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Abstract. This comprehensive review explores the feasibility and potential of using hydrogen gas as a fuel for internal combustion engines, a topic
of growing importance in the context of global efforts to reduce greenhouse gas emissions and transition towards sustainable energy sources.
Hydrogen, known for its high energy content and clean combustion properties, presents a promising alternative to traditional fossil fuels. This paper
examines the chemical properties of hydrogen and its benefits over conventional fuels, particularly focusing on the technological advancements and
modifications required for compression ignition and spark ignition engines to efficiently utilize hydrogen. The review delves into the necessary engine
design modification, fuel injection systems, combustion characteristics, and emission control technologies specific to both compression ignition and
spark ignition engines. Furthermore, it addresses the environmental impacts, including reductions in greenhouse gases and other pollutants, and
evaluates the economic implications, such as production costs and feasibility compared to other energy solutions. Key challenges associated with the
storage, distribution, and safety of hydrogen are discussed, along with potential solutions and innovations currently under investigation. This paper
aims to provide a thorough understanding of the current state of hydrogen as a promising fuel for internal combustion engines, guiding future research
and development in this vital field.
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1. Introduction agricultural activities (V. N. Nguyen et al., 2023; Olszewski et al.,

2023; Saikawa et al., 2017). CO; emissions result primarily from
the combustion process, while CHs is released during the
extraction and transport of natural gas and oil and agricultural
activities. NOx emissions typically occur during the combustion
of coal, oil, and other fossil-originated fuels (Hoang, 2018; Nouni
et al, 2021; Paramasivama et al, 2024; Seyam et al., 2023).
These GHGs contribute significantly to the greenhouse effect,
where trapped heat in the Earth's atmosphere leads to global
warming and climate change (Hansen and Sato, 2016; Kumar,
2018). The Intergovernmental Panel on Climate Change has
repeatedly highlighted the link between fossil fuel combustion

Energy scarcity and greenhouse gas (GHG) emissions from
fossil fuels are critical issues in contemporary environmental
and energy policy discourse (V. G. Nguyen et al., 2024a; Woertz
et al., 2014; Zhang et al., 2023). Energy shortage presents major
obstacles to economic stability, growth, and societal well-being.
This issue is further exacerbated by depending on limited
resources of fossil fuels such as coal, oil, and natural gas
(Cherwoo et al., 2023; Masuk et al., 2021; Salah et al., 2021). The
likelihood of energy shortages increases as these resources get
more difficult and costly to obtain, hence perhaps causing
geopolitical copﬂlcts and economic dlsjcurbance (Manssgn, and rising global temperatures, increased frequency of extreme
2014). The burning and combustion of fossil fuels for generating . . .

weather events, sea-level rise, and disruptions to ecosystems

energy is the largest source of anthropogenic GHG emissions d biodi ‘v (IP 2014: Stock . 201 Th
(Hoang and Pham, 2021; X. P. Nguyen et al., 2021a; Sirohi et al., an iodiversity (IPCC, 2014; Stocker et al, 2013). ©

2023). Carbon dioxide (CO:), methane (CH4), nitrogen oxides
(NOx), and other pollutants are the main sources of GHGs by
the combustion of fossil fuel from industrial, transportation, and

persistence of GHGs in the atmosphere, particularly CO2, which
can remain for centuries, highlights the long-term consequence
of current energy practices (Knutti and Rogelj, 2015).
Addressing the dual challenges of energy scarcity and fossil
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fuel-emitted GHG necessitates a comprehensive multifaceted
approach (Amponsah et al,, 2014; Ren et al., 2020).

The connection between energy scarcity, fossil fuel-emitted
GHGs, and the Sustainable Development Goals (SDGs) is
profound and multifaceted (Trinh and Chung, 2023; Yu et al,
2022). Specifically, SDG 7 targets to ensure affordable, reliable,
sustainable, and modern energy sources, while SDG 13 aims to
take urgent actions to combat climate change. Addressing
energy scarcity and reducing GHG emissions are pivotal in
achieving these goals and advancing global sustainability
(Razzaq et al., 2023; Wang et al., 2022). In many regions, the
development of the economy, education, healthcare, and life
quality could be hindered by the lack of reliable energy sources
(IBRD/WB, 2018; Shyu, 2021). Therefore, transitioning from
fossil fuels to renewables is critical for alleviating energy
scarcity, reducing dependence on fossil fuels, and lowering
GHG emissions (Han et al., 2024; Le et al., 2024a; V. N. Nguyen
et al., 2024; Rathor et al., 2016; Sharma et al., 2022b). Indeed,
utilizing various renewables could mitigate the issues of energy
shortage and increasing pollutant emissions (Prempeh et al,
2024; Shadvar and Rahman, 2024; Ugwu et al,, 2022). Indeed,
the use of various renewable energy sources like biomass
energy (Nguyen and Le, 2023; V. G. Nguyen et al., 2024b), solar
energy (Afandi et al., 2022; Kian and Lim, 2023), wind energy
(Hassoine et al., 2022; Marih et al., 2020), geothermal energy
(Lee et al., 2019; Rudiyanto et al., 2023), biogas (Fransiscus and
Simangunsong, 2021; Hadiyanto et al., 2023), syngas (Bui et al.,
2024; Navid et al., 2020), biodiesel (Dong and Sharma, 2023;
Hoang, 2021; Nguyen et al., 2022), bio-alcohol (Rahman et al.,
2023; Yadav et al, 2024), and hydrogen (Al-Baghdadi et al.,
2023; Noussan et al., 2020) have been reported in the literature
to offer sustainable solutions that can be deployed in both urban
and remote areas, enhancing energy access and security
(Bawan and Al Hasibi, 2022; Said et al., 2022b). In addition, the
emission of GHGs from fossil fuels is intrinsically linked to SDG
13, which calls for urgent actions to mitigate climate change
(Iacobuté et al., 2022). The negative impacts of climate change
have been found to pose significant threats to human health,
livelihoods, and biodiversity. Meeting the targets of SDG 13
requires a drastic reduction in GHG emissions, necessitating a
global shift towards low-carbon energy systems (IEA; IRENA,
2019; H. Liu et al., 2022; Swardika et al., 2020). Additionally,
improving energy efficiency, advancing carbon capture, energy
storage technologies, and promoting sustainable consumption
patterns, using no-emission electric vehicles, and fuel cells are
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essential strategies (Achmad et al., 2022; Cao et al., 2023; Ingried
et al, 2022; Nguyen et al., 2021; Subramanian et al., 2021).
Achieving net-zero emissions involves balancing the amount of
GHGs emitted with the amount removed from the atmosphere,
aiming for no net increase in atmospheric GHG levels
(Gangadhari et al., 2023; Tan and Tan, 2022). This target is
crucial for stabilizing global temperatures and preventing the
most catastrophic effects of climate change. Obviously,
strategies for obtaining net-zero goals include the increase in the
renewable share in the global energy rate, enhancing energy
efficiency, and developing and deploying carbon capture and
storage technologies (Hoang et al., 2023c; Hong, 2022; Shaw
and Mukherjee, 2022). Policymakers, researchers, and industry
stakeholders must collaborate to implement these solutions,
thereby addressing both the immediate and long-term
challenges of energy scarcity and climate change (Hoang et al.,
2021; T. H. Nguyen et al., 2024; X. P. Nguyen et al., 2021b). B
fostering innovation, investing in clean energy infrastructure,
and implementing supportive policies and regulations,
stakeholders can drive the transition towards sustainable
energy systems and net-zero emissions (Rodriguez et al., 2021;
Shu et al., 2023). Collaborative international efforts are essential,
as climate change and energy scarcity are global challenges
requiring coordinated solutions. Progress in these areas not only
supports the achievement of SDG 7 and SDG 13 but also
contributes to broader sustainable development objectives,
including poverty alleviation, economic growth, and
environmental preservation (IEA, 2022; Thapa et al., 2023).

