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Abstract. The increasing population and changing lifestyles have led to significant solid waste accumulation, necessitating efficient waste 
management to prevent environmental and health issues. Supercritical water gasification (SCWG) is an effective method for converting high-moisture 
biomass into hydrogen-rich syngas, operating at temperatures above 374°C and pressures above 490MPa. The objective of this study was to develop 
and validate an integrated modeling and multi-objective optimization framework, combining Response Surface Methodology (RSM), Artificial Neural 
Networks (ANN), and Multi-Objective Genetic Algorithm (MOGA) to maximize hydrogen-rich syngas production from municipal solid waste through 
SCWG. The research models and predicts the effects of feed concentration, residence time, and reaction temperature on hydrogen yield, lower 
heating value (LHV), and gas yield. The integrated RSM and ANN models demonstrated high predictive accuracy with R² values exceeding 0.95. 
Optimization results from MOGA identified optimal parameters: a feed concentration of 2%, a reaction temperature between 490-495°C, and a 
residence time of 80 minutes. These conditions achieved H2 selectivity of 84.73%, an LHV of 6.95 MJ/Nm³, and a gas yield of 29.7%. The findings 
highlight the dominant influence of reaction temperature and residence time on hydrogen production, while feed concentration requires careful 
balance for optimal syngas quality. This study demonstrates that the combined use of RSM, ANN, and MOGA provides an effective framework for 
optimizing SCWG processes, offering practical insights for industrial-scale applications. Future research should explore additional variables such as 
biomass composition, pressure, and catalysts to enhance the efficiency and sustainability of hydrogen production from solid waste, supporting SCWG 
as a viable technology for sustainable energy production and effective waste management.  
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1. Introduction 

The continuously increasing population and the shift 
towards an instant lifestyle have significantly accelerated the 
accumulation of solid waste (Mondal, 2022). According to 2023 
data from the Indonesia’s National Waste Management 
Information System (SIPSN), 18.03 million tons of waste were 
produced, with 53.3% consisting of organic waste (Kemeterian 
LHK, 2023). Effective waste management is imperative to 
prevent the myriad health and environmental issues associated 
with waste accumulation (Ziraba et al., 2016). Although various 
strategies, such as: waste reduction, recycling, thermal 
treatment, and landfilling have been implemented (Demirbas, 
2011). However, 65.83% of waste in Indonesia is still 
transported to and disposed of in landfills, leading to 
greenhouse emissions including CO2, CH4, and N2O  (Blair & 
Mataraarachchi, 2021; Kemeterian LHK, 2023). 

Rather than modifying the landfill process, waste-to-energy 
(WTE) technology offers an alternative solution to reduce the 
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continuously increasing amount of waste (Sesotyo et al., 2019). 
Among the various WTE technologies, direct waste incineration 
is the most widely used (Lombardi et al., 2015). However, direct 
incineration for heat and electricity production has significant 
drawbacks, including air emissions, the production of fly ash, 
and the generation of corrosive gases (Lu et al., 2019). 
Additionally, the high moisture content in organic waste (80%-
90%), poses a challenge in the incineration process (Guo & Dai, 
2017). Whereas supercritical water gasification (SCWG) is a 
more efficient thermochemical process for converting solid 
waste into hydrogen, particularly for waste with high moisture 
content, without the need for a drying process  (Reddy et al., 
2014). SCWG operates at temperatures above 374°C and 
pressures above 22.1 MPa, where water exhibits unique 
properties such as a low dielectric constant, high diffusivity, and 
enhanced reactivity (Brunner, 2009; Hantoko et al., 2019; Jin et 
al., 2015; Kulkarni et al., 2023). These condition favor rapid and 
efficient decomposition of long-chain molecules found in 
biomass, such as lignin, cellulose, proteins, and lipids, are 
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hydrolyzed into products like phenols, glucose, and fatty acids 
into gaseous products including H2, CO, CH4, and CO2 
(Rodriguez Correa & Kruse, 2018). 

The performance of SCWG process is influenced by several 
factors, including reactor type, heating rate, residence time, 
pressure, reaction temperature, catalyst, and feed concentration 
(Basu & Mettanant, 2009). Studies have investigated the effects 
of feed concentration, residence time, and reaction temperature 
on hydrogen production, lower heating value (LHV), and gas 
yield  (Khandelwal et al 2024; Nanda et al. 2018; Yan et al. 2019). 
The yield of hydrogen-rich syngas significantly influenced by 
these variables, with Increased residence time and reaction 
temperature generally enhancing hydrogen production, 
whereas higher feed concentration typically leads to its 
reduction (Nanda et al, 2018; Su et al., 2020; Su et al., 2020). 

Statistical approaches such as Response Surface 
Methodology (RSM) have been widely utilized to develop 
empirical models that describe the relationship between key 
process parameters and response variables  (Bakari et al., 2021; 
Zandifar et al., 2024). RSM enables the identification of optimal 
operating conditions by systematically evaluating the combined 
effects of variables such as feed concentration, residence time, 
and reaction temperature (Houcinat et al. 2018). In addition, 
Artificial Intelligence (AI)-based modeling approach, such as 
Artificial Neural Networks (ANN) have been increasingly 
employed to model complex gasification systems due to their 
ability to capture nonlinear interactions and reduce 
experimental costs (Evans, 2019; Rizal et al., 2024). 
Furthermore, AI techniques can be utilized to develop 
predictive models that’s  forecast hydrogen content in 
syngas based on variations in feed concentration, residence 
time, and reaction temperature, thereby enabling more efficient 
process optimization (Li et al., 2021). 

