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Abstract. To improve the low-carbon economic performance of renewable energy-dominated power systems, a multi-energy coordinated 
optimization dispatch model for wind, solar, thermal, and storage systems considering uncertainties on both the supply and demand sides is proposed. 
This paper comprehensively considers the economic costs of thermal power unit operation, wind and solar power curtailment, energy storage 
operation, carbon trading and spinning reserve. The model incorporates a penalizing carbon trading mechanism and uses a stochastic chance-
constrained approach to handle fluctuations in wind and solar power generation as well as uncertainties in load forecasting. The study, based on the 
IEEE 30-bus system, is solved using a stochastic simulation particle swarm optimization algorithm. Results show that after introducing the carbon 
trading mechanism, the system's carbon emissions were reduced by 8.35%, wind and solar curtailment penalties were reduced by 65.48%, and overall 
costs decreased by 14.94%. Additionally, the chance-constrained model effectively reduced the system's reserve capacity requirements, with reserve 
capacity decreasing by 31.84%, leading to a further reduction of 26.83% in overall costs. In the scenario of combined wind-solar-thermal-storage 
output, the wind and solar curtailment rate dropped to 7.37%, and carbon emissions decreased to 6474.69 tons. Through the "energy shifting" function, 
the energy storage system provided effective support during peak loads, further optimizing the dispatch outcomes. 
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1. Introduction 

Globally, the continuous growth in energy consumption has 
led to significant environmental impacts, especially the increase 
in greenhouse gas emissions, which has exacerbated climate 
change. To address this challenge, countries have set low-
carbon development goals, promoting the use of renewable 
energy and reducing dependence on fossil fuels. The clean 
energy transition of power systems has become a key global 
measure to combat climate change. The widespread adoption 
of renewable energy sources, such as wind and solar power, 
provides a critical opportunity to reduce carbon emissions, but 
their instability and volatility pose new challenges to the 
economic and stable operation of power systems (Njie et al. 
2024; Takyi et al. 2024). How to optimize renewable energy 
integration and improve the low-carbon economic performance 
of systems while ensuring safety and stability has become a key 
research focus in the energy field (Gu et al. 2023; Liu et al.2024; 
Wang et al.2024). 

Traditional power systems are dominated by fossil fuels, 
relying on the stable output of thermal power plants to maintain 
load balance (Wang et al. 2020). However, as the penetration of 
renewable energy increases, wind and solar power generation 
exhibit strong volatility and randomness, making traditional 
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dispatch models insufficient. To further enhance operational 
efficiency and renewable energy utilization, the concept of 
multi-energy coordinated optimization dispatch has emerged 
(Gu et al.2020). Coordinating wind and solar power with thermal 
power and energy storage systems can help mitigate the 
volatility of clean energy to some extent. Additionally, the 
introduction of carbon trading mechanisms has further 
promoted the development of low-carbon economic dispatch. 
By using market-based carbon regulation, power systems can 
achieve more efficient dispatch optimization, encouraging the 
broader application of renewable energy (Zhou et al.2023). 

In recent years, as renewable energy has taken on an 
increasingly important role in global power systems, effectively 
dispatching volatile energy sources like wind and solar power 
has become a research focus in both academia and industry 
(Prawitasaria et al.2024). Many studies have explored various 
optimization dispatch methods aimed at improving the 
utilization of renewable energy and reducing dependence on 
fossil fuels. 

In terms of addressing wind power uncertainty, researchers 
have proposed various mathematical modeling methods. Early 
studies widely employed Gaussian membership functions to 
describe wind power uncertainty. Using Gaussian functions, 
researchers could better model the volatility of wind power 
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output and optimize dispatch strategies. For instance, Pandit et 
al. (Pandit. et al. 2015) proposed a dispatch method based on 
Gaussian membership functions, which significantly reduced 
system reserve capacity requirements and increased renewable 
energy utilization. Wang et al. (Wang et al. 2013) adopted an 
ascending half-trapezoidal membership function to describe 
wind power uncertainty, improving system robustness when 
dealing with wind power forecasting errors. In contrast, Ma, R. 
et al. (Ma et al. 2020) proposed a descending half-trapezoidal 
membership function to better handle the random fluctuations 
in wind power output. Although these methods partially address 
wind power uncertainty, their applicability often depends on 
specific scenarios and lacks broad generalization in complex 
systems. 

Similar to wind power, the volatility of solar power also 
poses challenges to power system dispatch. Many researchers 
have attempted to jointly dispatch wind and solar power to take 
advantage of their complementary generation patterns. For 
example, some studies found that solar power generation during 
the day could compensate for low wind speeds, and vice versa. 
Yang et al. (Yang et al. 2021) proposed an optimized dispatch 
strategy based on wind-solar complementarity, effectively 
reducing wind and solar curtailment rates by leveraging their 
complementary characteristics. Wang et al. (Wang et al. 2022) 
further pointed out that coordinated optimization of wind and 
solar power can significantly reduce reliance on thermal power 
plants, thus lowering carbon emissions. These studies suggest 
that combining wind and solar power in dispatch strategies not 
only increases renewable energy utilization but also reduces 
system operational costs. 