Hydrogen gas has emerged as a promising alternative fuel
in the quest to mitigate energy scarcity and reduce GHG
emissions. The transition from fossil-originated fuels to cleaner
energy sources is critical for environmental sustainability and
addressing climate change (J.O. Abe et al., 2019; John O Abe et
al., 2019; Sharma et al., 2023). Hydrogen as a fuel is gaining
prominence as can be observed by the increasing number of
publications in this domain depicted in Figure 1 (Rueda-
Vazquez et al., 2024).

Hydrogen as a fuel offers several compelling advantages for
internal combustion engines (ICEs). It produces water vapor as
the primary byproduct, eliminating CO, emissions and thus
significantly reducing the carbon footprint of ICEs (Said et al.,
2022a). Hydrogen can be generated from various resources like
water, solar, wind, coal, biomass, and waste sources, which
enhances energy security and accessibility, especially in regions
lacking traditional fossil fuel resources (Chen et al., 2023; Hoang

6000

Cites/year

201020112012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

B Publications

=== Cites/year

Fig. 1 Year-wise research publication in the domain of hydrogen as a fuel in dual-fuel mode (Rueda-Vazquez et al., 2024) (Permitted by MDPI)
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etal., 2023b, 2023a, 2022c; Le et al., 2024b; Minh Loy et al., 2020;
Rusdianasari et al, 2023). This versatility aligns intending to
ensure reliable and modern energy for all (Tan et al., 2023).
Hydrogen combustion in ICEs presents a feasible interim
solution toward achieving net-zero emissions targets (Shi et al.,
2023). A comprehensive review paper on the use of hydrogen
gas as fuel for ICEs is essential to consolidate existing research,
identify gaps, and guide future investigations. Such a review will
consolidate existing research on hydrogen-powered ICEs,
providing a cohesive understanding of the current state of
technology, challenges, and potential solutions. Key areas of
focus should include hydrogen production and storage
methods, necessary modifications for ICEs to efficiently burn
hydrogen, performance and emissions characteristics, and
safety considerations. Additionally, it should explore economic
and policy frameworks that support the development and
deployment of hydrogen technologies. Addressing these
aspects will spur innovation, inform stakeholders, and
contribute to the global transition towards sustainable energy
systems, thereby supporting the achievement of broader
environmental and energy security goals. This review will be
invaluable to policymakers, industry leaders, and researchers in
advancing hydrogen technology and solving the critical
challenges of energy scarcity and climate change.

2. Hydrogen as a fuel for internal combustion engine

Hydrogen, the lightest and most abundant element, exhibits
unique chemical properties that make it a highly attractive fuel
for internal combustion engines (Lamas et al, 2015). Its
molecular form, H,, is a colourless, odourless, and tasteless gas
under standard conditions (Helen McCay, 2014). One of the
most notable properties of hydrogen is its high energy content
per unit mass; it has an energy density of approximately 120
megajoules per kilogram, which is nearly three times that of
gasoline (Kovac et al., 2021; Scovell, 2022). This high energy
content translates to a significant potential for energy output,
making hydrogen an efficient fuel. Additionally, the low energy
density by volume of hydrogen in its gaseous state poses
challenges for storage but also allows it to diffuse rapidly. Its
wide flammability range, from 4% to 75% by volume in air, and
low ignition energy make hydrogen highly combustible, which
can enhance the efficiency of combustion processes in engines
(SAKINTUNA et al.,, 2007; Srinivasa Murthy and Anil Kumar,
2014). The stoichiometric air-fuel ratio for hydrogen is about
34.3:1, which is much higher than that of gasoline (14.7:1),
indicating that much less hydrogen is needed to achieve optimal
combustion. Hydrogen's flame speed is significantly higher than
that of other common fuels, such as gasoline and natural gas,
which leads to faster and more complete combustion (Algayyim
et al., 2024; Faye et al., 2022). This property is advantageous for
reducing the emission of unburned hydrocarbons and other
pollutants. Furthermore, hydrogen combustion produces water
vapor, reducing CO, emissions and thus contributing to a
reduction in GHG emissions. Another key characteristic is
hydrogen's high diffusivity, which enables it to disperse quickly
in case of a leak, reducing the risk of accumulation and
subsequent explosion (Matla et al., 2024). However, hydrogen's
reactivity, particularly its tendency to form explosive mixtures
with air, necessitates careful handling and advanced safety
measures in its storage and use (El-Adawy et al., 2024). Despite
these challenges, the favourable chemical properties of
hydrogen, such as its high energy content, rapid combustion,
and clean emissions, make it a promising alternative fuel for
internal combustion engines, supporting the transition to more
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sustainable energy systems (Ayad et al, 2024; Roy and
Pramanik, 2024; Siadkowska and Baranski, 2024).

The advantages of employing hydrogen in ICEs are
substantial and multifaceted. It offers environmental,
technological, and economic advantages (Faye et al, 2022;
Zhang, 2024). Firstly, hydrogen combustion results in water
vapor as the primary byproduct, which dramatically reduces the
emission of CO, and other harmful pollutants such as NOx,
thereby contributing to improved air quality and mitigating
climate change (Chintala and Subramanian, 2017; Li et al., 2019).
This makes hydrogen an attractive option for regions grappling
with air pollution and stringent emission regulations (Serbin et
al., 2022). Moreover, the use of hydrogen in ICEs can leverage
existing engine technologies and infrastructure, offering a
transitional solution while the hydrogen fuel cell and electric
vehicle technologies continue to evolve and become more
economically viable (Deheri et al, 2020; El-Shafie, 2023;
Zottowski and Zottowski, 2015). This transitional aspect is
crucial as it allows for the gradual integration of hydrogen into
the energy system without the need for a complete overhaul of
existing automotive manufacturing and fuelling infrastructure
(Su-ungkavatin et al., 2023). Furthermore, the adoption of
hydrogen as a fuel can stimulate innovation and economic
growth by creating new markets and job opportunities in the
renewable energy and automotive sectors. It can drive
advancements in related technologies such as hydrogen
storage, transport, and fuelling infrastructure, fostering a holistic
development of a hydrogen economy (Qureshi et al., 2023; Sun
et al., 2023). The positive ripple effects include increased
investment in research and development, enhanced technical
expertise, and strengthened global collaborations aimed at
tackling energy and environmental challenges (Qi et al., 2023;
WHITE et al,, 2006). In essence, hydrogen as a fuel for ICEs
presents a compelling case for a cleaner, more sustainable, and
economically robust future, addressing both the immediate
need to reduce emissions and the long-term goal of transitioning
to renewable energy sources (Sharma et al., 2022a). Hydrogen
as a fuel for ICEs offers several advantages over conventional
fuels such as gasoline and diesel, making it an attractive
alternative in the pursuit of reducing GHG emissions and
enhancing energy sustainability (Dimitriou and Tsujimura,
2017). One of the most significant benefits of hydrogen is its
clean combustion properties. When hydrogen is burned in an
ICE, the primary byproduct is water vapor, which eliminates
CO, emissions, a stark contrast to the significant CO, emissions
produced by gasoline and diesel engines (Yip et al, 2019).
Additionally, hydrogen combustion results in negligible
emissions of pollutants such as NOx and particulate matter,
which are common byproducts of conventional fuel combustion
and are harmful to both human health and the environment
(Matla et al., 2024; Purayil et al, 2023). From an efficiency
standpoint, hydrogen has a high energy content per unit mass
compared to gasoline and diesel. This high energy density
means that hydrogen can deliver more energy and potentially
improve the fuel efficiency of ICEs (Bui et al., 2021). However,
this advantage is tempered by the challenges of hydrogen
storage and distribution, as hydrogen is a low-density gas that
requires high-pressure tanks or cryogenic temperatures to store
in practical quantities (Manigandan et al., 2023).

