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Abstract. To improve the low-carbon economic performance of renewable energy-dominated power systems, a multi-energy coordinated
optimization dispatch model for wind, solar, thermal, and storage systems considering uncertainties on both the supply and demand sides is proposed.
This paper comprehensively considers the economic costs of thermal power unit operation, wind and solar power curtailment, energy storage
operation, carbon trading and spinning reserve. The model incorporates a penalizing carbon trading mechanism and uses a stochastic chance-
constrained approach to handle fluctuations in wind and solar power generation as well as uncertainties in load forecasting. The study, based on the
IEEE 30-bus system, is solved using a stochastic simulation particle swarm optimization algorithm. Results show that after introducing the carbon
trading mechanism, the system's carbon emissions were reduced by 8.35%, wind and solar curtailment penalties were reduced by 65.48%, and overall
costs decreased by 14.94%. Additionally, the chance-constrained model effectively reduced the system's reserve capacity requirements, with reserve
capacity decreasing by 31.84%, leading to a further reduction of 26.83% in overall costs. In the scenario of combined wind-solar-thermal-storage
output, the wind and solar curtailment rate dropped to 7.37%, and carbon emissions decreased to 6474.69 tons. Through the "energy shifting" function,
the energy storage system provided effective support during peak loads, further optimizing the dispatch outcomes.
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1. Introduction dispatch models insufficient. To further enhance operational
efficiency and renewable energy utilization, the concept of
multi-energy coordinated optimization dispatch has emerged
(Gu et al. 2020). Coordinating wind and solar power with thermal
power and energy storage systems can help mitigate the
volatility of clean energy to some extent. Additionally, the
introduction of carbon trading mechanisms has further
promoted the development of low-carbon economic dispatch.
By using market-based carbon regulation, power systems can
achieve more efficient dispatch optimization, encouraging the
broader application of renewable energy (Zhou et al.2023).

In recent years, as renewable energy has taken on an
increasingly important role in global power systems, effectively
dispatching volatile energy sources like wind and solar power
has become a research focus in both academia and industry
(Prawitasaria et al.2024). Many studies have explored various
optimization dispatch methods aimed at improving the
utilization of renewable energy and reducing dependence on
fossil fuels.

In terms of addressing wind power uncertainty, researchers
have proposed various mathematical modeling methods. Early
studies widely employed Gaussian membership functions to
describe wind power uncertainty. Using Gaussian functions,
researchers could better model the volatility of wind power

Globally, the continuous growth in energy consumption has
led to significant environmental impacts, especially the increase
in greenhouse gas emissions, which has exacerbated climate
change. To address this challenge, countries have set low-
carbon development goals, promoting the use of renewable
energy and reducing dependence on fossil fuels. The clean
energy transition of power systems has become a key global
measure to combat climate change. The widespread adoption
of renewable energy sources, such as wind and solar power,
provides a critical opportunity to reduce carbon emissions, but
their instability and volatility pose new challenges to the
economic and stable operation of power systems (Njie et al
2024; Takyi et al. 2024). How to optimize renewable energy
integration and improve the low-carbon economic performance
of systems while ensuring safety and stability has become a key
research focus in the energy field (Gu et al. 2023; Liu et al.2024;
Wang et al.2024).

Traditional power systems are dominated by fossil fuels,
relying on the stable output of thermal power plants to maintain
load balance (Wang et al. 2020). However, as the penetration of
renewable energy increases, wind and solar power generation
exhibit strong volatility and randomness, making traditional
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output and optimize dispatch strategies. For instance, Pandit et
al. (Pandit. et al. 2015) proposed a dispatch method based on
Gaussian membership functions, which significantly reduced
system reserve capacity requirements and increased renewable
energy utilization. Wang et al. (Wang et al. 2013) adopted an
ascending half-trapezoidal membership function to describe
wind power uncertainty, improving system robustness when
dealing with wind power forecasting errors. In contrast, Ma, R.
et al. (Ma et al. 2020) proposed a descending half-trapezoidal
membership function to better handle the random fluctuations
in wind power output. Although these methods partially address
wind power uncertainty, their applicability often depends on
specific scenarios and lacks broad generalization in complex
systems.

Similar to wind power, the volatility of solar power also
poses challenges to power system dispatch. Many researchers
have attempted to jointly dispatch wind and solar power to take
advantage of their complementary generation patterns. For
example, some studies found that solar power generation during
the day could compensate for low wind speeds, and vice versa.
Yang et al. (Yang et al. 2021) proposed an optimized dispatch
strategy based on wind-solar complementarity, effectively
reducing wind and solar curtailment rates by leveraging their
complementary characteristics. Wang et al. (Wang et al. 2022)
further pointed out that coordinated optimization of wind and
solar power can significantly reduce reliance on thermal power
plants, thus lowering carbon emissions. These studies suggest
that combining wind and solar power in dispatch strategies not
only increases renewable energy utilization but also reduces
system operational costs.

With the advancement of energy storage technologies,
energy storage systems have become an increasingly flexible
tool in power systems. Energy storage systems can store excess
power from renewable sources and release it when generation
is insufficient, providing a “peak-shaving and valley-filling”
effect. Wang et al. (Wang et al.2021) proposed a multi-energy
coordinated optimization dispatch method that integrates
energy storage with wind and solar power, reducing load
fluctuations and enhancing renewable energy utilization
through the “energy shifting” function. Aunedi, M. et al. (Aunedi
et al. 2023) further proposed that optimized energy storage
configurations can reduce reliance on traditional thermal power
plants and enhance system flexibility. These studies
demonstrate that energy storage systems, as a key flexibility
resource, can play a crucial role in highly uncertain renewable
energy systems.

Inrecent years, driven by the urgent need to address climate
change, carbon trading mechanisms have been introduced into
power system dispatch as a market-based tool for carbon
emission control. Carbon trading allows power companies to
purchase carbon credits to compensate for excess emissions,
thereby economically regulating carbon emissions. Ting et al.
(Ting et al. 2018) proposed a low-carbon economic dispatch
method based on carbon trading, achieving simultaneous
optimization of system costs and carbon emissions through
refined carbon management of power generation units. Rabe et
al. (Rabe et al. 2019) found that the introduction of carbon
trading mechanisms can effectively reduce carbon emission
pressure in power systems, especially in scenarios with high
penetration of renewable energy. Furthermore, He et al. (He et
al. 2023) noted that in the coordinated dispatch of carbon
trading mechanisms and energy storage systems, carbon
emissions are significantly reduced, and overall economic
performance is optimized.
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To handle the random fluctuations of wind and solar power,
chance-constrained programming methods have been widely
applied in recent years. These methods use probabilistic
descriptions of uncertainty, allowing the system to optimize
dispatch strategies within a certain risk range. Ning et al. (Ning
et al. 2021) proposed a chance-constrained power system
dispatch model that handles wind power randomness at
specified confidence levels. Zhan, S. et al. (Zhan et al. 2022)
further noted that the chance-constrained model can effectively
reduce system reserve capacity requirements and increase
system flexibility. These methods exhibit strong robustness in
high-penetration renewable energy scenarios but also face
challenges related to computational complexity.

