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Abstract A nation's financing system is pivotal in fulfilling the demands of sustainable development. Domestic funding sources and international 
financial flows make substantial contributions to both economic growth and environmental quality, with their influence being of paramount 
significance. The objective of this study is to analyze the complex linkage between financial development, renewable energy consumption, 
technological innovation, on ecological footprint in top remittance-receiving economies, namely Indonesia, Bangladesh, Vietnam, Pakistan, Egypt, 
Mexico, Philippines, China, and India, over the period 1990-2022. Using Panel Quantile Autoregressive Distributed Lag (PQARDL) method, our 
findings challenge the universal applicability of the Environmental Kuznets Curve (EKC) hypothesis and reveal complex interactions among variables. 
The long-term empirical results reveal inconsistent relationships between environmental degradation across different quantiles, challenging the 
universal applicability of the Environmental Kuznets Curve (EKC) hypothesis. Therefore, financial development reveals a mixed impact on ecological 
footprint across different quantiles, renewable energy consumption advertises a consistently negative association, suggesting its potential as a 
sustainable development lever. Moreover, technological innovation's influence varies across quantiles, indicating heterogeneous effects on ecological 
footprint reduction. Therefore, the validity of an inverted U-shaped or N-shaped Environmental Kuznets Curve pointed complexity of income's impact 
on environmental outcomes. The validity of the N-shaped EKC in all quantiles, acclaiming that policymakers should incorporating renewable energy 
and technology innovation into respect when formulating environmental calends. 
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1. Introduction 

Sustainable development goals have recently gained 
importance in maintaining socioeconomic and environmental 
well-being. Environmental sustainability has particularly 
attracted the attention of scholars and policymakers due to the 
degradation of most climatic indicators during the last century. 
A vast amount of literature has concentrated on the role of fossil 
fuel energy sources as the main factor of increasing greenhouse 
gas emissions and environmental degradation. Therefore, 
developing and developed countries have faced challenges in 
balancing their economic needs and their assistance in 
mitigating climate change. Furthermore, the global economy, 
including the top remittance receiving economies, are projected 
to concentrate more on fossil fuels which could threaten 
environmental quality. To subjugate nature to their will, humans 
have developed a wide variety of methods and instruments. 
Economic growth at the country level reveals significant 
requirements and prerequisites. Production activities need 
increasing demand for fossil fuel and enlarging polluting energy 
combustion. Meanwhile, these activities have generated global 
warming and enhanced hydrocarbon degradation, driven 
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specifically by high energy intensity. Some studies pointed out 
that the speed of global temperature has been getting higher and 
even doubled since the pre-industrial era. 

Global warming has garnered widespread attention due to 
the escalating ecological footprints, which have precipitated 
considerable adverse effects on human welfare. There is a 
growing focus on the nexus between sustainable development 
and environmental degradation. Additionally, the Paris 
Agreement has emerged as a pivotal framework, offering 
invaluable suggestions and insights aimed at formulating 
strategies to curtail carbon dioxide emissions. Furthermore, 
rapid economic development is frequently cited as the primary 
catalyst for greenhouse gas emissions. Moutinho et al. (2018) 
highlighted that GDP per capita serves as a key determinant of 
carbon emissions. Moreover, energy intensity is recognized as 
a significant factor influencing carbon dioxide emissions. 
Consequently, it is imperative for major economic powers to 
reduce their reliance on environmentally damaging energy 
sources. Moreover, there is an urgent need to foster the 
development of alternative energy sources such as geothermal, 
wind, nuclear, and solar power, to bridge the gap between 
energy intensity and energy efficiency (Kirikkaleli et al., 2023). 
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In many countries, the ecological footprint appears to be 
influenced by various factors, including real GDP, renewable 
energy consumption, remittance inflows, financial 
development, and nanotechnological innovation. As previously 
mentioned, the complex interplay between remittance inflow 
and technological innovation has emerged as a critical 
determinant in shaping the ecological footprint of countries, 
especially those that are top recipients of remittances. 

Therefore, the ecological footprint in global hectares 
(EFConsTotGHA) is composed of six domains: Built-up land, 
Carbon, cropland, Fishing Grounds, Forest Products, and 
Grazing Land. However, in recent literature reviews, most 
researchers have solely used carbon dioxide emissions as an 
essential indicator of environmental degradation, neglecting 
other resources such as Built-up land, cropland, Fishing 
Grounds, Forest Products, and Grazing Land (Yang and Ali, 
2021; Zhang and Jahanger, 2022; Aydin and Sahpaz, 2023). 
Moreover, the ecological footprint is widely regarded as an 
indicator of environmental degradation (Ulucak and Bilgili, 
2018; Solarin and Bello, 2018; Destek, 2021; Işık et al., 2021). 

However, our research has identified the potential 
interaction between renewable energy, economic growth, 
financial development, and technological innovations on the 
ecological footprint, particularly in the context of top 
remittance-receiving economies such as Indonesia, Bangladesh, 
Vietnam, Pakistan, Egypt, Arab Republic, Mexico, Philippines, 
China, and India. Technological innovation stands out as a 
primary pathway to environmental mitigation and the 
enhancement of real GDP (Chien et al., 2021; Awosusi et al., 
2022; Yuan et al., 2023). Therefore, remittance inflows represent 
another significant source of environmental degradation 
worldwide, particularly in the top remittance-receiving 
economies, while also serving as a catalyst for financial 
development and patent applications (Yang and Ali, 2021; 
Mazhar and Hussain, 2022). The ecological footprint is typically 
expressed in global hectares (gha), a standardized unit that 
accounts for the relative bio productivity of land and sea areas 
(Borucke et al., 2013). This standardization enables meaningful 
comparisons across different regions and time periods. The 
concept is significant as it provides a tangible measure of human 
demand against nature's supply, or biocapacity. When a 
population's ecological footprint exceeds its region's 
biocapacity, it incurs an ecological deficit. This deficit can only 
be temporarily sustained by depleting ecological resources, 
importing biocapacity from other regions, or emitting wastes 
into global commons such as the atmosphere (Lin et al., 2018). 
The ecological footprint has been widely applied in 
sustainability assessments, policymaking, and education, 
offering a more comprehensive view of environmental impact 
than single-issue indicators like carbon emissions. However, it 
has limitations, including challenges in accurately accounting 
for technological changes and variations in land productivity 
(van den Bergh & Grazi, 2014). Recent research has focused on 
refining the methodology, improving data quality, and 
expanding the application of ecological footprint analysis. For 
example, Galli et al. (2020) explored the use of ecological 
footprint in assessing progress towards the UN Sustainable 
Development Goals. 

This paper aims to investigate the impact of financial 
development, renewable energy, and technological innovation 
on ecological footprint in ten top remittance-receiving 
economies from 1990 to 2022. It contributed to the 
environmental literature in three ways: First, it provides 
valuable insights into the complex relationships between 
economic growth, financial development, renewable energy, 

technological innovation, and ecological sustainability.  Second, 
it employs the Panel Quantile Autoregressive Distributed Lag 
(PQARDL) model, which can capture heterogeneous effects 
across different quantiles of the ecological footprint distribution. 
This approach provides a more detailed view of the short- and 
long-term impacts of variables such as financial development, 
renewable energy, and technological innovation. Third, the 
study adds empirical evidence to the Environmental Kuznets 
Curve (EKC) literature, by identifying an N-shaped relationship 
between income growth and environmental degradation in 
some quantiles, emphasizing the complex dynamics at play in 
environmental outcomes related to economic factors. 
Moreover, the research highlights the positive impact of 
renewable energy on ecological sustainability and underscores 
the necessity for balanced financial development aligned with 
environmental goals. 

This study employs the Panel Quantile Autoregressive 
Distributed Lag (PQARDL) approach to investigate the complex 
interplay between remittance inflows, technological innovation, 
renewable energy adoption, and financial development on 
ecological footprints in top remittance-receiving economies. 
Unlike previous studies that often focus solely on linear 
relationships or single aspects of environmental degradation, 
our research offers a comprehensive analysis by incorporating 
multiple dimensions of ecological impact, including six distinct 
indicators. Furthermore, the use of quantile regression allows us 
to capture heterogeneous effects across different levels of 
ecological footprints, providing unique insights into how 
economic growth and related factors influence environmental 
outcomes in varying contexts. This methodological 
advancement positions our study as a significant contribution to 
the existing literature, addressing critical gaps in understanding 
the nuanced relationships between economic dynamics and 
environmental sustainability. Importantly, the ecological 
footprint inherently includes the impact of air pollution, as both 
are closely linked through shared sources such as energy 
consumption and industrial activities. Progiou et al. (2023) 
highlight those policies aimed at reducing global warming, 
including the promotion of renewable energy and energy 
efficiency, can significantly lower air pollutants like particulate 
matter (PM), nitrogen oxides (NOx), and sulfur dioxide (SO2). 
These reductions contribute directly to decreasing the 
ecological footprint by mitigating the environmental and health 
impacts of air pollution. Recent studies have highlighted the 
importance of comprehensive approaches to reducing 
greenhouse gas emissions and their impact on the ecological 
footprint. Martín-Ortega et al. (2024) introduced the MITICA 
framework, which enhances transparency in climate efforts by 
providing an integrated approach to GHG mitigation. This 
framework not only aids in reducing emissions but also 
contributes to a more accurate assessment of ecological 
footprints. Furthermore, the intersection of these mitigation 
strategies with adaptation efforts, particularly through National 
Adaptation Plans (NAPs), plays a crucial role in addressing both 
climate resilience and environmental sustainability. These 
integrated approaches offer potential synergies in reducing 
ecological footprints while enhancing climate resilience. 

In addition, the COVID-19 pandemic has provided a 
unique opportunity to observe rapid changes in human activity 
and their immediate effects on environmental pressures. 
Papadogiannaki et al. (2023) evaluated the impact of COVID-19 
on the carbon footprint of two research projects, finding that 
pandemic-related restrictions and adaptations led to significant 
reductions in emissions. Their study revealed that measures 
such as teleworking, virtual participation in events, and 
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digitization of bureaucratic processes could reduce emissions 
by at least 20% compared to pre-pandemic baselines. These 
findings highlight the potential for policy-driven behavioral 
changes to substantially impact ecological footprints, even in 
the short term. 

