is surplus. Users can independently
decide how to use energy based on their own energy needs and
the status of the energy storage system. In scenario two, the
users give up building their own energy storage system and
instead purchases cloud energy storage services. Cloud energy
storage service providers are responsible for the construction
and operation of energy storage systems, and users only need
to pay rental and usage fees. Users decide how to use energy
based on the status of cloud energy storage services and their
own energy needs. When cloud energy storage resources are
limited or energy is insufficient, users need to purchase
additional energy from electricity, heat, and natural gas

ISSN: 2252-4940/© 2025. The Author(s). Published by CBIORE
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networks. In scenario three, users further introduce a demand
response optimization model on the basis of purchasing cloud
energy storage services. This model guides users to adjust their
energy consumption behavior through electricity price change
signals, achieving electricity optimization. Users use demand
response optimization models to adjust energy usage based on
electricity price change signals and their own energy needs. For
example, increasing energy use when electricity prices are low,
reducing energy use or transferring loads when electricity prices
are high. To maximize economic benefits, the user aims to
minimize their equivalent annual cost, accounting for the cost of
leasing cloud storage services and the additional cost of
purchasing energy from other energy networks (natural gas,
heat, and electricity) due to energy shortages or limited cloud
storage resources, as indicated in Eq. (16).

r(1+r)¢
Pa ™ (147)d-1

[ minCy = kpaCinyi + C;

masa (16)

max, ;

lCinv,i = kflpf'i

In Eq. (16), kpq is the equal annual value coefficient, C; is
equivalent annual value cost, d is the length of time the energy
storage device is used, r is the annual interest rate, C, is the
operating cost of the user using the cloud energy storage, Ciny,;i
is the investment cost, kf; and kf, are the lithium battery’s
service charge per unit of power and per unit of capacity,
respectively, p/'* and ef}** are the maximum power provided
by the cloud energy storage and the maximum limit value of the
cloud gas storage capacity, respectively, kg, and kg, are the
energy conversion rate of the heat storage tank and the capacity
cost, respectively, kv, and kv, are the energy conversion rate
and capacity cost of the gas storage tank, respectively. Because
the cost minimization model contains segmented functions, it is
difficult to solve it conventionally. Therefore, the nonlinear
constraints containing segmented functions are linearized using
the “Big M method”, which is mainly realized by introducing
auxiliary variables and 0-1 variables. It is assumed that one of
the segmented functions in the solution function is f(x), see Eq.
(17) (Jayaprakash et al., 2023) (Cao et al., 2024).

re =

max{x,0}

min{x, 0} (17

To represent f(x), an auxiliary variable y is introduced such
that y = max(x,0). The 0-1 variable is then used to indicate the
sign of x. Assuming that the 0-1 variable is u, the representation
is shown in Eq. (18).

y<x+M(1-uy)
y< M1 —uy)
u tu, =1
uq,u, € {0,1}

(18)

In Eq. (18), M is a large constant. u; and u, are both 0-1
variables. Finally, all these constraints are integrated into the
new energy user cost minimization solving problem. The
original problem is converted to a mixed integer linear
programming (MILP) problem, which is then solved using a
standard MILP solver to solve the user-minimized annual value
cost, and the new energy output demand response optimization
can be realized. It is capable of achieving the optimization of
new energy output demand response.

To demonstrate the prediction accuracy of the LSTM-BN
model constructed in the study, three evaluation indexes,
namely, normalized root mean square error (NRMSE),
correlation coefficient between predicted and real values (R?),
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and average percentage error (APE) are selected to
quantitatively evaluate the prediction ability of the model.
NRMSE is a significant statistic for determining the difference
between projected and actual values, with a smaller value
indicating a more accurate prediction. The calculation method
is displayed in Eq. (19) (Viktor et al., 2023).

_ Z(Ytrue'Ypred)Z
NRMSE_ Z(ytrue'Ymean)z (19)

In Eq. (19), Youes Ypreds Ymean Stand for the mean of the true
value, predicted value, and true value, respectively. APE
directly reflects the percentage of prediction error to the actual
value, and a lower APE value denotes a more accurate
prediction. The calculation method is as denoted in Eq. (20)
(Irfan et al., 2021).

