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Abstract. Due to the intermittency and volatility of renewable energy, the system stability is poor and the operating cost is high. This study proposes
an economic dispatch model for renewable energy systems based on a demand response model and differential evolution algorithm. A demand
response model based on real-time flexible tariffs is combined with charging and discharging strategies for electric vehicles to optimize flexible load
dispatch in the system. This combination is intended to improve the efficiency and reliability of grid operation. The traditional differential evolution
algorithm is prone to getting stuck in local optima. Given this, this study introduces a deterministic sequence-improved differential evolution algorithm
to enhance population diversity and local search ability, significantly improving the global search performance and convergence efficiency of the
algorithm. To validate the effectiveness of the model, function extremum and system operation simulation experiments are designed. The results
showed that the improved algorithm had a variance of 0 and an optimal value of 10*° on multi-modal functions, and a variance of 0 and an optimal
value of 10°° on fixed dimensional functions. After considering demand response, the peak valley difference in electricity consumption between
renewable energy systems A and B was 90.15MW and 527.55MW, with fluctuations of 36.57MW and 201.79MW, and operating costs of 46058.76
yuan and 52.3315 million yuan, respectively. Research findings indicate that the electric energy coordination and economic management of this
model have been significantly enhanced. These enhancements effectively ensure efficient energy utilization, facilitate the safe and stable operation of
the system, and provide a novel theoretical foundation for the optimization and scheduling of renewable energy systems.
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1. Introduction accuracy and efficiency. Liu et al. (2023) constructed a novel
hybrid large-scale PowS economic dispatch method to enhance
the power generation efficiency of the PowS. This method
achieved local and global optimal scheduling by introducing
gain sharing knowledge algorithm and differential evolution
algorithm, and its search efficiency and robustness were
significantly improved. Wang et al. (2024) proposed a multi-
objective environmental Economic Dispatch Model (EDM) for
PowSs to address the scheduling pressure. The optimal
scheduling solution was obtained through an artificial bee
colony algorithm and sequential preference technique. This
model greatly reduced economic costs and pollution emissions.
Nalini et al. (2024) proposed a PowS economic dispatch method
based on an improved goose flame optimizer to solve the
dynamic economic emission dispatch problem. By combining
the goose flame optimizer with multi-objective algorithms to
seek the optimal solution for dynamic economic scheduling
problems, the accuracy and efficiency of this method have been
improved. Despite the strides made by scientists in enhancing
the safety and stability of the PowS through the investigation of
economic dispatch, further research is necessary to ensure the
optimal functioning of this critical infrastructure. However,
existing economic dispatch methods still have shortcomings in
handling dynamic dispatch demands and optimizing supply and

With the transformation of the global energy structure and
the increasingly severe deterioration of the environmental
climate, the utilization of Renewable Energy (RE) has become
an important issue in the energy field. In the power system, the
utilization rate of RE including wind and solar energy continues
to increase, providing strong support for achieving green energy
transformation. However, due to the intermittency and
uncertainty of RE, its large-scale integration puts significant
pressure on the economic dispatch of the Power System (PowS)
(Osamn et al,, 2023). How to achieve optimal cost-effectiveness
while ensuring stable operation of the PowS has become a key
issue that urgently needs to be addressed. Yi et al (2023)
proposed a model-free economic scheduling method based on
reinforcement learning to address the accuracy and stability
issues of virtual power plants. By constructing a two-stage
reinforcement learning framework to optimize training
scheduling strategies, this method improved the robustness and
safety of power output. Lei et al. (2023) proposed a forward-
looking economic dispatch strategy for wind power grid-
connected systems to address safety issues caused by power
fluctuations in the power grid. By dynamically climbing
constraints and flexibly transferring loads to smooth power
fluctuations, this strategy effectively improved calculation
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demand and have a poor ability to cope with the volatility of RE
and uncertainty on the demand side.