Despite the effectiveness of these methods in mitigating
renewable energy volatility, several limitations remain (Liu et al.
2022). First, most studies focus on the optimization dispatch of
individual energy forms like wind or solar, neglecting the
potential of multi-energy coordinated dispatch in enhancing
system stability. Additionally, many studies on carbon trading
mechanisms focus on demand-side energy integration, without
adequately considering the uncertainties in supply-side
resources and renewable energy absorption. Current dispatch
methods also struggle to balance economic efficiency and
environmental benefits when facing complex uncertainties.

At present, most literature introduces carbon trading
mechanisms, uses the integrated energy system to integrate
multiple energy sources on the demand side, or only considers
wind, fire, wind, fire and storage on the supply side to reduce
carbon emissions; fewer literature is based on the resource
endowment on the supply side, taking into account the
uncertainty of clean energy and load, and adopts the synergy of
wind, solar, fire and storage to balance the system's low-carbon
economy and safe absorption of clean energy (Liu et al. 2022;
Wu et al. 2022). Therefore, this study aims to develop a multi-
energy coordinated optimization dispatch model for wind-solar-
thermal-storage systems, introducing a penalizing carbon
trading mechanism and using a stochastic chance-constrained
approach to handle system uncertainties. The model is
expected to improve the low-carbon economic performance of
power systems, reduce carbon emissions, and enhance
renewable energy absorption. Unlike existing research, this
study considers the random volatility of renewable energy and
introduces carbon trading to optimize carbon emission control.
The stochastic chance-constrained approach effectively handles
the uncertainties of wind, solar, and load, enhancing system
reserve flexibility. Additionally, the proposed coordinated
dispatch model for wind-solar-thermal-storage systems helps
reduce overall operational costs, further promoting the
development of low-carbon economic dispatch.

2. Research method

The wind, solar, thermal and storage integrated energy system
constructed in this paper is at the regional level, which is based
on meeting the electricity demand of the region and aims at
minimizing the economic operation and carbon emissions of the
system (Elahi Gol and S&asny 2023). By optimizing the
coordinated operation of various types of energy supply
equipment and energy storage equipment, the system can
achieve economic operation while taking carbon emissions into
account. The system structure is shown in Figure 1.

2.1 Source of charge uncertainty model construction

Considering the impact of uncertainty, the actual value of wind
power, photovoltaic output and load can usually be expressed
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Fig. 1 Schematic diagram of regional integrated energy system

as the determined prediction value plus the uncertain prediction
error, namely:

Pyrt = l:)wpre,t + Ewt (1)
Pgr,t = ngre,t + Egt (2)
l)lr,t = P]pre,t + &t (3)

Where, Pyt ,Pgrt ,Pirt are the actual values of wind power,
photovoltaic and load, respectively ; Pypret sPopre;t sPipre,t are
wind power, photovoltaic and load forecast power respectively
Ew,t »Egt,E118r€ wind power, photovoltaic and load prediction
€ITOr POWET.

According to the central limit theorem, the uncertainty
error follows a normal distribution, namely:

GW,t = O-ZPwpre,t + 0.0zpwr (4)
Ogt = O.Zngre_t + 0.02Pgr (5)
Ot = 0-03Plpre,t (6)

Where, oy,¢,0g¢ ;01 are the standard deviation of normal
distribution with mean of 0; P, and Py, are the rated installed
capacity of wind power and photovoltaic power, respectively.

Wind speed, light intensity and load are affected by the
uncertainty of natural conditions and electricity consumption
habits, making it difficult to accurately predict (Jin et al. 2022).
The expression considering the uncertainty of landscape load is
formula (7) - -formula (8).

Power balance:

l:’L,t + PE,chr,t - (Pw,t,t - qu,t) - (Pgr,t - qu,t) -

o (7)
Z Pt — PEdist =0
=1

Rotate the standby balance:

T
Plr,'c + Z pEn,ljl)i‘,t - (wa,t - qu,t) - (Pgr,t - qu,t) -
no (8)
DR R <0
i=1 t=1
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Where, Pgchrt »Pggist are the energy storage charging and
discharge power respectively; Pqw,; ,Pqg: are air abandon and
light abandon, respectively; Pg;+ is the power at time t of the i
thermal power unit ; Pg;?* is the maximum power of the first i
thermal power unit; PEii: . Prgse are respectively the
maximum charge and discharge amount of energy storage at
time t; T is the total number of daily scheduling periods, and T
=24.

2.2 Chance-constrained model processing

The chance constraint satisfies the constraint in the form of
probability, namely that the scheduling result can be beyond the
constraint range to some extent, but the probability of allowing
the constraint to hold is not less than the previously set
confidence level (Huang et al. 2022).

The general form of the opportunity constraint planning model
is:

minf(x, §)
Lo Pgi( D) < ohj = 1,2, ..k ©)

Bring equation (1) - -equation (8) into equation (9), and the
opportunity constraint model available for scheduling is:

minpr{Plpre,t + €Lt + PE,chr,t - (Pwpre,t + Ewir — qu,t) - (ngre,t -

y (10)
€gt — Pqi,t) - Z Port — Praise = 0] >a
i=1

T
minpr [Plpre,t + ELt + Z P]?,c‘:;ts - (Pwpre,t + Ewt — qu,t) - (ngre,t -

o T (11)

Egt — qu,t) - Z Pa™ — Z Peiise < 0] >B
i=1 t=1

Where, a ,(3 are the confidence level of power balance and
rotating standby balance, respectively.
In this paper, Monte Carlo simulated stochastic chance
constraint method. By stochastic Monte Carlo simulation with
random variables, the results need to satisfy the confidence
level.

2.3 System carbon trading cost model

According to the residential electricity habit, the load
curve within 1 d is "double peaks" in the morning and evening,
while the wind power is often at night and early morning, the
daytime output is small, and the output of the wind power and
load have obvious reverse peak regulation characteristics in the
daytime, and the output at night and early morning is almost
zero. Individual grid connection will increase the peak and
valley difference of net load, and then increase the peak
regulation pressure of thermal power units, and the utilization
rate of wind power and photovoltaic is not high (Lou et al. 2022).
Using the complementarity of combined grid connection in
scenery time, the volatility of power generation can be gentle to
a certain extent. The "energy time shift" of energy storage stores
the electric energy when the wind output is high but the load
demand is low. When the output is low and the load demand is
high, the electric energy is released to further smooth the output
curve and solve the reverse peaking.