Also, economic considerations play a vital role in comparing
hydrogen with conventional fuels. Hydrogen production and
infrastructure development currently involve higher initial costs
and technological advancements. The economies of scale are
expected to reduce these costs over time (Brown et al., 2013;
Schiith, 2014). Conversely, the established infrastructure for
gasoline and diesel means lower immediate costs, but ongoing
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environmental and health costs associated with their use are
significant and often externalized (Gandhi et al., 2022; Hughes
and Agnolucci, 2012). Safety is another important factor;
hydrogen has a wide flammability range and requires stringent
safety measures in handling and storage, yet it dissipates quickly
into the atmosphere in the event of a leak, reducing the risk of
fire or explosion compared to liquid fuels which can pool and
ignite (Guo et al., 2024; Ustolin et al., 2020). In conclusion, while
hydrogen as a fuel for ICEs presents distinct advantages over
conventional fuels in terms of emissions, energy content, and
sustainability, it also faces challenges in storage, distribution,
and initial economic viability. However, with ongoing research
and development, hydrogen has the potential to play a crucial
role in the transition to cleaner and more sustainable energy
systems, offering a compelling alternative to conventional fossil
fuels.

3. Compression ignition (CI) engines powered with
hydrogen

Hydrogen has to satisfy specific criteria for oxygen content
and minimum ignition energy to achieve combustion in ICEs.
Still, hydrogen requires less energy to ignite and is more
reactive than traditional fossil fuels. In an engine, igniting the
hydrogen fuel mixture drives it to burn and expand within the
combustion chamber, pushing the piston. Driven by this piston
action, the crankshaft moves via the crank linkage, transforming
chemical energy into mechanical energy, which is subsequently
used for external work. With hydrogen replacing conventional
fossil fuels, a hydrogen engine's operational mechanism
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essentially reflects that of a conventional internal combustion
engine. Still, the engine has to be properly tuned to guarantee a
seamless and effective operating cycle given the special
qualities of hydrogen as opposed to gasoline and diesel (Ahmed
et al., 2020; Korakianitis et al., 2010). The incumbent engines
working on compression ignition design are primarily meant for
diesel as fuel. The use of diesel as a fuel needs a unique fuel
injection system including a fuel injection pump and injectors.
These parts are designed to handle liquid fuel. Also, hydrogen
being highly inflammable requires several design modifications
to ensure safe and efficient operation (Chaurasiya et al., 2022;
Hoang et al., 2022a; Kumar et al., 2022).

Hydrogen requires a modified high-pressure direct injection
system due to its low density and high diffusivity. This system
needs proper mixing of hydrogen with air and precise control
over the injection timing and duration. Wu et al. (Wu ez al., 2022)
modified a Simpson 217 engine to run on hydrogen as a
secondary fuel with neat diesel. The engine was installed with
two gas regulators for managing the diesel and hydrogen flow
rates for onward supply to injectors. A flame arrester was
installed to prevent backfire. The hydrogen gas was injected
into the cylinders using the venturi port. The findings showed
that adding hydrogen improved engine performance by
showing better BTE and lower fuel consumption levels.
Vimalananth et al. (Vimalananth et al., 2022) used a hydrogen-
powered common rail diesel injection (CRDi) system-based
diesel engine. The engine was installed with an exhaust gas
recirculation (EGR) system. Three distinct hydrogen supply
rates (3, 9, and 15 LPM) via the intake manifold were examined.
Two distinct hydrogen induction using induction as well as
injection approach were employed in this study. In this study,
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the thermal efficiency dropped initially but was improved at a
larger percentage of hydrogen induction. Hydrogen addition
lowered CO, HC, and smoke in both the approaches.

Since hydrogen has a higher auto-ignition temperature
compared to conventional diesel, an advanced ignition system,
potentially incorporating pilot injection of diesel or other fuels,
is needed to initiate combustion (Hoang and Pham, 2020;
Murugesan et al., 2022; Tira et al., 2014). Hydrogen combustion
produces higher temperatures, necessitating enhanced cooling
systems to prevent engine knock and maintain optimal engine
temperatures. Park et al. (Park et al., 2022) investigated the
effects of altering the fuel injection timing in the case of
hydrogen-powered engines in dual-fuel mode. From the
standard fuel injection timing of 350 crank angle degrees (CAD)
before the top dead center (BTDC), the fuel injection timing was
retarded towards TDC. The engine efficiency as well as excess
air ratio increased. The optimal ignition timing for achieving
maximum torque was also improved. Also, an increase in engine
torque was observed. Rahman et al. (Rahman et al, 2011)
investigated the diesel injection timing of a hydrogen-powered
dual-fuel four-cylinder engine. During the compression stroke,
hydrogen gas fuel is injected using sequential pulse injectors.
Between 110° before BTDC and top dead center (TDC), the
injection timing was changed. Whereas the equivalence ratio
changed from 0.2 to 1.0, the engine speed changed from 2000
to 6000 rpm. The negative effects of the link between injection
duration and ignition time were found and explained. The
results showed a strong link between engine performance and
optimal injection timing as well as between engine speed and
air fuel ratio. The obtained results show that the ideal injection
timing and engine performance depend much on the air-fuel
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combustion mechanism of diesel-hydrogen dual fuel operation.
Figure 2 depicts the effects of different pilot injection mass %
and time on combustion parameters in a diesel/hydrogen dual-
fuel engine. Increasing pilot mass from 0% to 20% with pilot
injection set at 10° CA BTDC and main injection at 4° CA BTDC
results in greater peak cylinder pressure and MPIR as illustrated
in Figure 2a, c, e, f. The higher quantity of pilot injection diesel
mixed with the hydrogen-air mixture increases the peak heat
rate and combustion rate thereby improving cylinder pressure
and HRR.

Pilot injection time (fixed pilot mass at 5% and main
injection at 4° CA BTDC) is shown in Figures 2b, d, e, f. Although
peak MPIR and HRR drop then rise, advancing pilot injection
timing reduces then raises peak cylinder pressure. By reducing
ignition delay, advancing injection timing 10-30° AC BTDC
increases peak pressure. The pilot injection has little influence
on the main injection beyond 30° AC BTDC (Xu et al,, 2023).

Liu et al. (Xiaole Liu et al, 2023) explored the effects of
hydrogen substitution rate on the engine performance using
hydrogen in dual fuel mode. From Figure 3a-d it is clear that the
PCP and HRR both rise with the increase of the hydrogen
substitution rate under different loads. Under the condition of
maximum hydrogen substitution rate, when the load is 30%,
50%, 70%, and 90%, the PCP goes up by 4.81%, 5.08%, 6.77%,
and 6.81%, respectively, and, as the load increases, the PCP
rises higher. With the hydrogen substitution rate rising from 0%
to 15%, the cylinder's peak pressure went from 12.53 MPa to
13.38 MPa, and the peak HRR rose from 197 J/°CA to 228
J/°CA at a 90% high load.