Demand Response (DR) constitutes a pivotal element of
demand-side management in the PowS, wherein users are
prompted to modify their electricity consumption patterns by
implementing incentives or price signals. This approach has
been demonstrated to exert a favorable influence on the
promotion of equilibrium in electricity supply and demand,
thereby ensuring the stable operation of the power grid (Yasmin
etal., 2024). Luo et al. (2023) proposed a coordinated operation
strategy for cogeneration microgrids considering DR to address
the issue of household electricity utilization efficiency. By
establishing a load DR model and a thermal inertia load model
to coordinate power management, this strategy effectively
reduced the operating costs of the system. Reka et al. (2023)
developed a DR model built on user privacy to address power
management issues in residential areas. This model used
discounted random games and generative adversarial networks
to analyze users' privacy needs, improving the efficiency of
power grid operation and real-time analysis capabilities. Wynn
et al. (2023) designed a distributed energy management system
considering DR for the supply-demand balance of the PowS.
The system applied an autoregressive moving average, Particle
Swarm Optimization (PSO) algorithm, and DR program to
achieve flexible scheduling of the current microgrid system,
reduced peak load by 4.3%, and filled valley load by 5%. He et
al. (2023b) suggested a DR prediction model grounded on
multivariate loads to solve the energy planning problem in the
PowS. The model used convolutional neural networks and gate
loop units for load prediction. The data showed that the average
absolute percentage error of the model has increased by more
than 3%. He et al. (2023a) proposed a hybrid DR strategy for
Electric Vehicle (EV) users' charging behavior, which guides
users to make charging choices through dynamic time-of-use
electricity pricing and incentive subsidy mechanisms. This
strategy improved the adhesion of tram users and reduced the
volatility of grid power. Martin-Ortega et al. (2024) proposed the
Integrated Climate Action Mitigation Inventory Tool (MITICA).
This proposal addressed the significant gap in defining emission
reduction targets and reporting Greenhouse Gas (GHG)-related
reporting elements in the process of developing Nationally
Determined Contributions (NDCs) under the Paris Agreement.
This initiative fostered uniformity among national GHG
inventories, emission reduction strategies, and GHG projects. It
further facilitated the optimization of tracking nationally
determined contributions and the establishment of objectives in
alignment with IPCC best practices. Additionally, it promoted
the nexus between climate change and sustainable economic
development. Nydrioti et al. (2024) addressed the significant
impact of climate change on water resources. They proposed
using Aquacycle software combined with the RCA4 Regional
Climate Model (RCM) to simulate three climate emission
scenarios (RCP 2.6, RCP 4.5, and RCP 8.5) to assess water
demand and supply in the Aigeiros region of Greece over the
next 30 years. This approach enables accurate prediction and
optimization of water management strategies. Arabatzis et al.
(2017) solved the problem of classifying Greek regional units
based on the number and installed capacity of RE facilities. They
proposed using hierarchical clustering analysis in multivariate
statistical methods to enable detailed classification of the
number and installed capacity of RE factories based on various
regional units in Greece. Hosan et al. (2024) addressed the issue
of research gaps concerning the impact of energy innovation
funding on social equity in advanced economies. Utilizing a
quantitative analysis, the researchers examined the direct and
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indirect effects of energy innovation funding on social equity
through accelerated energy justice in 23 advanced economies
from 1995 to 2020. Consequently, the necessity of a rational
allocation and utilization of public energy innovation budgets for
the promotion of clean energy technologies, the advancement
of ajust energy transition, and the enhancement of social equity,
inclusiveness, and community participation was underscored.
Many scholars' research have shown that DR can promote the
optimization scheduling of RE and help balance the load of the
power grid. However, there are still deficiencies in the incentive
mechanism and benefit evaluation of current DR, which require
further research and exploration.

In this context, this study proposes an EDM for Renewable
Energy Systems (RES) considering DR. This study takes energy-
saving and environmentally friendly EVs as the response object.
It innovatively constructs an optimization scheduling model that
comprehensively considers both the supply and demand sides.
The model uses an improved Differential Evolution algorithm
(DE) to seek the global optimal solution. It aims to achieve
efficient optimization of supply and demand resources and
smooth operation of the power grid, further promoting the
sustainable development of the PowS.

The novelty of the study is mainly reflected in the
combination of DR and DE algorithms to propose an EDM for
RES. This model innovatively considers the user response
behavior under real-time flexible tariffs and achieves integrated
scheduling on both the supply and demand sides by optimizing
the charging and discharging strategies of EVs. In addition, the
Deterministic = Sequence Differential Evolution (DSDE)
algorithm significantly improves the global search performance
and convergence efficiency of the algorithm by introducing
deterministic sequences to enhance population diversity and
local search capability. Combining the DR strategy with the
improved algorithm provides a new perspective for solving the
intermittency and uncertainty problems of RE and is an
important addition to the existing research on the economic
dispatch of PowsSs.