Numerous studies have explored the optimization of SCWG 
using statistical, machine learning (ML), and metaheuristic 
approaches. Albarelli et al. (2017) performed a multi-objective 
optimization of SCWG focusing on energy efficiency, economic 
viability, and environmental impact (Albarelli et al. 2017). 
Houcinat et al. (2018) developed a kinetic model and applied 
Response Surface Methodology (RSM) to optimize gas yields 
and energy efficiency from supercritical glycerol gasification 
(Houcinat et al., 2018). Bakari et al. (2021) conducted parametric 
optimization of rice husk SCWG using the I-optimality design in 
RSM and found temperature to be the most significant factor 
affecting GE and gas yield (Bakari et al., 2021). Li et al. (2021) 
further demonstrated that ANN alone can predict SCWG 
outcomes with high accuracy, particularly in catalyst screening 
and hydrogen yield optimization (Li et al., 2021). Shen et al. 
(2025) applied MCDM to evaluate feedstock and process 
alternatives in plastic waste SCWG (Shen et al., 2025). Aentung 
et al. (2024) combined RSM with Genetic Algorithms to reduce 
tar in co-gasification (Aentung et al., 2024). Qiao et al. (2024) 
used PSO and regression for optimizing hybrid gasification-
SOFC systems (Qiao et al., 2024).  

To the best of our knowledge, no previous study has 
systematically integrated Response Surface Methodology 
(RSM), Artificial Neural Network (ANN), Multi-Objective 
Genetic Algorithm (MOGA), and Multi-Objective Ant Lion 
Optimizer (MOALO) into a unified modeling and optimization 

framework for the supercritical water gasification (SCWG) of 
municipal solid waste. While numerous studies have 
independently employed RSM or ANN for parametric modeling, 
and others have applied metaheuristic algorithms such as 
Genetic Algorithm (GA) or Particle Swarm Optimization (PSO) 
for process optimization, none have combined these four 
techniques to concurrently model, predict, and optimize critical 
performance indicators in SCWG. This study, therefore, 
addresses a notable research gap by proposing a hybrid, multi-
level framework that integrates experimental design, nonlinear 
predictive modeling, global optimization, and decision-support 
analysis. 

In this research, feed concentration, residence time, and 
reaction temperature are selected as key input variables, while 
hydrogen content, gas yield, and LHV serve as the main 
performance targets. The framework begins by constructing 
data-driven predictive models using RSM and ANN to capture 
both linear and nonlinear relationships within the process. 
These models are subsequently coupled with MOGA and 
MOALO to explore and identify optimal input combinations that 
maximize the selected performance criteria. The resulting 
Pareto-optimal solutions are visualized through Pareto fronts, 
enabling a clear representation of trade-offs among competing 
objectives. For final decision-making, the Technique for Order 
Preference by Similarity to Ideal Solution (TOPSIS) is employed 
to rank the optimal solutions based on proximity to the ideal 
outcome. This integrated approach enables accurate prediction 
and efficient multi-objective optimization of SCWG 
performance. By combining modeling, optimization, and 
decision-making in a single framework, the study provides a 
practical tool for evaluating trade-offs and improving process 
design in waste-to-energy conversion systems. Therefore, the 
objective of this study is to systematically optimize hydrogen-
rich syngas production from municipal solid waste using SCWG 
by integrating modeling tools such as RSM, ANN, and 
metaheuristic algorithms like MOGA and MOALO. 

2. Methodology 

2.1 Data Collection 

The dataset for the development of the optimization model 
is obtained from experimental studies conducted by (Yan et al., 
2019) and (Khandelwal et al., 2024) using food and agricultural 
waste. A total of 25 datasets (150 data points) were obtained, 
representing the main parameters of the supercritical water 
gasification process, with feed concentration ranging from 
2wt% to 25wt%, residence time from 20 minutes to 80 minutes, 
and reaction temperature from 350°C to 500°C. The gasification 
results include LHV (1.15 MJ/Nm³ to 6.83 MJ/Nm³), gas yield 
(8.13% to 29.7%), and hydrogen content in the syngas (20.3% to 
89.33%). The obtained dataset was then categorized into input 
data (feed concentration, residence time, reaction temperature) 
and output/target data (LHV, gas yield, H2 Selectivity) and used 
to develop the predictive data model. 

2.2 Characterization of feedstock and SCWG products 

In this research, the biomass used includes food and 
agricultural waste. The characteristics of the syngas were 

Table 1 
The Chemical Properties of the Biomass 

  C H N S O LHV HHV 

Food Waste 48.12 7.02 3.73 0.78 39.13 21.38 n.a 

Agricultural Waste 46.3 6.8 0.9 0.4 45.6 n.a 18.9 
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obtained through experimental studies conducted by (Yan et al., 
2019) and (Khandelwal et al., 2024). The biomass content was 
tested using ultimate analysis, and the test results are shown in 
Table 1. 

In general, the chemical reaction that occurs in supercritical 
water gasification to produce hydrogen gas can be expressed by 
a simplified reaction (Guo et al., 2007) as shown in Equation (1). 

