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Abstract. In the ongoing search for an alternative fuel for diesel engines, biogas is an attractive option. Biogas can be used in dual-fuel mode with 
diesel as pilot fuel. This work investigates the modeling of injecting strategies for a waste-derived biogas-powered dual-fuel engine. Engine 
performance and emissions were projected using supervised machine learning methods including random forest, lasso regression, and support vector 
machines (SVM). Mean Squared Error (MSE), R-squared (R²), and Mean Absolute Percentage Error (MAPE) were among the criteria used in 
evaluations of the models. Random Forest has shown better performance for Brake Thermal Efficiency (BTE) with a test R² of 0.9938 and a low test 
MAPE of 3.0741%. Random Forest once more exceeded other models with a test R² of 0.9715 and a test MAPE of 4.2242% in estimating Brake 
Specific Energy Consumption (BSEC). With a test R² of 0.9821 and a test MAPE of 2.5801% Random Forest emerged as the most accurate model 
according to carbon dioxide (CO₂) emission modeling. Analogous results for the carbon monoxide (CO) prediction model based on Random Forest 
obtained a test R² of 0.8339 with a test MAPE of 3.6099%. Random Forest outperformed Linear Regression with a test R² of 0.9756% and a test MAPE 
of 7.2056% in the case of nitrogen oxide (NOx) emissions. Random Forest showed the most constant performance overall criteria. This paper 
emphasizes how well machine learning models especially Random Forest can prognosticate the performance of biogas dual-fuel engines. 
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1. Introduction 

SDG 7 seeks to guarantee that everyone can afford modern, 
reasonably priced, environmentally friendly energy, these 
targets can be achieved through various sustainable practices 
(Nguyen et al., 2024; “Tracking SDG 7 – The Energy Progress 
Report 2022,” n.d.). The use of biogas is one such option. Biogas 
is generated from organic sources like food waste, sewage, and 
agricultural trash (Hoang et al., 2022; Naghavi et al., 2020; The-
Thanh et al., 2019). That is the reason it is termed as a 
sustainable substitute for fossil fuels. By lowering reliance on 
conventional fuels such as charcoal or firewood, the use of 
biogas for cooking, heating, and electricity all help to increase 
energy availability (Fransiscus and Simangunsong, 2021; 
Hidayanti et al., 2021; Sharma et al., 2023b). Other SDGs 
including Zero Hunger (SDG 2), which lowers food waste and 
supplies fertilizer, and Climate Action (SDG 13), which lowers 
greenhouse gas emissions, benefit from biogas generating as 
well. By offering a dependable and sustainable energy source, 
boosting energy access, and so supporting more general 
sustainability goals, biogas helps to meet SDG 7 (Lohani et al., 
2021; Rocha-Meneses et al., 2023; Runyowa and Fourie, 2021).  
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With good fuel economy, durability, and great torque, diesel 
engines run generators, heavy equipment, and vehicles 
(Cunanan et al., 2021; Hoang, 2018). Modern diesel engines use 
technologies including direct injection and turbocharging for 
lower emissions and improved performance (Changxiong et al., 
2023; Hoang, 2021). They do, however, spew more nitrogen 
oxides and particulate matter, which aggravates air pollution. By 
burning more cleanly and effectively, alternative fuels such as 
biodiesel, alcohol, natural gas, and hydrogen can help to lower 
emissions (Abdullah et al., 2019; Hoang et al., 2023; Ramalingam 
et al., 2023; Serbin et al., 2022; Veza et al., 2022b; Zhao et al., 
2020). They also lessen engine part deterioration and increase 
engine lifetime. Alternative fuels thus help to create a less 
polluting and more sustainable transportation network (E et al., 
2017; Rahman et al., 2023; Sakthivel et al., 2018). 

There are two ways to use biogas in an internal combustion 
engine. Either as single fuel model in which biogas is used with 
spark ignition or in dual-fuel mode (DFM) in which biogas 
remains the main fuel while a tiny quantity of liquid fuel 
(diesel/biodiesel) is employed as pilot fuel to initiate the 
combustion (Feroskhan et al., 2018; Goyal et al., 2023; Jamei et 
al., 2024; Nguyen-Thi and Bui, 2023). Dual-fuel engines emit less 
harmful pollutants than conventional diesel engines, so 
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benefiting the environment (Boretti, 2019; Bui et al., 2024). This 
is because the lower carbon content of biogas consumed in 
DFM causes lower emissions of glasshouse gases and other 
pollutants (Mahla et al., 2018; Sharma et al., 2023c). Combining 
the main and secondary fuels also increases the efficiency of 
burning the main fuel, thus saving money and lessening 
pollution (Bui et al., 2021; Meng et al., 2020). Using biogas as a 
fuel has one of the primary environmental advantages as well. 
Unlike fossil fuels, biogas produces no harmful glasshouse gases 
like methane or carbon dioxide, both of which greatly contribute 
to global warming (Bui et al., 2023; Czekała, 2022). Using biogas 
as a fuel in dual-fuel engines can therefore significantly reduce 
carbon emissions and help to slow down the effects of climate 
change (Awe et al., 2017; Mao et al., 2015; Parsaee et al., 2019). 
The low cost of dual-fuel engines driven by biogas is another 
noteworthy advantage. Biogas is easily available and reasonably 
priced since it is a by-product of organic waste (Bui et al., 2022; 
Kapoor et al., 2020). Consequently, running engines on biogas 
could drastically reduce their fuel cost. Moreover, employing 
less fuel to reach the same degree of performance, dual-fuel 
engines also have greater fuel economy than conventional 
engines (Feroskhan and Ismail, 2017; Vasan et al., 2024). 

The low cost and environmental friendliness of biogas-
powered dual-fuel engines have helped them to become rather 
popular recently. Still, these engines offer several challenges 
and problems. Regarding biogas quality and availability, 
running dual-fuel engines powered by biogas creates major 
challenges (Ardolino et al., 2021). The type of feedstock and the 
source of the gas will affect the quality of biogas quite 
significantly (Karne et al., 2023). Biogas contaminants including 
hydrogen sulphide could cause engine parts to fail. Biogas burns 
more slowly than diesel since its ignition delay is significant. All 
of which can affect engine efficiency are knock, misfiring, and 
lower power output resulting from this (Khayum et al., 2020). 
Because biogas has a lower energy density than diesel, the 
engine needs more of it to generate the same power level 
(Prabhu et al., 2021). This could lower the range and increase 
fuel consumption, thus influencing the general engine 
performance. The working of biogas-powered engines in dual 
fuel mode is a highly complex phenomenon (Ahmad et al., 
2024a). Modeling in such circumstances becomes a difficult and 
manually intensive process (Ahmad et al., 2024b). Machine 
learning (ML) techniques are attractive options and are being 
explored by researchers for such complex engineering 
problems. Several investigators explored the applications of ML    
in model prediction of dual-fuel engines (Sharma et al., 2023a). 
For challenging engineering problems, modern ML techniques 
including Lasso regression, Support Vector Machines (SVM), 
and Random Forests (RF) offer great benefits to several 
scientific and technological fields such as energy, fuels, 
education, transportation, society, and healthcare (Haque et al., 
2024; Nisa et al., 2023; Puri et al., 2023; P. ; Sharma et al., 2022; 
P. Sharma et al., 2022; Sharmila et al., 2024). These methods are 
progressively preferred for several reasons. For regularisation 
and feature selection especially lasso regression is quite helpful. 
Lasso regression reduces less important coefficients to zero, so 
helping to identify the most relevant elements in complex 
systems where many input variables can affect results. This 
simplifies the model and increases interpretability without 
sacrificing predictive accuracy (García-Nieto et al., n.d.; 
Mohammad et al., 2022). This method guarantees that only the 
most important variables are kept for researchers handling high-
dimensional data, producing more concentrated and effective 
models. Particularly in cases involving non-linear relationships, 
SVM is fit for classification tasks (Meenal and Selvakumar, 
2018). Since SVMs can manage high-dimensional spaces, they 
are efficient in situations when the input variables are many and 

their interactions are complicated. SVMs provide strong 
forecasts even in small datasets by optimizing the margin 
between data classes. Optimizing engine performance depends 
on this quality since the exact classification of operational states 
can greatly affect efficiency and emissions (Hao et al., 2020; Rao 
et al., 2022). 

The research on biogas-powered dual-fuel engines reveals 
notable advancements in alternative fuel use to lower emissions 
and improve engine performance. Often with an eye toward 
combustion optimization and emission reduction, several 
studies have examined the performance and emission 
characteristics of biogas in dual-fuel engines (Bora and Saha, 
2016; Sahoo et al., 2009; Tira et al., 2014; Verma et al., 2017). 
Machine learning (ML) techniques have also been applied to 
simulate intricate engine operations. Still, there are gaps. Most 
of the current research depends on a few ML techniques, such 
as simple regression models or neural networks (Bhatt and 
Shrivastava, 2021; Bietresato et al., 2015; Onukwuli et al., 2021; 
Patnaik et al., 2024; Usman et al., 2021; Veza et al., 2022a). Few 
studies have methodically evaluated engine performance and 
emissions with sophisticated supervised learning models like 
Lasso Regression, SVM, and Random Forest. Furthermore, little 
study has been done using these models for injection strategy 
modeling, which is very essential for dual-fuel engine 
optimization. This work aims to close these gaps by using Lasso 
Regression, SVM, and Random Forest to simulate injection 
methods for a dual-fuel engine running biogas. The work seeks 
to maximize engine performance, lower emissions, and find the 
best ML method. The three ML models will be applied, a 
comprehensive dataset from engine trials will be created, and 
their performance will be assessed using MSE, R², and MAPE. 
This method will provide a more thorough understanding of 
how well certain ML methods optimize engines. 