The contribution of the study is to provide a new model
that can effectively address the stability and economic
challenges in the operation of RES. The model is verified
through simulation experiments to show significant results in
reducing the peak and valley load differences in the grid,
lowering the operating costs, and increasing the utilization of
wind power. The test results of the model on multi-modal and
fixed dimensional functions show excellent stability and
accuracy, demonstrating the effectiveness of the DSDE
algorithm in solving complex optimization problems.
Furthermore, the implementation results of the model
demonstrate that the peak-to-valley load differences, fluctuation
amplitude, and operating costs of the system are reduced after
considering DR. This not only verifies the practicality of the
model but also provides an innovative theoretical foundation
and practical guidance for the economic dispatch of the PowS,
thereby promoting the development of the RES in the direction
of greater efficiency and economy.

2. Methods
2.1 DR model based on real-time elastic electricity price

Due to the randomness, volatility, and intermittency of RE,
it is difficult to accurately predict the power supply capacity of
RE, thereby increasing the uncertainty and load pressure of
power grid operation (Xia et al., 2023; Bazionis and Georgilakis,
2021). In response to this, this study proposes a RES-EDM
based on DR, which establishes a real-time electricity price DR
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Fig. 1 Demand response model operation process

model through the relationship between electricity quantity and
electricity price. This model adopts the charging and
discharging strategy of EV, optimizes the flexible load
scheduling in the system, and improves the efficiency and
reliability of power grid operation. DR, as a market incentive
measure, can encourage users to adjust their electricity
consumption patterns according to changes in electricity prices,
which helps reduce the peak and valley load differences in the
power grid and alleviate system scheduling pressure (Ajitha and
Sudha, 2023). This paper first constructs a DR model grounded
on real-time elastic electricity prices, estimates the elasticity
coefficients of electricity prices for different users and time
periods through research, creates an elasticity matrix that
displays the level of electricity prices, and then designs DR
strategies based on this. The DR model operation flowchart is
shown in Fig. 1.

In Fig. 1, the model sets start and end dates and collects
and analyzes historical load and electricity price data during that
period. Then, the model sequentially calculates the changes in
load, electricity price, and user demand during the period,
quantifying the corresponding changes in electricity load
fluctuations, price adjustments, and user demand. The next step
is to establish a loss function based on the change amount and
evaluate the deviation of demand changes. By optimizing the
loss function, the optimal objective function is determined.
Subsequently, the gradient descent algorithm is utilized to
update the elasticity coefficient of electricity prices and make
conditional judgments (Jiabao et al., 2023; Lin et al., 2022). If the
iteration condition is met, the demand change step will be
repeated until a complete and effective elastic coefficient is
obtained. Finally, using the elasticity coefficient of electricity
prices, the DR change of users towards electricity price
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fluctuations is calculated. Among them, the calculation of the
electricity price elasticity coefficient is given by equation (1).

Ad;
E;j = Z‘;J o] = 12,24 (1)

In equation (1), po j and Ap; are the initial electricity price
and electricity price fluctuations at time j. dy; is the initial
power demand of user at time i. Ad; means the demand change
at i. The elasticity matrix can be divided into two types: self-
elasticity and cross elasticity. When i and j are the same, users
can only adjust their current electricity usage. When i and j are
different, users can transfer dispatchable loads to lower cost
periods based on electricity price fluctuations, thereby
achieving optimized allocation of electricity demand (Zhang et
al, 2021; Dong et al., 2022). After implementing the DR strategy,
the user’s power demand formula is shown in equation (2).

e = au {1+ 27838y B2 = 12024 @

In equation (2), q,; and q,; are the initial and adjusted
user energy loads. The calculation of the user's DR change is
shown in equation (3).

— \'24 . qni*[p:(D)- po;(l)]
Aq =33 By RS 1= 12,24 (3)

In equation (3), p; (1) and po (D) are the electricity price
and initial electricity price at time i on day L.