 

𝐶𝐻𝑥𝑂𝑦 + (2 − 𝑦)𝐻2𝑂 → 𝐶𝑂2 + (2 − 𝑦 +
𝑥

2
) 𝐻2 (1) 

 
In addition to the general reaction described earlier, there 

are three other reactions that occur during the supercritical 
water gasification process, which are: 

 
Steam reforming: 

 

𝐶𝐻𝑥𝑂𝑦 + (1 − 𝑦)𝐻2𝑂 → 𝐶𝑂2 + (1 − 𝑦 +
𝑥

2
) 𝐻2 (2) 

 
Water-gas shift: 

 
𝐶𝑂 + 𝐻2𝑂 → 𝐶𝑂2 + 𝐻2 (3) 
 
Methanation: 

 
𝐶𝑂 + 3𝐻2 → 𝐶𝐻4 + 𝐻2𝑂 (4) 
 
𝐶𝑂2 + 4𝐻2 → 𝐶𝐻4 + 2𝐻2𝑂 (5) 

 
The product gas generated from supercritical water 

gasification is then analyzed using gas chromatography. To 
evaluate the efficiency of SCWG, several parameters within the 
syngas, such as LHV, gas yield, and H2 Selectivity, need to be 
assessed. Gas yield, H2 Selectivity, and LHV can be determined 
using the following equations (6), (7), and (8). 
 
 

𝑆𝑦𝑛𝑔𝑎𝑠 𝑦𝑖𝑒𝑙𝑑 (
𝑚𝑜𝑙

𝑘𝑔
) =

𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝑔𝑎𝑠 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑

𝑡𝑜𝑡𝑎𝑙 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑏𝑖𝑜𝑚𝑎𝑠𝑠
 (6) 

 

𝐻2 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (%) =
𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝐻𝑦𝑑𝑟𝑜𝑔𝑒𝑛

𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝐶𝑂,   𝐶𝐻4,   𝑎𝑛𝑑 𝐶𝑂4
 (7) 

 

𝑆𝑦𝑛𝑔𝑎𝑠 𝑦𝑖𝑒𝑙𝑑 (
𝑀𝑗

𝑘𝑔
) = 𝐻2𝑦𝑖𝑒𝑙𝑑 × 𝐿𝐻𝑉𝐻2

+ 𝐶𝑂𝑦𝑖𝑒𝑙𝑑 × 𝐿𝐻𝑉𝐶𝑂 +

𝐶𝐻𝑦𝑖𝑒𝑙𝑑 × 𝐿𝐻𝑉𝐶𝐻            (8) 
 

2.3 RSM-Based Predictive Model 

Design of Experiment (DoE) plays a crucial role in the 
development, improvement, and optimization of processes. The 
principles of statistical sampling in DoE methods are applied to 
achieve desired outcomes with a minimal number of 
experiments. By using statistical methods, DoE can study and 
determine cause-effect relationships, interactions, and 
dependencies among different experimental parameters. 
(Durakovic, 2017). The DoE method also allows for the 
simultaneous study of multiple factors and the evaluation of 
interaction effects, based on a two-level factorial design. 
Response Surface Methodology (RSM) is one of the statistical 
techniques frequently used in DoE to develop predictive models 
and optimize processes. RSM utilizes mathematical functions to 
construct a response surface that describes the relationship 
between several input variables and the desired response 
(Inayat et al., 2020). RSM combines regression models, separate 
model coefficients, and deficiency of fit. The significance of the 
RSM model coefficients can be evaluated using analysis of 
variance (ANOVA), where the F-value indicates the comparison 

of variance between groups and within groups, and the p-value 
indicates the probability of obtaining more accurate data (Fozer 
et al., 2019; Shahbaz et al., 2017). RSM combines regression 
models, separate model coefficients, and deficiency of fit. The 
significance of the RSM model coefficients can be evaluated 
using analysis of variance (ANOVA), where the F-value 
indicates the comparison of variance between groups and 
within groups, and the p-value indicates the probability of 
obtaining more accurate data (Okolie et al., 2020; Zaman et al., 
2020). Through this approach, RSM can determine optimal 
conditions by maximizing or minimizing a specific response.  

In this study, the RSM approach was conducted using 
Design Expert version 13.0.5.0. Data obtained from previous 
experimental studies were utilized in the modelling and 
optimization of SCWG. Input parameters such as feed 
concentration, residence time, and reaction temperature, which 
influence the SCWG process, were operated within minimum (-
1) and maximum (1) ranges to produce optimal output variables 
(LHV, gas yield, and H2 Selectivity to obtain maximum and 
saddle values in the RSM optimization process, a general 
polynomial equation with a quadratic model in Equation (9) can 
be used. 

 
𝑌 =  𝛽0 + ∑ 𝛽𝑖

𝑘
𝑖=1 𝑋𝑖 + ∑ 𝛽𝑖𝑖

𝑘
𝑖=1 𝑋𝑖

2 + ∑ ∑ 𝛽𝑖𝑗
𝑘
𝑗=1 𝑋𝑖𝑋𝑗+ ∈𝑘

𝑖=1  (9) 

 
Where Y is the measured response, β0 is the intercept 

(constant), βi is the linear coefficient for factor Xi, βii is the 
quadratic coefficient for factor Xi, and βij is the interaction 
coefficient between factors Xi and Xj. Xi and Xj are the input 
variables (factors) being studied, k is the number of variables, 
and ϵ is the error term. The components of this equation are 
related as follows: 
a) β0 : The intercept or constant value, representing the 

average response when all independent variablesXi are zero. 

b) βiXi : The linear component, which describes the change in 

response Y due to the change in factor Xi. 

c) 𝛽𝑖𝑖𝑋𝑖
2: The quadratic component, which describes the non-

linear effect of factor Xi on response Y. 

d) βijXiXj : The interaction component, which describes the 

combined effect of two factors Xi and Xj on response Y. 

To estimate the parameters in Equation (9), data obtained 
from previous experimental studies must ensure that each 
investigated variable is conducted at least three levels of factors. 