With the advancement of energy storage technologies, 
energy storage systems have become an increasingly flexible 
tool in power systems. Energy storage systems can store excess 
power from renewable sources and release it when generation 
is insufficient, providing a “peak-shaving and valley-filling” 
effect. Wang et al. (Wang et al.2021) proposed a multi-energy 
coordinated optimization dispatch method that integrates 
energy storage with wind and solar power, reducing load 
fluctuations and enhancing renewable energy utilization 
through the “energy shifting” function. Aunedi, M. et al. (Aunedi 
et al. 2023) further proposed that optimized energy storage 
configurations can reduce reliance on traditional thermal power 
plants and enhance system flexibility. These studies 
demonstrate that energy storage systems, as a key flexibility 
resource, can play a crucial role in highly uncertain renewable 
energy systems. 

In recent years, driven by the urgent need to address climate 
change, carbon trading mechanisms have been introduced into 
power system dispatch as a market-based tool for carbon 
emission control. Carbon trading allows power companies to 
purchase carbon credits to compensate for excess emissions, 
thereby economically regulating carbon emissions. Ting et al. 
(Ting et al. 2018) proposed a low-carbon economic dispatch 
method based on carbon trading, achieving simultaneous 
optimization of system costs and carbon emissions through 
refined carbon management of power generation units. Rabe et 
al. (Rabe et al. 2019) found that the introduction of carbon 
trading mechanisms can effectively reduce carbon emission 
pressure in power systems, especially in scenarios with high 
penetration of renewable energy. Furthermore, He et al. (He et 
al. 2023) noted that in the coordinated dispatch of carbon 
trading mechanisms and energy storage systems, carbon 
emissions are significantly reduced, and overall economic 
performance is optimized. 

To handle the random fluctuations of wind and solar power, 
chance-constrained programming methods have been widely 
applied in recent years. These methods use probabilistic 
descriptions of uncertainty, allowing the system to optimize 
dispatch strategies within a certain risk range. Ning et al. (Ning 
et al. 2021) proposed a chance-constrained power system 
dispatch model that handles wind power randomness at 
specified confidence levels. Zhan, S. et al. (Zhan et al. 2022) 
further noted that the chance-constrained model can effectively 
reduce system reserve capacity requirements and increase 
system flexibility. These methods exhibit strong robustness in 
high-penetration renewable energy scenarios but also face 
challenges related to computational complexity. 

Despite the effectiveness of these methods in mitigating 
renewable energy volatility, several limitations remain (Liu et al. 
2022). First, most studies focus on the optimization dispatch of 
individual energy forms like wind or solar, neglecting the 
potential of multi-energy coordinated dispatch in enhancing 
system stability. Additionally, many studies on carbon trading 
mechanisms focus on demand-side energy integration, without 
adequately considering the uncertainties in supply-side 
resources and renewable energy absorption. Current dispatch 
methods also struggle to balance economic efficiency and 
environmental benefits when facing complex uncertainties. 

At present, most literature introduces carbon trading 
mechanisms, uses the integrated energy system to integrate 
multiple energy sources on the demand side, or only considers 
wind, fire, wind, fire and storage on the supply side to reduce 
carbon emissions; fewer literature is based on the resource 
endowment on the supply side, taking into account the 
uncertainty of clean energy and load, and adopts the synergy of 
wind, solar, fire and storage to balance the system's low-carbon 
economy and safe absorption of clean energy (Liu et al. 2022; 
Wu et al. 2022). Therefore, this study aims to develop a multi-
energy coordinated optimization dispatch model for wind-solar-
thermal-storage systems, introducing a penalizing carbon 
trading mechanism and using a stochastic chance-constrained 
approach to handle system uncertainties. The model is 
expected to improve the low-carbon economic performance of 
power systems, reduce carbon emissions, and enhance 
renewable energy absorption. Unlike existing research, this 
study considers the random volatility of renewable energy and 
introduces carbon trading to optimize carbon emission control. 
The stochastic chance-constrained approach effectively handles 
the uncertainties of wind, solar, and load, enhancing system 
reserve flexibility. Additionally, the proposed coordinated 
dispatch model for wind-solar-thermal-storage systems helps 
reduce overall operational costs, further promoting the 
development of low-carbon economic dispatch.  

2. Research method  

The wind, solar, thermal and storage integrated energy system 
constructed in this paper is at the regional level, which is based 
on meeting the electricity demand of the region and aims at 
minimizing the economic operation and carbon emissions of the 
system (Elahi Gol and Ščasný 2023). By optimizing the 
coordinated operation of various types of energy supply 
equipment and energy storage equipment, the system can 
achieve economic operation while taking carbon emissions into 
account. The system structure is shown in Figure 1. 