2.2 Economic dispatch model for renewable energy systems

After successfully constructing a DR model based on real-
time elastic electricity prices, this study combines EV charging
and discharging strategies to establish a RES-EDM that

Fig. 2 Economic scheduling model of RES
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considers DR. It aims to achieve more efficient and stable
energy management. Fig. 2 shows the overall architecture of the
model. In Fig. 2, the model mainly consists of four parts: power
demand side, power supply side, power grid, and dispatch
center. The power supply side is a comprehensive wind power
plant that includes multiple wind turbines, as well as auxiliary
equipment such as photovoltaic arrays, diesel generators, micro
gas turbines, energy storage devices, and loads. It delivers
energy to the demand side through integration into the power
grid. On the demand side of electricity, the DR model
incentivizes users to adjust their energy consumption behavior,
allowing them to charge when the grid load is low or electricity
prices are cheap while coordinating the charging and
discharging behavior of EVs (Serat et al., 2023; Gul and Suchitra,
2024). EVs will store energy during low-demand periods and
release energy during peak-demand periods. Furthermore, the
model establishes a scheduling center to facilitate the
coordination between the power grid, supply side, and demand
side. This center is responsible for the real-time scheduling and
management of power transmission and consumption.

The model scheduling center is supported and operated by
key components such as objective function, constraint
conditions, and communication control. These components
work together to ensure that the dispatch center effectively
manages and optimizes the operation of the PowS (Zhong et al.,
2024; Yu et al., 2024). The specific expression of the objective
function is given by equation (4).

minF = min $_; T, (a;PE; + biPgiz + ¢;) (4)

In equation (4), F is the total cost of coal consumption.
Pg; ¢ is the actual power of Thermal Power Unit (TPU) i during
time period t. a; is the quadratic cost coefficient. b; is a cost
coefficient. ¢; is a fixed cost. T denotes the gross of scheduling
periods. N;; is the sum of TPUs. The optimization objective of
EDM is to minimize the difference between peak and valley
loads after demand side scheduling management. The
optimization objective calculation is shown in equation (5).

F._ = min(Load,,,, — Load, ) ©)

In equation (5), Load,., is the peak load value, and
Load,,;y is the low load value. For the smooth operation of RES,
certain conditional constraints are required within EDM
(Rajabdorri et al., 2022; Rani and Malakar, 2024). The actual
power constraint of the unit is shown in equation (6).

max
0< Rvi <Ri%

Pmin < P < Pmax

Git — "Gijt — " Git
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elasticity coefficient, and
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A
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In equation (6), Py, and Py;¢* are the actual power and
expected actual power of the wind turbine during period t. PZ;’L-“Q"
and Pg;¢* are the minimum and maximum actual power of TPU
i during t. The system power balance constraint is shown in

equation (7) (Rabiee et al., 2021).
git(git’Pit) =0 (7)

In equation (7), gi, 8%, and Pt represent the power loss,
voltage angle, and actual power of unit i during t. The climbing
constraint is shown in equation (8).

{0 < Pgit — Pgit-1 < Oimax+ ()
0 < Pgit-1— Psit < Simax-

In equation (8), 8; max + and &; max— are the Max and Min
power increase rates of unit i. The constraint on EV charging
and discharging power is shown in equation (9).

Pch,t < I:’Nch
P, <P

dis,t — " Ndis

(9)

In equation (9), Py, and Pyg;s are the standard power for
charging and discharging the EV group. The constraint on user
satisfaction is shown in equation (10).

HS,t 2 HS,min
H Pev,t - NevEt| (10)
s ZPNch

In equation (10), Hs: and P.,; are the power service
satisfaction and charging/discharging power of the EV group
during period t. Hg ;;in denotes the lower limit of satisfaction
with electric power services for the EV group. N,,, is the number
of EV groups. In addition, the YALMIP toolbox is selected as
the communication component for the scheduling center, and
optimized using the CPLEX solver and DE algorithm (Ding et al.,
2023; Arunkumar et al., 2022). The operation flow of RES-EDM
is shown in Fig. 3.