2.4 ANN-Based Predictive Model 

Artificial Neural Network (ANN) is a computational 
technique developed based on the biological neural network 
process, which is inspired by natural neurons and mimics the 

behavior and learning processes of the human brain. (Pandey 
et al., 2016). ANN consists of neurons or nodes as processing 
elements that are interconnected and work together to solve 
specific problems. These neurons are grouped into different 
layers and interconnected according to a particular architecture. 
Each layer has weight matrices, bias vectors, and output vectors 
(Puig-Arnavat et al., 2013). This method can be utilized for 
response variable values with one or more working factor 
variables (Ascher et al., 2022). 

In this study, a Multilayer Perceptron (MLP) model with a 
feed-forward configuration of an Artificial Neural Network 
(ANN) was developed, as shown in Figure 1. The utilization of 
the MLP model is effective in estimating the functional structure 
in nonlinear systems and can be applied to various problems 
such as classification and regression (Du et al., 2022). The MLP 
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structure involves multiple layers, including the input layer, 
hidden layers, and output layer in a feed-forward manner. In this 
model, the number of hidden layers can affect the convergence 
and performance of the neurons (Kiranyaz et al., 2017; Lin et al., 
2024). Behind each hidden layer and output layer, there is a bias 
value (b) associated with the weight parameters (w) used for 
network development. The optimal network size depends on 
the number of neurons in the output layer, which is determined 
through a trial-and-error process with a heuristic approach. 
Developing the appropriate number of neurons is crucial, as 
having too many or too few can lead to overfitting or 
underfitting of the results (Rizal et al., 2024). The computation 
of the predicted output from the ANN model follows the 
weighted activation function described in Equation (10) (Ascher 
et al., 2022). 
 
𝑦𝑘 =  𝑓0(∑ 𝑤ℎ𝑘ℎ 𝑓ℎ(∑ 𝑤𝑖ℎ𝑖 𝑥𝑖)) (10) 

 
Where the value 𝑦𝑘 represents the network's prediction of the 
response. This prediction is calculated from the sum of the 
products of the weights (w) and input variable (x) for each 
hidden layer (h). This product is then passed through the 
activation function 𝑓0 for the output node and 𝑓ℎ hidden node 
(Beck, 2018). 

In this study, training data with a backpropagation model 
with 1000 epochs and zero target on the ANN was performed 
using the Bayesian Regularization (BR) method, where an 
optimal weight that minimizes prediction error for the test data 
set is obtained through an iterative process. Training data in 
ANN modeling involves modifying the network by presenting 
input data along with the desired output. During the training 
process, the weights within the network are adjusted to achieve 
results that approximate the target output (desired output), 
where the weights after training contain a significant amount of 
information (Kayri, 2016). 

In this study, 75% of the experimental dataset was used for 
training the neurons, and 25% of the dataset was used for 
validation and testing. After the experimental data was 
validated, it was input into the model under various input 
conditions. The neuron training process aids in the optimal 
development of the ANN model through synaptic adjustments, 

while the validation process focuses on the neuron's learning 
curve. Both processes are halted when the Mean Square Error 
(MSE) in training exceeds the value from the validation process. 
To select the best estimator during the prediction phase, we use 
the parameters MSE and the coefficient of determination (R²) 
within the ANN. The values of MSE and R² can be evaluated 
using Equations (11) and (12). 

 

𝑀𝑆𝐸 =  
1

𝑁
∑ (|𝑁

𝑖=1 𝑦𝑝,𝑖  −  𝑦𝑒𝑥𝑝,𝑖|)2 (11) 

𝑅2  =  1 −
∑ (𝑁

𝑖=1 𝑦𝑝,𝑖 − 𝑦𝑒𝑥𝑝,𝑖)

∑ (𝑁
𝑖=1 𝑦𝑝,𝑖 − 𝑦𝛼𝑣)

 (12) 

 
where, 𝑦𝑝,𝑖 is the anticipated value of the ANN model, 𝑦𝑒𝑥𝑝,𝑖  

experimental efficiency value, 𝑦𝛼𝑣 average experimental 
efficiency value, and proportional value of the amount of data. 

2.5 Multi-Objective Genetic Algorithm (MOGA) Based Predictive 
Model 

The Genetic Algorithm (GA) is frequently used to solve 
optimization problems by mimicking natural processes (Zhu et 
al., 2020). In this study, the optimization technique employed is 
based on the Genetic Algorithm, commonly known as the Multi-
Objective Genetic Algorithm (MOGA), which has been widely 
used in various energy optimization fields such as waste 
gasification, gas fractionation, and fuel cell integration (Pandey 
et al., 2015). MOGA differs from other algorithms as it works 
with a group of solutions rather than solving a single problem. 
Based on the fitness function of MOGA, each solution from a 
group of solutions is evaluated based on how well the group of 
solutions meets multiple specified objectives. These solutions 
are ranked based on the number of solutions they dominate 
(Sun et al., 2022). Based on Figure 1, the optimization process 
follows these steps: 

1. Development of the fitness function occurs after the 
ANN process.  

2. Selection of the initial population.  
3. Determination of upper and lower bounds based on 

experimental data results.  

 

Fig. 1 Development Architect of ANN 
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4. Using the fitness function value as the individual data 
value, then the best individuals are used as parents for 
the next group.  

5. Parents are evaluated and obtain information through 
various crossovers and mutations to generate a new 
group.  

6. Repeat steps 1-5 until the results meet the stop criterion. 
In this case, iterations aim to achieve convergence to a 
zero value in the fitness function for each group. 