2. ⁠Materials and methods 

2.1 Test setup and test fuel 

In the present study, a diesel engine fitted with a variable 
compression arrangement was employed. The test engine was 
single cylinder 3.5 kW rated power at 1500 rpm. It was a water-
cooled engine. The engine has arrangements for fuel flow 
measurement, cooling water, airflow, biogas flow, and engine 
speed. A gas mixer was used for mixing the incoming biogas 
with air before it entered the engine cylinder. In this study, a 6 
m3 fixed dome-type biogas generation was used. The feedstock 
for biogas generation was food waste and animal manure. 
Within the dome, these organic materials underwent anaerobic 
digestion under which microorganisms broke them down 
without oxygen. With methane the main component of biogas, 
this process generated a mix of methane and carbon dioxide. 
Stored in the dome, the produced biogas was then fed into the 
engine for fuel. By using animal manure and food waste as 
feedstock, one found a sustainable solution that lowers waste 
and generates renewable energy. The diesel engine's dual-fuel 
running depended critically on the produced biogas. It's mixing 
with air and later combustion let some diesel fuel be replaced, 
so lowering emissions and maybe increasing engine efficiency. 
The gas was transported from the gas generation site to the lab 
in a special-purpose balloon. The engine test setup and other 
arrangements are depicted in Figure 1. The properties of biogas 
and diesel used as pilot fuel are listed in Table 1. 

2.2 Test procedure 

The engine was initially run on diesel only at a low load for 
30 minutes to ensure that the temperature of lubricating oil was 
stabilized. The engine testing was started at 23° before the top 
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dead center (BTDC) and 17.5 CR to collect baseline data. The 
engine load was varied from low load to fuel engine load by 
increasing the engine load by 20% each time. The same 
approach was followed at different fuel injection timing and 
different engine loads. The data was collected for emission and 
other values like engine speed, fuel flow rates, and airflow rates 
were used for the calculation of engine performance values like 
BTE, and BSEC, while PCP was directly measured using a 
piezoelectric pressure sensor installed on the engine head.   

3. ⁠Soft computing methods 

3.1 Lasso regression 

Lasso Regression, or Least Absolute Shrinkage and 
Selection Operator, is a linear regression technique that includes 
regularization. It appends to the loss function a penalty equal to 
the absolute value of the coefficient magnitude. This penalty 
term can shrink some to zero and limit the coefficients, so acting 
as variable selection (Li et al., 2023). Lasso simplifies the model 
and helps to prevent overfitting, so it is helpful when there are 
lots of features. When data shows multicollinearity or when 
researchers want to find a subset of pertinent predictors, it is 
especially helpful (Ayyıldız and Murat, 2024). Lasso lowers the 
variance without an appreciable increase in bias by cutting the 
number of features, making the model more interpretable. 
Usually chosen by cross-valuation, the penalty term, which is 
under control by a tuning parameter determines the degree of 

the regularization. Python libraries such as sci-kit-learn offer 
quick Lasso Regression implementations, so enabling 
researchers to apply this method readily to their data. Lasso 
Regression is a useful instrument overall for creating 
parsimonious models balancing interpretability with accuracy 
(García-Nieto et al., n.d.; Yu et al., 2024).  

3.2 Support vector machines 

Support Vector Machines (SVM) is an efficient supervised 
learning algorithm used for both classification and regression 
tasks. The main objective is to identify the hyperplane that best 
separates the data points of different classes in the feature space 
(Najafi et al., 2016). In the case of a regression problem, it is 
known as Support Vector Regression (SVR). The approach in 
regression seeks to minimize the error by fitting the best line 
inside a predefined margin, epsilon. Because of its kernel trick, 
which lets SVM handle non-linearly separable data by mapping 
it into higher-dimensional space where a linear separator can be 
found. SVM is flexible and effective in high-dimensional spaces 
(Cortes and Vapnik, 1995; Tanveer et al., 2022). Utilizing 
regularizing parameters, which manage the trade-off between 
the complexity of the model and its performance on the training 
data, SVMs offer flexibility and resistance to outliers. SVMs are 
especially suited for applications when the number of 
dimensions exceeds the number of samples (Pisner and 
Schnyer, 2020; Shi et al., 2012). 

 
Fig. 1 Test engiune setup 

 

 
Table 1 
Test fuel properties 

Property Specifications  Diesel Biogas  

Lower Heating Value (MJ/kg) ASTM D240 42.2 21240 + 100 

Cetane Number ASTM D613 46 -- 

Flash Point (°C) ASTM D93 76 -- 

Density (kg/m3) ASTM D4052 843 0.92 + 0.16 

Fire Point (°C) ASTM D92 85 -- 

Auto ignition point (°C)  281 812 + 5 
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3.3 Support vector machines 

Designed as an ensemble learning method, Random Forest 
generates several decision trees during training and aggregates 
them to produce a more reliable prediction. Every tree found in 
the forest is constructed using a random subset of features and 
a random subset of the training data (Breiman, 2001). This 
randomness helps to reduce overfit and increases the 
generalizing capability of the model. Random Forest uses a 
majority vote in classification and averages the predictions of 
individual trees in regression projects. This approach is also 
defined by high accuracy, dependability, and ability to manage 
large datasets with more dimensionality (Schonlau and Zou, 
2020; Walker et al., 2022). Random forests expose information 
on feature importance, so guiding feature selection; they are less 
prone than single decision trees to overfit. In the absence of 
major parameter tuning, they can also control missing data and 
maintain performance (Gholizadeh et al., 2020) 

3.4 Model evaluation 

Once the models are developed, these can be evaluated and 
compared using statistical indices like coefficient of 
determination, mean squared error, and mean absolute 
percentage error.  The coefficient of determination, or R², 
measures the share of the dependent variable variation that is 
predicted from the independent variables. Its value lies between 
0 to 1; 0 denotes no forecasting ability and 1 denotes the best 
possible. Mean Squared Error (MSE) is the computation of the 
expected and actual values' average squared difference. MSE 
reveals the degree of match between the projections and the 
actual data, low values fit more precisely. Mean Absolute 
Percentage Error (MAPE) is a reported percentage value 
indicating the degree of prediction accuracy, it finds the average 
absolute percentage difference between the projected and 
actual values. Low values point to improved precision. The 
following expressions were used for calculation (Jamei et al., 
2020; Kanti et al., 2023; Kumar Kanti et al., 2023; Sharma and 
Bora, 2023): 

 

Fig. 2 Flow chart for ML implementation 
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Herein, 𝑦𝑖 denotes the measured value in the case of ith 

observation, 𝑦𝑖̂ denotes the predicted value for ith observation, 

n is the total number of observations under considered, 𝑦𝑖̅ 
denotes the mean value of observations. 

3.5 Taylor’s diagrams for ML model comparison 

Taylor diagrams help to evaluate and compare ML models. 
They present a quick graphical summary. They weigh several 
aspects of model performance. Among these are correlation; 
standard deviation; and root-mean-square error (RMSE). Taylor 
diagrams combine these values on one plot. This makes one 
more able to assess models. The diagram's angle points to the 
correlation. Radial distance reveals the standard deviation. Co 
ntours capture RMSE. At the reference point, one finds a perfect 
model. Better models are those almost at this point (Elvidge et 
al., 2014; Simão et al., 2020). This method underlines differences 
between models quickly. It is quite helpful for comparing several 
models. It guides the choice of the model with optimal 

performance. Difficult performance criteria can be simplified 
with Taylor diagrams. They present an unambiguous graphic 
assessment. In machine learning, they are practical tools. Their 
influence is felt in several spheres. They help to evaluate and 
compare models (Taylor, 2001). 

4. ⁠Results and discussion   

4.1 Correlational analysis of data 

The data gathered through engine testing at different 
operational settings was analyzed through correlational 
analysis.  The correlation values calculated are listed in Table 2. 
The correlational heatmap is depicted in Figure 3. An important 
new understanding of the interplay among fundamental engine 
parameters is revealed by the correlation analysis of the biogas-
powered engine running in dual-fuel mode. A strongly positive 
connection between the load (%) and Brake Thermal Efficiency 
(BTE) (0.97) shows that higher engine loads greatly improve 
efficiency. This link also included carbon dioxide (CO₂) 
emissions (0.88), wherein greater CO₂ generation was followed 
by increasing load on the engine. But load revealed a significant 
negative association with Brake Specific Energy Consumption 
(BSEC) (-0.89), meaning that larger loads result in lower energy 
consumption per unit of output, hence improving general engine 
performance. With NOx emissions (0.92) and CO₂ emissions 
(0.93), the BTE showed a substantial positive connection. This 
implies a trade-off between higher emissions, especially NOx, 

 

Fig. 3. Correlation heatmap 
 

Table 2 
Correlation matrix 

 
PFIT, 

°bTDC 
CR Load, % 

BTE BSEC, 
MJ/kWh 

CO2, % CO, ppm HC, ppm NOx, ppm 

PFIT, °bTDC 1 0 0 0.07 -0.04 0.29 -0.24 -0.22 0.19 
CR 0 1 0 0.17 -0.12 0.31 -0.68 -0.67 0.37 
Load, % 0 0 1 0.97 -0.89 0.88 -0.44 0.25 0.85 
BTE 0.07 0.17 0.97 1 -0.91 0.93 -0.57 0.09 0.92 
BSEC, MJ/kWh -0.04 -0.12 -0.89 -0.91 1 -0.86 0.53 -0.01 -0.75 
CO2, % 0.29 0.31 0.88 0.93 -0.86 1 -0.69 -0.15 0.9 
CO, ppm -0.24 -0.68 -0.44 -0.57 0.53 -0.69 1 0.57 -0.69 
HC, ppm -0.22 -0.67 0.25 0.09 -0.01 -0.15 0.57 1 -0.05 
NOx, ppm 0.19 0.37 0.85 0.92 -0.75 0.9 -0.69 -0.05 1 

 
 

 



K.B. Le et al Int. J. Renew. Energy Dev 2024, 13(6), 1175-1190 
|1180 

ISSN: 2252-4940/© 2024. The Author(s). Published by CBIORE 

and enhanced efficiency. Conversely, BTE was inversely linked 
with Hydrocarbon (HC) emissions (-0.57) and Carbon Monoxide 
(CO) (-0.57). These inverse connections show that the 
generation of incomplete combustion byproducts like CO and 
HC declines as engine efficiency increases. 