Compared with the moderate carbon reduction mode of
setting carbon quota, the carbon trading mechanism is a market
trading method for the carbon rights of power producers
according to the Kyoto Protocol. On the principle of economic
leverage, it is a scientific combination of high pollution, low cost
and low pollution and high cost, so as to achieve the purpose of
reducing carbon emissions.
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2.3.1.The actual carbon emissions

A large amount of CO; is generated during the operation of
conventional coal-fired units, and the parts below or beyond the
carbon emission quota can be sold for carbon rights. Although
COg, the uncertainty of wind power and photovoltaic causes the
grid. This paper considers the increase of standby carbon
emissions caused by wind power, photovoltaic and load
uncertainty, which is regarded as the carbon emission of wind
load, namely:

n

Eg = Z 8iPgit

i=1
n

Ewt = Z 8ipwb,t
iR (12)
Egt = Z Sipgb,t
i=1
n
Ey = Z 8iPip ¢
i=1
Ept = EGt + Ewt + Egt + E]t (13)

Where, Eg; ,Ewt ,Eg: ,Ej; are the actual carbon emission at time
t of thermal power, wind power, photoelectric and load
respectively; Pgit ,Pwb,t sPeb,t sPib,c are the pre-day dispatching
output of the i thermal power, wind power, photoelectric and
load standby time t.

2.3.2 Carbon emission right quota

At present, China is in the early stage of the implementation of
the low-carbon emission reduction policy. Most of the carbon
trading quotas are allocated for free, so the carbon emission
sources can obtain the corresponding carbon emission quotas

as follows:
n
Dgy = 7\2 Peit
i=1
n

= (14

15
eq = Dge¢ + Dwe + Dgtt + Dyt (15)

Where, Dt ,Dwt ,Dgt ;Dirare the carbon emission quota at time
t for thermal power, wind power, photovoltaic power and load
reserve respectively, A is Distribution amount of carbon
emission per unit of electricity by using the base line method.

2.3.3 Carbon trading costs

According to the relationship between the actual emission of
carbon source and the carbon quota and the purchase of carbon
rights, the carbon trading costs with punishment are mainly
three: the purchase cost of carbon rights, carbon income and
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excessive emission punishment (Yan et al 2022). The
calculation formula is:

Kpt(Ept - eq)' Ept < Eqe
Ccoz,t = Kpt(Ept - eq)l eq < Ept <Eq+ eq (16)

KptEne + Kft(Ept —Eq— eq)' Epe > Bt + Ege

Ec = MEq (17)

Where, Ep; ,Eq; ,E¢, are respectively the actual carbon source
emissions, carbon emission quota and market carbon emission
right purchase; C,,  is the cost of system at time t ; Ky, K¢
are the carbon trading price at time t and the excess penalty
price, respectively; p is purchase of margin for carbon rights.

2.4 System operation objective function

As a traditional controllable power source, thermal power unit
plays an important role in the stable and safe operation of the
power grid; due to the influence of natural conditions such as
wind speed and light intensity, and its large-scale grid
connection, it is difficult to match the load demand, which will
cause a large amount of wind and light abandonment (Gao et al.
2024). This paper considers the economic costs of thermal
power unit operation, wind and light abandonment, energy
storage operation, carbon trading and rotary reserve (Jin et al.
2023).

Comprehensive system cost is:

T

Fe= (CGi,t + qu,t + qu,t + Cesst + Crie + Ccoz,t) (18)
t=1

Where, F. is the comprehensive cost of the system;
Cgi,t» Caft:Cqp,t »Cess t »Crirare respectively the power generation
cost of thermal power unit, penalty cost of wind and light
abandonment, energy storage cost and standby machine. The
details are as follows:

n
Ceir = Z (aipgzi,t + biPy + ci,t) (19)
i=1

Cqt, = DewPaw;t (20)

Cagt = DegPagr (21)

Cess = Dce(PE,chr,t + PE,dis,t) (22)
Cre = Dg(rf+ 1) (23)

Where, D, and Dgare the penalty coefficient for abandoning
wind and light; D, is the energy storage cost coefficient; Dgis
the rotating spare cost coefficient; ri‘f‘t ,ri}y are positive and
negative rotation reserve capacity at time t, respectively.
2.5 System operation constraints
Thermal power unit constraints
(1) The output constraint is:
PE™ < Pgie < PO (24)

(2) The climbing constraint is:

—Rai - AT < Pgit+1 — Paie < Ryi - AT (25)

Where, Ry; ,Ryj are the upward and downward climbing rates
of i thermal power units respectively.
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Fig. 2 Stochastic simulation of the particle swarm algorithm
Wind power constraints Emin < E¢ < Emax (36)

(1) The output constraint is:
0 < 1:’w,t < Pwr (26)
(2) The air abandon volume constraint is:

0 < Pgw,t < Purt (27)

Photovoltaic constraints
(1) The output constraint is:

0 < Pyrt < Py (28)
(2) The constraint of light discard amount is:

0 < qu,t < Pfr,t (29)

Energy storage constraints

(1) The energy storage quantity is:

Pg chre = Pre - At -1 (30)
Pg gist = Pee - At/ng (31)
E¢ = pEt-1 — PEchrt — P dist (32)

where, 1. , Ng are respectively the charge and discharge
efficiency; p is The power loss rate; E; is the equivalent power
supply of energy storage.

(2) Power constraint is:

max up max dw
Pecmt T Py < Pesst < Pedise — PEt

(33)
PEdrri - PEdiss = 0 (34)
(3) The standby constraint is:
E, , — T_ Emax
Pg. + p];f < HZ# < P+ pg;/" (35)

At

Where, Py ¢ PS¥ are the positive and negative reserves for the
equivalent power supply at time t; Pz is the equivalent power

supply power of energy storage at time t.

(4) The capacity constraint of the state of charge is:

Where, Epin , Emax are the minimum and maximum energy
storage, respectively.

3. Case Study Analysis
3.1 Model Solution

Particle Swarm Optimization (PSO) has advantages such as
fewer parameters, fast convergence speed, and better selection
of global optimal solutions. It is highly capable of solving
nonlinear and multi-peak problems (Zhang et al. 2020). Since the
power balance and spinning reserve balance constraints in this
study involve random variables, a combination of stochastic
simulation and PSO is adopted, referred to as the Stochastic
Simulation Particle Swarm Optimization (SSPSO). The flowchart
of this process is shown in Figure 2.

3.2 Case Parameters

The IEEE 30-bus system is used as the case study for analysis,
with a dispatch period of 24 hours and a time interval of 1 hour.
The cost coefficients and unit emission intensity of the thermal
power units, as well as the parameters of the energy storage
system, are listed in Table 1. The wind power, solar power
generation, and load forecasting parameters are shown in
Figure 3. The benchmark emission quota for unit power
generation is set at 0.798 tons/MWh, and the carbon trading
price is 120 yuan/ton. The confidence levels for the chance
constraints are set to a=100% and $=97%, and the carbon
credit purchase margin is 0.3. Additionally, the penalty cost for
wind and solar curtailment is 500 yuan/MW, and the cost for
reserve capacity is 200 yuan/MW. The algorithm parameters
are set with learning factors c1=1.3 and ¢2=1.492, a maximum
iteration count of 500, and 3,000 stochastic simulation iterations
(Liu et al. 2023).