Using MOGA, the optimization results are depicted in a Pareto 
graph, where trade-offs are evaluated to meet different 
objectives. In this study, multi-objective optimization is 
formulated based on a set of objective functions and constraints. 
Equation (13) defines the general form of the optimization 
model, while Equation (14) expresses the multi-objective 
function vector. The constraints applied to the model are 
expressed in Equation (15) for inequality constraints, and 
Equation (16) for equality constraints, which together define the 
feasible solution space for optimization. 

 
𝐹𝑖𝑛𝑑 𝑥 =  (𝑥𝑖)∀𝑖 =  1,2, . . . , 𝑁𝑝𝑎𝑟 (13) 

 
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑖𝑛𝑔 𝑜𝑟 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑖𝑛𝑔 𝑓𝑖(𝑥𝑖)∀𝑖 =  1,2, . . . , 𝑁𝑜𝑏𝑗 (14) 

 
𝑔𝑗(𝑥)  =  0         ∀𝑗1,2, . . . , 𝑚 (15) 

 
ℎ𝑘(𝑥)  =  0         ∀𝑘1,2, . . . , 𝑚 (16) 
 

Where, 𝑁𝑝𝑎𝑟 is the number of decision variables, 𝑓𝑖(𝑥𝑖) 

represents the objective functions, 𝑁𝑜𝑏𝑗 = is the total number of 

objective functions, x = is the vector of choice variables, 𝑔𝑗(𝑥) 

and ℎ𝑘(𝑥) = are the equality and inequality constraints, 
respectively. 

2.6 Multi-objective Ant Lion Algorithm (MOALO) Based Predictive 
Model 

MOALO is a multi-objective optimization development of 
ALO (Mirjalili, 2015). It is a nature-inspired metaheuristic 
algorithm that imitates the foraging behavior of ants and has 
been successfully used in various engineering optimization 
problems (Mirjalili et al., 2017; Hardiansyah, 2021; Soesanti and 
Syahputra, 2022). The MOALO technique consists of five stages: 
random walking, building traps, inserting ants into traps, 
capturing prey, and rebuilding traps (Mirjalili et al., 2017). In the 
MOALO there are two population with set of ants and sets of 
antlions. The general steps of the MOALO for modifying these 
two sets and ultimately estimating the global optimum for a 
given optimization problem are as follows: 
1. Initial populations for both ants and antlions are set up, and 

the size of the archive is determined. The antlions are initially 
assumed to be at the positions of ants in the first iteration. 

2. The fitness value of each ant is evaluated using an objective 
function in each iteration. The objective roles of ants and 
antlions are assessed. 

3. The iterative process begins, using the roulette wheel 
approach to select the antlion and elite from the archive for 
each ant. Ants move through the search space using random 
walks around the antlions. The radius of these random walks 
is modified, normalized, and verified within the boundaries. 

4. In subsequent iterations, antlions relocate to the new 
positions of ants if the ants show better fitness. Each ant is 
assigned to an antlion, which updates its position if the ant 
achieves higher fitness. An elite antlion influences the 
movement of all ants, regardless of their distance. If an 
antlion surpasses the elite in fitness, it replaces the elite. 

5. The fitness of all ants is computed with the following position 
updates. The archive is updated and its condition verified. 

6. Steps 2 through 5 are repeated until an end criterion is met. 
7. The final position and fitness value of the elite antlion are 

returned as the best estimation for the global optimum, and 
the updated archive is outputted. 
Multi-objective Ant Lion Optimization (MALO) offers 

advantages such as simplicity, scalability, and flexibility, making 
it suitable for practical applications in power system 
optimization and engineering design problems (Durgut et al., 
2024). By utilizing the Multi-Objective Ant Lion Optimizer 
(MOALO), the results yielded optimal solutions positioned 
along the Pareto front. This facilitated the evaluation of trade-
offs to achieve multiple objectives concurrently. MOALO 
effectively identified the most favorable solutions by taking into 
account various competing factors, thereby enhancing the 
decision-making process. 

2.7 Technique for Order Preference by Similarity to Ideal Solution 
(TOPSIS) 

The Technique for Order Preference by Similarity to Ideal 
Solution (TOPSIS) is a prominent distance-based multi-criteria 
or multi-attribute decision-making (MCDM/MADM) technique 
(Shih, 2022). It evaluates alternatives and identifies the ideal 
solution by ranking a limited number of alternatives based on 
their closeness to an idealized goal (S. K. Yadav et al., 2018). The 
method involves determining the Positive Ideal Solution (PIS) 
and Negative Ideal Solution (NIS) of the alternatives and 
designing different TOPSIS models according to the distance 
measures of each alternative to these ideal solutions (Qian et al., 
2023). The best alternative is selected based on its Euclidean 
distance from the ideal solution (V. Yadav et al., 2019). In this 
study, TOPSIS is employed to determine the most optimal value 
of a SCWG process produced by both the Multi-Objective 
Genetic Algorithm (MOGA) and the Multi-Objective Ant Lion 
Optimizer (MOALO) from both the Design of Experiment (DoE) 
and Artificial Neural Network (ANN) models. TOPSIS was 
conducted using MATLAB software to ascertain the most 
optimal value. Firstly, the criteria values are transformed into a 
comparable scale through normalization. Subsequently, the 
normalized decision matrix is multiplied by the weights 
assigned to each criterion to generate the weighted normalized 
matrix. This matrix is then utilized to identify the optimal 
(positive ideal) and suboptimal (negative ideal) values for each 
criterion. Following this step, the Euclidean distance is 
computed to ascertain the distance of each alternative from 
both the positive ideal solution and the negative ideal solution. 
The proximity of each alternative to the optimal solution is then 
assessed. Finally, the alternatives are evaluated and ranked 
according to their proximity to the ideal solution, with the 
highest proximity indicating the most optimal choice. 