In Fig. 3, the first step is to input the power load, elasticity
coefficient, and constraint conditions, and solve for the
minimum load peak valley difference on the power demand
side. After optimizing the load distribution using YALMIP,
CPLEX, and DE algorithms, the load curves for EV and DR
optimization are generated. The next step is to input the
predicted wind power, thermal power parameters, and
constraints again, and solve for the minimum cost of TPUs on
the power supply side. Similarly, through communication
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Fig. 3 Demand response model operation process
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control tools and DE algorithms, the actual power and cost of
the units are determined.

2.3 DE algorithm based on deterministic sequence

After a thorough analysis of the construction and
objectives of RES-EDM, this study turns to exploring how to
effectively solve the complex optimization problems involved in
the model. EDM includes multiple factors such as power
generation costs, output limitations, and network losses. The
DE algorithm excels at handling the complexity of models and
can obtain the optimal solution for power generation scheduling
based on mutation crossover (Kaihua et al., 2023; Li et al., 2023;
Ibrahim et al., 2023). DE is a heuristic random search algorithm
proposed by Kenneth Price et al, which solves complex
optimization problems by simulating the evolutionary process in
nature. It has the advantages of a simple structure, good
robustness, and strong global search ability (Ali et al., 2023;
Wang et al., 2022). However, due to the influence of greedy
selection, this algorithm is prone to getting stuck in local optima.
Therefore, this study proposes a DSDE algorithm based on
deterministic sequence improvement for the EDM solution of
RES. The improvement of the algorithm is shown in Fig. 4.

In Fig. 4, a deterministic sequence is introduced during the
population initialization stage to increase the diversity of the
population and improve the local search capability of the
algorithm. Adding mutation operators and selecting binomial
crossover operators in the mutation and crossover operation
stages can improve the optimization performance and
convergence efficiency of the algorithm. Meanwhile, adaptive
strategies can be adopted to dynamically adjust key parameters
at each stage, improving the adaptability performance of the
algorithm. The DE algorithm adopts a random approach during
the population initialization stage, which may result in an
uneven distribution of individuals in the search space, leading
to poor initial population quality and premature convergence
during the iteration process (Chakraborty et al., 2023; Ahmad et
al, 2022). To overcome the above drawbacks, this study
introduces a deterministic sequence initialization population to
ensure that the initial population uniformly covers the key areas
of the search space. The population initialization process of the
DSDE algorithm is displayed in Fig. 5.

In Fig. 5, Step 1 is to set key parameters such as population
size and problem dimension. Step 2 is to determine the
boundary of the search space and evenly divide it into several
paragraphs. Step 3 is to create and map a deterministic linear
increasing sequence, determining each vector segment of the

search space. Step 4 is to allocate the population of individuals
in an orderly manner to each dimensional space through a
mapping function, completing the initialization of individuals.
Step 5 is to make conditional judgments on the individual's
dimensional values. If the judgment value exceeds the spatial
boundary, it is adjusted back to the boundary, otherwise, it is
used as the initial population. Among them, the interval
expression of the search space is shown in equation (11).

X — Xt
n (11)
In equation (11), I, x7***, and x7" are the segment
spacing, maximum value, and minimum value of the search
space. n is the population size. The segment vector calculation
is shown in equation (12).

mln k 1
S = Sk_1+l...ke[2,n] (12)
Xg...k=n

Determine the search

Set the key parameters space boundary

o

Divide the search
space evenly

Initialization of
individuals
Y
_ Whether the value
- exceeds the space ?
N

Fig. 5 Population initialization flow for the DSDE algorithm

Map the deterministic
sequences

v

Determine the search
space segment vector

ii

I

Output the initial
population

)

—

ISSN: 2252-4940/© 2025. The Author(s). Published by CBIORE



S. Guo.

In equation (12), Sy and I are the vectors and spacing
between each segment of the search space. The calculation of
individual initial dimension values is given by equation (13).

min

Xig =Xg +S, *I+rand; , *I (13)

In equation (13), x; 4 is the initial dimension value of the
individual. rand;4; is a random number generated by
individuals and dimensions, with a range of [0,1]. In the DSDE
algorithm, crossover mutation is the core part of the algorithm,
which works together to generate new candidate solutions for
individual populations. During the mutation operation stage,
one baseline vector individual and three parent individuals are
randomly selected for differential mutation. The calculation of
differential vectors is shown in equation (14).