3.3 Case Study Results Analysis

3.3.1 Impact of Carbon Trading and Chance Constraints on the
System

The energy storage parameters are shown in Table 1. To verify
the effectiveness of introducing carbon trading and chance
constraints in the economic objective function on system

ISSN: 2252-4940/© 2025. The Author(s). Published by CBIORE
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Table 1
Energy storage parameter

Int. J. Renew. Energy Dev 2025, 14(2), 233-244

| 238

Parameter Value
Maximum charging/discharging power (MW) 20/20
Maximum/minimum energy (MWh) 150/10
Charging/discharging efficiency (%) 85/95
Self-discharge rate of the battery p/% 0.996
Energy storage cost [yuan/MWh] 83.3

500 —M— Load forecasting power
PV forecast output
—m— Forecast output of wind power|
n
00 F . o
l/ \l e
/ -~
= ] " "
<300 / -
s w
<
— u_
g ~g_pg-t
o 200 |-
o
100 |- g -
~a—ENN _m o g—m—pg—
\'\./l"_".'—. \.\./.’.5'/
0 1 1 1 1 1 1 1 1 1 1 1

0 2 4 6 8 10 12 14 16 18 20 2 24
T(h)
Fig. 3 Forecast Wind and Solar Power Output and Load
Forecast for Each Time Period

e Scenario 3: Carbon trading costs are considered, and
traditional spinning reserve capacity methods are used to
handle uncertainties.

e  Scenario 4: Carbon trading costs are considered, and the
uncertainties in wind power output and load are handled
using the chance-constrained model, while the
uncertainties in solar power output are handled using the
traditional spinning reserve capacity method.

e Scenario 5: Carbon trading costs are considered, and the
uncertainties in solar power output and load are handled
using the chance-constrained model, while the
uncertainties in wind power output are handled using the
traditional spinning reserve capacity method (Liu et al.
2021).

The results of the dispatch planning are shown in Figures 4 and
5. From the perspective of the impact of introducing the carbon
trading model on the system, the inclusion of carbon trading
costs has a significant effect on overall system costs and carbon
emissions (Song et al. 2024). Comparing Scenario 1 (with carbon
trading costs) and Scenario 2 (without carbon trading costs), we
can see that although the total cost of Scenario 1 (1.3435 million
yuan) is slightly lower than that of Scenario 2 (1.3793 million
yuan), its carbon emissions are more reasonable, at 6,474.68
tons and 7,064.88 tons, respectively. The inclusion of carbon
trading costs encourages the system to place greater emphasis
on controlling carbon emissions during dispatch, as is also
reflected in the performance of Scenario 3 and Scenario 5. For
example, although Scenario 3 incorporates carbon trading costs,

300
[~"]comprehensive Operating Cost
[ ] wind and Solar Abandonment
Penalty Cost
250 [ 1 Backup Cost
[ ] carbon Trading Cost
m
200 —
p=
o
o
o
S 1504
o
o
a2
B 100
O
50
0 T T T T
1 3 4 5

Different scenario
Fig.4 Cost Analysis under Different Scenarios

reserves, five different dispatch scenarios are set up for

comparative analysis:

e Scenario 1: The chance-constrained model is used to
handle the uncertainties of wind, solar power output, and
load, considering carbon trading costs.

e Scenario 2: The chance-constrained model is used to
handle the uncertainties of wind, solar power output, and
load, without considering carbon trading costs.

T T T T T 16Uy
1200 —B— Total Backup Capacity
—m— Carbon Emissions
< - 7400
3 1100
E —~
= k7200 £
g 2
é 1000 o 5
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© 7000 .2
6] / £
Q 9004 )
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[ / / / =
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et /
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= /
700 ¥ .,’
- 6400
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Different scenario
Fig. 5 Reserve Capacity and Carbon Emissions under Different
Scenarios
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the total cost is as high as 2.5 million yuan, yet its carbon
emissions (7,457.88 tons) are still lower than those in Scenario
2, which does not account for carbon trading. This indicates that
while the introduction of the carbon trading mechanism
increases economic costs, it effectively limits carbon emissions
and enhances the system's environmental benefits (Liu et al.
2023). In summary, the inclusion of carbon trading costs
promotes lower carbon emissions, but it also imposes a certain
financial burden on the system, requiring better dispatch
optimization to balance environmental and economic benefits.

Secondly, the introduction of the chance-constrained
model shows significant advantages in addressing the
uncertainties in wind and solar power output and load. By
comparing different scenarios, we can see that in Scenario 1 and
Scenario 4 (both using the chance-constrained model), the
reserve capacity is 797.14 MW and 901.57 MW, respectively,
which are significantly lower than the 1,169.49 MW in Scenario
3 (using the traditional spinning reserve capacity method). This
directly reflects the effectiveness of the chance-constrained
model in reducing reserve capacity requirements. Moreover,
the total costs in Scenario 1 and Scenario 4 are relatively lower,
at 1.3435 million yuan and 1.4555 million yuan, respectively,
showing an advantage in cost control. In contrast, Scenario 3,
which does not incorporate the chance-constrained model,
leads to significantly higher reserve capacity and costs,
demonstrating that the traditional spinning reserve capacity
method introduces excessive redundancy and inefficiency when
dealing with uncertainties. Therefore, by more accurately
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addressing uncertainties, the chance-constrained model
significantly reduces reserve capacity requirements, thus
lowering system costs and improving overall system operational
efficiency (Chen et al. 2024).

The system dispatch results corresponding to the
sensitivity analysis of different confidence levels and different
carbon credit purchase margins are shown in Figure 6 and
Figure 7. As shown in Figure 6, with an increase in the
confidence level, both reserve capacity and economic costs
increase. The confidence level reflects the system's ability to
handle the risks associated with supply and demand
uncertainties (Li et al. 2024). In the dispatch decision-making
process, operators should choose an appropriate confidence
level based on the actual needs of the system, balancing safety
and economic considerations. As shown in Figure 7, when the
carbon credit purchase margin is small, the high penalties for
carbon emissions prompt high-cost but low-emission units to
increase output, resulting in lower carbon emissions but higher
overall costs. As the carbon credit purchase margin increases,
the total carbon emissions become smaller than the sum of the
carbon quota and the purchased carbon credits, leading to
negative penalty costs. This indicates that the excess purchased
carbon credits can be sold again, reducing costs. However,
when there are no penalty costs, the overall cost increases, and
carbon emissions rise accordingly.