The Compression Ratio (CR) showed positive correlations 
with NOx (0.37) and CO₂ (0.31) emissions, implying that higher 
compression ratios contribute to increased NOx and CO₂ levels. 
Strong negative relationships between CR and CO (-0.68) and 
HC (-0.67) however indicate that increasing the compression 
ratio lowers these pollutants by improving combustion 
efficiency. With both BTE (-0.91) and NOx (-0.75), BSEC had 
considerable negative relationships. This suggests that lesser 
efficiency and more NOx emissions follow from increased 
energy use. On the other hand, a positive association between 
BSEC and CO emissions (0.53) shows that higher energy 
consump tion can raise CO emissions. These relationships 
highlight the complex trade-off required in optimizing biogas 
dual-fuel engines. Although better efficiency usually results in 
more NOx emissions, they may also lower incomplete 
combustion byproducts such as CO and HC. 

4.2 Model development and evaluation 

Using Python-based libraries including scikit-learn, pandas, 
numpy, and matplotlib, the model was developed. These 
models will be used to predict the performance of a biogas-
diesel engine. The data will be gathered from lab-based testing 
in different operating settings.  Data is divided into training and 
test sets using pandas and numpy. For predictive modeling, the 
researchers will then apply Lasso regression, Random Forest 
(RF), and support vector machines (SVM). The GridSearchCV 
approach was employed to tune hyperparameters and fit the 
models to the training data with scikit-learn. Employing metrics 
including Mean Squared Error (MSE) and R² score, model 
performance will be assessed, so allowing the researchers to 
compare their accuracy. At last, matplotlib will be used to show 

the outcomes, stressing the most successful method for biogas-
diesel engine performance prediction and displaying the 
predictive capacity of every model. 

 
4.2.1. Brake thermal efficiency models  

Brake thermal efficiency (BTE) gauges how well fuel energy 
is turned into practical work. Higher BTE indicates effective 
combustion in biogas-diesel dual-fuel engines; its high methane 
concentration helps to improve combustion stability (Ambarita, 
2017; Mohite et al., 2024). The prognostic models for BTE were 
developed using three ML approaches. Once the models were 
ready these were deployed for prediction, both during training 
and testing. The prediction results were evaluated using 
statistical methods as listed in Table 3. The results are also 
presented in a comparative manner as depicted in Figure 4a for 
the Lasso regression-based model, Figure 4b illustrates for 
SVM-based BTE model, while Figure 4c depicts RF based BTE 
model. The performance of various models varies greatly, as the 
data show in Table 3. With a test R² of 0.9338 and a test MSE 
value of 2.2173, lasso regression showed good performance. 
Although its test phase MAPE of 8.9651% shows a little degree 
of prediction error. With a lower test MSE of 1.1657 and a higher 
test R² of 0.9652, the SVM model beat the Lasso Regression. 
SVM's test MAPE of 9.8516% indicates, however, that while it 
increases prediction accuracy, it does not appreciably lower 
error margins. On the other hand, an RF-based model with a 
test MSE of 0.2074 and a good test R² of 0.9938, indicates almost 
flawless prediction accuracy. Thus, the RF came up as the best-
performing model. Furthermore, RF had a low test MAPE of 
3.0741%, indicating almost negligible prediction error. RF's 
ensemble learning method, which more successfully captures 
complicated patterns in the data than the linear correlations 
depicted by Lasso and the margin-based optimization of SVM, 
explains its better performance. Random Forest proved 
therefore the most reliable model for this purpose as it showed 
the highest performance in forecasting BTE. 

Table 3 
Statistical evaluation of the prediction results 

Engine 
parameters 

Model Train MSE Test 

MSE 

Train 

R2 

Test R2 Train 
MAPE, % 

Test 

MAPE, % 

BTE 

Lasso Regression 1.4309 2.2173 0.9509 0.9338 7.8049 8.9651 

SVM 0 1.1657 1 0.9652 0 9.8516 

RF 0 0.2074 1 0.9938 0.0249 3.0741 

BSEC 

Lasso Regression 7.9442 7.7292 0.7611 0.8295 25.194 21.9774 

SVM 0 3.7904 1 0.9164 0 9.7179 

RF 0 1.2929 1 0.9715 0.0348 4.2242 

CO2 

Lasso Regression 0.0961 0.0688 0.7377 0.8231 8.6037 8.2258 

SVM 0 0.0344 1 0.9115 0 6.2527 

RF 0 0 1 0.9821 0.0427 2.5801 

CO 

Lasso Regression 78.1325 85.5376 0.7076 0.6604 5.1313 5.2376 

SVM 0 97.25 1 0.6139 0 5.2794 

RF 0 41.8541 1 0.8339 0.0020 3.6099 

HC 

Lasso Regression 543.06 380.99 0.53 0.6097 10.57 10.4 

SVM 0 257.33 1 73.64 0 7.04 

RF 0 60.91 1 0.9376 0.01 3.28 

NOx 

Lasso Regression 781.4998 342.0372 0.9425 0.9760 14.3733 8.8571 

SVM 0 349.375 1 0.9754 0 6.5480 

RF 0 346.518 1 0.9756 0.0006 7.2056 
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4.2.2. Brake-specific energy consumption models  

Brake-specific energy consumption (BSEC) stands for the 
energy used per unit of output from a job. Because of biogas's 
lower energy density, reduced BSEC in biogas-diesel dual-fuel 
engines results; yet exact injection techniques may help to 

maximize this. In the case of BSEC, three ML techniques were 
employed for the development of BSEC prognostic models. 
Once the models were ready, they were used for prediction—
both for testing and training. Statistical approaches described in 
Table 3 were used to assess the prediction findings. 
Comparative presentation of the data is also shown in Figure 5a 

 

 

Fig. 4. BTE model’s actual vs forecasted values for (a) Lasso regression (b) Support vector machine (c) Random Forest 

 

 
 

 

Fig. 5. BSEC model’s actual vs forecasted values for (a) Lasso regression (b) Support vector machine (c) Random Forest 
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for the Lasso regression-based model, Figure 5b for SVM based 
BSEC model, and Figure 5c for RF based BSEC model. Given 
the facts shown in Table 3, different models perform somewhat 
differently. With a robust test MSE of 7.7292 and a test R² of 
0.8295, lasso regression showed the poor performance showing 
low predictive accuracy. Its higher MAPE (21.9774%) during 
test phase also points to significant forecast variation. With a 
lower test MSE of 3.7904 and a higher test R² of 0.9164, SVM 
based BSEC model exhibited increased prediction accuracy in 
comparison with lasso regression. Showing better prediction 
consistency than Lasso, SVM also had lower test MAPE of 
9.7179%. RF, on the other hand, was superior to the other two 
ML approaches with the lowest test MSE of 1.2929 and the best 
test R² of 0.9715. This indicates its great BSEC forecasting 
accuracy. With the lowest test MAPE, 4.2242%, RF also 
indicated the least prediction error. RF's capacity to manage 
complicated relationships between features and its resistance 
against overfitting help to explain its outstanding performance. 
Thus, in this work, Random Forest turned out to be the most 
successful model for BSEC prediction. 
 
4.2.3. Carbon di-oxide emission models 

Burning fuels derived from carbon bases produce CO₂ 
emissions. Because biogas has less carbon content than pure 
diesel, biogas-diesel dual-fuel engines produce less CO₂, hence 
lowering greenhouse gas emissions (Bora et al., 2022; 
Kriaučiūnas et al., 2021). The prognostic models developed 
using CO2 emission data were used for prediction in the case of 
both testing and training. The prediction results were evaluated 
using statistical methods as listed in Table 3. The actual and 
model-predicted CO2 emission data are compared as depicted 
in Figure 6a for the Lasso regression-based model, Figure 6b for 
SVM based CO2 model, and Figure 6c for RF based CO2 model. 
The data in Table 3 indicate the performance of different 
models. With a higher test MSE of 7.7292 and a test R² of 0.8295, 

lasso regression showed the lowest performance showing 
reduced predictive accuracy. Its higher test MAPE 21.9774% 
also points to significant forecast variation. With a lower test 
MSE of 3.7904 and a higher test R² of 0.9164, SVM exhibited 
increased prediction accuracy. Showing better prediction 
consistency than Lasso, SVM also lowered the test MAPE to 
9.7179%.  

With the lowest test MSE of 1.2929 and a high-test R² of 
0.9715, RF based model exceeded both models. This indicates 
its great CO2 emission forecasting accuracy. With the lowest test 
MAPE, 4.2242%, RF also indicated the least prediction error. 
RF's capacity to manage complicated relationships between 
features and its resistance against overfitting help to explain its 
outstanding performance. Thus, in this work, Random Forest 
turned out to be the best prediction model for CO2 forecasting. 

 
4.2.4. CO emission models 

Incomplete combustion is one of the main causes of CO 
emissions in dual-fuel engines. In biogas-diesel dual-fuel 
engines, inadequate air-fuel mixing or poor injection time may 
raise CO emissions resulting from unburnt carbon monoxide 
from biogas combustion (Dobslaw et al., 2019; Said et al., 2022). 
In the case of CO emission data in the present study statistical 
outcomes listed in Table 3 were used to assess the prediction 
findings. For the Lasso regression-based model, Figure 7a 
shows the actual and model projected CO emission data; for 
SVM based CO model, Figure 7b; for RF based CO model, 
Figure 7c. It can be observed that most of the comparative data 
points are close to the best-fit line for all three models. Having 
a test MSE of 85.5376 and a test R² of 0.6604, lasso regression 
showed modest accuracy while nonetheless capturing data 
patterns but lacking precision. Reflecting a fair error rate, the 
model's test MAPE was 5.2376%. SVM underperformed in the 
test phase with a test MSE of 97.2500 and a lower test R² of 

 

 

Fig. 6. CO2 emission model’s actual vs forecasted values for (a) Lasso regression (b) Support vector machine (c) Random Forest 
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0.6139 while nonetheless obtaining a perfect train R² of 1. This 
points to overfitting, in which the model fails to generalize while 
fitting the training data precisely. With a far lower test, MSE of 
41.8541 and a higher test R² of 0.8 339 Random Forest exceeded 
both models. Given its test MAPE of 3.6099%, RF was the most 
dependable model for estimating CO emissions in this context 
as it shows great accuracy. 

