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Abstract. Due to the intermittency and volatility of renewable energy, the system stability is poor and the operating cost is high. This study proposes 
an economic dispatch model for renewable energy systems based on a demand response model and differential evolution algorithm. A demand 
response model based on real-time flexible tariffs is combined with charging and discharging strategies for electric vehicles to optimize flexible load 
dispatch in the system. This combination is intended to improve the efficiency and reliability of grid operation. The traditional differential evolution 
algorithm is prone to getting stuck in local optima. Given this, this study introduces a deterministic sequence-improved differential evolution algorithm 
to enhance population diversity and local search ability, significantly improving the global search performance and convergence efficiency of the 
algorithm. To validate the effectiveness of the model, function extremum and system operation simulation experiments are designed. The results 
showed that the improved algorithm had a variance of 0 and an optimal value of 10 -30 on multi-modal functions, and a variance of 0 and an optimal 
value of 10-3.5 on fixed dimensional functions. After considering demand response, the peak valley difference in electricity consumption between 
renewable energy systems A and B was 90.15MW and 527.55MW, with fluctuations of 36.57MW and 201.79MW, and operating costs of 46058.76 
yuan and 52.3315 million yuan, respectively. Research findings indicate that the electric energy coordination and economic management of this 
model have been significantly enhanced. These enhancements effectively ensure efficient energy utilization, facilitate the safe and stable operation of 
the system, and provide a novel theoretical foundation for the optimization and scheduling of renewable energy systems. 
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1. Introduction 

With the transformation of the global energy structure and 
the increasingly severe deterioration of the environmental 
climate, the utilization of Renewable Energy (RE) has become 
an important issue in the energy field. In the power system, the 
utilization rate of RE including wind and solar energy continues 
to increase, providing strong support for achieving green energy 
transformation. However, due to the intermittency and 
uncertainty of RE, its large-scale integration puts significant 
pressure on the economic dispatch of the Power System (PowS) 
(Osamn et al., 2023). How to achieve optimal cost-effectiveness 
while ensuring stable operation of the PowS has become a key 
issue that urgently needs to be addressed. Yi et al. (2023) 
proposed a model-free economic scheduling method based on 
reinforcement learning to address the accuracy and stability 
issues of virtual power plants. By constructing a two-stage 
reinforcement learning framework to optimize training 
scheduling strategies, this method improved the robustness and 
safety of power output. Lei et al. (2023) proposed a forward-
looking economic dispatch strategy for wind power grid-
connected systems to address safety issues caused by power 
fluctuations in the power grid. By dynamically climbing 
constraints and flexibly transferring loads to smooth power 
fluctuations, this strategy effectively improved calculation 
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accuracy and efficiency. Liu et al. (2023) constructed a novel 
hybrid large-scale PowS economic dispatch method to enhance 
the power generation efficiency of the PowS. This method 
achieved local and global optimal scheduling by introducing 
gain sharing knowledge algorithm and differential evolution 
algorithm, and its search efficiency and robustness were 
significantly improved. Wang et al. (2024) proposed a multi-
objective environmental Economic Dispatch Model (EDM) for 
PowSs to address the scheduling pressure. The optimal 
scheduling solution was obtained through an artificial bee 
colony algorithm and sequential preference technique. This 
model greatly reduced economic costs and pollution emissions. 
Nalini et al. (2024) proposed a PowS economic dispatch method 
based on an improved goose flame optimizer to solve the 
dynamic economic emission dispatch problem. By combining 
the goose flame optimizer with multi-objective algorithms to 
seek the optimal solution for dynamic economic scheduling 
problems, the accuracy and efficiency of this method have been 
improved. Despite the strides made by scientists in enhancing 
the safety and stability of the PowS through the investigation of 
economic dispatch, further research is necessary to ensure the 
optimal functioning of this critical infrastructure. However, 
existing economic dispatch methods still have shortcomings in 
handling dynamic dispatch demands and optimizing supply and 
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demand and have a poor ability to cope with the volatility of RE 
and uncertainty on the demand side. 