Several important elements affect the combustion qualities and
efficiency of CI engines running hydrogen. High flame speed of
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Fig. 3 Influence of hydrogen supply rate on HRR and pressure in the cylinder during combustion (Xiaole Liu et al., 2023) (Permitted by MDPI)

ratio and engine speed. Xu et al. (Xu et al., 2023) investigated the

hydrogen reduces combustion time but effective combustion
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results from this (Gao et al, 2022; Saravanan and Nagarajan,
2009). Proper control is necessary to prevent knocking, as
hydrogen can combust across a wide inflammability range,
offering greater flexibility in engine control. Also, hydrogen
needs less energy for ignition, improving cold start
performance. An improved control of ignition is crucial to
prevent backfiring and pre-ignition. The rapid diffusion of
hydrogen offers a more homogenous air-fuel mixture, therefore
lowering local hotspots during combustion. Although hydrogen
burning produces little carbon emissions, the elevated
combustion temperatures cause nitrogen oxides (NOy) to
develop. Reducing NOy emissions calls for advanced after-
treatment technologies. Xu et al. (Xu et al., 2023) investigated
the effects of hydrogen as a fuel in a hydrogen-diesel dual-fuel
engine. Figure 4 shows how NOx and CO emissions change with

750

pilot injection volume. As the percentage of pilot fuel mass
increases, CO emissions drop while NOx emissions rise. This
variation is attributed to greater distribution of ignition sources
from increased pilot injection volumes as it improves
combustion rates and general combustion efficiency, resulting
in higher combustion pressure and temperature. As so, NOx
emissions increase while CO emissions decrease. Under single
injection mode, Figure 4a shows CO emissions are at their peak
and mainly concentrated in the center of piston compression
clearance. CO concentrations move towards the piston edge
and combustion chamber pit as the pilot mass % increases. On
the other hand, NOx emissions are lowest with a single injection
and rise in concentration near the piston center at higher pilot
fuel supply. Figure 4b depicts the effects of pilot injection timing
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Recent investigations on dual-fuel (hydrogen + diesel) powered CI engine
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Engine characteristics Test conditions Englner};::‘lt;(::mance Engine emission Ref.
Single-cylinder, 5.2 kW@1500 Hydrogen supply rate 11%, 17%,  BTE 1; BSEC |; HRR CO |; CO; |; NOx 1; (Deb et al.,
rpm, 661 cm3 displacement 30%, and 42% energy fraction 1, PCP 1 Smoke | 2015)
Single-cylinder, 5.7 kW@1500 Engine loads (2-12 kg), BTE 1; BSEC |; BSFC CO |;CO; |; NOx 1; (Bose et
rpm, 661 cm3, displacement compression ratio 17.5:1 |; PCP 1 at full load Smoke | al., 2013)

. . Different engine power outputs . . ) (Saravanan
f’";fl‘;‘scg’ lzr;‘f;‘;'iiiz;‘évm@e;?oo (0-3.74 kW), CR 16.5:1, BTE 1; HRR 1 CO ;€O [;NOx 1; UHC )
pm, P Hydrogen supply at 10 LPM T 2007)
. . . BTE 1; BSEC |; HRR 1 CO2 |; NOx |; UHC | (Yilmaz
. Various engine loadings (50-100 PCP 1
Four-cylinder, turbocharged, 48 ] and
kW, 1461 cm3 displacement Nm), CR 18.25:1, hydrogen Gumus
’ supply at 20 LPM and 40 LPM BTE |; BSEC 1; HRR CO2 |; NOx 1; UHC 1 at 2018 ’
1:PCP 1 full load )
Engine speed @ 2200 rpm, CR ) ) CO |; CO; |; UHC |; NOx -
Single-cylinder, 8 kW, 395 cm3 18:1, hydrogen supply at 0.15, BTE 1; BSEC |; BSFC l Ezl?erz*rgicsl)et
0.3,0.45, and 0.6 LPM ! Smoke | >
3 — 0,
Six-cylinder 260 kW@2200 Eng‘,“e}lf’zds (20-100 f’)’ CR BTE 1; BSEC {; BSFC  CO |; CO; |; UHC |; NOx  (Koten,
rpm, 11967 cm3 displacement 18.5:1, hydrogen supply rate as 1 l 2018)
pm, 0.2,0.4,0.6, and 0.8 LPM
. o (Gholami
Seven-cylinder, 31.64 kW @ 80  hydrogen supply rate as 0 to 10%  BTE |; BSEC 1; BSFC COx 1 etal
2 .
rpm E/E ! 2022)
. . . Different engine loading (30— .

5.2 kW single cylinder engine N ; BTE 1; BSFC |; HRR CO |; COz 1; UHC |; NOx  (Kanth et
661 cm3, displacement 100%), CR 17.5:1, hydrogen 1, PCP 1 1; Smoke | al., 2020a)
’ supply at 10 and 13 LPM ! ! v
3.5 KW single cylinder engine ?égf/r)e“é;r‘lgg“f }llozciglgefg; \, BTE1BSFCLiHRR  CO|;CO; |;UHC ;NOx (Kanth et
661.5 cm3 displacement 13 L;M - ydrog PRy 1, PCP 1 1; Smoke | al., 2020Db)

Different speeds of the engine
. (1500-2500 rpm), various engine
10.3 kKW@3000 rpm, single . : BTE |; BSEC 1; HRR CO; |; NOx 1; Smoke | (Bakar et
. . loadings (5-25 Nm), CR 20.5:1, 24 ,
cylinder, 677 cm3 displacement 1, PCP 1 al., 2022)
hydrogen supply rate as 21.4 to
49.6 LPM
3.5 kW@3600 rpm single Two speeds of speeds (3000, . ) .
cylinder engine 296 cm3 3600 rpm), engine loads as 3and  BTE 1; BSFC | ngl CO2 |; UHC ; S?st;gcziezl)et
displacement 7 Nm, CR 20:1 1 ”
Tested at 30% of engine load,
Single-cylinder 1300 cm3 speed as 2000 rpm, CR 17.5:1, BTE |; PCP 1 CO |; UHC |; NOx |; (Karimi et
displacement hydrogen supply rate was 0 to ’ Soot 1 al., 2022)

81%E/E

BTE — Brake-thermal efficiency; BSFC - Brake specific fuel consumption; BSEC- Brake specific energy consumption; HRR — Heat release rate; PCP - Peak cylinder pressure

on CO and NOx emissions. Advancing pilot injection timing
reduces CO emissions and first raises then lowers NOx
emissions with a fixed pilot mass percent. By introducing more
hydrogen mixture before TDC, advancing pilot injection time
(10-30° CA BTDC) increases combustion rates, hence boosting
in-cylinder combustion pressure and temperature and so
lowering CO and increasing NOx emissions (Xu et al., 2023).
The effect of different engine operating settings for a
hydrogen-powered dual-fuel engine was investigated by Liu et
al. (Xiaole Liu et al., 2023). As seen in Figure 5a, CO; emissions
under each engine load drop progressively as the hydrogen
substitution rate rises; they drop when the load increases as well
(Xiaole Liu et al,, 2023). The average decrease range of CO: is
20.2%, 21.9%, 17.7%, and 9.9%, respectively, when the load is
30%, 50%, 70%, and 90%, respectively, with an increase in
hydrogen replacement rate. From Figure 5b, it is observed that
NOx emissions drop in medium- and low-load locations
whereas NOx emissions rise in high-load areas. The rate of
hydrogen replacement shows a trend. NOx emissions fall with
increasing load. The average increase in NOx is 4.54% and

9.53% respectively as the hydrogen replacement rate rises and
the load reaches 70% and 90% respectively. As Figure 5c shows,
the maximum cylinder pressure and mean temperature drop as
the EGR rate rises. The maximum cylinder pressure at 5%, 10%,
and 15% EGR rates lowers by 0.5%, 1.7%, and 3.7%,
respectively, compared with the no EGR mode; the maximum
average temperature drops by 0.8%, 1.1%, and 2.5%,
respectively (Xiaole Liu et al., 2023).