 
2.1 Source of charge uncertainty model construction 

Considering the impact of uncertainty, the actual value of wind 
power, photovoltaic output and load can usually be expressed 
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as the determined prediction value plus the uncertain prediction 
error, namely: 

Pwr,t = Pwpre,t + εw,t (1) 
Pgr,t = Pgpre,t + εg,t (2) 

Plr,t = Plpre,t + εl,t (3) 

Where, Pwr,t  ,Pgr,t  ,Plr,t  are the actual values of wind power, 

photovoltaic and load, respectively；Pwpre,t ,Pgpre,t ,Plpre,t  are 

wind power, photovoltaic and load forecast power respectively 
εw,t ,εg,t,εl,tare wind power, photovoltaic and load prediction 

error power. 
According to the central limit theorem, the uncertainty 

error follows a normal distribution, namely: 

σw,t = 0.2Pwpre,t + 0.02Pwr (4) 

σg,t = 0.2Pgpre,t + 0.02Pgr (5) 

σl,t = 0.03Plpre,t (6) 

Where, σw,t , σg,t  , σl,t  are the standard deviation of normal 

distribution with mean of 0; Pwr and Pgr are the rated installed 

capacity of wind power and photovoltaic power, respectively. 
Wind speed, light intensity and load are affected by the 

uncertainty of natural conditions and electricity consumption 
habits, making it difficult to accurately predict (Jin et al. 2022). 
The expression considering the uncertainty of landscape load is 
formula (7) - -formula (8). 

Power balance: 

PL,t + PE,chr,t − (Pw,t,t − Pqw,t) − (Pgr,t − Pqb,t) −

∑  

n

i=1

PG,i,t − PE,dis,t = 0
 (7) 

Rotate the standby balance: 

Plr,t +∑  

T

t=1

PE,chr,t
max − (Pww,t − Pqw,t) − (Pgr,t − Pqg,t) −

∑  

n

i=1

PGi
max−∑  

T

t=1

PE,dis,t
max ⩽ 0

 (8) 

Where, PE,chr,t  ,PE,dis,t  are the energy storage charging and 

discharge power respectively; Pqw,t ,Pqg,t are air abandon and 

light abandon, respectively; PG,i,t is the power at time t of the i 

thermal power unit；PGi
max is the maximum power of the first i 

thermal power unit; PE,chr,t
max  , PE,dis,t

max  are respectively the 

maximum charge and discharge amount of energy storage at 
time t; T is the total number of daily scheduling periods, and T 
=24. 

2.2 Chance-constrained model processing 

The chance constraint satisfies the constraint in the form of 
probability, namely that the scheduling result can be beyond the 
constraint range to some extent, but the probability of allowing 
the constraint to hold is not less than the previously set 
confidence level (Huang et al. 2022). 
The general form of the opportunity constraint planning model 
is: 

{
minf(x, ξ)

 s. t. Pr{gi(x, ξ) ⩽ α}, j = 1,2, … , k
 (9) 

Bring equation (1) - -equation (8) into equation (9), and the 
opportunity constraint model available for scheduling is: 

minPr{Plpre,t+ εl,t + PE,chr ,t − (Pwpre,t + εw,t − Pqw,t) − (Pgpre,t −

εg,t − Pqξ,t) −∑ 

n

i=1

PG,t,t − PE,dis,t = 0} ⩾ α
 (10) 

minPr {Plpre,t + εL,t +∑ 

T

t=1

PE,chrts 
max − (Pwpre,t + εw,t − Pqw,t) − (Pgpre,t −

εg,t − Pqg,t) −∑ 

n

i=1

PGi
max −∑ 

T

t=1

PE,dis,t
max ⩽ 0} ⩾ β

 (11) 

Where, α  ,β  are the confidence level of power balance and 
rotating standby balance, respectively. 
In this paper, Monte Carlo simulated stochastic chance 
constraint method. By stochastic Monte Carlo simulation with 
random variables, the results need to satisfy the confidence 
level. 

2.3 System carbon trading cost model 

According to the residential electricity habit, the load 
curve within 1 d is "double peaks" in the morning and evening, 
while the wind power is often at night and early morning, the 
daytime output is small, and the output of the wind power and 
load have obvious reverse peak regulation characteristics in the 
daytime, and the output at night and early morning is almost 
zero. Individual grid connection will increase the peak and 
valley difference of net load, and then increase the peak 
regulation pressure of thermal power units, and the utilization 
rate of wind power and photovoltaic is not high (Lou et al. 2022). 
Using the complementarity of combined grid connection in 
scenery time, the volatility of power generation can be gentle to 
a certain extent. The "energy time shift" of energy storage stores 
the electric energy when the wind output is high but the load 
demand is low. When the output is low and the load demand is 
high, the electric energy is released to further smooth the output 
curve and solve the reverse peaking. 

Compared with the moderate carbon reduction mode of 
setting carbon quota, the carbon trading mechanism is a market 
trading method for the carbon rights of power producers 
according to the Kyoto Protocol. On the principle of economic 
leverage, it is a scientific combination of high pollution, low cost 
and low pollution and high cost, so as to achieve the purpose of 
reducing carbon emissions. 

 
Fig. 1 Schematic diagram of regional integrated energy system 
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2.3.1.The actual carbon emissions 

A large amount of CO2 is generated during the operation of 
conventional coal-fired units, and the parts below or beyond the 
carbon emission quota can be sold for carbon rights. Although 
CO2, the uncertainty of wind power and photovoltaic causes the 
grid. This paper considers the increase of standby carbon 
emissions caused by wind power, photovoltaic and load 
uncertainty, which is regarded as the carbon emission of wind 
load, namely: 

{
 
 
 
 
 

 
 
 
 
 EGt =∑ 

n

i=1

δiPGi,t

Ewt =∑ 

n

i=1

δiPwb,t

Egt =∑ 

n

i=1

δiPgb,t

Elt =∑ 

n

i=1

δiPlb,t

 (12) 

Ept = EGt + Ewt + Egt + Elt 
(13) 

Where, EGt ,Ewt ,Egt ,Elt are the actual carbon emission at time 

t of thermal power, wind power, photoelectric and load 
respectively; PGi,t ,Pwb,t ,Pgb,t ,Plb,t are the pre-day dispatching 

output of the i thermal power, wind power, photoelectric and 
load standby time t. 