Demand Response (DR) constitutes a pivotal element of 
demand-side management in the PowS, wherein users are 
prompted to modify their electricity consumption patterns by 
implementing incentives or price signals. This approach has 
been demonstrated to exert a favorable influence on the 
promotion of equilibrium in electricity supply and demand, 
thereby ensuring the stable operation of the power grid (Yasmin 
et al., 2024). Luo et al. (2023) proposed a coordinated operation 
strategy for cogeneration microgrids considering DR to address 
the issue of household electricity utilization efficiency. By 
establishing a load DR model and a thermal inertia load model 
to coordinate power management, this strategy effectively 
reduced the operating costs of the system. Reka et al. (2023) 
developed a DR model built on user privacy to address power 
management issues in residential areas. This model used 
discounted random games and generative adversarial networks 
to analyze users' privacy needs, improving the efficiency of 
power grid operation and real-time analysis capabilities. Wynn 
et al. (2023) designed a distributed energy management system 
considering DR for the supply-demand balance of the PowS. 
The system applied an autoregressive moving average, Particle 
Swarm Optimization (PSO) algorithm, and DR program to 
achieve flexible scheduling of the current microgrid system, 
reduced peak load by 4.3%, and filled valley load by 5%. He et 
al. (2023b) suggested a DR prediction model grounded on 
multivariate loads to solve the energy planning problem in the 
PowS. The model used convolutional neural networks and gate 
loop units for load prediction. The data showed that the average 
absolute percentage error of the model has increased by more 
than 3%. He et al. (2023a) proposed a hybrid DR strategy for 
Electric Vehicle (EV) users' charging behavior, which guides 
users to make charging choices through dynamic time-of-use 
electricity pricing and incentive subsidy mechanisms. This 
strategy improved the adhesion of tram users and reduced the 
volatility of grid power. Martín-Ortega et al. (2024) proposed the 
Integrated Climate Action Mitigation Inventory Tool (MITICA). 
This proposal addressed the significant gap in defining emission 
reduction targets and reporting Greenhouse Gas (GHG)-related 
reporting elements in the process of developing Nationally 
Determined Contributions (NDCs) under the Paris Agreement. 
This initiative fostered uniformity among national GHG 
inventories, emission reduction strategies, and GHG projects. It 
further facilitated the optimization of tracking nationally 
determined contributions and the establishment of objectives in 
alignment with IPCC best practices. Additionally, it promoted 
the nexus between climate change and sustainable economic 
development. Nydrioti et al. (2024) addressed the significant 
impact of climate change on water resources. They proposed 
using Aquacycle software combined with the RCA4 Regional 
Climate Model (RCM) to simulate three climate emission 
scenarios (RCP 2.6, RCP 4.5, and RCP 8.5) to assess water 
demand and supply in the Aigeiros region of Greece over the 
next 30 years. This approach enables accurate prediction and 
optimization of water management strategies. Arabatzis et al. 
(2017) solved the problem of classifying Greek regional units 
based on the number and installed capacity of RE facilities. They 
proposed using hierarchical clustering analysis in multivariate 
statistical methods to enable detailed classification of the 
number and installed capacity of RE factories based on various 
regional units in Greece. Hosan et al. (2024) addressed the issue 
of research gaps concerning the impact of energy innovation 
funding on social equity in advanced economies. Utilizing a 
quantitative analysis, the researchers examined the direct and 

indirect effects of energy innovation funding on social equity 
through accelerated energy justice in 23 advanced economies 
from 1995 to 2020. Consequently, the necessity of a rational 
allocation and utilization of public energy innovation budgets for 
the promotion of clean energy technologies, the advancement 
of a just energy transition, and the enhancement of social equity, 
inclusiveness, and community participation was underscored. 
Many scholars' research have shown that DR can promote the 
optimization scheduling of RE and help balance the load of the 
power grid. However, there are still deficiencies in the incentive 
mechanism and benefit evaluation of current DR, which require 
further research and exploration. 

In this context, this study proposes an EDM for Renewable 
Energy Systems (RES) considering DR. This study takes energy-
saving and environmentally friendly EVs as the response object. 
It innovatively constructs an optimization scheduling model that 
comprehensively considers both the supply and demand sides. 
The model uses an improved Differential Evolution algorithm 
(DE) to seek the global optimal solution. It aims to achieve 
efficient optimization of supply and demand resources and 
smooth operation of the power grid, further promoting the 
sustainable development of the PowS. 

The novelty of the study is mainly reflected in the 
combination of DR and DE algorithms to propose an EDM for 
RES. This model innovatively considers the user response 
behavior under real-time flexible tariffs and achieves integrated 
scheduling on both the supply and demand sides by optimizing 
the charging and discharging strategies of EVs. In addition, the 
Deterministic Sequence Differential Evolution (DSDE) 
algorithm significantly improves the global search performance 
and convergence efficiency of the algorithm by introducing 
deterministic sequences to enhance population diversity and 
local search capability. Combining the DR strategy with the 
improved algorithm provides a new perspective for solving the 
intermittency and uncertainty problems of RE and is an 
important addition to the existing research on the economic 
dispatch of PowSs. 