The high energy content of hydrogen improves thermal
efficiency. Its rapid and efficient burning lets more energy be
turned into work. Operating at lean air-fuel ratios, hydrogen
increases fuel economy and reduces exhaust temperatures
(Muralidhara et al, 2022; Zhao et al., 2020), which in turn
extends engine life. The unique characteristics of hydrogen also
help to enable effective engine operation, therefore lowering
pumping losses and raising general engine efficiency (Yu et al.,
2017). Advanced combustion control techniques are essential to
maximizing performance, with direct injection being a critical
requirement (Manu et al, 2021). Nonetheless, the great
reactivity of hydrogen raises the pre-ignition risk, which can be
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reduced with exact control systems. Although hydrogen
combustion generates almost zero carbon emissions, because of
high combustion temperatures it can cause notable NO,
emissions (Du et al, 2017; Rahmani et al., 2023). Effective
reduction of NO, emissions has been demonstrated by
strategies including water injection and exhaust gas
recirculation (EGR) (Mohanasundaram and Govindan, 2021;
Sathishkumar and Ibrahim, 2021). The modern -catalytic
converter is highly efficient in reducing emissions. Since
hydrogen is highly flammable, safe storage is vital. With
continuous developments needed to increase the safety and
efficiency of storage technologies, hydrogen calls for high-
pressure tanks and, in some circumstances, solid-state storage
devices (Peschel, 2020). The recent studies and their outcomes
in the domain of hydrogen-powered CI engines are listed below
in Table 1.

4. Spark Ignition (SI) Engines powered with Hydrogen
Fuel

Hydrogen-powered Spark ignition (SI) engines offer a
potential substitute for conventional gasoline engines due to
their combustion characteristics and low emission. The high
energy density per unit mass of hydrogen fuel in comparison
with gasoline can enhance SI engine performance (Molina et al.,
2023; Ozer, 2021). Its rapid flame speed results in quick
combustion, thus helping to raise thermal efficiency. The large
flammability range of hydrogen allows it to ignite a wide
spectrum of air-fuel combinations, providing flexibility and
more control under varying load situations (Bui ez al., 2023). One
major benefit of hydrogen as a fuel is clean burning with little
amount of CO,, CO, or hydrocarbons in the combustion process.
This makes SI engines running on hydrogen more
environmentally friendly, significantly reducing air pollution and
greenhouse gas emissions (Cong et al., 2021; Nguyen et al.,
2021). Higher levels of NO, emissions can result from higher
temperatures reached during hydrogen combustion. Modern
after-treatment technologies such as SCR and EGR are
necessary for efficient control of NO, emissions (Huang et al.,
2009; Solaimuthu et al., 2015).

Hydrogen’s low ignition energy helps in easier ignition,
though cold starts can still pose challenges owing to higher auto-
ignition temperature. The low-ignition energy of hydrogen calls
for careful control to prevent backfiring and pre-ignition. The
high diffusivity of hydrogen helps to enhance air mixing,
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promoting more complete combustion and reducing hotspots in
the combustion chamber (Gao et al, 2022; Subramanian and
Salvi, 2016). More effective engine breathing made possible by
fast hydrogen diffusion also helps to lower pumping losses and
increase general efficiency. Using hydrogen in SI engines
creates challenges (Hamzehloo and Aleiferis, 2013; Roy et al.,
2011). The wide range of flammability and ease of ignition
makes the distribution and storage of hydrogen particularly
challenging. Practical hydrogen utilization depends critically on
strong and safe storage solutions like high-pressure tanks and
solid-state storage (Sagar and Agarwal, 2017; Subramanian and
Salvi, 2016). Maximizing performance and lowering NOy
emissions depend on developing accurate control algorithms
and Dbetter fuel injection systems. Several important
modifications are needed for an SI engine to run effectively on
hydrogen fuel to suit its special qualities and guarantee safe and
efficient combustion. Molina et al. (Molina et al, 2023)
investigated the effect of hydrogen combustion in SI engines.
Corresponding with two distinct dilution circumstances, Figure
6a shows the in-cylinder pressure, and Figure 6b depicts the
HRR for a spark timing sweep at the low-load point.
Independent of the A value, when the spark timing is advanced
the pressure profiles rise and shift earlier in the compression
stroke. Analysing the heat release rate profiles reveals a similar
tendency parallel to the pressure profiles; they progress as the
spark timing approaches the compression stroke, becoming
somewhat narrower and showing increasing peak values.
Nguyen et al. (D. Nguyen et al, 2023) investigated the
performance of hydrogen-powered engines in SI mode. Figure
7 depicts the combustion results for the study. Figure 7a
displays volumetric efficiency concerning the excess air-fuel
ratio (A). Volumetric efficiency diminishes as the air-fuel ratio
declines and a maximum of a 34% loss in volumetric efficiency
is found under the stoichiometric circumstances (A = 1) at the
measured manifold air pressure, or 1 bar. Lower volumetric
efficiency results since low density displaces air in the intake
charge. On the other hand, as Figure 7b shows, the net indicated
mean effective pressure (IMEP) rises with a declining A, peaking
at 5.2 bar. This is owed to the fact that at a fixed intake pressure,
the mixture heating value rises with decreasing A values. As
seen in Figure 7c, the ITE (indicated thermal efficiency) peaks
at around A = 2 and begins to diminish on both sides of this
excess air-fuel ratio. The ITE lowers when the mixture is richer
that is, A < 2 probably because of the increase in wall heat
transfer losses. The cycle-by-cycle variations (COV) of IMEP are
a major factor determining the combustion stability of the
engine. A COV of less than 3% indicates a stable combustion.
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Fig. 6 Using the PFI system, (a) in-cylinder pressure and (b) HRR profiles at 1500 rpm engine speed and low-load situations are created
showing changes with varied spark timing values for the two dilution settings (Molina et al., 2023) (Permitted by MDPI)
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As shown in Figure 7d, the COV is less than 3% and implies
strong combustion stability for almost all examined scenarios.
At a compression ratio of 11, the COV values, however, rose
noticeably with A < 1.5 and A > 3.5, implying unstable
combustion.

Fuel injection system: Direct injection systems have to be
either replaced or supplemented for conventional port fuel
injection systems. Better control of the air-fuel mixture made
possible by direct injection guarantees more efficient
combustion and lowers the risk of pre-ignition and backfiring
(Bui et al.,, 2022). Molina et al. (Molina et al, 2024) tested a
medium-pressure direct injection system in a hydrogen-
powered SI engine. Measuring two different engine loads under
air dilutions as well as injection timing settings. From port fuel
injection to direct injection, the data show rather significant
efficiency gains, ranging from 0.6% to 1.1%. Low emissions and
best performance depend on precise regulation of injection
timing. Delaying the beginning of injection causes a 3.9%
decrease in high load and a 7.6% decrease in low load
compression power. Under both load situations taken into
account, this yields up to 3.2% raise in the indicated specific
consumption. In a novel approach, Li et al. (X. Li et al., 2024)

employed a hole-in spark plug strategy for hydrogen induction
in SI engines. The experimental results show that this novel
approach had more marked effects in improving early flame
propagation and supporting the establishment of stable flame
nuclei than port injection, therefore extending the lean-burn
limit significantly. Furthermore, it helped in the improvement of
IMEP and BTE. However, this strategy also increased NOx, HC,
and CO emissions.