2.3.2 Carbon emission right quota 

At present, China is in the early stage of the implementation of 
the low-carbon emission reduction policy. Most of the carbon 
trading quotas are allocated for free, so the carbon emission 
sources can obtain the corresponding carbon emission quotas 
as follows: 

{
 
 
 
 
 

 
 
 
 
 DGt = λ∑  

n

i=1

PGi,t

Dwt = λ∑  

n

i=1

Pwr,t

Dgt = λ∑  

n

i=1

Pgr,t

Dlt = λ∑  

n

i=1

Plb,t

 (14) 

Eqt = DGt +Dwt + Dgtt +Dltt 
(15) 

Where, DGt ,Dwt ,Dgt ,Dltare the carbon emission quota at time 

t for thermal power, wind power, photovoltaic power and load 
reserve respectively, λ  is Distribution amount of carbon 
emission per unit of electricity by using the base line method. 

2.3.3 Carbon trading costs 

According to the relationship between the actual emission of 
carbon source and the carbon quota and the purchase of carbon 
rights, the carbon trading costs with punishment are mainly 
three: the purchase cost of carbon rights, carbon income and 

excessive emission punishment (Yan et al. 2022). The 
calculation formula is: 

Cco2,t = {

Kpt(Ept − Eqt), Ept ⩽ Eqt

Kpt(Ept − Eqt), Eqt ⩽ Ept ⩽ Ect + Eqt

KptEHt + Kft(Ept − Ect − Eqt), Ept ⩾ Ect + Eqt

 (16) 

Ect = μEqt 
(17) 

Where, Ept ,Eqt ,Ect are respectively the actual carbon source 

emissions, carbon emission quota and market carbon emission 
right purchase; Cco2,t is the cost of system at time t；Kpt , Kft 

are the carbon trading price at time t and the excess penalty 
price, respectively; μ is purchase of margin for carbon rights. 

2.4 System operation objective function 

As a traditional controllable power source, thermal power unit 
plays an important role in the stable and safe operation of the 
power grid; due to the influence of natural conditions such as 
wind speed and light intensity, and its large-scale grid 
connection, it is difficult to match the load demand, which will 
cause a large amount of wind and light abandonment (Gao et al. 
2024). This paper considers the economic costs of thermal 
power unit operation, wind and light abandonment, energy 
storage operation, carbon trading and rotary reserve (Jin et al. 
2023). 

Comprehensive system cost is: 

Fc =∑ 

T

t=1

(CGi,t + Cqf,t + Cqp,t + Cess,t + Cri,t + Cco2,t) (18) 

Where, Fc  is the comprehensive cost of the system; 
CGi,t, Cqf,t,Cqp,t ,Cess,t ,Cri,tare respectively the power generation 

cost of thermal power unit, penalty cost of wind and light 
abandonment, energy storage cost and standby machine. The 
details are as follows: 

CGi,t =∑  

n

i=1

(aiPgi,t
2 + biPg,t + ci,t) (19) 

Cq,t, = DcwPqw,t (20) 

Cqg,t = DcgPqg,t (21) 

Cess,t = Dce(PE,chr,t + PE,dis,t) (22) 

Cr,t = Ds(ri,t
d + ri,t

u ) (23) 

Where, Dcw and Dcgare the penalty coefficient for abandoning 

wind and light; Dce is the energy storage cost coefficient; Dsis 

the rotating spare cost coefficient; ri,t
d  ,ri,t

u   are positive and 

negative rotation reserve capacity at time t, respectively. 

2.5 System operation constraints 

Thermal power unit constraints  

(1) The output constraint is: 

PGi
min ⩽ PGi,t ⩽ PGi

max (24) 

(2) The climbing constraint is: 

−Rdi ⋅ ΔT ⩽ PG,it+1 − PGi,t ⩽ Rui ⋅ ΔT (25) 

Where, Rdi ,Rui are the upward and downward climbing rates 
of i thermal power units respectively. 
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Wind power constraints 

(1) The output constraint is: 

0 ⩽ Pw,t ⩽ Pwr (26) 

(2) The air abandon volume constraint is: 

0 ⩽ Pqw,t ⩽ Pwr,t (27) 

Photovoltaic constraints 

(1) The output constraint is: 

0 ⩽ Pgr,t ⩽ Pgr (28) 

(2) The constraint of light discard amount is: 

0 ⩽ Pqf,t ⩽ Pfr,t (29) 

Energy storage constraints 

(1) The energy storage quantity is: 

PE,chr,t = PE,t ⋅ Δt ⋅ ηc (30) 

PE,dis,t = PE,t ⋅ Δt/ηd (31) 

Et = ρEt−1 − PE,chr,t − PE,dis,t (32) 

where, ηc  , ηd  are respectively the charge and discharge 
efficiency; ρ is The power loss rate; Et  is the equivalent power 
supply of energy storage. 