The contribution of the study is to provide a new model 
that can effectively address the stability and economic 
challenges in the operation of RES. The model is verified 
through simulation experiments to show significant results in 
reducing the peak and valley load differences in the grid, 
lowering the operating costs, and increasing the utilization of 
wind power. The test results of the model on multi-modal and 
fixed dimensional functions show excellent stability and 
accuracy, demonstrating the effectiveness of the DSDE 
algorithm in solving complex optimization problems. 
Furthermore, the implementation results of the model 
demonstrate that the peak-to-valley load differences, fluctuation 
amplitude, and operating costs of the system are reduced after 
considering DR. This not only verifies the practicality of the 
model but also provides an innovative theoretical foundation 
and practical guidance for the economic dispatch of the PowS, 
thereby promoting the development of the RES in the direction 
of greater efficiency and economy. 

2. Methods  

2.1 DR model based on real-time elastic electricity price 

Due to the randomness, volatility, and intermittency of RE, 
it is difficult to accurately predict the power supply capacity of 
RE, thereby increasing the uncertainty and load pressure of 
power grid operation (Xia et al., 2023; Bazionis and Georgilakis, 
2021). In response to this, this study proposes a RES-EDM 
based on DR, which establishes a real-time electricity price DR 
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model through the relationship between electricity quantity and 
electricity price. This model adopts the charging and 
discharging strategy of EV, optimizes the flexible load 
scheduling in the system, and improves the efficiency and 
reliability of power grid operation. DR, as a market incentive 
measure, can encourage users to adjust their electricity 
consumption patterns according to changes in electricity prices, 
which helps reduce the peak and valley load differences in the 
power grid and alleviate system scheduling pressure (Ajitha and 
Sudha, 2023). This paper first constructs a DR model grounded 
on real-time elastic electricity prices, estimates the elasticity 
coefficients of electricity prices for different users and time 
periods through research, creates an elasticity matrix that 
displays the level of electricity prices, and then designs DR 
strategies based on this. The DR model operation flowchart is 
shown in Fig. 1. 

In Fig. 1, the model sets start and end dates and collects 
and analyzes historical load and electricity price data during that 
period. Then, the model sequentially calculates the changes in 
load, electricity price, and user demand during the period, 
quantifying the corresponding changes in electricity load 
fluctuations, price adjustments, and user demand. The next step 
is to establish a loss function based on the change amount and 
evaluate the deviation of demand changes. By optimizing the 
loss function, the optimal objective function is determined. 
Subsequently, the gradient descent algorithm is utilized to 
update the elasticity coefficient of electricity prices and make 
conditional judgments (Jiabao et al., 2023; Lin et al., 2022). If the 
iteration condition is met, the demand change step will be 
repeated until a complete and effective elastic coefficient is 
obtained. Finally, using the elasticity coefficient of electricity 
prices, the DR change of users towards electricity price 

fluctuations is calculated. Among them, the calculation of the 
electricity price elasticity coefficient is given by equation (1). 

𝐸𝑖,𝑗 =
𝑝0,𝑗

𝑑0,𝑖
∗
𝛥𝑑𝑖

𝛥𝑝𝑗
, 𝑗 = 1,2,⋯ ,24  (1) 

In equation (1), 𝑝0,𝑗 and 𝛥𝑝𝑗  are the initial electricity price 

and electricity price fluctuations at time 𝑗 . 𝑑0,𝑖  is the initial 
power demand of user at time 𝑖. 𝛥𝑑𝑖 means the demand change 
at 𝑖. The elasticity matrix can be divided into two types: self-
elasticity and cross elasticity. When 𝑖 and 𝑗 are the same, users 
can only adjust their current electricity usage. When 𝑖 and 𝑗 are 
different, users can transfer dispatchable loads to lower cost 
periods based on electricity price fluctuations, thereby 
achieving optimized allocation of electricity demand (Zhang et 
al., 2021; Dong et al., 2022). After implementing the DR strategy, 
the user’s power demand formula is shown in equation (2). 

𝑞𝑛𝑖′ = 𝑞𝑛𝑖 ൜1 + σ 𝐸𝑖,𝑗 ∗
𝑝𝑖−𝑝0,𝑗

𝑝0,𝑗

24
𝑗=1 ൠ , 𝑖 = 1,2,⋯ ,24 (2) 

In equation (2), 𝑞𝑛𝑖  and 𝑞𝑛𝑖′  are the initial and adjusted 
user energy loads. The calculation of the user's DR change is 
shown in equation (3). 

𝛥𝑞 = σ 𝐸𝑖,𝑗 ∗
𝑞𝑛𝑖∗[𝑝𝑖(𝑙)−𝑝0,𝑗(𝑙)]

𝑝0,𝑗(𝑙)
, 𝑙 = 1,2,⋯ ,2424

𝑗=1  (3) 

In equation (3), 𝑝𝑖(𝑙) and 𝑝0,𝑗(𝑙) are the electricity price 
and initial electricity price at time 𝑖 on day 𝑙. 