The remainder of the study is organized as follows: the 
second section focuses on the literature review, introducing the 
main factors that may significantly influence the ecological 
footprint, such as remittance inflows, financial development, 
and technological innovations. The third section deals with the 
empirical investigation, employing the Panel quantile ARDL 
method. Finally, the fourth section discusses the results, 
interpretations, conclusions, and policy implications. 

2. Literature review 

2.1. Remittance inflows and ecological footprint 

Remittances, defined as the transfer of money by foreign 
workers to their home countries, have garnered increasing 
interest in the context of environmental sustainability, 
particularly concerning their impact on ecological footprints. 
Several studies have investigated the nexus between remittance 
inflows and ecological footprint. De and Ratha (2012) provided 
early insights into this relationship, highlighting the potential 
influence of remittances on household income, asset 
accumulation, and human capital in mitigating environmental 
degradation. Usman and Hammar (2020) examined the 
dynamic relationship between technological innovations, 
financial development, renewable energy, and ecological 
footprint, shedding light on the role of remittance inflows as a 
significant factor shaping environmental outcomes. Similarly, 
Usman and Jahanger (2021) explored the influence of 
remittance inflows on environmental deficit, emphasizing the 
importance of considering institutional quality alongside the 
Environmental Kuznets Curve hypothesis. 

In addition. Yang et al. (2021b) conducted a 
comprehensive analysis of remittance inflows and their impact 
on the ecological footprint in BICS countries, considering the 
mediating effects of technological innovation and financial 
development. Their findings underscored the significance of 
these factors in shaping environmental sustainability 
trajectories. Further contributing to the discourse, Yang et al. 
(2020) and Yang et al. (2021a) investigated the dynamic linkage 
between globalization, financial development, energy 
utilization, and environmental sustainability, highlighting the 
role of remittance inflows as a crucial determinant of ecological 
footprint outcomes, particularly in GCC countries. 

Moreover, studies such as Jiang et al. (2021), Ahmad et al. 
(2019), Neog and Yadava (2020), Khan et al. (2020), 
Villanthenkodath and Mahalik (2020), Qingquan et al. (2020), 
and Brown et al. (2020) have contributed valuable reflections 
into various aspects of the relationship between remittance 
inflows and ecological footprint, further enriching our 
understanding of this complex phenomenon. In addition, 
research by Opoku et al. (2021) and Sharma et al. (2019) has 
expected the importance of disaggregating emissions and 
considering the role of economic complexity in analyzing the 
environmental implications of remittance inflows. 

Yang, Jahanger, and Ali (2021) examined the influence of 
remittance inflows on the ecological footprint in BICS countries, 
investigating the mediating effects of technological innovation 
and financial development. Their study shed light on the 
intricate dynamics shaping environmental outcomes in regions 
with significant remittance inflows. 

Therefore, Zhang, Yang, and Jahanger (2022) explored 
the role of remittance inflow alongside renewable and non-
renewable energy consumption in the environment, focusing on 
top remittance-receiving countries. The empirical analysis, 
incorporating ecological footprint indicators, provided valuable 
reflexes into the environmental implications of remittance 
inflows on a global scale. 

In addition, Yadou, Ntang, and Baida (2024) investigated 
the nexus between remittances and ecological footprint in 
Africa, examining the moderating effects of ICTs. Their study 
inspected the role of technological innovations in influencing 
the relationship between remittance inflows and environmental 
sustainability in the African context. 

Dash, Gupta, and Singh (2024) provided asymmetric 
evidence from South Asia regarding the impact of remittances 
on environmental quality. Their findings underscored the need 
for micro analysis considering regional disparities in 
environmental outcomes associated with remittance inflows. 
Dilanchiev, Sharif, Ayad, and Nuta (2024) conducted a panel 
data analysis focusing on the interaction between remittances, 
FDI, renewable energy, and environmental quality in top 
remittance-receiving countries. Their study contributed to 
make up the complex linkage between economic factors and 
environmental sustainability in the context of remittance-
receiving economies. 

Recent studies have examined the nexus relationships 
between economic growth, environmental degradation, and 
policy responses in various contexts. For instance, 
Koutroumanidis et al. (2009) utilized ARIMA models and 
artificial neural networks to predict fuelwood prices in Greece, 
providing insights into energy consumption patterns that can 
influence ecological footprints. Similarly, Tampakis et al. (2017) 
explored citizens' views on electricity use and renewable energy 
production on a Greek island, highlighting the public's 
perception of energy savings and the potential for renewable 
sources to mitigate environmental impacts. Furthermore, 
Zafeiriou et al. (2022) conducted a comprehensive analysis of 
energy and mineral resource exploitation in Greek peripheries 
during the delignitization era, emphasizing the need for 
sustainable practices in energy management to align with 
ecological conservation efforts. Together, these studies 
underscore the importance of integrating economic growth 
strategies with environmental sustainability initiatives to 
effectively address the challenges posed by climate change and 
resource depletion. 

2.2. Technological innovations and ecological footprint 

Technological innovations play a crucial role in shaping 
ecological footprints, with their impact extending across various 
sectors and regions, especially in the top remittance receiving 
economies. Many studies have delved into the nexus between 
technological innovations and ecological footprint, for example 
on the multifaceted dynamics involved. Saqib, Ozturk, and 
Usman (2023) investigated the implications of technological 
innovations, financial developmen, and renewable energy in 
reducing ecological footprints levels in emerging economies, 
spotlight the potential for technological innovations to drive 
sustainability efforts. 

Javed et al. (2023) assumed the impact of green 
technology innovation, environmental taxes, and renewable 
energy consumption on ecological footprint in Italy. Their study 
affirmed the importance of policy interventions and 
technological advancements in achieving environmental 
sustainability goals. Similarly, Dai et al. (2023) tested the 
relationship between sustainable green electricity, technological 
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innovation, and ecological footprint, emphasizing the 
moderating role of democratic accountability in shaping this 
nexus. Their findings accentuated the need for governance 
structures conducive to fostering green technology adoption. 

Hassan (2023) focused on modeling the linkage between 
coal mining and ecological footprint in South Africa, examining 
the role of technological innovation in mitigating environmental 
impacts associated with resource extraction activities. The 
study draw attention to the importance of sustainable mining 
practices driven by technological advancements. 

Dam, Kaya, and Bekun (2024) investigated how 
technological innovation affects the ecological footprint in E-7 
countries in the context of the Sustainable Development Goals 
(SDGs). Their findings examined the potential for technological 
innovations to contribute to achieving sustainable development 
targets. 

Qing et al. (2024) examined the role of technological 
innovations, renewable energy, and natural resources in 
shaping ecological footprint in the South Asian region during 
globalization. Their study call attention to the need for 
integrated approaches that leverage technological innovations 
to promote environmental sustainability. 

Alqaralleh (2024) explored the factors influencing the 
ecological footprint using an asymmetric quantile regression 
approach. The study provided insights into the differential 
impacts of various factors across different segments of the 
population, calling attention to the importance of considering 
heterogeneity in addressing environmental challenges. 
 
2.3. Renewable energy, and ecological footprint 

Renewable energy has emerged as a pivotal component in 
addressing environmental concerns, particularly in mitigating 
ecological footprints associated with energy production and 
consumption. Several studies have delved into the nexus 
between renewable energy utilization and ecological footprint. 
Shahnazi and Shabani (2021) investigated the effects of 
renewable energy sources on ecological footprints, shedding 
light on the potential for sustainable energy practices to alleviate 
environmental burdens. Similarly, Azam et al. (2021) provided 
insights into the role of renewable energy in curbing ecological 
footprints, calling attention to the importance of transitioning 
towards cleaner energy alternatives. 

Usman et al. (2020c) examined the impact of renewable 
energy utilization on ecological footprint reduction, drawing 
attention to the need for innovative energy policies to promote 
sustainability. Furthermore, Anwar et al. (2021) explored the 
relationship between renewable energy deployment and 
ecological footprint mitigation, underscoring the significance of 
renewable energy investments in achieving environmental 
sustainability goals. 

Khan et al. (2021) contributed to the discourse by 
analyzing the linkage between renewable energy adoption and 
ecological footprint reduction, providing empirical evidence 
supporting the role of renewable energy in mitigating 
environmental impacts. Additionally, Usman and Hammar 
(2020) investigated the dynamic relationship between 
renewable energy development and ecological footprint 
outcomes, drawing attention to the potential for renewable 
energy investments to drive sustainable development. 

Li and Wang (2023) conducted a comprehensive study 
examining the impact of renewable energy on per capita carbon 
emissions and ecological footprint reduction across 130 
countries. Their findings suggested that renewable energy 
adoption plays a crucial role in reducing environmental 
burdens, contributing to a more sustainable future. 

Saqib, Duran, and Ozturk (2023) unraveled the 
interrelationship between digitalization, renewable energy, and 
ecological footprints within the Environmental Kuznets Curve 
framework, making point in the synergistic effects of these 
factors on environmental sustainability. 

Moreover, Wang, Ge, and Li (2023) investigated the role 
of improving economic efficiency in reducing ecological 
footprints, with a focus on financial development, renewable 
energy, and industrialization. Their study accentuated the 
importance of holistic approaches in promoting sustainable 
development. 

Further contributing to the discourse, Saqib et al. (2024) 
explored the synergistic impacts of environmental innovations, 
financial development, green growth, and ecological footprint 
reduction through the lens of Sustainable Development Goals 
(SDGs) policies, providing precious items for countries aiming 
to reduce their ecological footprints. In addition, Roy (2024) 
examined the impact of foreign direct investment, renewable 
and non-renewable energy consumption, and natural resources 
on ecological footprint from an Indian perspective, shedding 
light on the complex interplay between economic activities and 
environmental sustainability. 
 

2.4. Research gap 

In the context of the recent research gap, the complex 
interaction between renewable energy, technological 
innovation, financial development, and their combined impact 
on the ecological footprint remains inadequately explored. 
While studies have investigated the individual effects of these 
factors on environmental outcomes, there is a lack of 
comprehensive research that integrates these variables to 
provide a holistic understanding of their collective influence. 

Specifically, while Adebayo et al. (2023) examine the role 
of inward remittances in mitigating carbon emissions and 
Dilanchiev et al. (2024) analyses the interaction between 
remittances, FDI, renewable energy, and environmental quality, 
there is a gap in research that considers the joint impact of 
renewable energy, technological innovation, and financial 
development on the ecological footprint. 