(2) Power constraint is: 

PE,cm,t
max + PE,t

up
⩽ Pess,t ⩽ PE,dis,t

max − PE,t
dw

 (33) 

PE,drr,i ⋅ PE,dis,s = 0 (34) 

(3) The standby constraint is: 

PE,t + PE,t
up
⩽
Et−1 −∑  T

t=1 Et
max

Δt
⩽ PE,t + PE,t

dw (35) 

Where, PE,t
up

 ,PE,t
dw are the positive and negative reserves for the 

equivalent power supply at time t; PE,t is the equivalent power 

supply power of energy storage at time t. 

(4) The capacity constraint of the state of charge is: 

Emin ⩽ Et ⩽ Emax (36) 

Where, Emin  ,Emax are the minimum and maximum energy 
storage, respectively. 

3. Case Study Analysis 

3.1 Model Solution 

Particle Swarm Optimization (PSO) has advantages such as 
fewer parameters, fast convergence speed, and better selection 
of global optimal solutions. It is highly capable of solving 
nonlinear and multi-peak problems (Zhang et al. 2020). Since the 
power balance and spinning reserve balance constraints in this 
study involve random variables, a combination of stochastic 
simulation and PSO is adopted, referred to as the Stochastic 
Simulation Particle Swarm Optimization (SSPSO). The flowchart 
of this process is shown in Figure 2. 

3.2 Case Parameters 

The IEEE 30-bus system is used as the case study for analysis, 
with a dispatch period of 24 hours and a time interval of 1 hour. 
The cost coefficients and unit emission intensity of the thermal 
power units, as well as the parameters of the energy storage 
system, are listed in Table 1. The wind power, solar power 
generation, and load forecasting parameters are shown in 
Figure 3. The benchmark emission quota for unit power 
generation is set at 0.798 tons/MWh, and the carbon trading 
price is 120 yuan/ton. The confidence levels for the chance 
constraints are set to α=100% and β=97%, and the carbon 
credit purchase margin is 0.3. Additionally, the penalty cost for 
wind and solar curtailment is 500 yuan/MW, and the cost for 
reserve capacity is 200 yuan/MW. The algorithm parameters 
are set with learning factors c1=1.3 and c2=1.492, a maximum 
iteration count of 500, and 3,000 stochastic simulation iterations 
(Liu et al. 2023). 
 
3.3 Case Study Results Analysis 

3.3.1 Impact of Carbon Trading and Chance Constraints on the 
System 

The energy storage parameters are shown in Table 1. To verify 
the effectiveness of introducing carbon trading and chance 
constraints in the economic objective function on system 

 
Fig. 2 Stochastic simulation of the particle swarm algorithm 
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reserves, five different dispatch scenarios are set up for 
comparative analysis: 
• Scenario 1: The chance-constrained model is used to 

handle the uncertainties of wind, solar power output, and 
load, considering carbon trading costs. 

• Scenario 2: The chance-constrained model is used to 
handle the uncertainties of wind, solar power output, and 
load, without considering carbon trading costs. 

• Scenario 3: Carbon trading costs are considered, and 
traditional spinning reserve capacity methods are used to 
handle uncertainties. 

• Scenario 4: Carbon trading costs are considered, and the 
uncertainties in wind power output and load are handled 
using the chance-constrained model, while the 
uncertainties in solar power output are handled using the 
traditional spinning reserve capacity method. 

• Scenario 5: Carbon trading costs are considered, and the 
uncertainties in solar power output and load are handled 
using the chance-constrained model, while the 
uncertainties in wind power output are handled using the 
traditional spinning reserve capacity method (Liu et al. 
2021). 

The results of the dispatch planning are shown in Figures 4 and 
5. From the perspective of the impact of introducing the carbon 
trading model on the system, the inclusion of carbon trading 
costs has a significant effect on overall system costs and carbon 
emissions (Song et al. 2024). Comparing Scenario 1 (with carbon 
trading costs) and Scenario 2 (without carbon trading costs), we 
can see that although the total cost of Scenario 1 (1.3435 million 
yuan) is slightly lower than that of Scenario 2 (1.3793 million 
yuan), its carbon emissions are more reasonable, at 6,474.68 
tons and 7,064.88 tons, respectively. The inclusion of carbon 
trading costs encourages the system to place greater emphasis 
on controlling carbon emissions during dispatch, as is also 
reflected in the performance of Scenario 3 and Scenario 5. For 
example, although Scenario 3 incorporates carbon trading costs, 

 
Fig. 3 Forecast Wind and Solar Power Output and Load 

Forecast for Each Time Period 
 
 

 
Fig.4 Cost Analysis under Different Scenarios 
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Fig. 5 Reserve Capacity and Carbon Emissions under Different 

Scenarios 
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Table 1 
 Energy storage parameter 

Parameter Value 

Maximum charging/discharging power (MW) 20/20 

Maximum/minimum energy (MWh) 150/10 

Charging/discharging efficiency (%) 85/95 

Self-discharge rate of the battery ρ/% 0.996 

Energy storage cost [yuan/MWh] 83.3 
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the total cost is as high as 2.5 million yuan, yet its carbon 
emissions (7,457.88 tons) are still lower than those in Scenario 
2, which does not account for carbon trading. This indicates that 
while the introduction of the carbon trading mechanism 
increases economic costs, it effectively limits carbon emissions 
and enhances the system's environmental benefits (Liu et al. 
2023). In summary, the inclusion of carbon trading costs 
promotes lower carbon emissions, but it also imposes a certain 
financial burden on the system, requiring better dispatch 
optimization to balance environmental and economic benefits. 