Design of combustion chamber: The fast flame speed and
high diffusivity imply hydrogen meaning that the combustion
chamber has to be built to maximize complete mixing and
reduce hot spots. Changes can call for changing the chamber's
form and size, spark plug placement, and compression ratio.
Since hydrogen burns quickly, lowering the compression ratio
can help avoid knocking which is a common problem with this
fuel. Basha et al. (Jeelan basha et al, 2023) explored a pre-
chamber system in a hydrogen-powered SI engine. These pre-
chamber layouts were investigated experimentally in an optical
access, constant-volume combustion chamber. A high-speed
camera running at 20000 fps caught the flame growth process;
MATLAB handled the images to get quantitative data.
Comparatively to the traditional SI system, the combustion
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Fig. 8 Emission from hydrogen-powered SI engine (a) NOx emission in (Zhao et al., 2024) (Permitted by ACS Omega); (b) CO emission and (c)
HC emission (Oral, 2024) (Permitted by Elsevier)

properties of hydrogen-air mixtures using the pre-chamber
system improved. However, the enhancement was more
notable for ultra-lean mixtures. In a review article, Gultekin et al.
(Gultekin and Ciniviz, 2023) brought out the effects of mixing
ratio and combustion chamber geometry in the case of
hydrogen-powered engines. The study led to the conclusion
that the hydrogen energy ratio ought to range between 5 and
20% and that the combustion chamber should be built
concerning the combustion properties. Liu et al. (Xinlei Liu et al.,
2023) used several strategies for hydrogen combustion
investigations. It was reported that with a quite high indicated
thermal efficiency, the PCC and SI modes were able to satisfy
the EU VI regulatory limit of NOx emission. These two modes
are more likely for pragmatic uses than the DF-PI and DF-DI
modes as they just need one fuel supply system.

Ignition system: The ignition mechanism has to be able to
manage hydrogen's fast and complete burning. Higher energy
output igniting coils and advanced spark plugs could be needed.
Multiple sparks plug per cylinder ensures perfect and consistent
combustion, therefore lowering the possibility of misfires. Bag et
al. (Duan et al., 2023) investigated the effects of variations in
spark plug gaps and different types of spark plugs on the
performance and emission of hydrogen-powered engines. The
results indicated that platinum and iridium spark plugs
performed better than standard spark plugs. On the other hand,
hydrogen enrichment may offset the loss even if methanol
addition to gasoline fuel decreases performance. Park et al
(Park et al, 2021) investigated the influence of spark plug
conditions on engine performance. The engine was powered
with port-injected hydrogen. Using a cold-type spark plug
effectively reduced the backfire and raised the maximum torque
to 101.7 Nm; yet the efficiency dropped as the combustion
temperature rose and thus increased heat loss.

Engine cooling system: Hydrogen combustion creates high
temperatures; hence a better cooling system is needed. To keep
ideal running temperatures and avoid overheating, this can
entail enhancing the coolant circulation of the engine, utilizing
larger capacity radiators, and adding other cooling technologies
including intercoolers. Balitskii et al. (Balitskii et al., 2021)
utilized nanoparticles in engine coolant to improve the cooling
of engine heads in the case of hydrogen-powered engines. The
study reported on boiling in engine cooling systems, the effect
of nanoparticles on thermal conductivity, and their behaviors.
At 90°C, using Al:O3 nanoparticles (0.75% concentration) in
water raised thermal conductivity by 60%. Improved heat
transfer, faster coolant flow speed, and more engine cooling
efficiency follow from this increase. Bhutto et al. (Ahmed Bhutto

et al, 2024) employed a wall film cooling approach for a
hydrogen-powered engine. The study reported that film cooling
as one of the most efficient and sensible cooling techniques
available for liquid fuel propulsion systems. The film cooling
mechanism was investigated using a 3-D cooled injector in a 2-
D configuration using CFD simulations. Analysing the mass
fraction of species and the development of the film across the
wall leading to the nozzle takes the front stage in the
investigation. Calculations of temperature and mass fraction
both with and without film cooling. It was reported that film
cooling was 18% more effective compared to non-film cooling.
These results improve knowledge of the film cooling processes
and possible uses for them in liquid fuel engines.

Material: Hydrogen can embrittle some metals, hence
materials utilized in the engine have to be carefully chosen for
compatibility. To guarantee lifetime and durability, this could
call for employing hydrogen-resistant alloys for important parts
including fuel lines, injectors, and combustion chambers.

Safety Systems: Strong safety systems are very necessary
given the great flammability of hydrogen. To stop and control
leaks, one needs suitable ventilation systems, pressure-relieving
devices, and leak-detecting sensors. Safely handling hydrogen
storage and distribution depends on strict safety standards
being followed (Guo et al., 2024). Hydrogen has advantages in
safety over other fuels because of its distinctive chemical and
physical characteristics. For instance, hydrogen may swiftly
escape into the air and is benign. However, gasoline might cling
to the bottom of the car and not readily dissipated by
volatilization, which would cause more -catastrophic fire
accidents (Swain, 2001). Compared to hydrogen direct injection
engines, where it may be avoided, backfire is a major problem
with hydrogen port fuel injection internal combustion engines.
Along with numerous combustion-related aspects, hydrogen's
inherent characteristics help to cause backfire in hydrogen port
fuel injection engines. In hydrogen port fuel injection engines,
hot patches in the combustion chamber are main causes of
backfire. Backfire results from high-heat surface sources from
soot particles burning on spark plugs igniting the hydrogen-air
mixture during the intake stroke. Hot areas can also create
super-knock, which would produce harmful pressure changes in
the combustion chamber (Dali et al., 2021; Khalid et al., 2024).

Engine control unit tuning: The ECU must be modified to
control the special combustion properties of hydrogen. This
covers modifying air-fuel ratio settings, ignition timing, and fuel
injection timing. Optimizing engine performance and emissions
under different running circumstances may call for both
advanced algorithms and their effective tuning with hardware
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Table 2
Recent investigations on hydrogen-powered SI engine
Engine characteristics Test conditions Englnerzzzfl(:;mance Engine emission Ref.

Four cylinders, multi-point fuel
injection (MPFI), 44.5 kW @ 6000
rpm, CR 9.4:1

Overhead valve, single cylinder,
make-Honda

Direct injection, 4-cylinder, Port
fuel injection, hydrogen injection
pressure 6 bar

Hydrogen supply rate 0%
to 10% by volume

Hydrogen supply rate
24% to 49% by volume

Hydrogen supply rate 0%
to 10% by volume

Hydrogen-enriched
compressed natural gas
(CNGQ) in different ratios

Single-cylinder, Port fuel
injection, CR 11:1

Four-cylinder engine but only one
cylinder was used, displacement
399.5 cm?®, CR 10.5:1

4.4kW @ 1500 rpm, single-

hydrogen supply rate as 0
to 0.54 % volume

hydrogen supply rate as 5

BTE 1;BP 1

BTE 1; BP 1; BSFC |

BTE 1; PCP 1

CO |;HC |; NOx 1 (Chitragar et al., 2017)
CO |; CO;2 |; NOx |;
UHC | (Elsemary et al., 2017)

CO |; NOx 1; UHC 1 (Shi et al., 2017)

BTE 1 up for higher H; ratio
but | for 100% H,; BSEC 1

CO 1;CO2 |; UHC 1; (Verma et al., 2016)

cylinder engine lean burn SI
engine, CR 17.5:1

2.1 kW, Single cylinder, four-
stroke, displacement 272 cm?®, CR
6.5: 1

2.4L SI engine with 226
kW@4000 rpm fitted with
supercharger

Single cylinder VCR engine with
611.7 cm3 displacement, CR 4:1
to 18:1

5.2 kW @ 1500 rpm, single-
cylinder engine lean, CR 17.5:1,
water-cooled, CR 10:1

and 10% E/E

Different CR 4.5, 6.5, 7.2,
EGR up to 25%, engine
loading (30-100%), CR

Engine speed at 2000
rpm and 3000 rpm.
Engine torque was kept
at 50Nm.