Ur,c = Xp1,6 — Xp2,G (14)

In equation (14), xp1 is the first parent individual. X, is
a second-generation individual. The mutation vector is shown
in equation (15).

Urg = X+ F * (Xp36 — Xp2,6) (15)

In equation (15), x;¢ is the individual reference vector.
Xt,q is the scaling factor. X3 is a third generation individual.
The crossover operation stage is based on the binomial
crossover operator to determine dimension inheritance, thereby
forming a new offspring population. The population update is
shown in equation (16).

Up g - if (randg < CR,01,j =7T)

u = .
r,d,6+1 {xr'd_a ...otherwise

(16)

In equation (16), is u4,c+:the offspring population. u.q4,c and
Xrqcare the dimension value of the mutation vector and current
individual. CR is the crossover probability. j is the index that
controls cross operations. The high sensitivity of traditional DE
algorithms to parameters renders them susceptible to
manipulation, thereby affecting the convergence performance
of the algorithm. This study introduces an adaptive mechanism
that dynamically adjusts the scaling factor and crossover
probability based on the algorithm's operational status and
resolution quality. After mutation and crossover operations, the
DSDE algorithm immediately uses a greedy strategy to
determine the optimal solution for the population through
conditional judgment. If the offspring individuals are superior to
the parent individuals, the offspring individuals are selected as
part of the new population. On the contrary, the parent
individuals are retained in the new population and iterated until
the new population is completely determined.
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3. Results
3.1 Experimental setup and dataset

To verify the comprehensive performance of the DSDE-
solving algorithm and the feasibility of EDM, this study designs
simulation testing experiments. The experimental unified
computing environment is the Windows 10 operating system,
and the simulation software is MATLAB 2021a. Three
benchmark test functions are selected for the experiment to
compare the optimization performance of PSO, Bat Algorithm
(BA), Butterfly Optimization Algorithm (BOA), and DSDE
algorithm. Two RES units with 4 and 5 units are selected as the
test objects for the experiment, and the economic optimization
scheduling of the system is compared with and without the DR
model scenario. The experiment selects the Best Value (BV),
Average Value (AV), Stand Deviation (STD), and convergence
curve of the function as evaluation indicators for algorithm
performance. The actual power of the unit, power Fluctuation
Amplitude (FA), Peak Valley Difference (PVD), and Operating
Cost (OC) are selected as evaluation indicators for EDM. The
experiment fixes all parameters, sets the function to run 100
times, with 30000 EVs, an average vehicle speed of 50km/h, a
battery capacity of 40kWh, a charging and discharging
efficiency of 0.9, and a lower limit of user satisfaction of 0.5. The
rated capacity of the wind farm energy storage unit is 150kWh,
the maximum allowable charging and discharging power is
50kWh, the charge capacity range is [30135], and the charge
installation cost is 120,000 yuan. Table 1 shows the detailed data
of wind farm units.

3.2 Performance optimization analysis of solving algorithms

Fig. 6 shows the extreme value test results of various
algorithm functions. The DSDE algorithm performs
outstandingly in extreme value testing of different types of
functions. In the single modal function test, the AV and STD of
the DSDE algorithm are the highest, at 6.2560E-08 and 4.3765E-
08, indicating a high degree of fluctuation and dispersion in the
results. In multimodal function testing, the AV and STD of the
DSDE algorithm are significantly lower than other algorithms, at
1.4598E-32 and 0, respectively. Its dataset has extremely high
stability and consistency. In the fixed dimensional function test,
the AV and STD of the DSDE algorithm are almost lower than
other algorithms, at 3.0592E-04 and 0, indicating once again its
stability in output results. Overall, although the DSDE algorithm
exhibits some volatility on unimodal functions, it demonstrates
a high degree of stability and reliability when dealing with multi-
modal and fixed-dimensional functions.