In summary, across the five scenarios analyzed, using a
stochastic simulation-based chance-constrained model that
satisfies both power balance and reserve balance increases
system reserve flexibility, avoiding resource waste and reducing
system operating costs and carbon emissions. The inclusion of
carbon trading costs in the economic dispatch model prioritizes
the dispatch of low-carbon and clean energy units. When carbon
emissions exceed the set limits, economic penalties are applied.
Although costs increase compared to traditional economic
dispatch, carbon emissions are significantly reduced. This
approach helps power companies better balance economic and
environmental impacts, accelerating progress toward the
"carbon peak" and "carbon neutrality" goals (Guo et al. 2021).

3.3.2 Comparative Analysis of Different Power Source Integrations

To visually verify the positive effects of different power source
integrations on carbon emissions and clean energy utilization,
five scenarios were set for comparison:

¢ Scenario 1: Thermal power output alone.
e Scenario 2: Combined output of solar and thermal power.
e  Scenario 3: Combined output of wind and thermal power.
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e Scenario 4: Bundled output of wind and solar power
combined with thermal power.

e Scenario 5: Combined output of wind, solar, thermal, and
energy storage systems.

Figure 8 shows the optimization results of dispatch under
different power source integrations. Based on the analysis of the
dispatch optimization results in Figure 8, the introduction of
renewable energy and energy storage systems significantly r
educes the wind and solar curtailment rate, overall costs, and
carbon emissions. In Scenario 1, where the system relies solely
on thermal power, the wind and solar curtailment rate reaches
100%, the total cost is 2.1114 million yuan, and carbon
emissions amount to 9,152.10 tons, the highest among all
scenarios. However, as solar, wind, and energy storage systems
are progressively introduced, particularly in Scenario 5
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(combined output of wind, solar, thermal, and energy storage
systems), the wind and solar curtailment rate drastically drops
to 7.37%, the total cost decreases to 1.3434 million yuan, and
carbon emissions are reduced to 6,474.69 tons. Compared to
Scenario 1, Scenario 5 effectively utilizes clean energy,
significantly reducing the reliance on thermal power, lowering
fuel consumption and maintenance costs, and mitigating
environmental pollution. In Scenario 5, the collaboration
between wind and solar power and energy storage not only
enhances the efficiency of renewable energy utilization but also
improves the overall economic and environmental performance
of the system, achieving the optimal dispatch outcome.

Figures 9 illustrates the power output and net load curves
of various power sources for Scenarios 1-5. Based on the data
from Figures 9.a and 9.b, Scenario 1 relies entirely on thermal
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power, with the thermal power output reaching 444.82 MW
during peak load periods (such as at the 19th hour), and the
lowest output being 228.78 MW, indicating significant
fluctuations. The energy consumption and carbon emissions of
thermal power are high during system operation. In contrast,
Scenario 2 introduces solar power, effectively reducing the
pressure on thermal power output during the daytime. For
example, at the 9th hour, solar power generation reached 80.09
MW, and the thermal power output dropped from 418.85 MW
in Scenario 1 to 338.76 MW, showing the significant relief solar
power provides to the thermal power load. However, during
nighttime hours when there is no solar power generation,
thermal power is still needed to handle most of the load. The
highest thermal power output in Scenario 2 is 413.57 MW,
slightly lower than the peak in Scenario 1, but still heavily reliant
on thermal power to maintain system stability. Overall, Scenario
2 reduces the usage frequency and carbon emissions of thermal
power through solar power generation, particularly during
daytime peak periods, making system operation more
environmentally friendly (Gao et al. 2025). However, thermal
power remains indispensable when solar power is unavailable.
As shown in Figure 9.c, the addition of wind power significantly
alleviates the load pressure on thermal power. During periods
of high wind speed (such as the 9th hour), wind power output
reaches 72.89 MW, reducing thermal power output from 418.85
MW in Scenario 1 to 345.96 MW, a decrease of about 73 MW.
This indicates that wind power can significantly reduce thermal
power output during peak periods, thereby reducing carbon
emissions and fuel consumption. Compared to Scenario 2
(combined output of solar and thermal power), wind power
exhibits greater volatility, resulting in more frequent fluctuations
in thermal power output. For example, at the 12th hour, wind
power output is 56.60 MW, and thermal power output is 282.71
MW, while in Scenario 2, solar power output is 40.97 MW, and
thermal power output is 298.34 MW, with a relatively higher
thermal power output. This shows that wind power, compared
to solar power, has greater generation capacity and can more
effectively reduce the thermal power load. However, during
periods of low wind speed (such as from the 1st to the 5th hour),
wind power output is low, and thermal power still needs to bear
the main load, with output levels similar to those in Scenario 1.
This indicates that although wind power can significantly reduce
thermal power pressure during high wind speed periods, its
intermittency requires thermal power to maintain a high output
level during low wind speed periods.

As shown in Figure 9.d, in Scenario 4, the combined
output of wind and solar power significantly reduces the load
pressure on thermal power. At the 9th hour, wind power output
reaches 68.85 MW, and solar power output is 80.43 MW,
reducing thermal power output to 269.57 MW, approximately
149 MW lower than the 418.85 MW in Scenario 1, significantly
easing the burden on thermal power. Compared to Scenario 2
(combined output of solar and thermal power), Scenario 4 has
more stable output during the day due to the addition of wind
power, resulting in lower thermal power output. For example, at
the 9th hour, thermal power output in Scenario 2 is 338.76 MW,
while in Scenario 4 it is 269.57 MW, a reduction of about 69 MW.
Additionally, Scenario 4 shows stronger load relief compared to
Scenario 3 (combined output of wind and thermal power), as it
leverages both wind and solar resources. At the 12th hour,
thermal power output in Scenario 3 is 282.71 MW, while in
Scenario 4 it is only 258.23 MW, a reduction of about 24 MW.
However, during nighttime periods with low wind and solar
output, thermal power is still required to bear the main load. For
example, at the 24th hour, thermal power output is 200.55 MW,
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which is lower than the 310.10 MW in Scenario 1, but still
relatively high. This indicates that the combined output of wind
and solar power can significantly reduce the thermal power load
during the day, but thermal power is still needed to maintain
system stability at night.

As shown in Figure 9.e, compared to the previous four
scenarios, Scenario 5, with the combined output of wind, solar,
and energy storage, further optimizes the thermal power load,
significantly reducing reliance on thermal power. At the 9th
hour, wind power output is 70.53 MW, solar power output is
75.28 MW, and energy storage provides 22.58 MW of power
support, reducing thermal power output to 250.45 MW. This is
a substantial reduction of 168.4 MW compared to the 418.85
MW in Scenario 1, and it is also lower than the 269.57 MW in
Scenario 4 and the 345.96 MW in Scenario 3, demonstrating the
key role that energy storage plays in stabilizing output.
Compared to Scenarios 2 and 3, thermal power output in
Scenario 5 is significantly reduced, and energy storage
effectively alleviates the load pressure caused by fluctuations in
wind and solar output. For example, at the 19th hour, thermal
power output in Scenario 5 is 304.12 MW, whereas in Scenario
1itis as high as 444.82 MW, and in Scenario 4 it is 336.45 MW.
This highlights the ability of energy storage to effectively
smooth out load fluctuations when wind and solar generation
are insufficient. Additionally, during low wind and solar output
periods (such as at the 24th hour), thermal power output in
Scenario 5 drops to 196.93 MW, compared to 310.10 MW in
Scenario 1, indicating that the energy storage system plays a
significant role in maintaining stable output during the night.
Therefore, with the support of the energy storage system,
Scenario 5 further reduces thermal power load fluctuations,
achieving more efficient energy dispatch and carbon emissions
control.