Port fuel injection of
hydrogen and different
CR was examined

Hydrogen content was

varied between 0 to 30 %

for the indicated biogas

up for higher H; ration but NOx |

| for 100% H,

BTE 1; PCP 1 CO |; NOx 1 (Lhuillier et al., 2020)
. . . (Suresh and

BTE 1; BP 1; PCP 1 UHC |; NOx 1 Porpatham, 2023)

PCP ¢

Higher HRR caused

knocking. ) (Salvi and

EGR helped in the Subramanian, 2022)

reduction of HRR to

suitable levels

BP 1; Coefficient of NOx 1 (Nguyen et al,, 2021)

variation of IMEP |

Higher PCP and
advancement in knock
point at higher CR.
BTE 1;BP |

PCP 1; Coefficient of
variation of IMEP |;
Combustion duration |

CO 1; UHC |; NOx |

UHC |; NOx 1

(D. Nguyen et al., 2023)

(Bundele et al., 2022)

diesel mixture

(Verhelst, 2014). Martinez et al (Martinez et al, 2023)
investigated a vehicle equipped with turbocharging to
overcome the problem of reduced volumetric efficiency and
consequent poor power in the case of H; in port fuel injection
(PFI) engines. Although the issue of poor volumetric efficiency
was reduced through turbocharging, ECU remapping was
recommended by the searchers.

In an experimental investigation by Zhao et al. (Zhao et al.,
2024) electric turbocharger was employed to improve the
performance of a hydrogen-powered SI engine. Figure 8 shows
the change in NOx emissions with A at 2000 r/min. NOx
emissions climb greatly first as the air-fuel equivalence ratio (1)
rises before falling. The highest NOx emissions are around a A
of 1.1; yet NOx emissions decrease to less than 10 ppm when A
runs higher than 2.7, as depicted in Figure 8a. The combustion
temperature, amount of oxygen, and long high-temperature
duration define the formation of NOx emissions. Oral (Oral,
2024) investigated the performance of gasoline/gasoline-
ethanol with an H2 generator-aided SI engine. Figure 8b depicts
that CO emissions were larger at low speeds at first and dropped
with increasing speed. Gasoline alone produced the greatest
value of CO emission at all engine speeds; mixes of gasoline +
5% ethanol + H2/0; obtained the lowest value. At the greatest
engine speed, one obtained the lowest CO emissions among
whole test fuels. The addition of H2/0; increasing combustion

might be the cause of the CO drop. Examining Figure 8c shows
that HC emission levels drop as the speed rises even if they are
high rates at low engine speeds. Fuel combination HC emissions
at all engine speeds are fewer compared to the use of gasoline
solely. From gasoline fuel, the maximum HC was achieved; from
the mixes of gasoline + 5% ethanol + H2/0,, the lowest HC.
Adding H2 accelerates the rate of OH generation, therefore
optimizing the fuel mixture's combustion and hence lowering
HC emissions (Oral, 2024).

In summary, running an SI engine on hydrogen calls for
thorough changes to the fuel injection system, combustion
chamber design, ignition system, cooling system, and safety
precautions. These changes guarantee consistent, safe, and
effective hydrogen combustion, therefore optimizing the
advantages of this clean fuel and minimizing possible problems.
A summary of studies showing the effects of hydrogen-powered
engines is shown in Table 2.

5. Challenges and Future Directions

5.1 Challenges in Hydrogen-Fueled CI and SI Engines

The wunique qualities of hydrogen and CI engines'
fundamental nature provide great difficulties for hydrogen-
powered CI engines. One of the main problems is the poor
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energy density of hydrogen, which requires high-pressure
storage systems adding weight and complexity to the vehicle
architecture (J. Liu et al.,, 2022; Rivard et al, 2019). Because
hydrogen's great flammability and wide flammability range raise
safety issues, leak detection and prevention become vital.
Moreover, the great diffusivity of hydrogen can cause
embrittlement of engine components, therefore compromising
their integrity and durability. This calls for the employment of
specialist materials and coatings, which could complicate
manufacturing processes and raise production costs (Naqvi et
al,, 2024; Sadeq et al., 2024).

A further major obstacle is hydrogen's higher-than-average
diesel fuel autoignition temperature, which makes steady
combustion in CI engines challenging (Falfari et al, 2023).
Advanced ignition systems such as pilot injection of diesel or
glow plugs often call for a higher ignition temperature to start
combustion (G. Li et al., 2020). Though efficient, this dual-fuel
strategy complicates engine design and control systems.
Furthermore, limited quenching distance and quick flame speed
of hydrogen might cause pre-ignition and backfire, so affecting
the engine knock and maybe destroying the engine. Advanced
engine management systems are necessary for the management
of these combustion events as exact control over the fuel-air
mixture and injection timing (De Simio et al., 2024; Su et al.,
2018; Verhelst, 2001). Moreover, low lubricity of hydrogen
could lead to wear and tear on engine parts, so new lubrication
techniques are needed to guarantee engine lifetime. These
obstacles taken together emphasize the need for ongoing
research and development to solve the material, design, and
combustion control problems in hydrogen-powered CI engines
(Stepien and Urzedowska, 2021).

Spark ignition (SI) engines running on hydrogen fuel face
several difficulties mostly related to the combustion properties
of hydrogen and the modification needed for current engine
designs. The poor volumetric energy density of hydrogen is one
of the key problems; so, either more compression storage
technologies or bigger fuel tanks are needed (Frigo and Gentili,
2013; Tahtouh et al., 2011). Particularly in vehicles where weight
and space are major considerations, this presents major design
and safety issues. Furthermore, the risk of leaks and fires is
hydrogen's great diffusivity and tendency to create explosive
combinations with air; hence, strong safety precautions and leak
detection systems are needed (Urroz et al., 2023). The high
flame speed of hydrogen makes it considerably more difficult to
achieve proper combustion timing and avoid knock. Rapid
pressure rises brought on by this fast flame speed can result in
engine knock and maybe damage to components. Managing
these calls for exact control of the air-fuel combination and
sophisticated ignition mechanisms. Moreover, hydrogen's
quenching distance is rather small, therefore it can readily ignite
from hot places in the combustion chamber, causing pre-
ignition and backfire (Giacomazzi et al., 2023; Ji et al., 2016).
This calls for exact control of the engine's thermal management
and the usage of materials resistant to high temperatures.
Because hydrogen's lubricity is lower than that of other fuels,
engine components may wear more, and new lubricants and
coatings are therefore needed to guarantee engine durability.
Furthermore, current spark ignition engines need to be greatly
changed to fit hydrogen fuel in terms of fuel delivery system,
ignition system, and combustion chamber architecture. These
changes can be expensive and technically difficult; so, major
research and development are needed to maximize engine
performance and guarantee dependability (Anand and
Debbarma, 2024; Frasci et al., 2023; S. Lee et al., 2022; Srinath
etal., 2022).
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5.2 Safety Concerns and Mitigation Strategies

Hydrogen-powered engines create special safety issues that
need strict safety precautions and creative solutions. The great
flammability and wide flammability range (4-75% in air) of
hydrogen raises one of the main safety issues since it is easily
ignited by mistake (Benim and Syed, 2015). Consequently, the
priorities are stopping leaks and guaranteeing the integrity of
the systems of storage and delivery. High diffusivity of hydrogen
allows it to rapidly pass through materials and minor leaks can
cause major safety concerns. Thus, strong leak detection
systems and high-integrity seals are essential parts of the
designs of hydrogen-powered engines (Dimos and Graaf, 2024;
Saridemir et al., 2024).