 
4.2.5. HC emission models  

Unburned fuels cause hydrocarbon (HC) emissions. Often 
resulting from poor injection timing or lower combustion 
temperatures, HC emissions in biogas-diesel dual-fuel engines 
may grow if biogas does not entirely burn. The models were 
developed using Lasso Regression, SVM, and RF for 
hydrocarbon (HC) emission prediction in a biogas diesel-
powered dual-fuel engine (H. Sharma et al., 2022). In the case of 
CO emission data in the current research, the prediction results 
are evaluated using Table 3 with statistical results. Figure 8a 
displays the actual and model-predicted CO emission data for 
the Lasso regression-based model; Figure 8b shows SVM based 
CO model; Figure 8c depicts RF based CO model. With a test 
R² of 0.6097 and a test MSE of 380.99, lasso regression has low 
predictive performance. The test MAPE of 10.4% indicates that 
it lacks accuracy even if it catches some of the data patterns 
exhibiting significant prediction errors. The training and testing 
performance of the SVM model shows a clear difference. 
Although the test R² of 73.64 points to overfitting, the ideal train 
R² of 1 is achieved. The model fails to generalize well even if it 
performs nicely during training. With overfitting, the test MAPE 
of 7.04% shows that the prediction errors remain somewhat 
modest. RF beats both versions noticeably. Its low test MSE of 
60.91 and higher test R² of 0.9376 show great prediction 
accuracy. With a minimum prediction error of 3.28% the test 

MAPE reveals RF is the most dependable model for estimating 
HC emissions. Its better performance than Lasso Regression 
and SVM may be attributed in part to its capacity to manage 
complicated relationships in the data and prevent overfitting. 

 
4.2.6. NOx emission models 

High combustion temperatures create nitrogen oxides 
(NOx) (Nam et al., 2024). The NOx for biogas-diesel dual-fuel 
mode remains on the lower side in comparison to diesel-
powered engines, this is attributed to the lower combustion 
temperature of low-energy-density biogas. In the case of NOx 
emission data in this study, the statistical results are listed in 
Table 3. Figure 9a displays the actual and model-predicted CO 
emission data for the Lasso regression-based model; Figure 9b 
shows SVM based CO model; Figure 9c provides RF based CO 
model. With a test MSE of 342.0342 and a high R² of 0.9760 
during the test phase, lasso regression showed good predictive 
accuracy. Although the model can record data patterns, its test 
MAPE of 8.8571% points to some potential for development in 
prediction accuracy. Closely mirroring Lasso Regression in 
terms of general accuracy, SVM showed comparable 
performance with a test MSE of 349.375 and a test R² of 0.9754. 
While preserving significant generalizing capacity, the test 
MAPE of 6.5450% shows somewhat greater accuracy in 
forecasting NOx emissions than Lasso Regression. Among the 
models, Random Forest (RF) came out as the best one. RF 
achieved outstanding accuracy with a test R² of 0.9756 and a 
test MSE of 346.518. RF is the most dependable model for NOx 
emissions prediction even although its test MAPE of 7.2056% 
was somewhat higher than that of SVM as its robustness in 
capturing intricate interactions and avoidance of overfitting. RF 
is the best option for this use overall because of its harmony of 
accuracy and precision. 

 

Fig. 7. CO emission model’s actual vs forecasted values for (a) Lasso regression (b) Support vector machine (c) Random Forest 
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4.2.7. Comparison of models  

In the present study, the Taylor diagram was employed to 
compare the ML-based models. Taylor diagram graphically 

compared the output of the three machine learning models 
based on their predicted accuracy versus observed data, Lasso 
Regression, SVM, and RF. The graph depicts the correlation 
coefficient as radial contours and standard deviation along the 

 

 

Fig. 9. NOx emission model’s actual vs forecasted values for (a) Lasso regression (b) Support vector machine (c) Random Forest 

 
(a)                                                                           (b) 

 
(c) 

Fig. 8. HC emission model’s actual vs forecasted values for (a) Lasso regression (b) Support vector machine (c) Random Forest 
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x and y axes, therefore enabling a complete evaluation of any 
model. The black star in this graphic stands in for the observed 
data and provides a reference point. The precision of any model 
is indicated by the closeness of its marker to this reference. In 
the case of the model training phase for BTE, the performance 
of the RF and SVM model almost replicates the measure values, 
hence indicating a strong predictive performance, as depicted 
in Figure 10a. However, Lasso regression was not that efficient 
in the case of the based model. On the other hand, the Taylor 
diagram for the test phase for the BTE model is depicted in 
Figure 10b. Represented as a blue circle, the RF model shows 
the lowest standard deviation and the closest correlation with 
the actual data. This suggests better forecasting accuracy. 
Showed as a red triangle, the SVM model likewise performs well 
but shows somewhat lower correlation and standard deviation. 
At last, the Lasso Regression shown by a blue square has the 

farthest location from the reference, therefore suggesting a 
worse performance than the other two models. This graph 
shows very clearly that in this specific situation, RF offers the 
most consistent forecasts. Based on this discussion, we can 
conclude the outcome of other models. The Taylor diagrams for 
training and testing phases in the case of BSEC models are 
depicted in Figure 11a and Figure 11b, respectively. In this case, 
it can be observed that in the training phase, RF and SVM 
performed excellently but Lasso Regression was not as good as 
it was away from observation (actual BSEC). However, in the 
case of the test phase, both SVM and Lasso regression 
performed poorly compared to RF. 

 

Fig. 10. Taylor’s diagram for BTE model comparison for (a) training (b) testing phase 

 

Fig. 11. Taylor’s diagram for BSEC model comparison for (a) training (b) testing phase 

 

Fig. 12. Taylor’s diagram for CO2 emission model comparison for (a) training (b) testing phase 
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Similarly, the Taylor diagrams were plotted for emission 
indices. Taylor diagrams for the CO2 emission model are 
depicted in Figure 12 while for CO emission the Taylor diagram 
is illustrated in Figure 13. The Taylor diagram shown for the 
CO2 emission model as Figure 12a, for the model training phase 
shows that both RF as well as SVM predicted in a robust 
manner, while Lasso regression was comparatively poor. The 
Taylor diagram for the Test phase is plotted as Figure 12b 
illustrates that the performance of SVM was not that good while 
Lasso regression was again poorly performing. The RF-based 
CO2 emission model was the best-performing model in the 
model test phase. Figure 13a shows the Taylor diagram for the 
CO emission model over the model training period. Hereto, 
although Lasso regression performed badly, the RF and SVM 

both predicted strongly. Figure 13b displays the Taylor diagram 
during the Test phase, showing weak SVM performance and 
similarly poor Lasso regression performance. Throughout 
model testing, the RF-based CO emission model excelled.  

The Taylor diagram for HC emission and NOx emission are 
depicted in Figure 14 and Figure 15 respectively.  Under 
training and testing, the two Taylor diagrams in Figure 14a and 
Figure 14b show the performance of Lasso Regression, Support 
Vector Machine (SVM), and Random Forest (RF) models for HC 
emission. With the lowest standard deviation and maximum 
correlation to the observed data, Random Forest (blue circle) 
demonstrates the best performance in the training diagram 
(left), therefore showing accurate learning and powerful model 
training. With a greater standard deviation and somewhat lower 

 

Fig. 13. Taylor’s diagram for CO emission model comparison for (a) training (b) testing phase 

 

Fig. 14. Taylor’s diagram for HC emission model comparison for (a) training (b) testing phase 

 

Fig. 15. Taylor’s diagram for NOx emission model comparison for (a) training (b) testing phase 
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correlation, SVM (red triangle) performs well and suggests that 
its predictions are less exact than RF. With the lowest 
correlation and biggest standard deviation, lasso regression 
(blue square) indicates less efficient data acquisition and 
performs the poorest. Showing great generalization with low 
standard deviation and good correlation to the observed data, 
Random Forest keeps surpassing the other models in the testing 
diagram (right). While Lasso Regression once gives the lowest 
results and suffers from generalization and deviating much from 
the observed data, SVM follows with modest performance. 
Random Forest shows overall to be the most accurate and 
strong model in both stages; SVM and Lasso Regression follow. 

For NOx emissions, Figure 15a and Figure 15b evaluate 
Lasso Regression, SVM, and RF models. With the lowest 
standard deviation and maximum correlation to the observed 
data, RF shown by the blue circle achieves the best performance 
in both training and testing phases, therefore suggesting 
accurate learning and excellent generalization. Given a larger 
standard deviation and somewhat reduced correlation, SVM 
shown as a red triangle performs well but is less exact than RF. 
With its blue square lowest correlation and biggest standard 
deviation, lasso regression which suggests ineffective data 
collection and poor generalization showcases the lowest 
performance. Though Lasso Regression trails behind, RF shows 
overall as the most strong and accurate model throughout both 
stages.  

5. ⁠⁠Conclusion 

In conclusion, it is reported that biogas is a suitable 
alternative fuel to substitute diesel in a diesel engine. More so 
ever especially in dual-fuel mode with diesel as a pilot fuel, 
biogas offers good performance with lower emissions.  This 
work simulated injection strategies for a waste-derived biogas-
powered dual-fuel engine utilizing supervised machine learning 
methods including Random Forest, Lasso Regression, and 
Support Vector Machines (SVM). Mean Squared Error (MSE), R-
squared (R²), and Mean Absolute Percentage Error (MAPE) 
guided model assessments. Random Forest often showed better 
performance among the models across many criteria. For Brake 
Thermal Efficiency (BTE) forecasts, it obtained a test R² of 
0.9938 and a low test MAPE of 3.0741%). With a test R² of 
0.9715 and a test MAPE of 4.2242%, Random Forest once again 
exceeded other models in estimating Brake Specific Energy 
Consumption (BSEC). Random Forest demonstrated the best 
accuracy for CO₂ emissions with a test R² of 0.9821 and a test 
MAPE of 2.5801%. With a test R² of 0.8 339 and a test MAPE of 
3.6099%, the model likewise performed remarkably in 
forecasting CO emissions. In the same vein, Random Forest 
outperformed Linear Regression in NOx emission with a test R² 
of 0.9756 and a test MAPE of 7.2056%. Random Forest was 
demonstrated to be the most consistent model. This work 
emphasizes how well machine learning especially Random 
Forest can forecast biogas dual-fuel engine performance and 
emissions. 