3. Result and Discussion 

3.1 Response Surface Methodology Model Validation 

To observe the relationship between the three independent 
variables and the three responses from the supercritical water 
gasification process, modeling was conducted using Response 
Surface Methodology (RSM) through several development 
stages, including model determination, factor level setting, 
design selection, evaluation, validation, and optimization 
(Gammoudi et al., 2021). The Design of Experiment (DoE) plays 
a crucial role in the development of the RSM model, as it enables 
the collection of well-distributed data according to specific 
constraints of the independent variables. DoE can explain the 
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empirical correlation between the independent variables 
(inputs/factors) and the measured outcomes (responses), and 
then RSM was used to statistically analyze the data to obtain the 
desired results.  

The variation in responses such as H2 selectivity, LHV, and 
total gas yield are evaluated by altering the values of feed 
concentration, residence time, and reaction temperature. The 
ANOVA analysis, shown in Table 2, was used to demonstrate 
the patterns and interactions of the factors/inputs as well as 
their quadratic effects in analysing the resulting 
responses/outputs. 

This also indicates that the observed characteristics are 
crucial for evaluating the developed model. The data in Table 2 
shows the results of the analysis of variance (ANOVA) for the 
three observed responses: H2 Selectivity, LHV, and Gas Yield. 
This analysis helps in understanding the significant effects of 
independent variables such as Feed Concentration (FC), 
Residence Time (RT), and Temperature Reaction (TR), as well 
as the interactions among these variables on the response 
variables. Although some factors, such as residence time for gas 
yield and H2 selectivity, exhibit relatively high p-values (> 0.05), 
these variables were retained in the model to preserve the 
hierarchical structure of the quadratic model. This retention is 
consistent with good modeling practice, as excluding such 
variables may affect the estimation of interaction or quadratic 
terms that are statistically and practically significant (Brereton, 
2019). Moreover, in complex systems like supercritical water 
gasification, variables with marginal or non-significant p-values 
can still have meaningful influence due to nonlinear or 
synergistic interactions, as reflected in the response surface 
plots and model performance metrics (Li et al., 2023). 

3.1.1 H2 Selective 

In the H2 Selective response, the model shows an F-value of 
16.62 with a p-value of 0.000003, which is highly significant. 
This indicates that the model is overall effective in explaining 
the variation in the data. Among all the independent variables, 
Feed Concentration (A) has the most significant impact with an 
F-value of 21.38 and a p-value of 0.000331. This suggests that 

changes in feed concentration significantly affect H2 selectivity. 
Conversely, Residence Time (B) and Temperature (C) do not 
show strong significance with p-values of 0.15 and 0.55, 
respectively. The interactions between variables (AB, AC, BC) 
also do not show significant effects. However, the quadratic 
effect of Feed Concentration (A²) is highly significant with a p-
value of 0.00, indicating a crucial non-linear relationship 
between feed concentration and H2 selectivity. The relationship 
between each variable used to predict the value of H2 Selective 
can be explained through equation (17). 

 
𝐻2 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒 = −10.039A +  2.60B + 1.13C + 0.0081AB +
0.0050AC – 0.0053BC +
0.16A2 – 0.00093B2 –  0.0011C2 –  172.283      (17) 

3.1.2 LHV (Lower Heating Value) 

In the LHV result, the model shows an F-value of 36.46 with 
a p-value of < 0.00001, which is also highly significant. This 
indicates that the model is highly effective in explaining the 
variation among variables, including at low temperatures. 
Among the independent variables, Temperature (C) has the 
most significant impact with an F-value of 89.16 and a p-value 
of < 0.00001. This suggests that changes in temperature have a 
very substantial effect on LHV. Feed Concentration (A) and 
Residence Time (B) do not show significant effects with p-values 
of 0.41 and 0.28, respectively. However, the interaction between 
Feed Concentration and Temperature (AC) is significant with a 
p-value of < 0.00001, indicating that the combination of these 
two variables significantly affects LHV. The relationship 
between each variable used to predict the LHV value can be 
explained through equation (18). 

 
𝐿𝐻𝑉 = 1.24𝐴 + +0.028B + 0.73C − 0.00034AB − 0.0028AC −
 0.0053BC (18) 

3.1.3 Gas Yield 

In the Gas Yield response, the model shows an F-value of 
18.29 with a p-value of < 0.00001, indicating a high level of 
significance. Both Feed Concentration (A) and Temperature (C) 

Table 2 
ANOVA result of H2 selective, LHV, and Gas Yield 

Response 
Process 
Order 

Source 
Sum of 
Square 

df 
Mean 

Square 
F-value P-Value 

H2 Selective Quadratic Model 6530.36 9 725.60 16.62 <00001 
A: Feed Concentration 933.48 1 933.48 21.38 <0.0001 
B: Residence Time 102.90 1 102.90 2.36 0.15 
C: Temperature 16.27 1 16.27 0.37 0.55 
AB 6.38 1 6.38 0.15 0.71 
AC 12.35 1 12.35 0.28 0.60 
BC 98.27 1 98.27 2.25 0.15 
A² 579.39 1 579.39 13.27 <0.0001 
B² 1.21 1 1.21 0.03 0.87 
C² 49.53 1 49.53 1.13 0.30 

LHV 2FI Model 59.41 6 9.90 36.46 <0.0001 
A: Feed Concentration 0.20 1 0.20 0.72 0.41 
B: Residence Time 0.33 1 0.33 1.22 0.28 
C: Temperature 24.22 1 24.22 89.16 <0.0001 
AB 0.01 1 0.01 0.04 0.84 
AC 6.60 1 6.60 24.29 <0.0001 
BC 0.0007 1 <0.0001 <0.0001 0.96 