Understanding this complex interaction is crucial for 
devising effective policy interventions and strategies aimed at 
promoting sustainable development and mitigating 
environmental degradation. Moreover, such research can 
provide insights into how countries can leverage renewable 
energy and technological advancements to achieve 
environmentally sustainable economic growth while fostering 
financial development. Therefore, further empirical studies are 
needed to elucidate the mechanisms underlying this complex 
nexus and its implications for environmental policymaking and 
sustainable development initiatives. 

 
3. Methodological framework and data 

3.1. Methodology  

This study employed panel data for the top remittance-
receiving countries, namely Indonesia, Bangladesh, Vietnam, 
Pakistan, Egypt, Mexico, Philippines, China, and India, which 
were available for analysis spanning from 1990 to 2022. Panel 
quantile regression, introduced by Koenker and Bassett in 1978, 
served as a tool for comprehending and analyzing the 
relationship between two variables, utilizing the concept of 
regression quantiles. The authors elucidate that while traditional 
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regression analysis focuses on modelling the conditional mean 
of the dependent variable given a set of predictors, regression 
quantiles enable the modelling of the conditional distribution of 
the dependent variable, offering a comprehensive insight into 
the relationship between the variables. In their research, Bera et 
al. (2016) employed a combination of asymmetric Laplace 
probability density (ALPD), maximum likelihood, maximum 
entropy, and quantile regression to estimate slope parameters 
based on the mean and median.  

Bildirici (2022) proposed a novel econometric method 
called "PQARDL," which combines panel dynamic relationships 
with quantile regression to analyze the impact of refugees and 
governance on the sustainable environment in 21 Middle 
Eastern and North African countries. The study finds that 
refugees have a negative effect on the environment, but good 
governance can alleviate this impact. The PQARDL method 
shows that policies promoting good governance could be 
effective in reducing the environmental impact of refugee 
populations.  

In addition, Cho et al. 2015 proposed an extension of the 
dynamic lagged model theory developed by Pesaran and Shin 
(1998) by incorporating the concept of quantile cointegration 
regression. The resulting Dynamic Quantile Autoregressive 
Distributed Lag QARDL model allows for the estimation of 
quantile-specific coefficients, which capture the differential 
impacts of the independent variables at different points of the 
distribution of the dependent variable. This extension of the 
Pesaran and Shin (1998) model is particularly useful in analyzing 
time series data with non-linear and heterogeneous properties. 
The PQARDL model provides a more comprehensive 
understanding of the relationships between variables by 
considering both short-term and long-term effects and 
accounting for non-stationarity and structural breaks in the data. 

Based on the research conducted by Cho et al. (2015), a 
Panel Quantile Autoregressive Distributed Lag (PQARDL) 
model was employed, which combines the Autoregressive 
Distributed Lag (ARDL) model proposed by Pesaran and Shin 
(1995) with the quantile regression approach introduced by 
Koenker and Bassett (1978) across various quantiles of the 
cross-sectional conditional distributions. Moreover, the ARDL 
model enables the computation of both short-term and long-
term relationships between variables, whereas the quantile 
regression approach estimates quantile-specific coefficients, 
capturing the varying impacts of the independent variables 
across different points of the distribution of the dependent 
variable. 

Indeed, other panel quantile regression methods have 
integrated the individual effects of both tracking and ladder of a 
dependent variable (Koenker, 2004; Canay, 2011). These 
methods allow for the examination of contingent heterogeneous 
covariance effects of the determinants of environmental 
degradation through independent variables with a conditional 
distribution on a K-vector. The estimation process involves non-
linear conditional panel quantile regression as follows: 

𝑄x= ⦋ ŋ(Yit,Xit, ß0,ζ )|K
it

⦌ = 0       (1) 

In the panel quantile method as proposed by Koenker 
(2004) and Canay (2011), denoted by Qx, the conditional model 
is defined where Yit represents the endogenous variables, while 
Kit represents the conditional K-vector containing the 
independent variables Xit. The residual function is denoted by 
β0, ζ, where 0≤ζ<1 represents the quantile index. The 
conditional nonlinear modulation in the model can be 
represented by the estimator: 

𝐸 ⦋ 𝜁{ŋ(Yit,Xit, ß0, ζ )≤0}-ζ|K
it

⦌ = 0     (2) 

Where 𝜁{ŋ(Yit,Xit, ß0, ζ )≤0}  is the "indicator function". In 

addition, the indicator function 𝜁{ŋ(Yit,Xit, ß0, ζ )≤0} and serves 

as an indicator to determine whether the expression 

ŋ(Yit,Xit, ß0, ζ ) is less than or equal to zero. 

To estimate the residual function ß0, ζ , the unconditional 

moment method involves to analyzing the moments of the data 
without conditioning on specific values of the variables. By 
considering the unconditional moments, the estimation of the 
residual function in the panel quantile model is: 

𝐸 {Kit
⦋ 𝜁{ŋ(Yit,Xit, ß0,ζ )≤0}-ζ⦌} = 0      (3) 

In this research, the Panel Quantile Autoregressive Distributed 
Lags PQARDL method used by Cho et al. (2015). The analysis 
of the impact of macroeconomic variables on ecological 
footprint employed the Panel Dynamic Quantile Autoregressive 
Distributed Lag QARDL model within an Error Correction 
Model (ECM) framework. This approach allows for the 
examination of the long-run equilibrium relationship across 
quantiles of the dependent variable and independent variables 
while accounting for potential short-term dynamics. 

The extended PQARDL model with ECM can be 
represented as follows: 

Table 1  
Descriptive statistics of variables 

 EFP FD GDP REM REN TI FD*REN REM*FD REM*TI 

Mean 19.32817 3.585935 7.567538 4.082563 3.327598 8.231695 11.85385 14.31160 30.50115 

Median 18.91304 3.488409 7.503851 3.365438 3.543275 8.105609 12.58249 11.43281 27.01038 

Maximum 22.43542 5.061405 9.204903 14.58334 4.331807 14.24859 16.80407 45.25590 102.2334 

Minimum 17.64210 2.555499 6.238513 0.033429 1.629241 4.127134 5.361216 0.155639 0.359908 

Std. Dev. 1.216784 0.594063 0.797237 3.270697 0.732575 1.923511 2.868252 11.74918 23.87053 

Skewness 0.980215 0.764857 0.476384 0.761302 -0.820122 0.726025 -0.665989 0.725289 0.874052 

Kurtosis 2.998707 2.866193 2.484907 2.834639 2.381706 3.894205 2.599907 2.457460 3.202365 

Jarque-Bera 41.79577 25.64248 12.75731 25.50916 33.41549 31.62505 21.03486 26.08394 33.67787 

Probability 0.000000 0.000003 0.001697 0.000003 0.000000 0.000000 0.000027 0.000002 0.000000 

Sum 5044.652 935.9290 1975.127 1065.549 868.5031 2148.472 3093.856 3735.327 7960.801 

Sum Sq. Dev. 384.9468 91.75689 165.2526 2781.340 139.5332 961.9729 2138.986 35891.24 148148.5 

Observations 330 330 330 330 330 330 330 330 330 

Source: Author calculus from World Development Indicators WDI,2023 database and the World Intellectual Property Organization WIPO:www.wipo.int/pct 

http://www.wipo.int/pct


S. Toumi  Int. J. Renew. Energy Dev 2025, 14(1), 180-199 

| 185 

 

ISSN: 2252-4940/© 2025. The Author(s). Published by CBIORE 

 

𝑌𝑖𝑡
𝑞

=  𝛼𝑞 + 𝛽𝜏𝑌𝑖,𝑡−1 + ∑ 𝛽𝑖
𝑞

𝑌𝑖,𝑡−i
𝑝
𝑖=1 + ∑ 𝛾𝑗

𝑞
𝑋𝑗,𝑡−j

𝑞
𝑖=1 +

∑ 𝛿𝑘
𝑞

𝑍k,𝑡−k
𝑟
𝑘=1 + 𝜀𝑖𝑡

𝑞
              (4) 

 

Where 𝑌𝑖𝑡
𝑞

 represents the dependent variable ecological 

footprint for quantile q in all used models. 𝑋𝑗,𝑡−j represents the 

independent variables GDP, GDP2, GDP3, REM, REN and TI, in 
the first model, GDP, GDP2, GDP3, FD*REN, REM, and TI, in 
the second model, GDP, GDP2, GDP3, FD*REN, REM, and TI, 
in the third model, GDP, GDP2, GDP3, REM*FD, REN, and TI, 
in the fourth model, GDP, GDP2, GDP3, REM*TI, REN, and FD, 
in the fourth model for quantile q, .𝑍k,𝑡−k can include any other 

control variables for quantile q, p, q, and r are the respective lag 
orders for the variables, 𝛼𝑞 is the intercept specific to quantile 

q., 𝛽𝑖
𝑞
, 𝛾𝑗

𝑞
, and 𝛿𝑘

𝑞
 are coefficients to be estimated for quantile 

q., 𝜀𝑖𝑡
𝑞

 is the error term specific to quantile q. 

Additionally, the model incorporates an Error Correction 
Model ECM to account for short-term dynamics and deviations 
from the long-run equilibrium. The ECM component can be 
added as: 

Δ𝑌𝑖𝑡
𝑞

=  𝜇𝑞𝑌𝑖𝑡−1
𝑞

− 𝛽0
𝑞

− ∑ 𝛽𝑖
𝑞

𝑌𝑖,𝑡−i
𝑝
𝑖=1 − ∑ 𝛾𝑗

𝑞
𝑋𝑗,𝑡−j

𝑞
𝑖=1 +

∑ 𝛿𝑘
𝑞

𝑍k,𝑡−k
𝑟
𝑘=1 + 𝜂𝑖𝑡                                                                                                    

𝑞
(5) 

Where Δ𝑌𝑖𝑡
𝑞

 represents the first difference of the dependent 

variable ecological footprint for quantile q., 𝜇𝑞 is the speed of 

adjustment for quantile q indicating how quickly the dependent 
variable adjusts to deviations from the long-run equilibrium., 

𝑌𝑖𝑡−1
𝑞

 is the lagged value of the dependent variable for quantile 

q, 𝛽0
𝑞
 represents the intercept specific to quantile q in the long-

run equilibrium equation., 𝛽𝑖
𝑞
, 𝛾𝑗

𝑞
, and 𝛿𝑘

𝑞
are coefficients to be 

estimated for quantile q in the main model in the long-run 
equilibrium equation, p, q, and r are the respective lag orders for 

the variables in the main model, 𝜂𝑖𝑡
𝑞

 represents the error term 

specific to quantile q in the ECM component. 
The ECM component helps capture the short-term 

dynamics and adjustments in the dependent variable following 
deviations from the long-run equilibrium relationship. It 
measures the speed at which the ecological footprint corrects 
any imbalances in the relationship with the independent 
variables and control variables, offering insights into the short-
term dynamics of the system. 