References 

Abdullah, B., Syed Muhammad, S.A.F., Shokravi, Z., Ismail, S., Kassim, 
K.A., Mahmood, A.N., Aziz, M.M.A., 2019. Fourth generation 
biofuel: A review on risks and mitigation strategies. Renew. 
Sustain. Energy Rev. 107, 37–50. 
https://doi.org/10.1016/j.rser.2019.02.018 

Ahmad, A., Yadav, A.K., Hasan, S., 2024a. Enhanced production of 
methane enriched biogas through intensified co-digestion 
process and its effective utilization in a biodiesel/biohydrogen 
fueled engine with duel injection strategies: ML-RSM based an 
efficient optimization approach. Int. J. Hydrogen Energy 65, 671–

686. https://doi.org/10.1016/J.IJHYDENE.2024.04.059 
Ahmad, A., Yadav, A.K., Singh, A., Singh, D.K., 2024b. A comprehensive 

machine learning-coupled response surface methodology 
approach for predictive modeling and optimization of biogas 
potential in anaerobic Co-digestion of organic waste. Biomass 
and Bioenergy 180, 106995. 
https://doi.org/10.1016/j.biombioe.2023.106995 

Ambarita, H., 2017. Performance and emission characteristics of a small 
diesel engine run in dual-fuel (diesel-biogas) mode. Case Stud. 
Therm. Eng. 10, 179–191. 
https://doi.org/10.1016/j.csite.2017.06.003 

Ardolino, F., Cardamone, G.F., Parrillo, F., Arena, U., 2021. Biogas-to-
biomethane upgrading: A comparative review and assessment in 
a life cycle perspective. Renew. Sustain. Energy Rev. 139, 110588. 
https://doi.org/10.1016/j.rser.2020.110588 

Awe, O.W., Zhao, Y., Nzihou, A., Minh, D.P., Lyczko, N., 2017. A Review 
of Biogas Utilisation, Purification and Upgrading Technologies. 
Waste and Biomass Valorization 8, 267–283. 
https://doi.org/10.1007/s12649-016-9826-4 

Ayyıldız, E., Murat, M., 2024. A lasso regression-based forecasting 
model for daily gasoline consumption: Türkiye Case. Turkish J. 
Eng. 8, 162–174. https://doi.org/10.31127/TUJE.1354501 

Bhatt, A.N., Shrivastava, N., 2021. Application of Artificial Neural 
Network for Internal Combustion Engines: A State of the Art 
Review. Arch. Comput. Methods Eng. 1–23. 

Bietresato, M., Calcante, A., Mazzetto, F., 2015. A neural network 
approach for indirectly estimating farm tractors engine 
performances. Fuel 143, 144–154. 
https://doi.org/10.1016/J.FUEL.2014.11.019 

Bora, B.J., Dai Tran, T., Prasad Shadangi, K., Sharma, P., Said, Z., Kalita, 
P., Buradi, A., Nhanh Nguyen, V., Niyas, H., Tuan Pham, M., 
Thanh Nguyen Le, C., Dung Tran, V., Phuong Nguyen, X., 2022. 
Improving combustion and emission characteristics of a 
biogas/biodiesel-powered dual-fuel diesel engine through trade-
off analysis of operation parameters using response surface 
methodology. Sustain. Energy Technol. Assessments 53, 102455. 
https://doi.org/10.1016/j.seta.2022.102455 

Bora, B.J., Saha, U.K., 2016. Optimisation of injection timing and 
compression ratio of a raw biogas powered dual fuel diesel 
engine. Appl. Therm. Eng. 92, 111–121. 
https://doi.org/10.1016/j.applthermaleng.2015.08.111 

Boretti, A., 2019. Advantages and Disadvantages of Diesel Single and 
Dual-Fuel Engines. Front. Mech. Eng. 5. 
https://doi.org/10.3389/fmech.2019.00064 

Breiman, L., 2001. Random Forests. Mach. Learn. 45, 5–32. 
https://doi.org/10.1023/A:1010933404324 

Bui, V.G., Bui, T.M.T., Hoang, A.T., Nižetić, S., Nguyen Thi, T.X., Vo, 
A.V., 2021. Hydrogen-Enriched Biogas Premixed Charge 
Combustion and Emissions in Direct Injection and Indirect 
Injection Diesel Dual Fueled Engines: A Comparative Study. J. 
Energy Resour. Technol. 143. https://doi.org/10.1115/1.4051574 

Bui, V.G., Bui, T.M.T., Nguyen, M.T., Bui, V.H., Do, P.N., Tran, N.A.H., 
Le, T.T., Hoang, A.T., 2024. Enhancing the performance of 
syngas-diesel dual-fuel engines by optimizing injection regimes: 
From comparative analysis to control strategy proposal. Process 
Saf. Environ. Prot. 186, 1034–1052. 
https://doi.org/10.1016/j.psep.2024.04.042 

Bui, V.G., Bui, T.M.T., Tran, V.N., Huang, Z., Hoang, A.T., Tarelko, W., 
Bui, V.H., Pham, X.M., Nguyen, P.Q.P., 2023. Flexible syngas-
biogas-hydrogen fueling spark-ignition engine behaviors with 
optimized fuel compositions and control parameters. Int. J. 
Hydrogen Energy 48, 6722–6737. 
https://doi.org/10.1016/j.ijhydene.2022.09.133 

Bui, V.G., Tu Bui, T.M., Ong, H.C., Nižetić, S., Bui, V.H., Xuan Nguyen, 
T.T., Atabani, A.E., Štěpanec, L., Phu Pham, L.H., Hoang, A.T., 
2022. Optimizing operation parameters of a spark-ignition 
engine fueled with biogas-hydrogen blend integrated into 
biomass-solar hybrid renewable energy system. Energy 252, 
124052. https://doi.org/10.1016/j.energy.2022.124052 

Changxiong, L., Hu, Y., Yang, Z., Guo, H., 2023. Experimental Study of 
Fuel Combustion and Emission Characteristics of Marine Diesel 
Engines Using Advanced Fuels. Polish Marit. Res. 30, 48–58. 
https://doi.org/10.2478/pomr-2023-0038 

Cortes, C., Vapnik, V., 1995. Support-vector networks. Mach. Learn. 20, 
273–297. https://doi.org/10.1007/BF00994018 

https://doi.org/10.1016/j.rser.2019.02.018
https://doi.org/10.1016/J.IJHYDENE.2024.04.059
https://doi.org/10.1016/j.biombioe.2023.106995
https://doi.org/10.1016/j.csite.2017.06.003
https://doi.org/10.1016/j.rser.2020.110588
https://doi.org/10.1007/s12649-016-9826-4
https://doi.org/10.31127/TUJE.1354501
https://doi.org/10.1016/J.FUEL.2014.11.019
https://doi.org/10.1016/j.seta.2022.102455
https://doi.org/10.1016/j.applthermaleng.2015.08.111
https://doi.org/10.3389/fmech.2019.00064
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1115/1.4051574
https://doi.org/10.1016/j.psep.2024.04.042
https://doi.org/10.1016/j.ijhydene.2022.09.133
https://doi.org/10.1016/j.energy.2022.124052
https://doi.org/10.2478/pomr-2023-0038
https://doi.org/10.1007/BF00994018


K.B. Le et al Int. J. Renew. Energy Dev 2024, 13(6), 1175-1190 
|1188 

ISSN: 2252-4940/© 2024. The Author(s). Published by CBIORE 

Cunanan, C., Tran, M.-K., Lee, Y., Kwok, S., Leung, V., Fowler, M., 2021. 
A Review of Heavy-Duty Vehicle Powertrain Technologies: 
Diesel Engine Vehicles, Battery Electric Vehicles, and Hydrogen 
Fuel Cell Electric Vehicles. Clean Technol. 3, 474–489. 
https://doi.org/10.3390/cleantechnol3020028 

Czekała, W., 2022. Biogas as a Sustainable and Renewable Energy 
Source. pp. 201–214. https://doi.org/10.1007/978-981-16-
8747-1_10 

Dobslaw, D., Engesser, K.-H., Störk, H., Gerl, T., 2019. Low-cost process 
for emission abatement of biogas internal combustion engines. J. 
Clean. Prod. 227, 1079–1092. 
https://doi.org/10.1016/j.jclepro.2019.04.258 

E, J., Pham, M., Zhao, D., Deng, Y., Le, D., Zuo, W., Zhu, H., Liu, T., 
Peng, Q., Zhang, Z., 2017. Effect of different technologies on 
combustion and emissions of the diesel engine fueled with 
biodiesel: A review. Renew. Sustain. Energy Rev. 80, 620–647. 
https://doi.org/10.1016/j.rser.2017.05.250 

Elvidge, S., Angling, M.J., Nava, B., 2014. On the use of modified Taylor 
diagrams to compare ionospheric assimilation models. Radio Sci. 
49, 737–745. https://doi.org/10.1002/2014RS005435 

Feroskhan, M., Ismail, S., 2017. A review on the purification and use of 
biogas in compression ignition engines. Int. J. Automot. Mech. 
Eng. 14, 4383–4400. 
https://doi.org/10.15282/ijame.14.3.2017.1.0348 

Feroskhan, M., Ismail, S., Reddy, M.G., Sai Teja, A., 2018. Effects of 
charge preheating on the performance of a biogas-diesel dual 
fuel CI engine. Eng. Sci. Technol. an Int. J. 21, 330–337. 
https://doi.org/10.1016/j.jestch.2018.04.001 