Gas Yield 2FI Model 910.61 6 151.77 18.29 <0.0001 
A: Feed Concentration 130.89 1 130.89 15.77 <0.0001 
B: Residence Time 0.0022 1 0.0022 0.0003 0.99 
C: Temperature 439.07 1 439.07 52.91 <0.0001 
AB 22.00 1 22.00 2.65 0.12 
AC 57.48 1 57.48 6.93 0.02 
BC 20.35 1 20.35 2.45 0.13 
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have significant effects on gas yield, with F-values of 15.77 and 
52.91, respectively, and p-values of < 0.00001. This suggests 
that changes in feed concentration and temperature 
significantly impact the amount of gas produced. Residence 
Time (B) does not show significance with a p-value of 0.99. The 
interactions between Feed Concentration and Temperature 
(AC) and between Residence Time and Temperature (BC) show 
significant effects with p-values of 0.02, indicating that these 
interactions are also important in determining gas yield. 
However, the quadratic effects of each variable do not show 
high significance. The relationship between each variable used 
to predict the Gas Yield value can be explained through 
equation (19). 
 
𝐺𝑎𝑠 𝑦𝑖𝑒𝑙𝑑 =  1,24A +  0,028B +
 0.073C –  0.00034AB –  0.0028AC –  0.0053BC (19) 

 
From the equations explained previously, predictive data for 

each factor value were obtained. The actual and predicted data 
from the developed Central Composite Design (CCD) model are 
shown in Table 3. 

The proposed model was then evaluated to obtain 
normalized and appropriate data using normal plots for 
residuals and outliers. In this study, it is expected that the model 
does not follow any trends or order and that the data points 

should be close to a straight line. Figure 2 shows the residual 
and outlier plot for H2 Selective. 

Figure 2a illustrates the trend of data from the H2 Selective 
response, where the random distribution of data points indicates 
normal distribution and confirms the model's predictability. This 
figure also includes an outlier plot for H2 Selective production, 
with upper and lower outlier limits of ±3.78739, where data 
points outside these limits are considered outliers. Figure 2b 
displays the LHV data points, all within the range of ±3.64577, 
and its normal plot in Figure 2b further demonstrates normal 
distribution of the experimental data. Additionally, Figure 2c 
presents the normal plot of residuals and outliers for gas yield 
production, where all data points are normally distributed, close 
to the reference line, and fall within the outlier bounds of 
±3.64577, confirming data consistency and normal distribution. 

The development of the DoE model using the RSM method 
requires validation and verification processes as the final stages 
of model development. The previously obtained equations (17-
19) are then compared with experimental data. The comparison 
graph between predicted and experimental data is shown in 
Figure 3. This figure presents the validation of the RSM model 
in predicting H2 selectivity, Gas Yield, and LHV from 
supercritical water gasification. The close alignment of 
predicted values with experimental data across all runs confirms 
the robustness and reliability of the RSM model. Such graphical 

Table 3  
DoE Results Based on Face-Centered CCD 

 

FC RT T 
LHV Actual 

(Mj/Nm) 
LHV Predict 

(Mj/Nm) 

Total Gas 
Yield 

Actual (%) 

Total Gas Yield 
Predict (%) 

H2 Selective 
Actual (%) 

H2 Selective 
Predict (%) 

Food Waste 

10 20 420 1.38 1.15 8.13 7.72 49.46 46.52 

10 20 460 2.58 2.93 11.37 11.87 46.75 48.97 

10 20 500 4.95 4.7 17.67 16.02 46.21 47.72 

10 40 420 1.68 1.54 8.93 8.47 50.09 54.32 

10 40 460 2.79 3.31 12.97 14.51 53.68 52.51 

10 40 500 5.19 5.08 18.53 20.55 51.65 47 

10 60 420 2.21 1.93 10.58 9.23 58.85 61.37 

10 60 460 3.26 3.69 14.77 17.16 63.98 55.3 

10 60 500 6.25 5.45 20.85 25.09 51.89 45.53 

2 60 500 6.83 6.92 28.27 24.81 89.33 85.74 

6 60 500 6.52 6.18 22.69 24.95 57.25 62.96 

10 60 500 6.25 5.45 20.85 25.09 51.89 45.53 

Agricultural 
Waste 

20 40 500 3.47 3.3 25.4 23.65 25.4 25.13 

20 40 350 1.15 0.9078 13.4 13.52 20.3 19.14 

20 40 400 1.16 1.7 16.2 16.89 25.9 26.92 

20 40 450 2.86 2.5 22 20.27 27.5 28.92 

20 40 500 3.47 3.3 25.4 23.65 27.9 25.13 

20 20 500 2.54 2.98 18.2 21.86 23.1 24.21 

20 40 500 3.52 3.3 25.7 23.65 27.5 25.13 

20 60 500 3.56 3.61 27.3 25.44 27.1 25.28 

20 80 500 3.66 3.92 26.4 27.23 26.6 24.69 

10 60 500 4.27 5.45 29.7 25.09 27.4 45.53 

15 60 500 3.96 4.53 28.4 25.26 27.2 31.23 

20 60 500 3.56 3.61 27.3 25.44 27.1 25.28 

25 60 500 3.02 2.68 22 25.61 23.7 27.67 
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representation complements the numerical results presented in 
Table 3, reinforcing the model’s capability in simulating SCWG 
performance effectively. 