Secondly, the introduction of the chance-constrained 
model shows significant advantages in addressing the 
uncertainties in wind and solar power output and load. By 
comparing different scenarios, we can see that in Scenario 1 and 
Scenario 4 (both using the chance-constrained model), the 
reserve capacity is 797.14 MW and 901.57 MW, respectively, 
which are significantly lower than the 1,169.49 MW in Scenario 
3 (using the traditional spinning reserve capacity method). This 
directly reflects the effectiveness of the chance-constrained 
model in reducing reserve capacity requirements. Moreover, 
the total costs in Scenario 1 and Scenario 4 are relatively lower, 
at 1.3435 million yuan and 1.4555 million yuan, respectively, 
showing an advantage in cost control. In contrast, Scenario 3, 
which does not incorporate the chance-constrained model, 
leads to significantly higher reserve capacity and costs, 
demonstrating that the traditional spinning reserve capacity 
method introduces excessive redundancy and inefficiency when 
dealing with uncertainties. Therefore, by more accurately 

addressing uncertainties, the chance-constrained model 
significantly reduces reserve capacity requirements, thus 
lowering system costs and improving overall system operational 
efficiency (Chen et al. 2024). 

The system dispatch results corresponding to the 
sensitivity analysis of different confidence levels and different 
carbon credit purchase margins are shown in Figure 6 and 
Figure 7. As shown in Figure 6, with an increase in the 
confidence level, both reserve capacity and economic costs 
increase. The confidence level reflects the system's ability to 
handle the risks associated with supply and demand 
uncertainties (Li et al. 2024). In the dispatch decision-making 
process, operators should choose an appropriate confidence 
level based on the actual needs of the system, balancing safety 
and economic considerations. As shown in Figure 7, when the 
carbon credit purchase margin is small, the high penalties for 
carbon emissions prompt high-cost but low-emission units to 
increase output, resulting in lower carbon emissions but higher 
overall costs. As the carbon credit purchase margin increases, 
the total carbon emissions become smaller than the sum of the 
carbon quota and the purchased carbon credits, leading to 
negative penalty costs. This indicates that the excess purchased 
carbon credits can be sold again, reducing costs. However, 
when there are no penalty costs, the overall cost increases, and 
carbon emissions rise accordingly. 

In summary, across the five scenarios analyzed, using a 
stochastic simulation-based chance-constrained model that 
satisfies both power balance and reserve balance increases 
system reserve flexibility, avoiding resource waste and reducing 
system operating costs and carbon emissions. The inclusion of 
carbon trading costs in the economic dispatch model prioritizes 
the dispatch of low-carbon and clean energy units. When carbon 
emissions exceed the set limits, economic penalties are applied. 
Although costs increase compared to traditional economic 
dispatch, carbon emissions are significantly reduced. This 
approach helps power companies better balance economic and 
environmental impacts, accelerating progress toward the 
"carbon peak" and "carbon neutrality" goals (Guo et al. 2021). 

3.3.2 Comparative Analysis of Different Power Source Integrations 

To visually verify the positive effects of different power source 
integrations on carbon emissions and clean energy utilization, 
five scenarios were set for comparison: 

• Scenario 1: Thermal power output alone. 
• Scenario 2: Combined output of solar and thermal power. 
• Scenario 3: Combined output of wind and thermal power. 

 
Fig. 6 System Dispatch Results under Different Confidence 

Levels 
 

 
Fig. 7 System Dispatch Results under Different Carbon Credit 

Purchase Margins 
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• Scenario 4: Bundled output of wind and solar power 
combined with thermal power. 

• Scenario 5: Combined output of wind, solar, thermal, and 
energy storage systems. 

Figure 8 shows the optimization results of dispatch under 
different power source integrations. Based on the analysis of the 
dispatch optimization results in Figure 8, the introduction of 
renewable energy and energy storage systems significantly r 
educes the wind and solar curtailment rate, overall costs, and 
carbon emissions. In Scenario 1, where the system relies solely 
on thermal power, the wind and solar curtailment rate reaches 
100%, the total cost is 2.1114 million yuan, and carbon 
emissions amount to 9,152.10 tons, the highest among all 
scenarios. However, as solar, wind, and energy storage systems 
are progressively introduced, particularly in Scenario 5 

(combined output of wind, solar, thermal, and energy storage 
systems), the wind and solar curtailment rate drastically drops 
to 7.37%, the total cost decreases to 1.3434 million yuan, and 
carbon emissions are reduced to 6,474.69 tons. Compared to 
Scenario 1, Scenario 5 effectively utilizes clean energy, 
significantly reducing the reliance on thermal power, lowering 
fuel consumption and maintenance costs, and mitigating 
environmental pollution. In Scenario 5, the collaboration 
between wind and solar power and energy storage not only 
enhances the efficiency of renewable energy utilization but also 
improves the overall economic and environmental performance 
of the system, achieving the optimal dispatch outcome. 