2.2 Economic dispatch model for renewable energy systems 

After successfully constructing a DR model based on real-
time elastic electricity prices, this study combines EV charging 
and discharging strategies to establish a RES-EDM that 
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Fig. 1 Demand response model operation process 
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considers DR. It aims to achieve more efficient and stable 
energy management. Fig. 2 shows the overall architecture of the 
model. In Fig. 2, the model mainly consists of four parts: power 
demand side, power supply side, power grid, and dispatch 
center. The power supply side is a comprehensive wind power 
plant that includes multiple wind turbines, as well as auxiliary 
equipment such as photovoltaic arrays, diesel generators, micro 
gas turbines, energy storage devices, and loads. It delivers 
energy to the demand side through integration into the power 
grid. On the demand side of electricity, the DR model 
incentivizes users to adjust their energy consumption behavior, 
allowing them to charge when the grid load is low or electricity 
prices are cheap while coordinating the charging and 
discharging behavior of EVs (Serat et al., 2023; Gul and Suchitra, 
2024). EVs will store energy during low-demand periods and 
release energy during peak-demand periods. Furthermore, the 
model establishes a scheduling center to facilitate the 
coordination between the power grid, supply side, and demand 
side. This center is responsible for the real-time scheduling and 
management of power transmission and consumption. 

The model scheduling center is supported and operated by 
key components such as objective function, constraint 
conditions, and communication control. These components 
work together to ensure that the dispatch center effectively 
manages and optimizes the operation of the PowS (Zhong et al., 
2024; Yu et al., 2024). The specific expression of the objective 
function is given by equation (4). 

𝑚𝑖𝑛 𝐹 = 𝑚𝑖𝑛σ σ (𝑎𝑖𝑃𝐺𝑖,𝑡
2 + 𝑏𝑖𝑃𝐺𝑖,𝑡 + 𝑐𝑖)

𝑁𝐺

𝑖=1
𝑇
𝑡=1  (4) 

In equation (4), 𝐹 is the total cost of coal consumption. 
𝑃𝐺𝑖,𝑡 is the actual power of Thermal Power Unit (TPU) 𝑖 during 
time period 𝑡. 𝑎𝑖  is the quadratic cost coefficient. 𝑏𝑖  is a cost 
coefficient. 𝑐𝑖 is a fixed cost. 𝑇 denotes the gross of scheduling 
periods. 𝑁𝐺 is the sum of TPUs. The optimization objective of 
EDM is to minimize the difference between peak and valley 
loads after demand side scheduling management. The 
optimization objective calculation is shown in equation (5). 

max min
min( )= −

L
F Load Load    (5) 

In equation (5), 𝐿𝑜𝑎𝑑𝑚𝑎𝑥  is the peak load value, and 
𝐿𝑜𝑎𝑑𝑚𝑖𝑛 is the low load value. For the smooth operation of RES, 
certain conditional constraints are required within EDM 
(Rajabdorri et al., 2022; Rani and Malakar, 2024). The actual 
power constraint of the unit is shown in equation (6). 

x

,

min m x

ma
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
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P
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In equation (6), 𝑃𝑊,𝑡  and 𝑃𝑊,𝑡
𝑚𝑎𝑥 are the actual power and 

expected actual power of the wind turbine during period 𝑡. 𝑃𝐺𝑖,𝑡
𝑚𝑖𝑛 

and 𝑃𝐺𝑖,𝑡
𝑚𝑎𝑥 are the minimum and maximum actual power of TPU 

𝑖  during 𝑡. The system power balance constraint is shown in 
equation (7) (Rabiee et al., 2021). 

𝑔𝑖𝑡(𝜃𝑖𝑡, 𝑃𝑖𝑡) = 0    (7) 

In equation (7), 𝑔𝑖𝑡, 𝜃𝑖𝑡, and 𝑃𝑖𝑡 represent the power loss, 
voltage angle, and actual power of unit 𝑖 during 𝑡. The climbing 
constraint is shown in equation (8). 

൜
0 ≤ 𝑃𝐺𝑖,𝑡 − 𝑃𝐺𝑖,𝑡−1 ≤  𝛿𝑖,𝑚𝑎𝑥+

0 ≤ 𝑃𝐺𝑖,𝑡−1 − 𝑃𝐺𝑖,𝑡 ≤  𝛿𝑖,𝑚𝑎𝑥−
   (8) 

In equation (8), 𝛿𝑖,𝑚𝑎𝑥+ and 𝛿𝑖,𝑚𝑎𝑥− are the Max and Min 
power increase rates of unit 𝑖. The constraint on EV charging 
and discharging power is shown in equation (9). 