The concepts of the validity of EKC can be explain by the 
sign of GDP, GDP2, GDP3 are served Allard et al. (2018); Lorente 
& Álvarez-Herranz (2016). An N-shaped pattern involves a low 
initial value, followed by a rapid increase, and then a decline. In 
the context of ecological footprint, this might represent a 
scenario where environmental impact starts low, increases 
significantly due to unsustainable resource consumption, and 
then decreases as conservation efforts are implemented. A U-
shaped pattern signifies an initial high value, followed by a 
decrease, and then a subsequent increase. For the ecological 
footprint, this might represent a situation where resource 
consumption and environmental impact initially increase with 
economic development, decrease through conservation, and 
then increase again due to other factors. 

An inverted N-shaped pattern starts with a high value, 
followed by a decline, and then an increase. In the ecological 
footprint context, this could imply an initial high environmental 
impact, a reduction due to sustainability efforts, and then a 
subsequent increase linked to various factors like population 
growth or resource-intensive industries. 

3.2. Data 

This research establishes a connection between various factors, 
including ecological footprint, remittance inflow, renewable 
energy, technological innovation, real GDP, and financial 
development, using the Dynamic Panel Quantile Autoregressive 
Distributed Lag (PQARDL) model. The study specifically 
focuses on the top remittance-receiving economies, namely 
Indonesia, Bangladesh, Vietnam, Pakistan, Egypt, Mexico, 
Philippines, China, and India (see Figure 1). 

The PQARDL regression analysis investigates the 
relationship between environmental degradation and various 
factors, including remittance inflow, gross domestic product 
(GDP), financial development, technological innovation, and 
renewable energy consumption in the top remittance-receiving 
economies. The analysis spans the period from 1990 to 2022. 
Real GDP per capita constant 2015 US$ represents the GDP 
variables, while the ecological footprint (EFP) comprises six 
domains: built-up land, carbon, cropland, fishing grounds, forest 
products, and grazing land. Remittance inflow is measured as 

 

Fig 1. Top remittance-receiving economies (Zhang, et al. (2022)) 

 

 

 

 

https://link.springer.com/article/10.1007/s11356-023-26256-2#ref-CR2
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personal remittances received % of GDP, financial development 
(FD) is indicated by domestic credit to the private sector by 
banks % of GDP, technological innovation (TI) includes both 
resident and non-resident patent applications, and renewable 
energy consumption (REN) is expressed as the percentage share 
of renewable energy in total final energy consumption. The 
intricate relationship between financial development, renewable 
energy, remittance inflows, and technological innovation is 
denoted by (FD*REN), (REM*FD), and (REM*TI). All variables 
used in the analysis were sourced from the World Bank 
database (WDI 2023), except for the ecological footprint (EFP), 
which was obtained from the World Intellectual Property 
Organization (WIPO). Additionally, a logarithmic 
transformation has been applied to all the data. Refer to Table 1 
for details. 

The provided data illustrates the trajectory of the 
Ecological Footprint (EFP) in some of the top remittance-
receiving economies over a specific period. Let's take Indonesia 
as an example. The EFP in Indonesia has exhibited a gradual 
increase over time, starting at 19.18 in the initial period and 
steadily rising to reach 19.89 in the final period. This indicates 
that Indonesia's overall ecological impact has been increasing 

during this timeframe. A similar pattern is observed in other 
countries, such as Bangladesh, Vietnam, Pakistan, Egypt, 
Nigeria, Mexico, the Philippines, China, and India, although with 
variations in the rate and extent of change. These fluctuations 
in EFP could be influenced by various factors, including 
economic growth, technological advancements, energy 
consumption patterns, and policy measures. Further analysis is 
necessary to discern the underlying drivers and their 
implications for sustainable development in these nations. See 
Figure 2.  

4. Results and discussions 

4.1. Cross-dependency test results 

The utilization of cross-sectional unit root testing relies on 
implementing the Breusch and Pagan (1980) LM test and the 
Pesaran (2004) "Cross Dependence" (CD) test. This test utilizes 
a statistic whose formula is grounded on the correlations 
between the residuals of each model equation. The estimator of 

 

Figure 2 Evolution of EFP 
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the correlation follows an asymptotic standard normal 
distribution. Therefore, the null hypothesis of independence is 
rejected when the absolute value of the CD statistic is 
excessively large. Importantly, this statistic does not necessitate 
any prior assumption of a spatial dependence matrix. 

To evaluate the cross-equation error correlations, Breusch 
and Pagan (1980) proposed a Lagrange multiplier statistic (LM) 
for estimating the model. Thus, it is crucial to examine the 
presence of cross-sectional dependence. See Figure 3. 

Cross-dependence CD (Table 2) occurs when a common 
factor influences the dependent variable across different units, 
thereby violating the assumption of independence among 

observations, which is essential for classical panel data models. 
The table below provides evidence of the existence of 
unobserved common factors that impact the dependent 
variables. 

4.2. Unit root test 

The study of non-stationary time series is crucial in current 
econometric practice, particularly in macroeconomics. 
Empirical analyses often begin by examining the stationarity of 
the time series through the application of various unit root tests. 
In a multivariate context, researchers frequently aim to identify 

Table 2  
Cross-dependency test 

Variables 
Breusch-Pagan LM Pesaran scaled LM 

Bias-corrected scaled 
LM 

Pesaran CD 

Statistic p-Value Statistic p-Value Statistic p-Value Statistic p-Value 

EFP 857.3*** .000 96.7*** .000 96.6*** .000 29.0*** .000 
FD 285.5*** .000 29.4*** .000 29.2*** .000 6.79*** .000 
GDP 965.6*** .000 109.5*** .000 109.4*** .000 31.0*** .000 
REM 250.2*** .000 25.2*** .000 25.0*** .000 9.31*** .000 
REN 811.8*** .000 91.4*** .000 91.2*** .000 28.3*** .000 
TI 542.9*** .000 59.7*** .000 59.5*** .000 22.4*** .000 

*** significant at 1% level of significance 
 

Table 3  
Unit root test 

Test Diff Component EFP FD GDP REM REN TI 
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C: Individual effects, *: t-stattistic, ***: Significant with 1%, **: Significant with 5%, *: Significant with 10% 
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long-term equilibrium relationships between variables by 
conducting cointegration tests. It is worth noting that unit root 
and cointegration tests performed on panel data offer greater 
power compared to their counterparts on individual small-
sample time series (Quocviet et al., 2021). 

The analysis of non-stationary panel data has gained 
prominence only recently, following the pioneering work of 
Levin and Lin (1992). In this regard, we present some unit root 
tests that are commonly used in panel data analysis. The first 
generation of tests assumes inter-individual independence of 
residuals, where any correlations between individuals are 
considered as nuisance parameters. 

First-generation unit root tests provide insights into the 
implications of the inter-individual independence hypothesis. 
Subsequently, we introduce second-generation tests, which are 
more recent and aim to relax the independence assumption. 
These tests treat the correlations between individuals as 
nuisance parameters and propose new test statistics that 
incorporate these interdependencies. The first-generation unit 
root tests, developed based on the assumption of cross-section 

independence, include Levin and Lin (1992, 1993), Levin, Lin, 
and Chu (2002), and Harris and Tzavalis (1999). These tests 
employ the homogeneous specification of the autoregressive 
root under the alternative hypothesis H1. 

Some unit root tests in panel data analysis, such as those 
developed by Im, Pesaran, and Shin (1995, 2003), Maddala and 
Wu (1999), Choi (1999), and Hadri (2000), also adopt the 
homogeneous specification of the autoregressive root. In 

Table 4  
Westerland cointegration test 

Statistics Value Z-Vlue P-Value 

Gt -4.384 -5.571*** 0.000 

Ga -18.143 -7. 89*** 0.000 

Pt -9.586 -5.38*** 0.000 

Pa -14.18 -10.31*** 0.000 

*** represents 1% significance level. 

 

Table 5  
Results of PQARDL analysis model1 

           
Variable        Coef Prob. Coef Prob. Coef Prob. Coef Prob. Coef Prob. 

   Quantile                 0.1  0.2  0.3  0.4                            0.5  

Long run estimate 

FD 0.012584** 0.0721 0.006619 0.2166 0.006885 0.2114 0.005436 0.3951 0.000666 0.9253 

GDP -0.149706** 0.0556 -0.012194 0.7646 -0.005351 0.8993 -0.040829 0.3611 -0.006157 0.8994 

GDP2 0.038550** 0.0548 0.001008 0.9199 0.001013 0.9212 0.010726 0.3277 0.002652 0.8271 

GDP3 -0.002630 0.0432 -2.26E-05 0.9713 -6.96E-05 0.9127 -0.000701 0.3049 -0.000206 0.7879 

REM 0.000822 0.3650 -0.000441 0.4795 0.000285 0.6810 0.000646 0.4773 0.001224 0.2373 

REN -0.000388 0.9573 0.008192* 0.1431 0.002041 0.7306 0.001757 0.7397 0.001222 0.8021 

TI 0.000935 0.6797 -0.001160 0.4860 -0.002433 0.1479 -0.002446 0.1424 -0.001810 0.2958 

Sort run estimate 

 Δ FD 0.006611** 0.5797 0.011613 0.2672 0.022874*** 0.0164 0.025077*** 0.0138 0.02612** 0.0153 

 Δ GDP 30.82038*** 0.0045 9.557164* 0.1117 11.23488** 0.0778 13.39721** 0.0568 6.164198 0.4505 

 ΔGDP2 -4.07436*** 0.0039 -1.224190* 0.1101 -1.423253* 0.0817 -1.712915** 0.0587 -0.794833 0.4525 

 ΔGDP3 0.180387*** 0.0030 0.053742* 0.0945 0.061708* 0.0734 0.074344** 0.0519 0.035988 0.4229 

 Δ REM -0.004428** 0.0169 -0.002681 0.2805 -0.002503 0.5303 -0.001575 0.7233 0.000304 0.9157 

ΔREN -0.31326*** 0.0000 -0.28553*** 0.0000 -0.24942*** 0.0000 -0.24013*** 0.0000 -0.2380*** 0.0000 

ΔTI -0.007904 0.5257 -0.008424 0.3551 0.002163 0.8367 0.001425 0.8709 0.005595 0.5133 

ECM1 -1.01575*** 0.0000 -0.99929*** 0.0000 -0.93173*** 0.0000 -0.91994*** 0.0000 -0.9744*** 0.0000 
Quantile 0.6  0.7  0.8  0.9  0.95  