Figures 9 illustrates the power output and net load curves 
of various power sources for Scenarios 1-5. Based on the data 
from Figures 9.a and 9.b, Scenario 1 relies entirely on thermal 

 
a) Scenario 1 

 
b) Scenario 2 

 
c) Scenario 3 
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Fig. 9 Power Output for 5 scenarios 
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power, with the thermal power output reaching 444.82 MW 
during peak load periods (such as at the 19th hour), and the 
lowest output being 228.78 MW, indicating significant 
fluctuations. The energy consumption and carbon emissions of 
thermal power are high during system operation. In contrast, 
Scenario 2 introduces solar power, effectively reducing the 
pressure on thermal power output during the daytime. For 
example, at the 9th hour, solar power generation reached 80.09 
MW, and the thermal power output dropped from 418.85 MW 
in Scenario 1 to 338.76 MW, showing the significant relief solar 
power provides to the thermal power load. However, during 
nighttime hours when there is no solar power generation, 
thermal power is still needed to handle most of the load. The 
highest thermal power output in Scenario 2 is 413.57 MW, 
slightly lower than the peak in Scenario 1, but still heavily reliant 
on thermal power to maintain system stability. Overall, Scenario 
2 reduces the usage frequency and carbon emissions of thermal 
power through solar power generation, particularly during 
daytime peak periods, making system operation more 
environmentally friendly (Gao et al. 2025). However, thermal 
power remains indispensable when solar power is unavailable. 
As shown in Figure 9.c, the addition of wind power significantly 
alleviates the load pressure on thermal power. During periods 
of high wind speed (such as the 9th hour), wind power output 
reaches 72.89 MW, reducing thermal power output from 418.85 
MW in Scenario 1 to 345.96 MW, a decrease of about 73 MW. 
This indicates that wind power can significantly reduce thermal 
power output during peak periods, thereby reducing carbon 
emissions and fuel consumption. Compared to Scenario 2 
(combined output of solar and thermal power), wind power 
exhibits greater volatility, resulting in more frequent fluctuations 
in thermal power output. For example, at the 12th hour, wind 
power output is 56.60 MW, and thermal power output is 282.71 
MW, while in Scenario 2, solar power output is 40.97 MW, and 
thermal power output is 298.34 MW, with a relatively higher 
thermal power output. This shows that wind power, compared 
to solar power, has greater generation capacity and can more 
effectively reduce the thermal power load. However, during 
periods of low wind speed (such as from the 1st to the 5th hour), 
wind power output is low, and thermal power still needs to bear 
the main load, with output levels similar to those in Scenario 1. 
This indicates that although wind power can significantly reduce 
thermal power pressure during high wind speed periods, its 
intermittency requires thermal power to maintain a high output 
level during low wind speed periods. 

As shown in Figure 9.d, in Scenario 4, the combined 
output of wind and solar power significantly reduces the load 
pressure on thermal power. At the 9th hour, wind power output 
reaches 68.85 MW, and solar power output is 80.43 MW, 
reducing thermal power output to 269.57 MW, approximately 
149 MW lower than the 418.85 MW in Scenario 1, significantly 
easing the burden on thermal power. Compared to Scenario 2 
(combined output of solar and thermal power), Scenario 4 has 
more stable output during the day due to the addition of wind 
power, resulting in lower thermal power output. For example, at 
the 9th hour, thermal power output in Scenario 2 is 338.76 MW, 
while in Scenario 4 it is 269.57 MW, a reduction of about 69 MW. 
Additionally, Scenario 4 shows stronger load relief compared to 
Scenario 3 (combined output of wind and thermal power), as it 
leverages both wind and solar resources. At the 12th hour, 
thermal power output in Scenario 3 is 282.71 MW, while in 
Scenario 4 it is only 258.23 MW, a reduction of about 24 MW. 
However, during nighttime periods with low wind and solar 
output, thermal power is still required to bear the main load. For 
example, at the 24th hour, thermal power output is 200.55 MW, 

which is lower than the 310.10 MW in Scenario 1, but still 
relatively high. This indicates that the combined output of wind 
and solar power can significantly reduce the thermal power load 
during the day, but thermal power is still needed to maintain 
system stability at night. 

As shown in Figure 9.e, compared to the previous four 
scenarios, Scenario 5, with the combined output of wind, solar, 
and energy storage, further optimizes the thermal power load, 
significantly reducing reliance on thermal power. At the 9th 
hour, wind power output is 70.53 MW, solar power output is 
75.28 MW, and energy storage provides 22.58 MW of power 
support, reducing thermal power output to 250.45 MW. This is 
a substantial reduction of 168.4 MW compared to the 418.85 
MW in Scenario 1, and it is also lower than the 269.57 MW in 
Scenario 4 and the 345.96 MW in Scenario 3, demonstrating the 
key role that energy storage plays in stabilizing output. 
Compared to Scenarios 2 and 3, thermal power output in 
Scenario 5 is significantly reduced, and energy storage 
effectively alleviates the load pressure caused by fluctuations in 
wind and solar output. For example, at the 19th hour, thermal 
power output in Scenario 5 is 304.12 MW, whereas in Scenario 
1 it is as high as 444.82 MW, and in Scenario 4 it is 336.45 MW. 
This highlights the ability of energy storage to effectively 
smooth out load fluctuations when wind and solar generation 
are insufficient. Additionally, during low wind and solar output 
periods (such as at the 24th hour), thermal power output in 
Scenario 5 drops to 196.93 MW, compared to 310.10 MW in 
Scenario 1, indicating that the energy storage system plays a 
significant role in maintaining stable output during the night. 
Therefore, with the support of the energy storage system, 
Scenario 5 further reduces thermal power load fluctuations, 
achieving more efficient energy dispatch and carbon emissions 
control. 