Fransiscus, Y., Simangunsong, T.L., 2021. Anaerobic Digestion of 
Industrial Tempeh Wastewater with Sludge from Cow Manure 
Biogas Digester as Inoculum: Effect of F/M Ratio on the 
Methane Production. Int. J. Adv. Sci. Eng. Inf. Technol. 11, 1007–
1013. https://doi.org/10.18517/ijaseit.11.3.11846 

García-Nieto, P.J., García-Gonzalo, E., José, •, Paredes-Sá Nchez, P., n.d. 
Prediction of the critical temperature of a superconductor by 
using the WOA/MARS, Ridge, Lasso and Elastic-net machine 
learning techniques. Neural Comput. Appl. 33. 
https://doi.org/10.1007/s00521-021-06304-z 

Gholizadeh, M., Jamei, M., Ahmadianfar, I., Pourrajab, R., 2020. 
Prediction of nanofluids viscosity using random forest (RF) 
approach. Chemom. Intell. Lab. Syst. 201, 104010. 
https://doi.org/10.1016/J.CHEMOLAB.2020.104010 

Goyal, D., Goyal, T., Mahla, S.K., Goga, G., Dhir, A., Balasubramanian, 
D., Hoang, A.T., Wae-Hayee, M., Josephin, J.S.F., Sonthalia, A., 
Varuvel, E.G., Brindhadevi, K., 2023. Application of Taguchi 
design in optimization of performance and emissions 
characteristics of n-butanol/diesel/biogas under dual fuel mode. 
Fuel 338, 127246. https://doi.org/10.1016/j.fuel.2022.127246 

Hao, D., Mehra, R.K., Luo, S., Nie, Z., Ren, X., Fanhua, M., 2020. 
Experimental study of hydrogen enriched compressed natural 
gas (HCNG) engine and application of support vector machine 
(SVM) on prediction of engine performance at specific condition. 
Int. J. Hydrogen Energy 45, 5309–5325. 
https://doi.org/10.1016/j.ijhydene.2019.04.039 

Haque, R., Quek, A., Ting, C.-Y., Goh, H.-N., Hasan, M.R., 2024. 
Classification Techniques Using Machine Learning for Graduate 
Student Employability Predictions. Int. J. Adv. Sci. Eng. Inf. 
Technol. 14, 45–56. https://doi.org/10.18517/ijaseit.14.1.19549 

Hidayanti, F., Wati, E.K., Sumardi, A.H., 2021. Implementation of 
Automatic Monitoring and Control System in Balloon Digester 
Type’s Biogas Plant from Tofu Waste Using Ultrasonic Distance 
Sensor. Int. J. Adv. Sci. Eng. Inf. Technol. 11, 1463–1467. 
https://doi.org/10.18517/ijaseit.11.4.11004 

Hoang, A.T., 2021. Combustion behavior, performance and emission 
characteristics of diesel engine fuelled with biodiesel containing 
cerium oxide nanoparticles: A review. Fuel Process. Technol. 218, 
106840. https://doi.org/10.1016/j.fuproc.2021.106840 

Hoang, A.T., 2018. Waste heat recovery from diesel engines based on 
Organic Rankine Cycle. Appl. Energy 231, 138–166. 
https://doi.org/10.1016/j.apenergy.2018.09.022 

Hoang, A.T., Goldfarb, J.L., Foley, A.M., Lichtfouse, E., Kumar, M., Xiao, 
L., Ahmed, S.F., Said, Z., Luque, R., Bui, V.G., Nguyen, X.P., 2022. 
Production of biochar from crop residues and its application for 
anaerobic digestion. Bioresour. Technol. 363, 127970. 
https://doi.org/10.1016/j.biortech.2022.127970 

Hoang, A.T., Pandey, A., Martinez De Osés, F.J., Chen, W.-H., Said, Z., 
Ng, K.H., Ağbulut, Ü., Tarełko, W., Ölçer, A.I., Nguyen, X.P., 
2023. Technological solutions for boosting hydrogen role in 
decarbonization strategies and net-zero goals of world shipping: 
Challenges and perspectives. Renew. Sustain. Energy Rev. 188, 
113790. https://doi.org/10.1016/j.rser.2023.113790 

Jamei, M., Pourrajab, R., Ahmadianfar, I., Noghrehabadi, A., 2020. 
Accurate prediction of thermal conductivity of ethylene glycol-
based hybrid nanofluids using artificial intelligence techniques. 
Int. Commun. Heat Mass Transf. 116, 104624. 
https://doi.org/10.1016/J.ICHEATMASSTRANSFER.2020.104
624 

Jamei, M., Sharma, P., Ali, M., Bora, B.J., Malik, A., Paramasivam, P., 
Farooque, A.A., Abdulla, S., 2024. Application of an explainable 
glass-box machine learning approach for prognostic analysis of a 
biogas-powered small agriculture engine. Energy 288, 129862. 
https://doi.org/10.1016/j.energy.2023.129862 

Kanti, P.K., Sharma, P., Maiya, M.P., Sharma, K.V., 2023. The stability 
and thermophysical properties of Al2O3-graphene oxide hybrid 
nanofluids for solar energy applications: Application of robust 
autoregressive modern machine learning technique. Sol. Energy 
Mater. Sol. Cells 253, 112207. 
https://doi.org/10.1016/j.solmat.2023.112207 

Kapoor, R., Ghosh, P., Tyagi, B., Vijay, V.K., Vijay, V., Thakur, I.S., 
Kamyab, H., Nguyen, D.D., Kumar, A., 2020. Advances in biogas 
valorization and utilization systems: A comprehensive review. J. 
Clean. Prod. 273, 123052. 

Karne, H., Mahajan, U., Ketkar, U., Kohade, A., Khadilkar, P., Mishra, A., 
2023. A review on biogas upgradation systems. Mater. Today 
Proc. 72, 775–786. 
https://doi.org/10.1016/J.MATPR.2022.09.015 

Khayum, N., Anbarasu, S., Murugan, S., 2020. Combined effect of fuel 
injecting timing and nozzle opening pressure of a biogas-
biodiesel fuelled diesel engine. Fuel 262, 116505. 
https://doi.org/10.1016/j.fuel.2019.116505 

Kriaučiūnas, D., Pukalskas, S., Rimkus, A., Barta, D., 2021. Analysis of 
the Influence of CO2 Concentration on a Spark Ignition Engine 
Fueled with Biogas. Appl. Sci. 11, 6379. 
https://doi.org/10.3390/app11146379 

Kumar Kanti, P., Sharma, P., Sharma, K.V., Maiya, M.P., 2023. The effect 
of pH on stability and thermal performance of graphene oxide 
and copper oxide hybrid nanofluids for heat transfer 
applications: Application of novel machine learning technique. J. 
Energy Chem. 82, 359–374. 
https://doi.org/10.1016/j.jechem.2023.04.001 

Li, Y., Yang, R., Wang, X., Zhu, J., Song, N., 2023. Carbon Price 
Combination Forecasting Model Based on Lasso Regression and 
Optimal Integration. Sustain. 2023, Vol. 15, Page 9354 15, 9354. 
https://doi.org/10.3390/SU15129354 

Lohani, S.P., Dhungana, B., Horn, H., Khatiwada, D., 2021. Small-scale 
biogas technology and clean cooking fuel: Assessing the 
potential and links with SDGs in low-income countries – A case 
study of Nepal. Sustain. Energy Technol. Assessments 46, 101301. 
https://doi.org/10.1016/J.SETA.2021.101301 

Mahla, S.K., Singla, V., Sandhu, S.S., Dhir, A., 2018. Studies on biogas-
fuelled compression ignition engine under dual fuel mode. 
Environ. Sci. Pollut. Res. 25, 9722–9729. 
https://doi.org/10.1007/S11356-018-1247-4/METRICS 

Mao, C., Feng, Y., Wang, X., Ren, G., 2015. Review on research 
achievements of biogas from anaerobic digestion. Renew. Sustain. 
Energy Rev. 45, 540–555. 
https://doi.org/10.1016/j.rser.2015.02.032 

Meenal, R., Selvakumar, A.I., 2018. Assessment of SVM, empirical and 
ANN based solar radiation prediction models with most 
influencing input parameters. Renew. Energy 121, 324–343. 
https://doi.org/10.1016/J.RENENE.2017.12.005 

Meng, X., Zhou, Y., Yang, T., Long, W., Bi, M., Tian, J., Lee, C.F.F., 2020. 
An experimental investigation of a dual-fuel engine by using bio-
fuel as the additive. Renew. Energy 147, 2238–2249. 
https://doi.org/10.1016/J.RENENE.2019.10.023 

Mohammad, A., Rezaei, R., Hayduk, C., Delebinski, T., Shahpouri, S., 
Shahbakhti, M., 2022. Physical-oriented and machine learning-
based emission modeling in a diesel compression ignition 
engine: Dimensionality reduction and regression. 24, 904–918. 
https://doi.org/10.1177/14680874211070736 

https://doi.org/10.3390/cleantechnol3020028
https://doi.org/10.1007/978-981-16-8747-1_10
https://doi.org/10.1007/978-981-16-8747-1_10
https://doi.org/10.1016/j.jclepro.2019.04.258
https://doi.org/10.1016/j.rser.2017.05.250
https://doi.org/10.1002/2014RS005435
https://doi.org/10.15282/ijame.14.3.2017.1.0348
https://doi.org/10.1016/j.jestch.2018.04.001
https://doi.org/10.18517/ijaseit.11.3.11846
https://doi.org/10.1007/s00521-021-06304-z
https://doi.org/10.1016/J.CHEMOLAB.2020.104010
https://doi.org/10.1016/j.fuel.2022.127246
https://doi.org/10.1016/j.ijhydene.2019.04.039
https://doi.org/10.18517/ijaseit.14.1.19549
https://doi.org/10.18517/ijaseit.11.4.11004
https://doi.org/10.1016/j.fuproc.2021.106840
https://doi.org/10.1016/j.apenergy.2018.09.022
https://doi.org/10.1016/j.biortech.2022.127970
https://doi.org/10.1016/j.rser.2023.113790
https://doi.org/10.1016/J.ICHEATMASSTRANSFER.2020.104624
https://doi.org/10.1016/J.ICHEATMASSTRANSFER.2020.104624
https://doi.org/10.1016/j.energy.2023.129862
https://doi.org/10.1016/j.solmat.2023.112207
https://doi.org/10.1016/J.MATPR.2022.09.015
https://doi.org/10.1016/j.fuel.2019.116505
https://doi.org/10.3390/app11146379
https://doi.org/10.1016/j.jechem.2023.04.001
https://doi.org/10.3390/SU15129354
https://doi.org/10.1016/J.SETA.2021.101301
https://doi.org/10.1007/S11356-018-1247-4/METRICS
https://doi.org/10.1016/j.rser.2015.02.032
https://doi.org/10.1016/J.RENENE.2017.12.005
https://doi.org/10.1016/J.RENENE.2019.10.023
https://doi.org/10.1177/14680874211070736


K.B. Le et al Int. J. Renew. Energy Dev 2024, 13(6), 1175-1190 
|1189 

ISSN: 2252-4940/© 2024. The Author(s). Published by CBIORE 

Mohite, A., Bora, B.J., Sharma, P., Sarıdemir, S., Mallick, D., Sunil, S., 
Ağbulut, Ü., 2024. Performance enhancement and emission 
control through adjustment of operating parameters of a biogas-
biodiesel dual fuel diesel engine: An experimental and statistical 
study with biogas as a hydrogen carrier. Int. J. Hydrogen Energy 
52, 752–764. 