APE= |Yrewal¥ored 090004 (20)
Yactual

In Eq. (20), Yactual @0d Ypreq stand for the mean of the true
value, predicted value, respectively. The R? value is used to
quantify the degree of correlation between the predicted values
and the actual observed values of the model. The calculation
method is in Eq. (21) (Long et al., 2023).

RZ =1- (Z (}/true'}’pred)z)/(z (ytrue'Ymean)z) (2 1)

The model’s predictive power increases with the R? value’s
proximity to 1.

3. Result and Discussion

3.1 Performance analysis and application testing of new energy
output prediction models

To validate the effectiveness of the new energy output
prediction model constructed in the study with the LSTM-BN,
the Google Earth Engin dataset and GEFCom2014 dataset were
selected as the training data for the model. The Google Earth
Engin dataset is an open and unified spatial dataset for wind and
solar installations, which records the location, capacity, and
historical output data of wind and solar installations in a certain
region. The GEFCom2014 dataset contains multiple dimensions
of data, including actual and predicted values of new energy
loads in a certain region, fluctuations in electricity prices, real-
time data on wind power, and predicted and actual output of
solar power generation. The study first preprocessed two
datasets, performing tasks like data cleansing, addressing
missing values, and detecting and processing outliers, to ensure
data quality and consistency when using the Google Earth Engin
dataset and GEFCom2014 dataset for the detection and
validation of new energy output prediction models (Borrohou et
al, 2023). Next, it was divided into a training set and a testing
set in a 4:1 ratio. The training set is used for model training, and
the testing set is used to evaluate the predictive performance of
the model. The operating environment and parameter settings
of the model are displayed in Table 1.

The fitting degree of the predicted and actual values of the
LSTM-BN model was first determined in the two datasets
respectively, and to illustrate the superiority of the research
methodology, the BN model, the SEAM-LSTM model, and the
CL-LSTM model were selected to form a control experiment
with the research-constructed model under the same
experimental conditions. The results are shown in Figure 5.

In Figure 5, the predicted values of the LSTM-BN model
constructed in the study fitted the real values to the highest
degree, and the SEAM-LSTM model also has a higher degree of
fit, but there is still a gap with the LSTM-BN model, which

ISSN: 2252-4940/© 2025. The Author(s). Published by CBIORE
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Table 1
Running environment and parameterization of the model
Project Parameter
System Window 10
GPU NVIDIA Tesla H800
CPU AMD Ryzen 9 7950X3D
Memory DDRS5 6400 32GB(16GBx2
Development language Python
Hidden layer output unit 25
Initial learning rate 0.005
Iterations 160
Number of hidden layers 3
Optimizer Adam
loss function Cross-Entropy
Epoch number 50
Review window size 600X 600
Table 2

Comparative results of the predictive power of the four models

Method Google Earth Engin dataset GEFCom2014 dataset

NRMSE R? APE NRMSE R? APE
LSTM-BN 0.0088 0.9965 0.432 0.0075 0.9987 0.332
SEAM-LSTM 0.0123 0.9901 0.521 0.0232 0.9712 0.421
CL-LSTM 0.0235 0.8636 0.765 0.0325 0.8652 0.655
BN 0.0560 0.8421 0.865 0.0456 0.8465 0.745

reflects the effectiveness of the present model in dealing with
the long term temporal dependence of the data. Comparing the
results in Figures 5(a), (b), (e) and (f), as shown, the LSTM-BN
model has the potential to greatly increase the prediction
accuracy by capturing the features of meteorological
information through the LSTM and then optimizing the
prediction of new energy power generation using the BN
technique. When the LSTM is missing in the LSTM-BN model,
the deviation of the prediction results becomes larger and the
prediction accuracy is reduced. Comparing the results in
Figures 5(a) and (e), it can be obtained that the predicted values
of the LSTM-BN model constructed by the study fitted well with
the true values both in the GEFCom2014 dataset and in the
Google Earth Engin dataset, which indicates that the model has
some generalization, and it can produce better prediction