As shown in Figure 10, with the gradual introduction of 
renewable energy and energy storage systems, the net load 
fluctuations of the system are significantly reduced. In Scenario 
1 (thermal power output alone), the net load corresponds 
directly to thermal power output, showing large fluctuations 
throughout the day, with a net load range from 257.99 MW to 
444.82 MW. In Scenario 2, the addition of solar power 
significantly reduces the daytime net load, particularly at the 9th 
hour, where it drops to 338.76 MW, demonstrating the 
alleviating effect of solar power on the thermal power load. In 
Scenario 3, with the introduction of wind power, the net load 
decreases to 345.96 MW during periods of sufficient wind 
resources (such as at the 9th hour), but wind speed fluctuations 

 
Fig. 10 Net Load Curves under the Five Dispatch Scenarios 
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cause the nighttime net load to approach that of Scenario 1. In 
Scenario 4 (combined wind and solar output), the daytime net 
load is further reduced to 269.57 MW, the lowest daytime net 
load among all scenarios, though nighttime still relies on thermal 
power. In Scenario 5, the combined output of wind, solar, and 
energy storage systems significantly smooths net load 
fluctuations, with the lowest daytime net load at 250.45 MW, 
and a relatively low nighttime net load as well (196.93 MW at 
the 24th hour). The energy storage system effectively mitigates 
the load pressure caused by wind and solar power fluctuations. 
Scenario 5 achieves the best dispatch performance, resulting in 
the lowest net load fluctuations. 

 
 
4.   Conclusion 

This study investigates a multi-energy coordinated low-
carbon economic dispatch model for wind, solar, thermal, and 
energy storage systems, considering uncertainties on both the 
supply and demand sides. A multi-objective optimization 
method based on a carbon trading mechanism and chance 
constraints is proposed, aiming to improve the system's low-
carbon economic performance and the integration of renewable 
energy. In the model, a penalizing carbon trading mechanism is 
introduced to incorporate carbon emission costs into the 
traditional economic dispatch model, and a stochastic 
simulation particle swarm optimization algorithm is used to 
solve the model. The model demonstrates strong adaptability 
and optimization effects when dealing with the volatility of wind 
and solar power and load forecasting uncertainties. 

The results show that although the introduction of the 
carbon trading mechanism increases system economic costs, it 
significantly reduces carbon emissions. For example, in 
Scenario 1, after introducing the carbon trading mechanism, the 
total cost increased by 37,300 yuan, but carbon emissions 
decreased by 8.35%, while wind and solar curtailment penalties 
decreased by 65.48%, and the overall operating costs were 
reduced by 14.94%. This demonstrates that the carbon trading 
mechanism can effectively limit carbon emissions through 
economic incentives, improving the environmental benefits of 
the system and promoting the development of low-carbon 
power systems. 

In terms of handling the uncertainties of wind, solar power 
output, and load, the chance-constrained model shows great 
flexibility. By setting different confidence levels, the system can 
flexibly adjust reserve capacity in response to uncertainties. 
Compared to traditional reserve capacity methods, the 
scenarios using chance constraints reduced the system's total 
reserve capacity requirements. For example, the reserve 
capacity in Scenario 1 decreased by 31.84%, and the overall 
costs were reduced by 26.83%. This indicates that the chance-
constrained model can more effectively manage uncertainties, 
reduce redundant system configurations, and enhance 
operational efficiency. 

In the scenario analysis with different power sources, as 
wind, solar, and energy storage systems were gradually 
introduced, the system's wind and solar curtailment rates, 
overall costs, and carbon emissions all significantly decreased. 
For instance, in Scenario 5, the combined output of wind, solar, 
thermal, and energy storage systems reduced the wind and 
solar curtailment rate to 7.37%, the overall costs to 1.3434 
million yuan, and carbon emissions to 6,474.69 tons. Compared 
to Scenario 1, which relied solely on thermal power, fuel 
consumption and carbon emissions were significantly reduced. 
The energy storage system, through its "energy shifting" 
function, provided power support during periods of insufficient 

wind and solar generation, effectively smoothing the system's 
load fluctuations and further improving the system's economic 
and environmental performance. 

Overall, the proposed multi-energy coordinated low-
carbon economic dispatch model for wind, solar, and thermal 
systems, incorporating carbon trading mechanisms and chance-
constrained optimization, effectively reduces system carbon 
emissions, reserve capacity requirements, and enhances 
renewable energy integration. It demonstrates significant 
economic and environmental benefits. Future research could 
further explore the role of hydropower and thermal power in 
balancing base loads and regulating capacity to further enhance 
low-carbon economic dispatch and achieve sustainable 
development in power systems. 
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