Fig. 7 shows a comparison of the convergence curves of
the algorithm on the test function. The performance of the
DSDE on the test function surpasses that of all other algorithms.
In the testing of single modal functions, the curve of the DSDE

Table 1
Specific parameters of the wind farm unit
Wind farm Set Maximum effort Minimum output a b, C Climbing rate
1 70 25 0.004 2.50 / 40.50
A 2 90 35 0.018 1.75 / 55.00
3 60 20 0.063 1.50 / 24.50
4 55 15 0.001 3.25 / 27.50
1 500 350 1.011 116.6 5573.1 288.95
2 100 70 0.063 125.6 1033.7 45.00
B 3 130 40 0.045 124.7 5306.5 70.00
4 100 60 0.063 125.7 1108.6 50.00
5 450 130 0.015 121.8 4263.1 235.00
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Fig. 7 Convergence curve for solving test functions

shows a deep mining trend, with the fastest convergence speed
and highest optimization accuracy. DSDE algorithm converges
quickly after 580 iterations, while the convergence speed of the
other three algorithms decreases by 3.45%-6.90%. In multi-
modal function testing, both the DSDE and BOA algorithms
show good convergence, with a clear downward trend in their
convergence curves. Among them, the convergence curve of
the DSDE is the steepest, with a function BV less than 10-%,
showing the highest accuracy, faster convergence rate, and
strong stability. In fixed dimensional function testing, all
algorithms can quickly find BV and the DSDE has the deepest
curve mining depth and the fastest convergence speed, with a

function BV below 1035, Overall, the DSDE outperforms PSO,
BA, and BOA in optimization accuracy and convergence speed,
and is more effective in avoiding falling into the trap of local
optima.

3.3 Analysis of model optimization scheduling results

Fig. 8 shows the optimization results of the RESA model.
In Fig. 8 (a), the electrical load of RES fluctuates in a tortuous
manner over time. Among them, the load curve FA without
considering DR is relatively large, significantly increasing during
peak periods and relatively low during low periods. The load
curve of DR is more stable, with effective control of load growth
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during peak periods and an increase in electricity demand
during off-peak periods. In Fig. 8 (b), without considering DR,
the system's PVD power consumption reaches 135.15MW, FA
is 41.59MW, and OC reaches 47958.55 yuan. After considering
DR, the PVD of system power consumption is reduced by
33.30%, and the FA is decreased by 12.07%. The OC is reduced
to 46,058.76 yuan, representing a 3.96% cost reduction.

Fig. 9 shows the optimization results of unit output in RES-
A. In Fig. 9 (a), without considering DR, the output curves of
Unit 2 and Unit 3 show fluctuating changes. The output of Unit
2 fluctuates greatly and is highly unstable, resulting in a limited
absorption capacity of the system for wind power generation. In
Fig. 9 (b), considering DR, EDM effectively balances the power
demand during peak and off-peak periods, reducing the PVD of
the system load to 90.15MW. The output curve of Unit 2 is
smoother, with a decrease in FA, resulting in a significant
improvement in the system's wind power utilization during low
load periods.

Fig. 10 shows a comparison of model optimization in RES-
B. In Fig. 10 (a), without considering DR, the electricity load
curve fluctuates greatly, rising sharply during peak periods and
maintaining a low level during low periods. After considering
DR, the load curve was well adjusted, with a relatively stable
trend during peak electricity consumption periods and a
significant increase in load during off-peak periods. In Fig. 10
(b), without considering DR, the system's PVD power
consumption is 789.58MW, FA is 245.49MW, and OC reaches
5253.49 yuan. After considering DR, the system's power
consumption for PVD, FA, and OC is 527.55MW, 201.79MW,
and 52.3315 million yuan.

Fig. 11 shows the optimization results of unit output in RES-
B. In Fig. 11 (a), without considering DR, the output curves of
Unit 1 and Unit 3 show dynamic changes, playing a positive role
in power generation. The output of Unit 3 fluctuates violently,

and the system's ability to absorb wind power is poor. In Fig. 11
(b), after considering DR, the system load and grid scheduling
achieve effective coordination, promoting interaction between
these two sides. The power output of Unit 3 is more stable, while
the power output of the newly added Unit 5 remains constant.
During periods of low load, the system's ability to absorb wind
power is greatly enhanced.