250
200

alu

Predic
U
o

results in various usage scenarios. The NRMSE, R?, and APE
statistical results of the four algorithms are shown in Table 2.
Table 2 shows the detailed results of the predictions of the
four models in two kinds of data, and it can be found that the
LSTM-BN model constructed by the study has the highest R?
value and the lowest NRMSE and APE values, whether it is
tested in the GEFCom2014 dataset or in the Google Earth Engin
dataset. This indicates that the model constructed in the study
can predict the new energy power output data more accurately.
This is because the LSTM structure in the research and
construction model is adept at handling long-term
dependencies in time series data, and can effectively capture
the temporal characteristics of new energy output. BN updates
the posterior distribution of model parameters by combining
prior knowledge and observation data, which helps improve the
generalization ability and prediction accuracy of the model.
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Fig. 5. Degree of match between the predicted and actual values of the four models
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Fig. 7. Prediction results of new energy output power by four models

Although SEAM-LSTM and CL-LSTM also adopt the LSTM
structure, their predictive performance is slightly inferior to the
LSTM-BN model due to insufficient optimization of model
parameters. The standalone BN model cannot fully capture the
temporal features in the data, resulting in poor predictive
performance.Then the prediction speeds of the four models are
tested, and the results are shown in Figure 6.

From Figure 6(a), in the Google Earth Engin dataset, the
LSTM-BN model demonstrated excellent performance. It only
needs about 64 iterations, and its fitness value quickly reaches
a stable state, indicating that the model can efficiently capture
data features and optimize the model. In contrast, the SEAM-
LSTM model requires 80 iterations to stabilize its fitness value,
while the CL-LSTM model requires 82 iterations. Although the
convergence speed of these two models is slightly slower than
that of the LSTM-BN model, they still demonstrated some
optimization ability when processing this dataset. However, the
BN model faced significant optimization difficulties when
processing this dataset, requiring 112 iterations to stabilize the
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fitness value, and its stable fitness value was higher than the first
three models. In the GEFCOm2014 dataset, the LSTM-BN
model also demonstrated efficient computational capability and
excellent generalization ability. After about 82 iterations, the
fitness value tended to stabilize. This further validates the
stability and optimization efficiency of the LSTM-BN model on
different datasets. However, SEAM-LSTM, CL-LSTM, and BN
models performed poorly in this dataset. Their fitness values did
not reached a stable state at the end of training, indicating that
these models may face optimization difficulties and relatively
weak generalization ability when processing certain datasets.
The LSTM-BN model demonstrated excellent generalization
ability in two different datasets. Its fitness value could quickly
reach a stable state and maintain stable optimization effects in
different data environments. This indicated that the LSTM-BN
model had strong data adaptability and robustness, making it
the preferred model for tasks such as time series prediction. In
contrast, SEAM-LSTM, CL-LSTM, and BN models showed
weaker generalization ability.
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Fig. 8. Comparison of Before and After Adopting Demand Response Programs
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The model was trained on data from January to December
2023 from distributed new energy generation systems deployed
on the rooftop of an industrial park, and the data sampling
interval was set at once every minute to eliminate abnormal and
invalid information. Finally, 12,568 high-quality data points are
retained for subsequent research. At the same time, numerical
weather forecast data from neighboring weather stations were
introduced for training, and the trained model was utilized to
forecast the new energy output power on a random day, and the
results are shown in Figure 7.

From Figure 7, it is evident that the new energy power
system had a maximum output power of 18865W on sunny
days, and it is concentrated between 11:00-14:00. And the
highest power output power in rainy days was only 1356W,
which was concentrated between 13:00-14:00. In terms of the
overall prediction, the curve value between the predicted one
and the true one of the LSTM-BN model constructed in the
study almost overlapped, and the maximum prediction error
does not exceed 1%. In contrast, the prediction curves of the
SEAM-LSTM model, CL-LSTM model and BN model had
relatively large errors with the true curves, and could not
accurately predict the output power of the new energy power
system.