Long run estimate 

FD 0.000230 0.9745 -0.000385 0.9521 -0.000729 0.8962 -0.004760 0.5259 -0.0238*** 0.0042 

GDP 0.043034 0.4994 0.043275 0.4815 0.114310** 0.0166 0.119323** 0.0319 0.092429* 0.1321 

GDP2 -0.011218 0.4931 -0.011853 0.4573 -0.030439** 0.0195 -0.030855** 0.0402 -0.019738 0.2378 

GDP3 0.000777 0.4592 0.000855 0.4044 0.002096** 0.0170 0.002133** 0.0321 0.001357 0.2251 

REM 0.001186 0.2588 0.001802 0.0578 0.001788** 0.0625 0.002161** 0.0687 0.002300* 0.1406 

REN 0.003993 0.4157 0.005003 0.2796 0.004567 0.3268 2.85E-05 0.9969 -0.003293 0.7790 

TI -0.002502* 0.1499 -0.002306* 0.1901 -0.002568 0.2031 -0.001720 0.5168 -0.001946 0.5254 

Short run estimate 

 Δ FD 0.026203** 0.0169 0.029315*** 0.0057 0.033300*** 0.0003 0.037860*** 0.0000 0.0550*** 0.0000 

 Δ GDP -2.989736 0.7712 -3.679924 0.6954 -12.68750** 0.0678 -13.03694* 0.1097 -10.85559 0.2454 

 ΔGDP2 0.445177 0.7410 0.553440 0.6529 1.775024** 0.0599 1.884179* 0.0853 1.558475 0.2187 

 ΔGDP3 -0.020160 0.7286 -0.025830 0.6276 -0.081256** 0.0578 -0.088847* 0.0702 -0.071937 0.2097 

 Δ REM -0.000562 0.8492 -0.003498* 0.1568 -0.001264 0.8256 -0.002128 0.4897 0.00753** 0.0271 

ΔREN -0.29556*** 0.0000 -0.31818*** 0.0000 -0.38336*** 0.0000 -0.40786*** 0.0000 -0.2572*** 0.0000 

ΔTI 0.003994 0.6202 0.004967 0.5135 0.009489 0.2853 0.001980 0.7809 0.005602 0.6495 

ECM1 -1.00019*** 0.0000 -0.9957-*** 0.0000 -1.0270**** 0.0000 -0.94476*** 0.0000 -1.1460*** 0.0000 
           Source: Author's statistical analysis: ***: Significant with 1%. **: Significant with 5%. *: Significant with 10% 
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addition, Henin, Jolivaldt, and Nguyen (2001) applied the 
sequential test methodology. 

Table 3 indicates that all variables, except for the 
technological innovation (TI) variable, are stationary in first 
differences integrated at the first order, while the TI variable is 
stationary at the level integrated at the zero order. 

4.3. Cointegration test 

The application of cointegration techniques in panel data 
facilitates the examination of long-term relationships among 
integrated variables. One notable advantage of conducting 
cointegration tests on panel data is the enhanced power of the 
test, particularly in empirical studies. Prior to executing 
cointegration tests, it is imperative to ensure that all series are 
integrated of order one (I1). To meet this prerequisite, 
Westerlund (2007) developed four novel panel cointegration 
tests that exhibit sufficient generality to accommodate a high 
degree of heterogeneity. These tests rely on structural dynamics 
rather than residual dynamics and, consequently, do not impose 
any common-factor restrictions. The primary aim is to test the 
null hypothesis of no cointegration by scrutinizing whether the 
error-correction term in a conditional panel error-correction 
model equals zero. Westerlund and Edgerton (2007) conducted 
a series of unit-root tests, revealing compelling evidence that 
both series are nonstationary. The hypothesized relationship 
between the two variables allows for a linear time trend. 

Several researchers, including Westerlund and Edgerton 
(2007), Phillips and Moon (1999), Pedroni (2004), Kao et al. 
(1999), and Johansen and Juselius (1990), have developed 

various cointegration tests to address the challenge of 
determining the long-run relationship between cross-sections. 
The outcomes of the Westerlund cointegration test, as 
presented in Table 4, provide clear evidence that the series EFP, 
GDP, FD, REM, REN, and TI exhibit a long-term cointegration 
relationship. This is substantiated by the rejection of the null 
hypothesis H0 of no cointegration at a significance level of 1%. 

4.4. PQARDL estimation results model1 

The long-term analysis (Table 5, model1) reveals complex 
relationships between key variables and the ecological footprint 
in top remittance-receiving economies. In addition, we have 
approached the three-dimensional graphs that become visible 
in the Quantile regression graph (model1) (see Fig 4. Quantile 
regression graph (model1)). The multivariate panel quantile 
regression analysis graph respects the robustness check under 
PQARDL Methodology. Therefore, the multivariate Quantile 
regression graph results are robust and respect to quantile 
regression (see Fig 4). Financial development shows a positive 
relationship with environmental degradation across all 
quantiles, aligning with Jiang and Ma's (2019) global study on 
financial development and carbon emissions. This suggests that 
higher levels of financial development may lead to increased 
environmental degradation, particularly in lower quantiles. 
However, this contrasts with findings by Shahbaz et al. (2020) in 
the United Arab Emirates, where financial development was 
found to potentially reduce environmental degradation under 
certain conditions. GDP and its square consistently show a 
negative relationship with environmental degradation, 
especially significant at lower quantiles. This supports Wang et 
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Fig 4. Quantile regression graph (model1) 
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al.'s (2024) findings but challenges the traditional Environmental 
Kuznets Curve (EKC) hypothesis. The varying patterns of GDP 
coefficients across quantiles suggest a more complex 
relationship between economic growth and environmental 
degradation than the simple inverted U-shape proposed by the 
EKC, echoing the nuanced findings of Tsepi et al. (2024) in their 
decomposition analysis of CO2 emissions in Greece. Remittance 
inflow's impact on environmental degradation is inconclusive, 
with mixed coefficient signs across quantiles. This ambiguity 
aligns with studies by Aljadani et al. (2023) and Yang et al. 
(2020a, 2021), highlighting the complex nature of remittances' 
environmental impact. The consistent negative relationship 
between renewable energy consumption and environmental 
degradation across all quantiles supports Dilanchiev et al.'s 
(2024) findings and underscores the importance of renewable 
energy in mitigating environmental degradation. Technological 
innovation's impact is inconclusive, with mixed coefficient signs 
across quantiles. This contradicts the findings of Martín-Ortega 
et al. (2024), who proposed an integrated approach to 
greenhouse gas mitigation through technological innovation. 
The contradiction suggests that the environmental impact of 
technology in remittance-receiving economies may depend on 
the specific type and application of technologies, as well as the 
broader economic and policy context. In the short run, financial 
development shows a positive relationship with environmental 
degradation, varying in significance across quantiles. This aligns 

with Rani et al.'s (2023) findings but contrasts with the long-term 
effects observed in some studies, suggesting a potential time-
lag in the environmental benefits of financial development. GDP 
and remittance inflows show mixed short-term effects, echoing 
the complexity observed in long-term relationships and aligning 
with Husnain et al.'s (2023) observations on the multifaceted 
nature of these relationships. Renewable energy consumption 
consistently exhibits a negative relationship with environmental 
degradation in the short run, supporting Rani et al.'s (2023) 
findings and reinforcing the importance of renewable energy in 
both short- and long-term environmental strategies. The 
inconclusive short-term impact of technological innovation, 
varying across quantiles, aligns with Husnain et al.'s (2023) 
findings and underscores the need for targeted, context-specific 
technological policies. 

 
4.5. PQARDL estimation results model2 

The analysis of Table 6 and Model 2 reveals complex 
relationships between financial development, renewable 
energy, and the ecological footprint. The PQARDL analysis 
(model 2) shows varying degrees of significance for GDP 
coefficients across different quantiles, challenging the 
robustness of GDP's impact on environmental degradation. In 
addition, we have approached the three-dimensional graphs 

Table 6  
Results of PQARDL analysis model2 

           
Variable        Coef Prob. Coef Prob. Coef Prob. Coef Prob. Coef Prob. 