,

,
 






ch t Nch

dis t Ndis

P P

P P
    (9) 

In equation (9), 𝑃𝑁𝑐ℎ and 𝑃𝑁𝑑𝑖𝑠 are the standard power for 
charging and discharging the EV group. The constraint on user 
satisfaction is shown in equation (10). 

, ,min

,

,
1

2




−
= −



S t S

ev t ev t

S t

Nch

H H
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   (10) 

In equation (10), 𝐻𝑆,𝑡  and 𝑃𝑒𝑣,𝑡  are the power service 
satisfaction and charging/discharging power of the EV group 
during period 𝑡 . 𝐻𝑆,𝑚𝑖𝑛 denotes the lower limit of satisfaction 
with electric power services for the EV group. 𝑁𝑒𝑣 is the number 
of EV groups. In addition, the YALMIP toolbox is selected as 
the communication component for the scheduling center, and 
optimized using the CPLEX solver and DE algorithm (Ding et al., 
2023; Arunkumar et al., 2022). The operation flow of RES-EDM 
is shown in Fig. 3. 

In Fig. 3, the first step is to input the power load, elasticity 
coefficient, and constraint conditions, and solve for the 
minimum load peak valley difference on the power demand 
side. After optimizing the load distribution using YALMIP, 
CPLEX, and DE algorithms, the load curves for EV and DR 
optimization are generated. The next step is to input the 
predicted wind power, thermal power parameters, and 
constraints again, and solve for the minimum cost of TPUs on 
the power supply side. Similarly, through communication 
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Fig. 3 Demand response model operation process 
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control tools and DE algorithms, the actual power and cost of 
the units are determined. 

2.3 DE algorithm based on deterministic sequence 

After a thorough analysis of the construction and 
objectives of RES-EDM, this study turns to exploring how to 
effectively solve the complex optimization problems involved in 
the model. EDM includes multiple factors such as power 
generation costs, output limitations, and network losses. The 
DE algorithm excels at handling the complexity of models and 
can obtain the optimal solution for power generation scheduling 
based on mutation crossover (Kaihua et al., 2023; Li et al., 2023; 
Ibrahim et al., 2023). DE is a heuristic random search algorithm 
proposed by Kenneth Price et al., which solves complex 
optimization problems by simulating the evolutionary process in 
nature. It has the advantages of a simple structure, good 
robustness, and strong global search ability (Ali et al., 2023; 
Wang et al., 2022). However, due to the influence of greedy 
selection, this algorithm is prone to getting stuck in local optima. 
Therefore, this study proposes a DSDE algorithm based on 
deterministic sequence improvement for the EDM solution of 
RES. The improvement of the algorithm is shown in Fig. 4. 

In Fig. 4, a deterministic sequence is introduced during the 
population initialization stage to increase the diversity of the 
population and improve the local search capability of the 
algorithm. Adding mutation operators and selecting binomial 
crossover operators in the mutation and crossover operation 
stages can improve the optimization performance and 
convergence efficiency of the algorithm. Meanwhile, adaptive 
strategies can be adopted to dynamically adjust key parameters 
at each stage, improving the adaptability performance of the 
algorithm. The DE algorithm adopts a random approach during 
the population initialization stage, which may result in an 
uneven distribution of individuals in the search space, leading 
to poor initial population quality and premature convergence 
during the iteration process (Chakraborty et al., 2023; Ahmad et 
al., 2022). To overcome the above drawbacks, this study 
introduces a deterministic sequence initialization population to 
ensure that the initial population uniformly covers the key areas 
of the search space. The population initialization process of the 
DSDE algorithm is displayed in Fig. 5. 

In Fig. 5, Step 1 is to set key parameters such as population 
size and problem dimension. Step 2 is to determine the 
boundary of the search space and evenly divide it into several 
paragraphs. Step 3 is to create and map a deterministic linear 
increasing sequence, determining each vector segment of the 

search space. Step 4 is to allocate the population of individuals 
in an orderly manner to each dimensional space through a 
mapping function, completing the initialization of individuals. 
Step 5 is to make conditional judgments on the individual's 
dimensional values. If the judgment value exceeds the spatial 
boundary, it is adjusted back to the boundary, otherwise, it is 
used as the initial population. Among them, the interval 
expression of the search space is shown in equation (11). 

max min−
= d d

x x
I

n
   

 (11) 
In equation (11), 𝐼 , 𝑥𝑑

𝑚𝑎𝑥 , and 𝑥𝑑
𝑚𝑖𝑛  are the segment 

spacing, maximum value, and minimum value of the search 
space. 𝑛 is the population size. The segment vector calculation 
is shown in equation (12). 
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In equation (12), 𝑆𝑘  and 𝐼  are the vectors and spacing 
between each segment of the search space. The calculation of 
individual initial dimension values is given by equation (13). 

min

, ,
* *= + +

i d d k i d
x x S I rand I    (13) 

In equation (13), 𝑥𝑖,𝑑 is the initial dimension value of the 
individual. 𝑟𝑎𝑛𝑑𝑖,𝑑  is a random number generated by 
individuals and dimensions, with a range of [0,1]. In the DSDE 
algorithm, crossover mutation is the core part of the algorithm, 
which works together to generate new candidate solutions for 
individual populations. During the mutation operation stage, 
one baseline vector individual and three parent individuals are 
randomly selected for differential mutation. The calculation of 
differential vectors is shown in equation (14). 