Naghavi, R., Abdoli, M.A., Karbasi, A., Adl, M., 2020. Improving the 
Quantity and Quality of Biogas Production in Tehran Anaerobic 
Digestion Power Plant by Application of Materials Recirculation 
Technique. Int. J. Renew. Energy Dev. 9, 167–175. 
https://doi.org/10.14710/ijred.9.2.167-175 

Najafi, G., Ghobadian, B., Moosavian, A., Yusaf, T., Mamat, R., Kettner, 
M., Azmi, W.H., 2016. SVM and ANFIS for prediction of 
performance and exhaust emissions of a SI engine with gasoline–
ethanol blended fuels. Appl. Therm. Eng. 95, 186–203. 
https://doi.org/10.1016/j.applthermaleng.2015.11.009 

Nam, D., Jafrin, A., Johnson, T., 2024. A Simulation Study on a 
Premixed-charge Compression Ignition Mode-based Engine 
Using a Blend of Biodiesel / Diesel Fuel under a Split Injection 
Strategy. Int. J. Adv. Sci. Eng. Inf. Technol. 14, 451–471. 

Nguyen-Thi, T.X., Bui, T.M.T., 2023. Effects of Injection Strategies on 
Mixture Formation and Combustion in a Spark-Ignition Engine 
Fueled with Syngas-Biogas-Hydrogen. Int. J. Renew. Energy Dev. 
12, 118–128. https://doi.org/10.14710/ijred.2023.49368 

Nguyen, V.N., Tarełko, W., Sharma, P., El-Shafay, A.S., Chen, W.-H., 
Nguyen, P.Q.P., Nguyen, X.P., Hoang, A.T., 2024. Potential of 
Explainable Artificial Intelligence in Advancing Renewable 
Energy: Challenges and Prospects. Energy & Fuels 38, 1692–
1712. https://doi.org/10.1021/acs.energyfuels.3c04343 

Nisa, Z.K., Pradipta, A.G., Sholikah, L.N., Pratama, B.F., Prihanantya, 
A.S., Ngadisih, Susanto, S., Arif, S.S., 2023. Recognition of 
Agricultural Land-Use Change with Machine Learning-Based for 
Regional Food Security Assessment in Kulon Progo Plains Area. 
Int. J. Adv. Sci. Eng. Inf. Technol. 13, 54–61. 
https://doi.org/10.18517/ijaseit.13.1.16550 

Onukwuli, D.O., Esonye, C., Ofoefule, A.U., Eyisi, R., 2021. Comparative 
analysis of the application of artificial neural network-genetic 
algorithm and response surface methods-desirability function for 
predicting the optimal conditions for biodiesel synthesis from 
chrysophyllum albidum seed oil. J. Taiwan Inst. Chem. Eng. 125, 
153–167. https://doi.org/10.1016/J.JTICE.2021.06.012 

Parsaee, M., Kiani Deh Kiani, M., Karimi, K., 2019. A review of biogas 
production from sugarcane vinasse. Biomass and Bioenergy 122, 
117–125. https://doi.org/10.1016/J.BIOMBIOE.2019.01.034 

Patnaik, S., Khatri, N., Rene, E.R., 2024. Artificial neural networks-based 
performance and emission characteristics prediction of 
compression ignition engines powered by blends of biodiesel 
derived from waste cooking oil. Fuel 370, 131806. 
https://doi.org/10.1016/J.FUEL.2024.131806 

Pisner, D.A., Schnyer, D.M., 2020. Support vector machine, in: Machine 
Learning. Elsevier, pp. 101–121. https://doi.org/10.1016/B978-
0-12-815739-8.00006-7 

Prabhu, A.V., Avinash, A., Brindhadevi, K., Pugazhendhi, A., 2021. 
Performance and emission evaluation of dual fuel CI engine 
using preheated biogas-air mixture. Sci. Total Environ. 754, 
142389. https://doi.org/10.1016/J.SCITOTENV.2020.142389 

Puri, D., Nalbalwar, S., Nandgaonkar, A., Rajput, J., Wagh, A., 2023. 
Identification of Alzheimer’s Disease Using Novel Dual 
Decomposition Technique and Machine Learning Algorithms 
from EEG Signals. Int. J. Adv. Sci. Eng. Inf. Technol. 13, 658–665. 
https://doi.org/10.18517/ijaseit.13.2.18252 

Rahman, H., Nehemia, A., Astuti, H.P., 2023. Investigating the potential 
of avocado seeds for bioethanol production: A study on boiled 
water delignification pretreatment. Int. J. Renew. Energy Dev. 
12(4). https://doi.org/10.14710/ijred.2023.52532 . 

Ramalingam, K., Vellaiyan, S., Venkatesan, E.P., Khan, S.A., Mahmoud, 
Z., Saleel, C.A., 2023. Challenges and Opportunities of Low 
Viscous Biofuel─A Prospective Review. ACS Omega 8, 16545–
16560. https://doi.org/10.1021/acsomega.3c00387 

Rao, A., Liu, Y., Ma, F., 2022. Study of NOx emission for hydrogen 
enriched compressed natural along with exhaust gas 
recirculation in spark ignition engine by Zeldovich’ mechanism, 
support vector machine and regression correlation. Fuel 318, 
123577. https://doi.org/10.1016/j.fuel.2022.123577 

Rocha-Meneses, L., Luna-delRisco, M., González, C.A., Moncada, S.V., 

Moreno, A., Sierra-Del Rio, J., Castillo-Meza, L.E., 2023. An 
Overview of the Socio-Economic, Technological, and 
Environmental Opportunities and Challenges for Renewable 
Energy Generation from Residual Biomass: A Case Study of 
Biogas Production in Colombia. Energies 2023, Vol. 16, Page 
5901 16, 5901. https://doi.org/10.3390/EN16165901 

Runyowa, N.T., Fourie, W., 2021. Responsible Leadership and the 
Implementation of SDG 7: The Case of the UNDP Botswana 
Biogas Project. Sustain. Dev. Goals Ser. Part F2673, 91–105. 
https://doi.org/10.1007/978-3-030-70952-5_7 

Sahoo, B.B., Sahoo, N., Saha, U.K., 2009. Effect of engine parameters 
and type of gaseous fuel on the performance of dual-fuel gas 
diesel engines—A critical review. Renew. Sustain. Energy Rev. 13, 
1151–1184. https://doi.org/10.1016/j.rser.2008.08.003 

Said, Z., Sharma, P., Bora, B.J., Bui, T.A.E., Nguyen, D.T., Dinh, X.T., 
Nguyen, X.P., 2022. Modeling-optimization of performance and 
emission characteristics of dual-fuel engine powered with pilot 
diesel and agricultural-food waste-derived biogas. Int. J. 
Hydrogen Energy. 

Sakthivel, R., Ramesh, K., Purnachandran, R., Mohamed Shameer, P., 
2018. A review on the properties, performance and emission 
aspects of the third generation biodiesels. Renew. Sustain. Energy 
Rev. 82, 2970–2992. https://doi.org/10.1016/j.rser.2017.10.037 

Schonlau, M., Zou, R.Y., 2020. The random forest algorithm for 
statistical learning. Stata J. Promot. Commun. Stat. Stata 20, 3–
29. https://doi.org/10.1177/1536867X20909688 

Serbin, S., Burunsuz, K., Chen, D., Kowalski, J., 2022. Investigation of 
the Characteristics of a Low-Emission Gas Turbine Combustion 
Chamber Operating on a Mixture of Natural Gas and Hydrogen. 
Polish Marit. Res. 29, 64–76. https://doi.org/10.2478/pomr-
2022-0018 

Sharma, H., Mahla, S.K., Dhir, A., 2022. Effect of utilization of hydrogen-
rich reformed biogas on the performance and emission 
characteristics of common rail diesel engine. Int. J. Hydrogen 
Energy 47, 10409–10419. 
https://doi.org/10.1016/j.ijhydene.2022.01.073 

Sharma, P.;, Bora, B.J.A., Sharma, Prabhakar, Bora, B.J., 2022. A Review 
of Modern Machine Learning Techniques in the Prediction of 
Remaining Useful Life of Lithium-Ion Batteries. Batter.  13(9), 13. 
https://doi.org/10.3390/BATTERIES9010013 

Sharma, P., Balasubramanian, D., Thanh Khai, C., Papla Venugopal, I., 
Alruqi, M., Josephin JS, F., Sonthalia, A., Geo Varuvel, E., Khalife, 
E., Ravikumar, R., Wae-Hayee, M., 2023a. Enhancing the 
performance of renewable biogas powered engine employing 
oxyhydrogen: Optimization with desirability and D-optimal 
design. Fuel 341, 127575. 
https://doi.org/10.1016/j.fuel.2023.127575 