Quantile      0.1  0.2   0.3 0.4  0.5  

Long run estimate 

GDP -0.049628 0.4666 0.046743 0.4366 0.021925 0.6684 0.032568 0.5783 0.036860 0.3845 

GDP2 0.016789 0.3419 -0.008983 0.5811 -0.003078 0.8140 -0.006667 0.6651 -0.008394 0.4305 

GDP3 -0.001279 0.2589 0.000427 0.6910 7.73E-05 0.9258 0.000367 0.7149 0.000520 0.4377 

FD*REN -0.002404* 0.0691 -0.000456 0.7317 0.000262 0.8148 0.001009 0.3892 0.001377 0.2699 
REM -0.000659 0.4994 -0.00108* 0.1705 -0.000301 0.7153 -0.000237 0.7774 0.000627 0.4575 

TI -0.002310 0.4177 -0.00291* 0.1645 -0.002541* 0.0810 -0.003287** 0.0478 -0.0035** 0.0110 

Sort run estimate 

 Δ GDP 18.64140* 0.0841 -4.500222 0.7303 -1.341673 0.8798 -0.937346 0.9320 -2.443034 0.7555 

 ΔGDP2 -2.47621*2 0.0788 0.548266 0.7510 0.138143 0.9046 0.110308 0.9391 0.334353 0.7395 

 ΔGDP3 0.11303*3 0.0636 -0.018412 0.8085 -0.001540 0.9751 -0.001616 0.9795 -0.012631 0.7656 

 ΔFD*REN 0.002635 0.3977 0.000291 0.9285 0.001571 0.5361 -0.004885 0.6204 -0.006617 0.4944 

 Δ REM 5.67E-05 0.9816 8.09E-05 0.9774 0.000220 0.9422 -0.000174 0.9577 0.000663 0.8229 
ΔTI -0.002801 0.8499 -0.001830 0.8938 0.004395 0.6209 0.008636 0.3023 0.011391* 0.1483 

ECM2 -0.95188*** 0.0000 -0.9085*** 0.0000 -0.93124*** 0.0000 -0.98159*** 0.0000 -1.0230*** 0.0000 

Quantile 0.6  0.7  0.8  0.9  0.95  

Long run estimate 

GDP 0.023289 0.5559 0.038117 0.4576 0.038206 0.4262 0.123450 0.2413 0.16692** 0.0045 

GDP2 -0.005300 0.5916 -0.009325 0.4852 -0.010717 0.3865 -0.034483 0.2385 -0.0438** 0.0035 

GDP3 0.000348 0.5736 0.000624 0.4729 0.000825 0.2961 0.002490 0.2126 0.0030*** 0.0016 

FD*REN 0.001947* 0.1513 0.001430 0.3132 0.00450** 0.0028 0.004298 0.2104 0.00253* 0.1313 

REM 0.001805** 0.0435 0.00236** 0.0151 0.000869 0.5572 0.002895 0.3834 0.00338* 0.0729 

TI -0.004324* 0.0029 -0.00352** 0.0294 -0.006703** 0.0069 -0.006744 0.1787 -0.00979** 0.0282 

Short run estimate 

 Δ GDP -1.551920 0.8345 -5.645604 0.5532 -15.36524* 0.1437 -21.50251* 0.1459 -14.23537 0.2968 

 ΔGDP2 0.230010 0.8086 0.795142 0.5253 2.101270* 0.1267 3.006214* 0.1372 2.108517 0.2482 

 ΔGDP3 -0.008553 0.8303 -0.034369 0.5277 -0.092945* 0.1216 -0.136871* 0.1374 -0.099840 0.2204 

 ΔFD*REN -0.010608 0.2807 -0.009008 0.3678 -0.004163 0.6872 -0.006947 0.6043 -0.014145 0.2871 

 Δ REM -0.002858 0.2213 -0.001945 0.4564 -0.001101 0.6529 0.002536 0.5900 0.004961* 0.0812 

ΔTI 0.014964* 0.0666 0.01500** 0.0546 0.036448** 0.0037 0.026635* 0.1063 0.0408*** 0.0000 

ECM2 -1.04496*** 0.0000 -1.0213*** 0.0000 -0.96254*** 0.0000 -0.85820*** 0.0000 -0.9078*** 0.0000 
           Source: Author's statistical analysis: ***: Significant with 1%. **: Significant with 5%. *: Significant with 10% 
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that become visible in the Quantile regression graph (model1) 
(see Fig 5. Quantile regression graph (model2)). The 
multivariate panel quantile regression analysis graph respects 
the robustness check under PQARDL Methodology. Therefore, 
the multivariate Quantile regression graph results are robust 
and respect to quantile regression (see Fig 5).  This variability 
aligns with the findings of Tsepi et al. (2024), who observed 
complex patterns in CO2 emissions in Greece, suggesting that 
the relationship between economic growth and environmental 
degradation is more nuanced than traditional models propose. 
The interaction between financial development and renewable 
energy (FD*REN) shows modest significance at the 10th 
quantile in the long run, echoing Raza et al.'s (2023) findings on 
the potential synergies between financial development and 
renewable energy in environmental sustainability. However, the 
lack of short-term significance for this interaction term contrasts 
with studies like Shahbaz et al. (2020), who found more 
immediate impacts in the United Arab Emirates, highlighting the 
potential for regional variations in these relationships. 
Remittance inflows show no significant direct effect on 
environmental degradation in either the long or short term, 
aligning with Jiang and Ma's (2019) global study. However, this 
contrasts with the mixed findings reported by Aljadani et al. 
(2023) and Yang et al. (2020a, 2021) in top remittance-receiving 
economies, suggesting that the environmental impact of 
remittances may be highly context-dependent and require more 
nuanced analysis. The varying significance of technological 
innovation across quantiles supports Jiang and Ma's (2019) 
findings on the complex role of technology in environmental 
quality. This variability challenges the straightforward positive 
impact proposed by Martín-Ortega et al. (2024), suggesting that 

the environmental benefits of technological innovation may 
depend on specific economic and policy contexts. The analysis 
fails to consistently support the N-shaped Environmental 
Kuznets Curve (EKC) hypothesis across quantiles. This aligns 
with recent critiques of the EKC, such as those presented by 
Stern (2017), who argued for more complex models of the 
growth-environment relationship. The inconsistent patterns 
observed in our study contribute to the growing body of 
literature challenging the universality of the EKC hypothesis. In 
the short run, the mixed significance of GDP, technological 
innovation, and the FD*REN interaction term across quantiles 
aligns with Husnain et al.'s (2023) observations on the 
multifaceted nature of short-term environmental impacts. This 
complexity underscores the need for dynamic policy 
approaches that can adapt to varying short-term effects while 
working towards long-term sustainability goals. The consistent 
negative relationship between renewable energy consumption 
and environmental degradation in both long and short terms, as 
observed in our study, supports the findings of Dilanchiev et al. 
(2024) and Rani et al. (2023). This consistency across studies 
strengthens the case for policies promoting renewable energy 
adoption as a key strategy for environmental sustainability. 
 
4.6. PQARDL estimation results model3 

The analysis of Table 7 and Model 3 reveals complex 
relationships between remittance inflows, financial 
development, and the ecological footprint in top remittance-
receiving economies. In addition, we have approached the 
three-dimensional graphs that become visible in the Quantile 
regression graph (model3) (see Fig 6. Quantile regression graph 
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Fig 5. Quantile regression graph (model2) 
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(model3)). The multivariate panel quantile regression analysis 
graph respects the robustness check under PQARDL 
Methodology. Therefore, the multivariate Quantile regression 
graph results are robust and respect to quantile regression (see 
Fig 6). The lack of clear and consistent patterns in the 
coefficients for GDP and its non-linear terms challenges the 
universal applicability of the Environmental Kuznets Curve 
(EKC) hypothesis proposed by Grossman & Krueger (1995). 
This aligns with recent critiques of the EKC, such as those 
presented by Stern (2017), who argued for more complex 
models of the growth-environment relationship. The interaction 
between remittance inflows (REM) and financial development 
(FD) shows a positive and statistically significant coefficient in 
the long run, suggesting potential for reducing ecological 
footprint when these factors are combined. This finding 
supports Yang's (2008) proposition that remittances can be 
strategically invested in environmentally sustainable projects. 
However, it contrasts with the mixed findings reported by 
Aljadani et al. (2023) and Yang et al. (2020a, 2021) in top 
remittance-receiving economies, highlighting the need for 
context-specific analysis of remittance impacts. The positive 
and statistically significant relationship between renewable 
energy (REN) and ecological footprint in the long term 

contradicts the findings of Dilanchiev et al. (2024) and Rani et 
al. (2023), who found negative relationships. This discrepancy 
underscores the complexity of renewable energy's impact and 
suggests that the effectiveness of renewable energy in reducing 
ecological footprint may depend on specific economic and 
policy contexts. In the short run, the varying levels of statistical 
significance and directionality across different quantiles for 
GDP and other variables align with Husnain et al.'s (2023) 
observations on the multifaceted nature of short-term 
environmental impacts. This complexity echoes the findings of 
Tsepi et al. (2024) in their decomposition analysis of CO2 
emissions in Greece, emphasizing the need for dynamic policy 
approaches. The negative and statistically significant 
coefficients for technological innovation (TI) in the short run 
support Al-Mulali et al.'s (2015) findings on the immediate 
environmental benefits of technological advancements. 
However, this contrasts with the inconclusive long-term impact 
found in our study and the integrated approach proposed by 
Martín-Ortega et al. (2024), suggesting that the environmental 
benefits of technology may vary over time and across contexts. 
The lack of consistent evidence for an N-shaped EKC aligns with 
Cole et al.'s (2006) argument that factors beyond income 
significantly influence environmental impact. This finding is 

Table 7  
Results of PQARDL analysis model3 
                      

           
Variable        Coef Prob. Coef Prob. Coef Prob. Coef Prob. Coef Prob. 

Quantile      0.1  0.2   0.3 0.4  0.5  

Long run estimate 

GDP -0.032227 0.7294 -0.073012 0.4833 -0.028881 0.5031 -0.016712 0.7218 0.018067 0.7443 

GDP2 0.010613 0.6342 0.020585 0.4663 0.008539 0.4143 0.005676 0.6190 -0.004174 0.7653 

GDP3 -0.000899 0.5152 -0.001400 0.4581 -0.000599 0.3504 -0.000421 0.5490 0.000264 0.7653 

REM*FD 0.000237 0.4975 -0.000224 0.2781 -8.69E-05 0.6093 0.000122 0.6182 0.000274 0.2948 
REN -0.004763 0.6019 0.001220 0.8103 0.000950 0.8226 0.001379 0.7552 0.003473 0.4253 

TI 0.002000 0.6223 -0.002739 0.2838 -0.000972 0.4912 -0.001810 0.2336 -0.00220* 0.1325 

Sort run estimate 

 Δ GDP 9.285870 0.5755 17.18485 0.3589 11.95611* 0.0946 8.832306 0.2733 1.405152 0.8855 

 ΔGDP2 -1.267091 0.5583 -2.250659 0.3698 -1.530825* 0.0934 -1.147794 0.2659 -0.165286 0.8960 

 ΔGDP3 0.060071 0.5208 0.100268 0.3694 0.066904* 0.0812 0.051672 0.2346 0.008594 0.8741 

 ΔREM*FD 0.000451 0.6545 1.75E-05 0.9798 -0.000439 0.5262 0.000248 0.8112 0.000627 0.4717 

 Δ REN -0.277*** 0.0000 -0.1918*** 0.0012 -0.2368*** 0.0000 -0.2652*** 0.0009 -0.2654*** 0.0002 
ΔTI -0.011089 0.6035 -0.008022 0.4678 -0.005870 0.5718 -0.008872 0.4473 0.003717 0.6727 