As shown in Figure 10, with the gradual introduction of
renewable energy and energy storage systems, the net load
fluctuations of the system are significantly reduced. In Scenario
1 (thermal power output alone), the net load corresponds
directly to thermal power output, showing large fluctuations
throughout the day, with a net load range from 257.99 MW to
44482 MW. In Scenario 2, the addition of solar power
significantly reduces the daytime net load, particularly at the 9th
hour, where it drops to 338.76 MW, demonstrating the
alleviating effect of solar power on the thermal power load. In
Scenario 3, with the introduction of wind power, the net load
decreases to 345.96 MW during periods of sufficient wind
resources (such as at the 9th hour), but wind speed fluctuations
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cause the nighttime net load to approach that of Scenario 1. In
Scenario 4 (combined wind and solar output), the daytime net
load is further reduced to 269.57 MW, the lowest daytime net
load among all scenarios, though nighttime still relies on thermal
power. In Scenario 5, the combined output of wind, solar, and
energy storage systems significantly smooths net load
fluctuations, with the lowest daytime net load at 250.45 MW,
and a relatively low nighttime net load as well (196.93 MW at
the 24th hour). The energy storage system effectively mitigates
the load pressure caused by wind and solar power fluctuations.
Scenario 5 achieves the best dispatch performance, resulting in
the lowest net load fluctuations.

4, Conclusion

This study investigates a multi-energy coordinated low-
carbon economic dispatch model for wind, solar, thermal, and
energy storage systems, considering uncertainties on both the
supply and demand sides. A multi-objective optimization
method based on a carbon trading mechanism and chance
constraints is proposed, aiming to improve the system's low-
carbon economic performance and the integration of renewable
energy. In the model, a penalizing carbon trading mechanism is
introduced to incorporate carbon emission costs into the
traditional economic dispatch model, and a stochastic
simulation particle swarm optimization algorithm is used to
solve the model. The model demonstrates strong adaptability
and optimization effects when dealing with the volatility of wind
and solar power and load forecasting uncertainties.

The results show that although the introduction of the
carbon trading mechanism increases system economic costs, it
significantly reduces carbon emissions. For example, in
Scenario 1, after introducing the carbon trading mechanism, the
total cost increased by 37,300 yuan, but carbon emissions
decreased by 8.35%, while wind and solar curtailment penalties
decreased by 65.48%, and the overall operating costs were
reduced by 14.94%. This demonstrates that the carbon trading
mechanism can effectively limit carbon emissions through
economic incentives, improving the environmental benefits of
the system and promoting the development of low-carbon
power systems.

In terms of handling the uncertainties of wind, solar power
output, and load, the chance-constrained model shows great
flexibility. By setting different confidence levels, the system can
flexibly adjust reserve capacity in response to uncertainties.
Compared to traditional reserve capacity methods, the
scenarios using chance constraints reduced the system's total
reserve capacity requirements. For example, the reserve
capacity in Scenario 1 decreased by 31.84%, and the overall
costs were reduced by 26.83%. This indicates that the chance-
constrained model can more effectively manage uncertainties,
reduce redundant system configurations, and enhance
operational efficiency.

In the scenario analysis with different power sources, as
wind, solar, and energy storage systems were gradually
introduced, the system's wind and solar curtailment rates,
overall costs, and carbon emissions all significantly decreased.
For instance, in Scenario 5, the combined output of wind, solar,
thermal, and energy storage systems reduced the wind and
solar curtailment rate to 7.37%, the overall costs to 1.3434
million yuan, and carbon emissions to 6,474.69 tons. Compared
to Scenario 1, which relied solely on thermal power, fuel
consumption and carbon emissions were significantly reduced.
The energy storage system, through its "energy shifting"
function, provided power support during periods of insufficient
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wind and solar generation, effectively smoothing the system's
load fluctuations and further improving the system's economic
and environmental performance.

Overall, the proposed multi-energy coordinated low-
carbon economic dispatch model for wind, solar, and thermal
systems, incorporating carbon trading mechanisms and chance-
constrained optimization, effectively reduces system carbon
emissions, reserve capacity requirements, and enhances
renewable energy integration. It demonstrates significant
economic and environmental benefits. Future research could
further explore the role of hydropower and thermal power in
balancing base loads and regulating capacity to further enhance
low-carbon economic dispatch and achieve sustainable
development in power systems.

Acknowledgement: This work is supported by the Science and
Technology Project of China Southern Power Grid Company (No.
031900KC23040022)

Author Contributions: Hong Liu: Conceptualization, methodology,
formal analysis, writing—original draft, Yongwei Su; supervision,
resources, project administration, Kaijing Cai; writing—review and
editing, project administration, validation, Yingkang Mo; writing—
review and editing, project administration, validation. All authors have
read and agreed to the published version of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

Aunedi, M., Al Kindi, A. A., Pantaleo, A. M., Markides, C. N., & Strbac,
G. (2023). System-driven design of flexible nuclear power plant
configurations with thermal energy storage. Energy Conversion
and Management, 291, 117257.
https://doi.org/10.1016/j.enconman.2023.117257

Chen, L., Zhang, J., Zhang, X., & Liu, H. (2024). A new low-carbon
project scheduling problem with renewable and traditional
energy: A comprehensive analysis and its solution. Journal of
Cleaner Production, 143089.
https://doi.org/10.1016/j.jclepro.2024.143089

Elahi Gol, A., & S¢asny, M. (2023). Techno-economic analysis of fixed
versus sun-tracking solar panels. International Journal of
Renewable Energy Development, 12(3), 615-
626. https://doi.org/10.14710/ijred.2023.50165

Gao, C, Lu, H,, Chen, M., Chang, X., & Zheng, C. (2025). A low-carbon
optimization of integrated energy system dispatch under multi-
system coupling of electricity-heat-gas-hydrogen based on
stepwise carbon trading. International Journal of Hydrogen
Energy, 97, 362-376.
https://doi.org/10.1016/j.ijjhydene.2024.11.055

Gao, H., Wang, W., He, S, Tang, Z., & Liu, J. (2024). Low-carbon
economic scheduling for AIES considering flexible load
coordination and multiple uncertainties. Renewable Energy, 228,
120643. https://doi.org/10.1016/j.renene.2024.120643

Gu, H, Li, Y, Yu, J.,, Wy, C,, Song, T., & Xu, J. (2020). Bi-level optimal
low-carbon economic dispatch for an industrial park with
consideration of multi-energy price incentives. Applied energy,
262, 114276. https://doi.org/10.1016/j.apenergy.2019.114276