𝑣𝑟,𝐺 = 𝑥𝑝1,𝐺 − 𝑥𝑝2,𝐺    (14) 

In equation (14), 𝑥𝑝1,𝐺 is the first parent individual. 𝑥𝑝2,𝐺 is 
a second-generation individual. The mutation vector is shown 
in equation (15). 

𝑢𝑟,𝐺 = 𝑥𝑡,𝐺 + 𝐹 ∗ (𝑥𝑝3,𝐺 − 𝑥𝑝2,𝐺)   (15) 

In equation (15), 𝑥𝑡,𝐺  is the individual reference vector. 
𝑥𝑡,𝑑 is the scaling factor. 𝑥𝑝3,𝐺 is a third generation individual. 
The crossover operation stage is based on the binomial 
crossover operator to determine dimension inheritance, thereby 
forming a new offspring population. The population update is 
shown in equation (16). 

𝑢𝑟,𝑑,𝐺+1 = ൜
𝑢𝑟,𝑑,𝐺… 𝑖𝑓(𝑟𝑎𝑛𝑑𝑑 ≤ 𝐶𝑅, 𝑜𝑟, 𝑗 = 𝑟)

𝑥𝑟,𝑑,𝐺 …𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (16) 

In equation (16), is ur,d,G+1 the offspring population. ur,d,G and 
xr,d,G are the dimension value of the mutation vector and current 
individual. CR is the crossover probability. j is the index that 
controls cross operations. The high sensitivity of traditional DE 
algorithms to parameters renders them susceptible to 
manipulation, thereby affecting the convergence performance 
of the algorithm. This study introduces an adaptive mechanism 
that dynamically adjusts the scaling factor and crossover 
probability based on the algorithm's operational status and 
resolution quality. After mutation and crossover operations, the 
DSDE algorithm immediately uses a greedy strategy to 
determine the optimal solution for the population through 
conditional judgment. If the offspring individuals are superior to 
the parent individuals, the offspring individuals are selected as 
part of the new population. On the contrary, the parent 
individuals are retained in the new population and iterated until 
the new population is completely determined. 

3. Results 

3.1 Experimental setup and dataset 

To verify the comprehensive performance of the DSDE-
solving algorithm and the feasibility of EDM, this study designs 
simulation testing experiments. The experimental unified 
computing environment is the Windows 10 operating system, 
and the simulation software is MATLAB 2021a. Three 
benchmark test functions are selected for the experiment to 
compare the optimization performance of PSO, Bat Algorithm 
(BA), Butterfly Optimization Algorithm (BOA), and DSDE 
algorithm. Two RES units with 4 and 5 units are selected as the 
test objects for the experiment, and the economic optimization 
scheduling of the system is compared with and without the DR 
model scenario. The experiment selects the Best Value (BV), 
Average Value (AV), Stand Deviation (STD), and convergence 
curve of the function as evaluation indicators for algorithm 
performance. The actual power of the unit, power Fluctuation 
Amplitude (FA), Peak Valley Difference (PVD), and Operating 
Cost (OC) are selected as evaluation indicators for EDM. The 
experiment fixes all parameters, sets the function to run 100 
times, with 30000 EVs, an average vehicle speed of 50km/h, a 
battery capacity of 40kWh, a charging and discharging 
efficiency of 0.9, and a lower limit of user satisfaction of 0.5. The 
rated capacity of the wind farm energy storage unit is 150kWh, 
the maximum allowable charging and discharging power is 
50kWh, the charge capacity range is [30135], and the charge 
installation cost is 120,000 yuan. Table 1 shows the detailed data 
of wind farm units. 