Sharma, P., Bora, B.J., 2023. Modeling and optimization of a CI engine 
running on producer gas fortified with oxyhydrogen. Energy 270, 
126909. https://doi.org/10.1016/j.energy.2023.126909 

Sharma, P., Jain, A., Bora, B.J., Balakrishnan, D., Show, P.L., Ramaraj, 
R., Ağbulut, Ü., Khoo, K.S., 2023b. Application of modern 
approaches to the synthesis of biohydrogen from organic waste. 
Int. J. Hydrogen Energy 48, 21189–21213. 
https://doi.org/10.1016/j.ijhydene.2023.03.029 

Sharma, P., Sahoo, B.B., Said, Z., Hadiyanto, H., Nguyen, X.P., Nižetić, 
S., Huang, Z., Hoang, A.T., Li, C., 2023c. Application of machine 
learning and Box-Behnken design in optimizing engine 
characteristics operated with a dual-fuel mode of algal biodiesel 
and waste-derived biogas. Int. J. Hydrogen Energy 48, 6738–6760. 
https://doi.org/10.1016/j.ijhydene.2022.04.152 

Sharma, P., Said, Z., Kumar, A., Nižetić, S., Pandey, A., Hoang, A.T., 
Huang, Z., Afzal, A., Li, C., Le, A.T., Nguyen, X.P., Tran, V.D., 
2022. Recent Advances in Machine Learning Research for 
Nanofluid-Based Heat Transfer in Renewable Energy System. 
Energy & Fuels 36, 6626–6658. 
https://doi.org/10.1021/acs.energyfuels.2c01006 

Sharmila, V.G., Shanmugavel, S.P., Banu, J.R., 2024. A review on 
emerging technologies and machine learning approaches for 
sustainable production of biofuel from biomass waste. Biomass 
and Bioenergy 180, 106997. 
https://doi.org/10.1016/j.biombioe.2023.106997 

Shi, J., Lee, W.-J., Liu, Y., Yang, Y., Wang, P., 2012. Forecasting Power 
Output of Photovoltaic Systems Based on Weather Classification 
and Support Vector Machines. IEEE Trans. Ind. Appl. 48, 1064–

https://doi.org/10.14710/ijred.9.2.167-175
https://doi.org/10.1016/j.applthermaleng.2015.11.009
https://doi.org/10.14710/ijred.2023.49368
https://doi.org/10.1021/acs.energyfuels.3c04343
https://doi.org/10.18517/ijaseit.13.1.16550
https://doi.org/10.1016/J.JTICE.2021.06.012
https://doi.org/10.1016/J.BIOMBIOE.2019.01.034
https://doi.org/10.1016/J.FUEL.2024.131806
https://doi.org/10.1016/B978-0-12-815739-8.00006-7
https://doi.org/10.1016/B978-0-12-815739-8.00006-7
https://doi.org/10.1016/J.SCITOTENV.2020.142389
https://doi.org/10.18517/ijaseit.13.2.18252
https://doi.org/10.14710/ijred.2023.52532
https://doi.org/10.1021/acsomega.3c00387
https://doi.org/10.1016/j.fuel.2022.123577
https://doi.org/10.3390/EN16165901
https://doi.org/10.1007/978-3-030-70952-5_7
https://doi.org/10.1016/j.rser.2008.08.003
https://doi.org/10.1016/j.rser.2017.10.037
https://doi.org/10.1177/1536867X20909688
https://doi.org/10.2478/pomr-2022-0018
https://doi.org/10.2478/pomr-2022-0018
https://doi.org/10.1016/j.ijhydene.2022.01.073
https://doi.org/10.3390/BATTERIES9010013
https://doi.org/10.1016/j.fuel.2023.127575
https://doi.org/10.1016/j.energy.2023.126909
https://doi.org/10.1016/j.ijhydene.2023.03.029
https://doi.org/10.1016/j.ijhydene.2022.04.152
https://doi.org/10.1021/acs.energyfuels.2c01006
https://doi.org/10.1016/j.biombioe.2023.106997


K.B. Le et al Int. J. Renew. Energy Dev 2024, 13(6), 1175-1190 
|1190 

ISSN: 2252-4940/© 2024. The Author(s). Published by CBIORE 

1069. https://doi.org/10.1109/TIA.2012.2190816 
Simão, M.L., Videiro, P.M., Silva, P.B.A., de Freitas Assad, L.P., Sagrilo, 

L.V.S., 2020. Application of Taylor diagram in the evaluation of 
joint environmental distributions’ performances. Mar. Syst. Ocean 
Technol. 15, 151–159. https://doi.org/10.1007/s40868-020-
00081-5 

Tanveer, M., Rajani, T., Rastogi, R., Shao, Y.H., Ganaie, M.A., 2022. 
Comprehensive review on twin support vector machines. Ann. 
Oper. Res. https://doi.org/10.1007/s10479-022-04575-w 

Taylor, K.E., 2001. Summarizing multiple aspects of model performance 
in a single diagram. J. Geophys. Res. 106, 7183–7192. 

The-Thanh, L., Tien-Long, B., The-Van, T., Duc-Toan, N., 2019. A study 
on a deep-drawing process with two shaping states for a fuel-
filter cup using combined simulation and experiment. Adv. Mech. 
Eng. 11, 1–11. https://doi.org/10.1177/1687814019872674 

Tira, H.S., Tsolakis, A., Turner, D., Herreros, J.M., Dearn, K.D., 
Theinnoi, K., Wyszynski, M.L., 2014. Influence of Fuel 
Properties, Hydrogen, and Reformate Additions on Diesel-
Biogas Dual-Fueled Engine. J. Energy Eng. 140. 
https://doi.org/10.1061/(ASCE)EY.1943-7897.0000173 

Tracking SDG 7 – The Energy Progress Report 2022 [WWW 
Document], n.d. 

Usman, M., Hussain, H., Riaz, F., Irshad, M., Bashir, R., Shah, M.H., 
Zafar, A.A., Bashir, U., Kalam, M.A., Mujtaba, M.A., Soudagar, 
M.E.M., 2021. Artificial Neural Network Led Optimization of 
Oxyhydrogen Hybridized Diesel Operated Engine. Sustain. 13, 
9373. https://doi.org/10.3390/SU13169373 

Vasan, V., Sridharan, N.V., Feroskhan, M., Vaithiyanathan, S., 
Subramanian, B., Tsai, P.C., Lin, Y.C., Lay, C.H., Wang, C.T., 
Ponnusamy, V.K., 2024. Biogas production and its utilization in 
internal combustion engines - A review. Process Saf. Environ. Prot. 
186, 518–539. https://doi.org/10.1016/J.PSEP.2024.04.014 

Verma, S., Das, L.M., Bhatti, S.S., Kaushik, S.C., 2017. A comparative 
exergetic performance and emission analysis of pilot diesel dual-
fuel engine with biogas, CNG and hydrogen as main fuels. Energy 
Convers. Manag. 151, 764–777. 
https://doi.org/10.1016/j.enconman.2017.09.035 

Veza, I., Afzal, A., Mujtaba, M.A., Tuan Hoang, A., Balasubramanian, D., 
Sekar, M., Fattah, I.M.R., Soudagar, M.E.M., EL-Seesy, A.I., 
Djamari, D.W., Hananto, A.L., Putra, N.R., Tamaldin, N., 2022a. 
Review of artificial neural networks for gasoline, diesel and 
homogeneous charge compression ignition engine. Alexandria 
Eng. J. 61, 8363–8391. 
https://doi.org/10.1016/j.aej.2022.01.072 

Veza, I., Karaoglan, A.D., Ileri, E., Kaulani, S.A., Tamaldin, N., Latiff, 
Z.A., Muhamad Said, M.F., Hoang, A.T., Yatish, K.V., Idris, M., 
2022b. Grasshopper optimization algorithm for diesel engine 
fuelled with ethanol-biodiesel-diesel blends. Case Stud. Therm. 
Eng. 31, 101817. https://doi.org/10.1016/j.csite.2022.101817 

Walker, A.M., Cliff, A., Romero, J., Shah, M.B., Jones, P., Felipe 
Machado Gazolla, J.G., Jacobson, D.A., Kainer, D., 2022. 
Evaluating the performance of random forest and iterative 
random forest based methods when applied to gene expression 
data. Comput. Struct. Biotechnol. J. 20, 3372–3386. 
https://doi.org/10.1016/j.csbj.2022.06.037 

Yu, F.W., Ho, W.T., Wong, C.F.J., 2024. Predicting and decarbonizing 
carbon emissions from building energy use in Hong Kong: A 
LASSO regression approach. Energy Sustain. Dev. 78, 101374. 
https://doi.org/10.1016/J.ESD.2023.101374 

Zhao, R., Xu, L., Su, X., Feng, S., Li, C., Tan, Q., Wang, Z., 2020. A 
Numerical and Experimental Study of Marine Hydrogen–Natural 
Gas–Diesel Tri–Fuel Engines. Polish Marit. Res. 27, 80–90. 
https://doi.org/10.2478/pomr-2020-0068 

  

  

 
 

 © 2024. The Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons 
Attribution-ShareAlike 4.0 (CC BY-SA) International License (http://creativecommons.org/licenses/by-sa/4.0/) 

https://doi.org/10.1109/TIA.2012.2190816
https://doi.org/10.1007/s40868-020-00081-5
https://doi.org/10.1007/s40868-020-00081-5
https://doi.org/10.1007/s10479-022-04575-w
https://doi.org/10.1177/1687814019872674
https://doi.org/10.1061/(ASCE)EY.1943-7897.0000173
https://doi.org/10.3390/SU13169373
https://doi.org/10.1016/J.PSEP.2024.04.014
https://doi.org/10.1016/j.enconman.2017.09.035
https://doi.org/10.1016/j.aej.2022.01.072
https://doi.org/10.1016/j.csite.2022.101817
https://doi.org/10.1016/j.csbj.2022.06.037
https://doi.org/10.1016/J.ESD.2023.101374
https://doi.org/10.2478/pomr-2020-0068
http://creativecommons.org/licenses/by-sa/4.0/