Gu, W., Wang, Q., Liu, H., & Desire, W. A. (2023). Multi-energy
collaborative optimization of park integrated energy system
considering carbon emission and demand response. Energy
Reports, 9, 3683-3694.
https://doi.org/10.1016/j.egyr.2023.02.051

Guo, Q., Nojavan, S., Lei, S.,, & Liang, X. (2021). Economic-
environmental evaluation of industrial energy parks integrated
with CCHP units under a hybrid IGDT-stochastic optimization

ISSN: 2252-4940/© 2025. The Author(s). Published by CBIORE


https://doi.org/10.1016/j.enconman.2023.117257
https://doi.org/10.1016/j.jclepro.2024.143089
https://doi.org/10.14710/ijred.2023.50165
https://doi.org/10.1016/j.ijhydene.2024.11.055
https://doi.org/10.1016/j.renene.2024.120643
https://doi.org/10.1016/j.apenergy.2019.114276
https://doi.org/10.1016/j.egyr.2023.02.051

H. Liuetal

approach. Journal of Cleaner Production, 317, 128364.
https://doi.org/10.1016/j.jclepro.2021.128364

He, Z., Liu, C., Wang, Y., Wang, X., & Man, Y. (2023). Optimal operation
of wind-solar-thermal collaborative power system considering
carbon trading and energy storage. Applied Energy, 352,
121993. https://doi.org/10.1016/j.apenergy.2023.121993

Huang, Y., Wang, Y., & Liu, N. (2022). Low-carbon economic dispatch
and energy sharing method of multiple Integrated Energy
Systems from the perspective of System  of
Systems. Energy, 244, 122717.
https://doi.org/10.1016/j.energy.2021.122717

Jin, J., Wen, Q., Cheng, S., Qiu, Y., Zhang, X., & Guo, X. (2022).
Optimization of carbon emission reduction paths in the low-
carbon power dispatching process. Renewable Energy, 188, 425-
436. https://doi.org/10.1016/j.renene.2022.02.054

Jin, J., Wen, Q., Qiu, Y., Cheng, S., & Guo, X. (2023). Distributed robust
optimization for low-carbon dispatch of wind-thermal power
under uncertainties. Environmental Science and Pollution
Research, 30(8), 20980-20994.
https://doi.org/10.1007/s11356-022-23591-8

Li, K, Ying, Y., Yu, X., & Li, J. (2024). Optimal Scheduling of Electricity
and Carbon in Multi-Park Integrated Energy Systems. Energies,
17(9), 2119. https://doi.org/10.3390/en17092119

Li, Z., Wu, Q,, Li, H, Nie, C., & Tan, J. (2024). Distributed low-carbon
economic dispatch of integrated power and transportation
system. Applied Energy, 353, 122134.
https://doi.org/10.1016/j.apenergy.2023.122134

Liu, C.,, Wang, H., Wang, Z, Liu, Z, Tang, Y., & Yang, S. (2022).
Research on life cycle low carbon optimization method of multi-
energy complementary distributed energy system: A
review. Journal ~ of  Cleaner  Production, 336,  130380.
https://doi.org/10.1016/j.jclepro.2022.130380

Liu, G, Qin, Z., Diao, T., Wang, X., Wang, P., & Bai, X. (2022). Low
carbon economic dispatch of biogas-wind-solar renewable
energy system based on robust stochastic
optimization. International Journal of Electrical Power & Energy
Systems, 139, 108069.
https://doi.org/10.1016/j.ijepes.2022.108069

Liu, G, Song, X., Liang, T, Li, Y., & Liu, K. (2024). Edge-Cloud
Collaborative Optimization Scheduling of an Industrial Park
Integrated Energy System. Sustainability, 16(5),
1908. https://doi.org/10.3390/su16051908

Liu, H,, Tian, S., Wang, X., Cao, Y., Zeng, M., & Li, Y. (2021). Optimal
planning design of a district-level integrated energy system
considering the impacts of multi-dimensional uncertainties: A
multi-objective interval optimization method. IEEE Access, 9,
26278-26289.
https://doi.org/10.1109/ACCESS.2021.3053598

Liu, J., Ma, L., & Wang, Q. (2023). Energy management method of
integrated energy system based on collaborative optimization
of distributed flexible resources. Energy, 264, 125981.
https://doi.org/10.1016/j.energy.2022.125981

Liu, X, Li, X,, Tian, J., Yang, G., Wu, H,, Ha, R., & Wang, P. (2023). Low-
carbon economic dispatch of integrated electricity-gas energy
system considering carbon capture, utilization and
storage. I[EEE Access, 11, 25077-25089.
https://doi.org/10.1109/ACCESS.2023.3255508

Luo, Z., Wang, J., Xiao, N., Yang, L., Zhao, W., Geng, J., ... & Dong, C.
(2022). Low carbon economic dispatch optimization of regional
integrated energy systems considering heating network and
P2G. Energies, 15(15), 5494.
https://doi.org/10.3390/en15155494

Ma, R, Li, X, Gao, W., Lu, P., & Wang, T. (2020). Random-fuzzy chance-
constrained programming optimal power flow of wind
integrated power considering voltage stability. JEEE Access, 8,
217957-
217966. https://doi.org/10.1109/ACCESS.2020.3040382

Ning, C., & You, F. (2021). Deep learning based distributionally robust
joint chance constrained economic dispatch under wind power
uncertainty. /[EEE Transactions on Power Systems, 37(1), 191-203.
https://doi.org/10.1109/TPWRS.2021.3096144

Njie, Y., Wang, W, Liu, L., & Abdullah, .. (2024). Unveiling the Nexus:
Analyzing foreign direct investment and energy consumption in
shaping carbon footprints across Africa’s leading CO2-emitting

Int. J. Renew. Energy Dev 2025, 14(2), 233-244

| 243

countries. International ~ Journal ~ of  Renewable  Energy
Development, 13(5), 898-
908. https://doi.org/10.61435/ijred.2024.60315

Pandit, M., Chaudhary, V., Dubey, H. M., & Panigrahi, B. K. (2015).
Multi-period wind integrated optimal dispatch using series
PSO-DE with time-varying Gaussian membership function
based fuzzy selection. International journal of electrical power &
energy systems, 73, 259-272.
https://doi.org/10.1016/].ijepes.2015.05.017

Prawitasaria, A., Nurliyantia, V., Utamia, D. M. P., & Nurdianaa, E.
(2024). A systematic decision-making approach to optimizing
microgrid energy sources in rural areas through diesel
generator operation and techno-economic analysis: A case
study of Baron Technopark in Indonesia. Int. J. Renew. Energy
Dev, 13, 315-328.https://doi.org/10.61435/ijred.2024.59560