3.2 Performance optimization analysis of solving algorithms 

Fig. 6 shows the extreme value test results of various 
algorithm functions. The DSDE algorithm performs 
outstandingly in extreme value testing of different types of 
functions. In the single modal function test, the AV and STD of 
the DSDE algorithm are the highest, at 6.2560E-08 and 4.3765E-
08, indicating a high degree of fluctuation and dispersion in the 
results. In multimodal function testing, the AV and STD of the 
DSDE algorithm are significantly lower than other algorithms, at 
1.4598E-32 and 0, respectively. Its dataset has extremely high 
stability and consistency. In the fixed dimensional function test, 
the AV and STD of the DSDE algorithm are almost lower than 
other algorithms, at 3.0592E-04 and 0, indicating once again its 
stability in output results. Overall, although the DSDE algorithm 
exhibits some volatility on unimodal functions, it demonstrates 
a high degree of stability and reliability when dealing with multi-
modal and fixed-dimensional functions. 

Fig. 7 shows a comparison of the convergence curves of 
the algorithm on the test function. The performance of the 
DSDE on the test function surpasses that of all other algorithms. 
In the testing of single modal functions, the curve of the DSDE 

Table 1  
Specific parameters of the wind farm unit 

Wind farm Set Maximum effort Minimum output i
a  i

b  i
c  Climbing rate 

A 

1 70 25 0.004 2.50 / 40.50 
2 90 35 0.018 1.75 / 55.00 

3 60 20 0.063 1.50 / 24.50 
4 55 15 0.001 3.25 / 27.50 

B 

1

 
500 350 1.011 116.6 5573.1 288.95 

2 100 70 0.063 125.6 1033.7 45.00 

3 130 40 0.045 124.7 5306.5 70.00 
4 100 60 0.063 125.7 1108.6 50.00 

5 450 130 0.015 121.8 4263.1 235.00 
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shows a deep mining trend, with the fastest convergence speed 
and highest optimization accuracy. DSDE algorithm converges 
quickly after 580 iterations, while the convergence speed of the 
other three algorithms decreases by 3.45%-6.90%. In multi-
modal function testing, both the DSDE and BOA algorithms 
show good convergence, with a clear downward trend in their 
convergence curves. Among them, the convergence curve of 
the DSDE is the steepest, with a function BV less than 10-30, 
showing the highest accuracy, faster convergence rate, and 
strong stability. In fixed dimensional function testing, all 
algorithms can quickly find BV and the DSDE has the deepest 
curve mining depth and the fastest convergence speed, with a 

function BV below 10-3.5. Overall, the DSDE outperforms PSO, 
BA, and BOA in optimization accuracy and convergence speed, 
and is more effective in avoiding falling into the trap of local 
optima. 

3.3 Analysis of model optimization scheduling results 

Fig. 8 shows the optimization results of the RESA model. 
In Fig. 8 (a), the electrical load of RES fluctuates in a tortuous 
manner over time. Among them, the load curve FA without 
considering DR is relatively large, significantly increasing during 
peak periods and relatively low during low periods. The load 
curve of DR is more stable, with effective control of load growth 
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Fig. 6 Bar chart of extreme value test results for algorithm functions 

 
 

 

200 400 600 800 1000 1200
10

-10

10
-5

10
0

10
5

Iteration

(a) The convergence curve of F1 

B
e
st

 s
co

re
 o

b
ta

in
ed

 s
o
 f

ar

0 200 400 600 800 1000 1200
10

-10

10
-20

10
0

10
10

Iteration

(b) The convergence curve of F2 

B
es

t 
sc

o
re

 o
b

ta
in

ed
 s

o
 f

ar

10
-10

10
-30

0 200 400 600 800 1000 1200
10

-4

10
-1

10
0

Iteration

(c) The convergence curve of F3 

B
es

t 
sc

o
re

 o
b

ta
in

e
d

 s
o
 f

a
r

10
-2

10
-3

0

PSO
BA
BOA
DSDE

PSO
BA
BOA
DSDE

PSO
BA
BOA
DSDE

 

Fig. 7 Convergence curve for solving test functions 

 



S. Guo.  Int.J. Renew. Energy Dev 2025, 14(2),311-321  

| 318 

 

ISSN: 2252-4940/© 2025. The Author(s). Published by CBIORE 

during peak periods and an increase in electricity demand 
during off-peak periods. In Fig. 8 (b), without considering DR, 
the system's PVD power consumption reaches 135.15MW, FA 
is 41.59MW, and OC reaches 47958.55 yuan. After considering 
DR, the PVD of system power consumption is reduced by 
33.30%, and the FA is decreased by 12.07%. The OC is reduced 
to 46,058.76 yuan, representing a 3.96% cost reduction. 

Fig. 9 shows the optimization results of unit output in RES-
A. In Fig. 9 (a), without considering DR, the output curves of 
Unit 2 and Unit 3 show fluctuating changes. The output of Unit 
2 fluctuates greatly and is highly unstable, resulting in a limited 
absorption capacity of the system for wind power generation. In 
Fig. 9 (b), considering DR, EDM effectively balances the power 
demand during peak and off-peak periods, reducing the PVD of 
the system load to 90.15MW. The output curve of Unit 2 is 
smoother, with a decrease in FA, resulting in a significant 
improvement in the system's wind power utilization during low 
load periods. 