3.2 Analysis of user-side price demand response optimization results

Once the new energy output power in the target area is
accurately predicted using the LSTM-BN model, the
corresponding demand response optimization strategy can be
formulated based on the prediction results. The study set each
season as a 91-day cycle, and for typical days, a 24-hour
dispatch cycle was determined. Due to the characteristics of the
cloud energy storage system that does not require frequent
immediate response, the dispatch interval of the system was set
to be 1 hour to optimize the energy allocation. In addition, the
time-of-day tariff mechanism of a neighborhood was used,
which was specifically divided into three time periods, namely,
peak time, usual time, and valley time, and the impact of tariff
changes on the scheduling strategy was simulated based on the
specific tariff and time period divisions. The comparison of
electricity load in a neighborhood after citing the demand
response design methodology designed by the study is shown
in Figure 8.

In Figure 8, the peak period of electricity consumption in this
neighborhood in either season was around 12:00-21:00 and the
low period is from 0:00-6:00 every day. Before the study’s
demand response plan was implemented, there was a lot of
variation in the load profiles of the customers’ electricity usage.
In contrast, the load volume curves began to flatten out
regardless of the season after the study’s optimum scenario was
added. The charge increases during the low peak period of
power use and fell during the peak period. Next three
comparison scenarios were set up to compare the impact of
demand response and time-of-use tariff strategies. Scenario 1:
Electricity, heat, and gas users are independent, their own
energy storage systems are built, and a new energy output
prediction model is used. Scenario 2: Users abandon their own
energy storage and purchase cloud energy storage services.
Scenario 3: Based on Scenario 2, a demand response
optimization model is added, i.e., users adjust their energy use
base on the price of electricity and their own needs. The
comparison of one day’s electricity load for the three scenarios
is shown in Figure 9.

As shown in Figure 9, Scenario 2 exhibited a more significant
peak shaving effect due to the configuration of the energy
storage system. In contrast, the model of Scenario 3 not only
reduced energy storage system’s operating costs but also better
improved the fluctuation of the load curve by optimizing the
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energy storage capacity configuration and time-sharing tariff
strategy, resulting in a smoother load curve. The results of the
fixed investment cost and the whole life cycle net benefit of the
users under the three scenarios are shown in Figure 10.

In Figure 10(a), the fixed investment costs for users in
Scenarios 1, 2 and 3 are $2.78 million, $3.52 million and $3.52
million, respectively. This is due to the fact that the users of
Scenarios II and III need to purchase the cloud storage power
system as well as bear its maintenance costs. As shown in Figure
10(b), the whole life cycle net benefits for users of Scenarios 1,
2 and 3 are $2.15 million, $3.54 million, and $4.45 million,
respectively. This indicated that the user's use of the cloud
energy storage system reduces the overall operating cost and
improves the energy use efficiency, thus increasing the net
benefit. The use of a demand response optimization model
considerably increases the net benefit. After optimization, users
are able to better adapt to fluctuations in electricity prices and
achieve more efficient energy use and greater economic
returns.

4. Conclusion

Facing the strong uncertainty of new energy output, the
study put forward a new energy output prediction method
based on LSTM-BN. The approach used the BN for power
forecasting after extracting the new energy weather quantity
vector features using the LSTM network. It gave future energy
system planning a strong data foundation. Next, considering the
important influence of price-based demand response in the
market mechanism on user behavior, a user-side demand
response model was established. Users were guided to adjust
their electricity consumption behavior through price signals.
The LSTM-BN constructed in the study outperformed other
algorithms both in prediction accuracy and budget speed.
Regarding prediction accuracy, the NRMSE value of LSTM-BN
model was less than 0.0090, R? was more than 0.99, and APE
was less than 0.5. In budget speed, the LSTM-BN model tended
to stabilize with 64 iterations and 80 iterations in the Google
Earth Engin and GEFCom2014 datasets, respectively, with the
lowest value of the fitness. After the LSTM-BN model accurately
predicted the new energy output, a price-based demand
response strategy was introduced. The results indicated that the
demand response method used in the study flattened the load
curve and had an important role in peak shaving and valley
filling. Meanwhile, after applying the demand response
optimization model, the whole life cycle net benefit of the users
in the region was maximized, which was 4.45 million RMB. It
showed that the LSTM-BN model had very high prediction
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accuracy and fast convergence speed in new energy output
prediction, which gave great support for the power system’s
stability and efficiency. However, different users have
geographic variability and potential volatility, and subsequent
research will focus on modeling and analyzing user behavioral
non-volatility to improve the applicability of the model.
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