4, Conclusion

The test results of the proposed model on multi-modal
function and fixed dimension function show high stability and
accuracy, which proves the effectiveness of the DSDE algorithm
in solving complex optimization problems. The DSDE algorithm
enhances the population diversity and local search ability by
introducing deterministic sequences, thereby improving the
global search performance and convergence efficiency of the
algorithm. This is a novel development in algorithm
optimization. The research verifies the actual effect of the model
in reducing the peak-valley load difference, reducing the
operating cost, and improving the utilization rate of wind power
through simulation experiments. The research on effective
management of RE through EDM reduces the operating cost
and pollution discharge of PowS, which is of great significance
in promoting the sustainable development of RE. The research
provides an innovative theoretical basis. Combining DR and DE
algorithms provides a new perspective for the optimal
scheduling of RESs, which is of guiding significance for further
research and application in RE in academia and industry.

In response to the problem of poor power supply stability
in existing RESs, this study proposed a RES-EDM based on DR
strategy and DSDE algorithm. The algorithm performance was
evaluated through simulation experiments, and the model

ISSN: 2252-4940/© 2025. The Author(s). Published by CBIORE



S. Guo.

Int.J. Renew. Energy Dev 2025, 14(2),311-321

1319
300 —%— No demand response 800 - - _ 5500
280[" ....---- Consider demand response [3 Fluctuated value
260 700 - [ Peak-valley difference - 5400 o
2 240 600 - [0 Operating cost B
220 = L 1 5300 &
% %00 = 500 E
180 g 400 1 5200 8
160 & 300 | g
140 7 5100
L ™
120 200 i
100k 100 F 5000
80 1 1 1 1 1 1 1 1 1 1 1 ]
2 4 6 8 10 12 14 16 18 20 22 24 No demand response Consider demand response 4900
Time/h Scene
() Load curve (b) Comparison of retrieval and recall rates
Fig. 10 Model optimization results in the RES-B
100  —o— Unit 1 <~ Unit 2 -— Unit 3 100 - -o— Unit 1<~ Unit 24— Unit 3
00 F Unit 4 <% Wind power output 90 Unit 4-0— Unit 5 % Wind power output
80
70
E E 60
E g 50
g & 40
30
20
10 1 1 1 1 1 1 1 1 1 1 1 ] 10 1 1 1 I 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20 22 24 0 2 4 6 8 10 12 14 16 18 20 22 24

Time/h
(a) No demand response

Time/h
(b) Consider demand response

Fig. 11 Output optimization results of units in RES-B

optimization efficiency was analyzed. The experiment showed
that in terms of function extremum, the STD of the DSDE
algorithm on unimodal functions was 4.3765E-08, and the STD
on multi-modal functions and fixed dimensional functions was
0. In terms of the convergence curve, the DSDE algorithm had
the highest mining depth and fastest convergence speed, with a
multi-modal function BV of less than 103° and a fixed
dimensional function BV of 10-%5. After considering DR, the
electricity consumption of PVD, FA, and OC for RESA was
90.15MW, 36.57MW, and 46058.76 yuan, while the electricity
consumption of PVD, FA, and OC for RESB was 527.55MW,
201.79MW, and 52.3315 million yuan. Research has shown that
this model significantly improves the power supply stability and
scheduling efficiency of RES, effectively lowering the economic
cost.

It is worth mentioning that the proposed EDM has
insufficient generalization ability, long solution time, and simple
DR measures. In addition, the DR strategy mainly focuses on
the charging and discharging behavior of EVs, while the sources
of DR in the actual PowS are more diverse. Future research will
consider a variety of DR resources, including industrial load,
household electricity, etc., aiming to improve the adaptability
and robustness of the model. Future research should expand the
time scale of DR and the algorithm for solving optimization
models, develop multi-layer optimization scheduling strategies
and comprehensively improve the overall performance and
operational efficiency of RES.

5. Implications

The research results showed that the DR was the key to
improving the scheduling efficiency of RES. Policymakers
should consider formulating and optimizing DR strategies, such
as dynamic electricity price mechanisms and incentive
measures, to encourage users to increase consumption during
low demand and reduce consumption during peak demand. In

addition, to better integrate RE, policy-makers need to consider
adjusting the power market structure to allow more flexibility
and innovation, such as by introducing energy storage
technology and demand-side management tools. EVs have
great potential as a DR resource, so it is necessary to promote
the integration of EV charging and discharging strategies.
Through technological innovation and R&D investment, the
modernization of PowS and the widespread application of RE
can be supported.
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