Rabe, M., Streimikiene, D., & Bilan, Y. (2019). EU carbon emissions
market development and its impact on penetration of
renewables in the power sector. Energies, 12(15), 2961.
https://doi.org/10.3390/en12152961

Song, J., Zhang, Z., Mu, Y., Wang, X., Chen, H., Pan, Q., & Li, Y. (2024).
Enhancing envrionmental sustainability via interval
optimization for low-carbon economic dispatch in renewable
energy power systems: Leveraging the flexible cooperation of
wind energy and carbon capture power plants. Journal of
Cleaner Production, 442, 140937.
https://doi.org/10.1016/j.jclepro.2024.140937

Takyi, K. N., Gavurova, B., Charles, O., Mikeska, M., & Sampene, A. K.
(2024). Assessing the role of circular economy and green
innovation in mitigating carbon emissions in the Visegrad
countries. International ~ Journal ~ of  Renewable  Energy
Development, 13(6), 1149-
1161. https://doi.org/10.61435/ijred.2024.60654

Ting, Q. I. N., Huaidong, L., & Jingiao, W. A. N. G. (2018). Carbon
trading based low-carbon economic dispatch for integrated
electricity-heat-gas energy system. Automation of Electric Power
Systems, 42(14), 8-13.
https://doi.org/10.7500/AEPS20171220005

Wang, C.,, Lin, X,, Nan, J., Feng, J., Zhou, W., & Zhou, H. (2022).
Coordinating thermal energy storage capacity planning and
multi-channels energy dispatch in wind-concentrating solar
power energy system. Journal of Cleaner Production, 350,
131405. https://doi.org/10.1016/j.jclepro.2022.131405

Wang, J., Ren, X,, Li, T.,, Zhao, Q., Dai, H., Guo, Y., & Yan, J. (2024).
Multi-objective optimization and multi-criteria evaluation
framework for the design of distributed multi-energy system: A
case study in industrial park. Journal of Building Engineering, 88,
109138. https://doi.org/10.1016/j.jobe.2024.109138

Wang, K., You, D. H, & Pan, K. (2013). Long-term multi-objective
optimization dispatch and its evaluation in wind integrated
power systems. Advanced Materials Research, 732, 1033-1037.
https://doi.org/10.4028/www.scientific.net/AMR.732-
733.1033

Wang, T., Wang, Q., & Zhang, C. (2021). Research on the optimal
operation of a novel renewable multi-energy complementary
system in rural areas. Sustainability, 13(4), 2196.
https://doi.org/10.3390/su13042196

Wang, Y., Qiu, J., Tao, Y., Zhang, X., & Wang, G. (2020). Low-carbon
oriented optimal energy dispatch in coupled natural gas and
electricity systems. Applied Energy, 280, 115948.
https://doi.org/10.1016/j.apenergy.2020.115948

Wu, G, Hua, H.,, & Niu, D. (2022). Low-carbon economic dispatch
optimization of a virtual power plant based on deep
reinforcement learning in  China's carbon market
environment. Journal ~ of  Renewable and  Sustainable
Energy, 14(5). https://doi.org/10.1063/5.0107948

Yan, N, Ma, G,, Li, X., & Guerrero, J. M. (2022). Low-carbon economic
dispatch method for integrated energy system considering
seasonal carbon flow dynamic balance. /[EEE Transactions on
Sustainable Energy, 14(1), 576-586.
https://doi.org/10.1109/TSTE.2022.3220797

Yang, Y., Qin, C., Zeng, Y., & Wang, C. (2021). Optimal coordinated
bidding strategy of wind and solar system with energy storage
in day-ahead market. Journal of Modern Power Systems and Clean

ISSN: 2252-4940/© 2025. The Author(s). Published by CBIORE


https://doi.org/10.1016/j.jclepro.2021.128364
https://doi.org/10.1016/j.apenergy.2023.121993
https://doi.org/10.1016/j.energy.2021.122717
https://doi.org/10.1016/j.renene.2022.02.054
https://doi.org/10.1007/s11356-022-23591-8
https://doi.org/10.3390/en17092119
https://doi.org/10.1016/j.apenergy.2023.122134
https://doi.org/10.1016/j.jclepro.2022.130380
https://doi.org/10.1016/j.ijepes.2022.108069
https://doi.org/10.3390/su16051908
https://doi.org/10.1109/ACCESS.2021.3053598
https://doi.org/10.1016/j.energy.2022.125981
https://doi.org/10.1109/ACCESS.2023.3255508
https://doi.org/10.3390/en15155494
https://doi.org/10.1109/ACCESS.2020.3040382
https://doi.org/10.1109/TPWRS.2021.3096144
https://doi.org/10.61435/ijred.2024.60315
https://doi.org/10.1016/j.ijepes.2015.05.017
https://doi.org/10.61435/ijred.2024.59560
https://doi.org/10.3390/en12152961
https://doi.org/10.1016/j.jclepro.2024.140937
https://doi.org/10.61435/ijred.2024.60654
https://doi.org/10.7500/AEPS20171220005
https://doi.org/10.1016/j.jclepro.2022.131405
https://doi.org/10.1016/j.jobe.2024.109138
http://dx.doi.org/10.4028/www.scientific.net/AMR.732-733.1033
http://dx.doi.org/10.4028/www.scientific.net/AMR.732-733.1033
https://doi.org/10.3390/su13042196
https://doi.org/10.1016/j.apenergy.2020.115948
https://doi.org/10.1063/5.0107948
https://doi.org/10.1109/TSTE.2022.3220797

H. Liuetal

Energy, 10(1), 192-203.
https://doi.org/10.35833/MPCE.2020.000037

Zhan, S., Hou, P., Yang, G., & Hu, J. (2022). Distributionally robust
chance-constrained flexibility planning for integrated energy
system. International Journal of Electrical Power & Energy
Systems, 135, 107417.
https://doi.org/10.1016/j.ijepes.2021.107417

Zhang, X., Zhang, H., & Yao, J. (2020). Multi-objective optimization of
integrated process planning and scheduling considering energy

Int. J. Renew. Energy Dev 2025, 14(2), 233-244

| 244

savings. Energies, 13(23),
6181. https://doi.org/10.3390/en13236181

Zhou, Y., Wang, J., Li, Y., & Wei, C. (2023). A collaborative management
strategy for multi-objective optimization of sustainable
distributed energy system considering cloud energy storage.
Energy, 280, 128183.

https://doi.org/10.1016/j.energy.2023.128183

© 2025. The Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons

@ @ Attribution-ShareAlike 4.0 (CC BY-SA) International License (http://creativecommons.org/licenses/by-sa/4.0/)

ISSN: 2252-4940/© 2025. The Author(s). Published by CBIORE


https://doi.org/10.35833/MPCE.2020.000037
https://doi.org/10.1016/j.ijepes.2021.107417
https://doi.org/10.3390/en13236181
https://doi.org/10.1016/j.energy.2023.128183
http://creativecommons.org/licenses/by-sa/4.0/