Another major safety concern is hydrogen embrittlement, in
which case hydrogen atoms seep into metal constructions and
over time cause them to become brittle and break. For pipelines
and high-pressure storage tanks especially, this is quite
alarming. Materials choice becomes very important to mitigate
this; employing alloys and composites resistant to hydrogen
embrittlement will greatly improve safety (Campari et al., 2023;
Dwivedi and Vishwakarma, 2018; Wetegrove et al, 2023).
Furthermore, the application of surface treatments and
sophisticated coatings can create a barrier preventing hydrogen
access. Early embrittlement can also be found and addressed by
utilizing regular inspection and maintenance procedures (Jia et
al, 2023; X. Li et al,, 2020).

Hydrogen stored under high pressure usually 350700 bar
poses further hazards. High-pressure storage systems have to
be built to resist harsh environments and incorporate pressure-
releasing mechanisms to stop disastrous breakdowns. Though
they must be thoroughly tested to guarantee they can endure
impacts and other pressures, these systems can make use of
composite materials that mix strength and lightness (Arsad et
al,, 2023;Y. Liu et al., 2023). Another set of difficulties arises with
the evolution of cryogenic storage, in which hydrogen is kept as
a liquid at very low temperatures. These systems must be
insulated to stop boil-off and have advanced handling
techniques to control the very low temperatures (Ghaffari-
Tabrizi et al., 2022; Morales-Ospino et al., 2023).

Rapid dispersion resulting from low molecular weight in the
case of a hydrogen leak poses both a threat and a reducing
mechanism. Although it spreads fast and lowers the
concentration below flammable limits, this fast dispersion might
cause hydrogen to accumulate in small areas and increase the
explosion risk (Shu et al., 2021; Xie et al., 2015). In places where
hydrogen is utilized or stored, ventilation systems are
particularly essential since they guarantee any spilled hydrogen
is rapidly diluted and distributed. Two good ways to reduce this
risk include designing buildings with enough airflow and
running sensors to track hydrogen content in real-time (S.-Y.
Lee et al., 2022; Weber, 2006).

5.3 Engine Durability and Material Compatibility

Given its high diffusivity, hydrogen can cause metals to
become brittle, especially in high-stress places like fuel
injectors, combustion chambers, and exhaust valves. This
phenomenon, sometimes referred to as hydrogen
embrittlement, lowers the ductility and load-bearing capacity of
the material, increasing its susceptibility to cracking and failure
under operating circumstances (Q. Li et al, 2024; Saborio-
Gonzélez and Rojas-Hernandez, 2018). Furthermore, low
lubricity of hydrogen aggravates wear and tear on engine
components, hence specific lubricants and coatings are
developed to reduce friction and prolong component lifetime
(Pardo-Garcia et al, 2022). A further important problem is
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hydrogen's thermal conductivity, which affects engine
component heat dissipation. The high combustion temperature
of hydrogen calls for materials that can resist high temperatures
without degrading. Internal combustion engines may not have
enough thermal resistance from conventional materials utilized
in them, which accelerates wear and lowers engine lifetime
(Giacomazzi et al., 2023; Habib et al., 2024). To improve thermal
stability and durability, advanced materials like ceramic
products, composite materials, and high-temperature alloys are
under investigation (Sadeq et al., 2024).

Also, the reactivity of hydrogen calls for careful thought on
materials that come into touch with the fuel. Certain polymers
and elastomers among non-metallic materials could break or
become brittle in response to hydrogen, causing mechanical
problems and leaks. Thus, guaranteeing the long-term
dependability and safety of hydrogen-powered engines
depends critically on compatibility testing and the use of
hydrogen-resistant components (Ilyushechkin et al, 2023;
Zheng et al., 2020). These elements highlight the need for
continuous research and development to find and maximize
materials that might resist the challenging circumstances of
hydrogen combustion, therefore guaranteeing durability and
efficiency in hydrogen-powered engines.

5.4 Infrastructure Development and Policy Support

Widespread acceptance of hydrogen-powered engines
depends on infrastructure and governmental support
developing (Hosseini and Butler, 2020). Production facilities,
storage facilities, and distribution networks all together
constitute a strong hydrogen infrastructure. Production of
hydrogen now mostly depends on natural gas reformation,
which releases greenhouse gasses (Almansoori and Shah, 2012;
Lux et al., 2022). Sustainability depends on turning toward green
hydrogen generation utilizing renewable energy sources. This
shift calls for large expenditures on electrolyzers and renewable
energy infrastructure (Al-Mahgari et al., 2023; Sharma et al,
2024). Because of its poor energy density, hydrogen storage
presents further difficulties that call for creative storage
methods including high-pressure tanks, cryogenic systems, or
new materials like metal hydrides.

The practicality of hydrogen-powered vehicles depends
critically on building a large-scale hydrogen refueling network.
This network has to guarantee refilling convenience on par with
conventional fuels, hence hydrogen refueling stations must be
strategically placed on urban and highway sites (Neumann et al.,
2022; Zhou et al, 2013). Development and acceptance of
infrastructure depend on policy backing; it is therefore essential.
By enacting advantageous policies such as tax incentives for
buyers of hydrogen-powered vehicles, subsidies for hydrogen
production and infrastructure, and strict emission rules
supporting alternative energy sources, governments can be very
important (Hoang et al., 2022b; Lou et al., 2019; Zhang et al.,
2021). Leveraging both government backing and private sector
innovation, public-private partnerships can help to enable
significant undertakings.

6. Conclusion

This review highlights the possibilities of hydrogen gas as a
fuel for internal combustion engines since hydrogen emerges as
one of the promising substitutes for fossil fuels since it has great
energy density and clean combustion characteristics. The
required technical developments and changes needed for
engines to use hydrogen are covered in this review. Key
observations stress the requirement for engine design
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modifications, sophisticated fuel injection systems, and
improved emission control technology. The environmental
benefits of hydrogen are particularly noteworthy, as its use
substantially reduces harmful emissions and greenhouse gases.
The economic viability of hydrogen generation and related
expenses is under close inspection in contrast to alternative
energy sources. With an eye on constant innovation and
possible solutions to these problems, the difficulties in hydrogen
storage, delivery, and safety are also explored. The study offers
a summary of current studies as well as case examples showing
area advancement and prospects. Internal combustion engines
powered by hydrogen show promise for effective and
environmentally sustainable transportation. Supporting the
broader goal of lowering greenhouse gas emissions and
switching to sustainable energy sources, this comprehensive
review seeks to direct further research and development.
Advancing the use of hydrogen in internal combustion engines
is crucial for creating a more sustainable future in
transportation.
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