Fig. 10 shows a comparison of model optimization in RES-
B. In Fig. 10 (a), without considering DR, the electricity load 
curve fluctuates greatly, rising sharply during peak periods and 
maintaining a low level during low periods. After considering 
DR, the load curve was well adjusted, with a relatively stable 
trend during peak electricity consumption periods and a 
significant increase in load during off-peak periods. In Fig. 10 
(b), without considering DR, the system's PVD power 
consumption is 789.58MW, FA is 245.49MW, and OC reaches 
5253.49 yuan. After considering DR, the system's power 
consumption for PVD, FA, and OC is 527.55MW, 201.79MW, 
and 52.3315 million yuan. 

Fig. 11 shows the optimization results of unit output in RES-
B. In Fig. 11 (a), without considering DR, the output curves of 
Unit 1 and Unit 3 show dynamic changes, playing a positive role 
in power generation. The output of Unit 3 fluctuates violently, 

and the system's ability to absorb wind power is poor. In Fig. 11 
(b), after considering DR, the system load and grid scheduling 
achieve effective coordination, promoting interaction between 
these two sides. The power output of Unit 3 is more stable, while 
the power output of the newly added Unit 5 remains constant. 
During periods of low load, the system's ability to absorb wind 
power is greatly enhanced. 

 

4. Conclusion 

The test results of the proposed model on multi-modal 
function and fixed dimension function show high stability and 
accuracy, which proves the effectiveness of the DSDE algorithm 
in solving complex optimization problems. The DSDE algorithm 
enhances the population diversity and local search ability by 
introducing deterministic sequences, thereby improving the 
global search performance and convergence efficiency of the 
algorithm. This is a novel development in algorithm 
optimization. The research verifies the actual effect of the model 
in reducing the peak-valley load difference, reducing the 
operating cost, and improving the utilization rate of wind power 
through simulation experiments. The research on effective 
management of RE through EDM reduces the operating cost 
and pollution discharge of PowS, which is of great significance 
in promoting the sustainable development of RE. The research 
provides an innovative theoretical basis. Combining DR and DE 
algorithms provides a new perspective for the optimal 
scheduling of RESs, which is of guiding significance for further 
research and application in RE in academia and industry. 

In response to the problem of poor power supply stability 
in existing RESs, this study proposed a RES-EDM based on DR 
strategy and DSDE algorithm. The algorithm performance was 
evaluated through simulation experiments, and the model 
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optimization efficiency was analyzed. The experiment showed 
that in terms of function extremum, the STD of the DSDE 
algorithm on unimodal functions was 4.3765E-08, and the STD 
on multi-modal functions and fixed dimensional functions was 
0. In terms of the convergence curve, the DSDE algorithm had 
the highest mining depth and fastest convergence speed, with a 
multi-modal function BV of less than 10-30 and a fixed 
dimensional function BV of 10-3.5. After considering DR, the 
electricity consumption of PVD, FA, and OC for RESA was 
90.15MW, 36.57MW, and 46058.76 yuan, while the electricity 
consumption of PVD, FA, and OC for RESB was 527.55MW, 
201.79MW, and 52.3315 million yuan. Research has shown that 
this model significantly improves the power supply stability and 
scheduling efficiency of RES, effectively lowering the economic 
cost. 

It is worth mentioning that the proposed EDM has 
insufficient generalization ability, long solution time, and simple 
DR measures. In addition, the DR strategy mainly focuses on 
the charging and discharging behavior of EVs, while the sources 
of DR in the actual PowS are more diverse. Future research will 
consider a variety of DR resources, including industrial load, 
household electricity, etc., aiming to improve the adaptability 
and robustness of the model. Future research should expand the 
time scale of DR and the algorithm for solving optimization 
models, develop multi-layer optimization scheduling strategies 
and comprehensively improve the overall performance and 
operational efficiency of RES. 

5. Implications 

The research results showed that the DR was the key to 
improving the scheduling efficiency of RES. Policymakers 
should consider formulating and optimizing DR strategies, such 
as dynamic electricity price mechanisms and incentive 
measures, to encourage users to increase consumption during 
low demand and reduce consumption during peak demand. In 

addition, to better integrate RE, policy-makers need to consider 
adjusting the power market structure to allow more flexibility 
and innovation, such as by introducing energy storage 
technology and demand-side management tools. EVs have 
great potential as a DR resource, so it is necessary to promote 
the integration of EV charging and discharging strategies. 
Through technological innovation and R&D investment, the 
modernization of PowS and the widespread application of RE 
can be supported. 
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