ECM3 -0.9929*** 0.0000 -0.9717*** 0.0000 -0.9898*** 0.0000 -1.01840*** 0.0000 -0.9768*** 0.0000 

Quantile 0.6  0.7  0.8  0.9  0.95  

Long run estimate 

GDP 0.019745 0.6879 0.025497 0.5154 0.063433 0.6685 0.159558*** 0.0011 0.097787* 0.1791 

GDP2 -0.005788 0.6376 -0.006983 0.4798 -0.016061 0.7127 -0.04324*** 0.0007 -0.02592* 0.1818 

GDP3 0.000423 0.5829 0.000485 0.4371 0.001081 0.7306 0.00301*** 0.0004 0.001911* 0.1284 

REM*FD 0.00059** 0.0068 0.000605** 0.0091 0.000492* 0.1644 0.001113*** 0.0026 0.000503 0.5274 

REN 0.005843* 0.1301 0.005051 0.2267 0.002648 0.7833 0.002126 0.7912 0.009146 0.3598 

TI -0.00174* 0.1858 -0.000867 0.5263 -0.001834 0.4792 -0.003040 0.2018 -0.0085** 0.0499 

Short run estimate 

 Δ GDP -0.085036 0.9919 1.840149 0.7826 -5.365266 0.8202 -7.390722 0.5073 -9.997259 0.2313 

 ΔGDP2 0.050853 0.9620 -0.199955 0.8146 0.764357 0.8164 1.175949 0.4328 1.515065* 0.1752 

 ΔGDP3 -0.001995 0.9647 0.008307 0.8174 -0.034691 0.8202 -0.059117 0.3792 -0.07307* 0.1420 

 ΔREM*FD 0.000153 0.8556 -0.000691 0.4542 -1.09E-05 0.9969 8.92E-05 0.9427 0.000536 0.6486 

 Δ REN -0.2967*** 0.0000 -0.32721*** 0.0000 -0.32367** 0.0179 -0.36435*** 0.0000 -0.2440** 0.0515 

ΔTI 0.004722 0.5452 0.003014 0.6224 0.009466 0.4795 0.014917** 0.0587 0.02276** 0.0176 

ECM3 -0.9751*** 0.0000 -1.03761*** 0.0000 -1.01403*** 0.0000 -0.92641*** 0.0000 -0.9194*** 0.0000 
           Source: Author's statistical analysis: ***: Significant with 1%. **: Significant with 5%. *: Significant with 10% 
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further supported by recent studies like Shahbaz et al. (2020), 
who found that financial development could potentially reduce 
environmental degradation under certain conditions in the 
United Arab Emirates. These results, when compared with 
recent literature, highlight the complex and often context-
dependent nature of the relationships between economic 
factors and environmental degradation in remittance-receiving 
economies. They suggest the need for nuanced, tailored policies 
that consider both short- and long-term impacts, as well as the 
specific economic and environmental contexts of these 
countries. Future research should focus on disentangling these 
complex relationships and identifying the specific conditions 
under which remittances, financial development, and 
technological innovation contribute to or mitigate 
environmental degradation. Additionally, exploring the 
potential synergies between these factors, as suggested by the 
positive REM*FD interaction, could provide valuable insights. 

4.7. PQARDL estimation results model4 

Table 8 and Model 4 illustrate the complex moderating 
effect between remittance inflows and technological innovation 
on the ecological footprint. In addition, we have approached the 
three-dimensional graphs that become visible in the Quantile 
regression graph (model4) (see Fig 7. Quantile regression graph 

(model4)). The multivariate panel quantile regression analysis 
graph respects the robustness check under PQARDL 
Methodology. Therefore, the multivariate Quantile regression 
graph results are robust and respect to quantile regression (see 
Fig 7). The long-run analysis reveals inconsistent relationships 
between Gross Domestic Product (GDP) and environmental 
degradation across different quantiles, challenging the universal 
applicability of the Environmental Kuznets Curve (EKC) 
hypothesis. Specifically, while GDP exhibits a negative 
relationship with environmental degradation, suggesting a 
potential mitigating effect as economies grow, this relationship 
is not consistent across quantiles. For instance, the coefficient 
for GDP is statistically significant and negative in the 10th 
quantile but turns positive and statistically insignificant in the 
90th and 95th quantiles. This inconsistency raises important 
questions about the applicability of the EKC hypothesis, which 
posits an inverted U-shaped relationship between economic 
growth and environmental degradation (Grossman & Krueger, 
1995). These findings resonate with critiques from researchers 
like Stern (2017), who argue that the EKC may not universally 
apply across all economies or stages of development. The 
varying impacts of GDP across quantiles echo the findings of 
Tsepi et al. (2024) in their decomposition analysis of CO2 
emissions in Greece, emphasizing the need for a nuanced 
understanding of economic-environmental interactions. This 
complexity is further supported by Wang et al.'s (2024) study, 
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Fig 6. Quantile regression graph (model3) 
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which also found non-linear relationships between economic 
growth and environmental degradation. The interaction term 
REMTI (Remittance and Technological Innovation) displays 
mixed results across quantiles in the long run, highlighting the 
intricate nature of this relationship. The positive influence of 
REMTI on ecological footprints in certain quantiles suggests 
that technological innovation, when coupled with remittances, 
may have varying effects on environmental degradation. This 
finding contrasts with Yang et al. (2021), who reported more 
consistent effects of remittances and technological innovation 
on environmental outcomes. Additionally, it aligns with Martín-
Ortega et al. (2024), who proposed an integrated approach to 
greenhouse gas mitigation through technological innovation, 
underscoring the potential for context-specific outcomes. The 
short-run analysis reveals variability in GDP's impact across 
quantiles, similar to findings by Husnain et al. (2023) regarding 
the multifaceted nature of short-term environmental impacts. 
This variability underscores the need for dynamic policy 
approaches that can adapt to varying short-term effects while 
working toward long-term sustainability goals. Moreover, the 
negative and statistically significant coefficient of ΔREMTI in 
the 10th quantile during the short run aligns with Yang et al.'s 
(2021) findings on the potential mitigating effect of the 
interaction between remittances and technological innovation 

on environmental degradation. This supports the notion that 
advancements in technology related to remittance transfers—
such as mobile banking services—can contribute to both 
economic growth and environmental sustainability in top 
remittance-receiving economies. However, the inconsistency of 
REMTI effects across quantiles contrasts with more uniform 
findings by Aljadani et al. (2023) in their study of top remittance-
receiving economies. This discrepancy highlights the need for 
further research into specific conditions under which 
remittances and technological innovation can effectively 
contribute to environmental sustainability. The positive 
repercussions of technological innovation combined with 
remittance inflows on economic benefits and environmental 
sustainability align with findings from Shahbaz et al. (2020) in 
the United Arab Emirates. However, mixed significance levels 
for technological innovation across quantiles suggest that its 
environmental impact may depend on specific types and 
applications of technologies, as well as broader economic and 
policy contexts. Overall, these findings underscore the 
complexity of relationships among financial development, 
renewable energy consumption, technological innovation, and 
their combined effects on ecological footprints in top 
remittance-receiving economies. They suggest that while 
certain economic factors can lead to improved environmental 

Table 8  
Results of PQARDL analysis model4 

           
           
           

Variable        Coef Prob. Coef Prob. Coef Prob. Coef Prob. Coef Prob. 

    Quantile             0.1           0.2   0.3                 0.4  0.5  

Long run estimate 

GDP -0.1742** 0.0232 -0.035221 0.4420 -0.026622 0.5567 -0.035975 0.4428 -0.017216 0.7544 

GDP2 0.04812** 0.0144 0.008322 0.4636 0.006947 0.5269 0.010091 0.3755 0.005074 0.7115 

GDP3 -0.003*** 0.0096 -0.000541 0.4473 -0.000480 0.4790 -0.000697 0.3231 -0.000357 0.6824 

REM*TI -4.60E-05 0.6642 -4.23E-05 0.6507 3.96E-05 0.6441 6.90E-05 0.5292 0.000209* 0.1570 
REN -0.004769 0.5228 0.002697 0.6112 0.001133 0.8191 0.000345 0.9480 0.002456 0.6240 

FD 0.003259 0.7373 0.004158 0.4040 0.003022 0.5101 0.001014 0.8459 -0.001841 0.7835 

Sort run estimate 

 Δ GDP 26.94750* 0.1089 12.13108** 0.0527 13.96765** 0.0241 13.61403** 0.0459 7.838260 0.3720 

 ΔGDP2 -3.53541* 0.1113 -1.548259** 0.0530 -1.791439** 0.0243 -1.748624** 0.0461 -1.014733 0.3732 

 ΔGDP3 0.15620* 0.1070 0.067174 0.0458 0.077788** 0.0202 0.076084** 0.0393 0.045407 0.3478 

 ΔREM*TI -0.00053* 0.0185 -0.000451 0.2714 -0.000238 0.6734 -0.000455 0.3852 -0.000191 0.7343 

 Δ REN -0.31232* 0.0001 -0.24403*** 0.0000 -0.27485*** 0.0000 -0.25298*** 0.0000 -0.2868*** 0.0000 
ΔFD 0.007387 0.4763 0.009951 0.2971 0.017735 0.0556 0.019627 0.0510 0.020037 0.0576 

ECM4 -1.1295*** 0.0000 -1.00838*** 0.0000 -0.94326*** 0.0000 -0.91878*** 0.0000 -0.9375*** 0.0000 
Quantile 0.6  0.7  0.8  0.9  0.95  

Long run estimate 

GDP 0.086247* 0.0824 0.068313* 0.1762 0.091711** 0.0457 0.100737 0.1202 0.143057* 0.0689 

GDP2 -0.021324* 0.0929 -0.017238 0.2049 -0.024556** 0.0507 -0.026016 0.1456 -0.032804 0.1160 

GDP3 0.001371* 0.0949 0.001151 0.2114 0.001715** 0.0471 0.001812 0.1274 0.002145 0.1187 

REM*TI 0.000271** 0.0247 0.000257** 0.0080 0.000271** 0.0041 0.000321 0.0308 0.0005*** 0.0001 

REN 0.000591 0.8874 0.001054 0.7940 0.003533 0.3505 0.002559 0.7571 -0.008548 0.3198 

FD -0.006741 0.3115 -0.004259 0.4401 -0.005650 0.2671 -0.009991 0.2786 -0.0193** 0.0073 

Short run estimate 

 Δ GDP -5.881769 0.4618 -5.998566 0.4060 -9.347445* 0.1678 -11.65792* 0.1407 -15.1286* 0.1814 

 ΔGDP2 0.803427 0.4453 0.847862 0.3872 1.357016* 0.1435 1.665013* 0.1165 2.133374* 0.1587 

 ΔGDP3 -0.034314 0.4511 -0.038531 0.3841 -0.064084* 0.1309 -0.077370* 0.1030 -0.09820* 0.1455 

 ΔREM*TI -0.000132 0.7497 -0.000209 0.6029 -0.000282 0.3863 0.000195 0.7509 0.00108** 0.0110 

 Δ REN -0.33488*** 0.0000 -0.3698*** 0.0000 -0.38702*** 0.0000 -0.33867*** 0.0000 -0.3189*** 0.0000 

ΔFD 0.019265** 0.0437 0.01870** 0.0435 0.024258** 0.0065 0.031512*** 0.0004 0.0425*** 0.0001 

ECM4 -0.95261*** 0.0000 -0.97487*** 0.0000 -1.00607*** 0.0000 -0.91778*** 0.0000 -0.9464*** 0.0000 
           Source: Author's statistical analysis: ***: Significant with 1%. **: Significant with 5%. *: Significant with 10% 
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outcomes under specific conditions, deviations from 
conventional EKC patterns highlight the need for more nuanced 
policy frameworks. Future research should focus on 
disentangling these complex relationships further and 
identifying specific conditions under which remittances and 
technological innovations can effectively promote 
environmental sustainability. Additionally, exploring potential 
synergies between these factors could provide valuable insights 
for policymakers aiming to balance economic development with 
ecological conservation. This revision improves clarity by 
streamlining sentences, enhancing coherence between ideas, 
and ensuring a logical flow throughout the discussion while 
maintaining a comparative analysis with relevant studies. 

Our findings on the relationship between economic factors 
and ecological footprint in remittance-receiving economies 
align with recent studies on GHG emissions and sustainability 
efforts in various contexts. Tsepi et al. (2024) conducted a 
decomposition analysis of CO2 emissions in Greece from 1996 
to 2020, revealing the complex interplay between economic 
growth, energy intensity, and emissions. Their findings 
underscore the importance of considering multiple factors in 
assessing environmental impact, like our multi-faceted 
approach to ecological footprint analysis. Moreover, our results 
on the role of renewable energy in reducing ecological footprint 
resonate with the findings of Losada-Puente et al. (2023), who 
analyzed energy communities in Spain, Italy, and Greece. Their 
cross-case analysis highlighted the progress, barriers, and future 
directions for community-based renewable energy initiatives. 
These initiatives not only contribute to reducing GHG emissions 
but also have the potential to significantly impact ecological 
footprints at local and regional levels. The varying impacts of 
financial development and technological innovation on 

ecological footprint across different quantiles in our study 
suggest that the effectiveness of mitigation strategies may differ 
based on the level of environmental degradation. This aligns 
with the MITICA framework proposed by Martín-Ortega et al. 
(2024), which emphasizes the need for tailored and transparent 
approaches to GHG mitigation. Our findings further support the 
idea that integrated strategies considering both mitigation and 
adaptation, as advocated in NAPs, are crucial for 
comprehensively addressing ecological footprint reduction. 

In addition, our study's findings on the relationship 
between economic factors and ecological footprints in 
remittance-receiving economies can be contextualized within 
the broader framework of sudden, large-scale changes in human 
activity, as observed during the COVID-19 pandemic. 
Papadogiannaki et al. (2023) demonstrated that enforced 
changes in work patterns and travel behaviors during the 
pandemic led to significant reductions in carbon footprints. This 
aligns with our observations on the potential impact of 
technological innovation and changes in economic activity on 
ecological footprints. The pandemic-induced shifts, such as 
increased teleworking and reduced travel, mirror some of the 
technological and behavioral changes we've examined in our 
study. For instance, the reduced carbon footprint associated 
with virtual events and digitized processes during the pandemic 
parallels our findings on the potential of technological 
innovation to mitigate environmental pressures. This suggests 
that policy interventions promoting similar adaptations in 
remittance-receiving economies could yield substantial 
reductions in ecological footprints. Moreover, the rapid changes 
observed during the pandemic underscore the potential for swift 
policy responses to yield significant environmental benefits. 
This is particularly relevant to our findings on the varying 
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Fig 7. Quantile regression graph (model4) 
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impacts of financial development and remittances across 
different quantiles of ecological footprint. It suggests that 
targeted policies, informed by the lessons of the pandemic, 
could be especially effective in addressing environmental 
pressures in countries at different stages of economic 
development. However, it's important to note that the changes 
observed during the pandemic were largely the result of 
enforced restrictions rather than voluntary behavioral shifts. As 
we consider the long-term implications for policy in remittance-
receiving economies, the challenge lies in translating these 
temporary changes into sustainable, long-term practices that 
can continue to reduce ecological footprints without 
compromising economic development. 

Overall, these findings highlight the nexus relationships 
among financial development, renewable energy consumption, 
technological innovation, and their combined effects on 
ecological footprints in top remittance-receiving economies. 
The analysis reveals complex and often contradictory 
interactions between economic factors and environmental 
degradation. Financial development shows a positive 
relationship with environmental degradation across quantiles, 
suggesting that increased financial activity may lead to 
ecological harm, particularly in lower economic strata. GDP 
demonstrates a nuanced relationship with environmental 
quality, challenging traditional Environmental Kuznets Curve 
(EKC) hypotheses by showing non-linear and context-
dependent effects. Renewable energy consumption consistently 
emerges as a promising factor in mitigating environmental 
degradation, exhibiting a negative relationship across both long-
term and short-term analyses. In contrast, technological 
innovation presents a more ambiguous picture, with its 
environmental impact varying significantly across different 
quantiles and economic contexts. Remittance inflows further 
complicate the narrative, showing mixed effects that depend on 
specific economic and policy environments. These results 
underscore the need for targeted, context-specific policy 
approaches that consider the unique characteristics of each 
remittance-receiving economy. 

Finally, the impact of remittance inflows on environmental 
outcomes in top remittance-receiving economies is complex 
and multifaceted, as evidenced by the inconclusive results 
across different quantiles in both long-term and short-term 
analyses. At the macroeconomic level, remittances can 
stimulate economic growth and alter economic structures, 
potentially leading to increased industrialization and 
consumption, which may have mixed environmental effects. 
They also contribute to financial development, which the study 
shows has a positive relationship with environmental 
degradation. At the microeconomic level, remittances increase 
household income, affecting consumption patterns and 
investment decisions. These can lead to both positive outcomes, 
such as investments in cleaner technologies and education, and 
negative ones, like increased consumption of energy-intensive 
goods or investments in polluting small-scale businesses. The 
mixed coefficients for remittance inflows across quantiles, as 
noted by Aljadani et al. (2023) and Yang et al. (2020a, 2021), 
suggest that these macro and micro processes interact 
differently depending on the level of environmental degradation 
and other contextual factors. 

5. Conclusion and policy implications 

This study investigates the impact of remittance inflows, 
technological innovation, renewable energy adoption, and 
financial development on the ecological footprint in top 

remittance-receiving countries, employing a comprehensive 
approach that incorporates six environmental indicators. 
Utilizing panel data from 1990 to 2022 and advanced 
econometric techniques, including the Panel Quantile 
Autoregressive Distributed Lag (PQARDL) approach, our 
findings challenge the universal applicability of the 
Environmental Kuznets Curve (EKC) hypothesis and reveal 
complex interactions among variables. The study highlights the 
potential of remittances and technological innovation in 
reducing ecological footprints when strategically leveraged, 
aligning with recent research on integrated approaches to 
greenhouse gas mitigation. The significance of renewable 
energy in mitigating environmental impacts is underscored, 
consistent with studies on energy communities and their role in 
sustainability. Our analysis of short-term dynamics reveals the 
need for flexible policy approaches, reflecting the complex 
relationship between economic factors and environmental 
degradation observed in recent decomposition analyses. The 
role of financial development in environmental sustainability 
contributes to ongoing debates, with our findings suggesting the 
need for careful consideration of financial policies in 
environmental management, particularly in the context of 
changing work patterns and travel behaviors as observed during 
the COVID-19 pandemic. These insights call for holistic policy 
approaches that balance economic growth with environmental 
conservation, including the integration of climate mitigation and 
adaptation strategies, promotion of renewable energy, 
leveraging of remittances and technological innovation for 
sustainable development, and implementation of context-
specific interventions. Our study also emphasizes the 
importance of considering rapid policy responses and 
behavioral changes, as demonstrated during the pandemic, in 
formulating long-term strategies for reducing ecological 
footprints. Future research should explore the long-term 
implications of these complex relationships and the potential for 
translating pandemic-induced changes into sustainable 
practices to further inform sustainable development strategies 
in remittance-receiving economies. 

6. Future Work and Research Directions 

Future work and research directions could focus on several 
areas to advance understanding of the complex interplay 
between economic dynamics and ecological sustainability in 
remittance-dependent economies. Firstly, exploring the causal 
mechanisms underlying the observed relationships through 
rigorous causal inference methods, such as instrumental 
variable approaches or natural experiments, could provide 
deeper insights into the pathways through which financial 
development, renewable energy adoption, and technological 
innovation influence ecological footprints. Secondly, 
investigating the role of governance structures and institutional 
frameworks in moderating the impact of economic variables on 
environmental outcomes could shed light on the importance of 
policy interventions in shaping sustainable development 
trajectories. Additionally, incorporating spatial analysis 
techniques to account for spatial heterogeneity and spatial 
spillover effects could enhance the accuracy of modelling 
ecological footprints. Moreover, considering the role of social 
factors, such as education levels, cultural norms, and social 
capital, in shaping environmental behaviors and outcomes 
could provide a more holistic understanding of sustainable 
development processes. Lastly, exploring how emerging trends, 
such as climate change adaptation and mitigation strategies, 
circular economy initiatives, and green finance mechanisms, 
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intersect with economic dynamics to influence ecological 
sustainability could offer valuable insights for designing 
evidence-based policies aimed at promoting sustainable 
development in remittance-dependent economies.  
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