In the following surface plots (Figures 4–6), trends are 
visually represented using color gradients. Darker or red-
colored zones indicate higher values of the response variable, 
while lighter or blue zones indicate lower values. These 
gradients effectively serve as implicit trendlines, highlighting 
optimal regions and the influence of each parameter. Figure 4 
illustrates various parameters affecting H2 Selectivity through 
2D and 3D curves, highlighting the impact of different variables. 
Figures 4a-c show that increasing the feed concentration from 
2% to around 15.8% significantly boosts H2 selectivity, reaching 
a peak at the highest concentration. Residence time also plays 
a crucial role, with a notable increase in H2 selectivity observed 
when the residence time is extended from 20 to 70 minutes, 
especially at high feed concentrations. Different feed 
concentrations and residence times suggest that higher 
temperatures and longer residence times generally enhance 
gasification efficiency and H2 selectivity (Ibtissem et al., 2019; 

Yang et al., 2022). However, at very high feed concentrations 
(around 20.4%), H2 selectivity decreases if the residence time is 
insufficiently long. At lower temperatures (around 350-400°C) 
and longer residence times (70-80 minutes), H2 selectivity 
remains high, whereas at very high temperatures (around 
500°C) or short residence times (20-30 minutes), H2 selectivity 
drops significantly. Higher temperatures and longer residence 
times improve gasification efficiency and support H2 production 
(Chen et al., 2022; Li et al., 2023). Figure 4c further explains that 
at lower temperatures (350-400°C) and shorter residence times 
(20-40 minutes), H2 selectivity tends to be low. When the 
temperature increases to 440-500°C and the residence time 
extends to around 70 minutes, H2 selectivity moderately 
increases due to enhanced biomass conversion and hydrogen 
production. During the reaction, the hydrogen gas fraction 
increases while the CO and CO2 gas fractions decrease, 
indicating that longer residence times allow the water-gas shift 
reaction to reach equilibrium, thus improving hydrogen 
production and gasification efficiency (Cao et al., 2022). 

 

 
 (a) (b) (c) 

Fig. 2 The Normal Plot of Residuals and Outliers for (a) H2 Selective, (b) LHV, and (c) Gas Yield 

 

 

 (a) (b) (c) 
Fig. 3 Model Validation of RSM for (a) H2 Selectivity, (b) LHV, and (c) Gas Yield 
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Figure 5a illustrates the relationship between temperature 
and residence time on the LHV. At lower temperatures 
(approximately 350 to 410°C) and shorter residence times 
(around 20 to 40 minutes), the LHV tends to be lower. However, 
when the temperature is increased to the range of 410 to 500°C 
and the residence time is extended to approximately 70 to 80 
minutes, a significant increase in LHV is observed. This 
relationship is indirectly supported by findings related to 
gasification efficiency, suggesting that higher temperatures and 

longer residence times not only enhance gasification efficiency 
but also positively impact the LHV of the produced gas (Li et al., 
2018; Li et al., 2023). Figure 5b further elucidates that optimal 
LHV is achieved when both feed concentration and residence 
time are maintained at high values. Specifically, a feed 
concentration of approximately 20.4% and a residence time 
between 60 to 80 minutes result in gas with high LHV content. 
It is noteworthy that while high feed concentrations can reduce 
exergetic efficiency, thereby affecting LHV values, an 

 
 

      
 (a) (b) (c) 

 
Fig. 4 2D and 3D Contour Plots for H2 Selective Production Based on the Impact of (a) Residence Time and Feed Concentration, (b) 

Temperature and Feed Concentration, (c) Residence Time and Temperature 
 

 

 
 (a) (b) (c) 

Fig. 5 2D and 3D Contour Plots for LHV Concentration Based on the Impact of (a) Residence Time and Temperature, (b) Residence Time 
and Feed Concentration, (c) Feed Concentration and Temperature 
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appropriate combination of factors, such as residence time, is 
essential to achieve high LHV values (Zhang et al., 2019). 

Figure 5c the data demonstrates that increasing both 
temperature and feed concentration generally leads to an 
increase in LHV. At lower temperatures (around 350°C) and low 
feed concentrations (around 2%), the LHV is correspondingly 
low. However, as the temperature rises to approximately 500°C 
and the feed concentration increases to around 25%, the LHV 
increases significantly. The optimal combination for achieving 
the highest LHV is identified at a temperature of approximately 
500°C and a feed concentration of around 25%, where the LHV 
reaches its peak value of approximately 6 to 8 MJ/Nm³. The 
interaction between feed concentration and temperature plays 
a critical role in determining the efficiency of the gasification 
process and the resulting LHV, with higher temperatures 
generally enhancing exergetic efficiency (Zhang et al., 2019). 

Additionally, Figure 5 provides insights into various 
parameters affecting gas yield production, as depicted through 
2D and 3D curves. According to Figure 5a, at lower 
temperatures (around 350°C) and low feed concentrations 
(around 2%), gas yield production is low. Conversely, as the 
temperature increases to approximately 500°C and the feed 
concentration rises to around 25%, the total gas yield shows a 
significant increase. This indicates that both temperature and 
feed concentration have a substantial impact on gas yield 
production. Empirical studies have consistently demonstrated 
that higher temperatures can produce relatively high gas yields, 
and feed concentrations in the range of 15-20% also contribute 
to increased gas yield (Qiu et al., 2024; C. Yang et al., 2021). 

Figure 6a demonstrates that both temperature and 
residence time significantly impact total gas yield. At lower 
temperatures (around 350°C) and shorter residence times 
(around 20 minutes), the gas yield is low. However, as the 
temperature rises to approximately 500°C and the residence 
time extends to around 80 minutes, the total gas yield increases 
substantially. This suggests that a combination of higher 
temperature and longer residence time results in a higher total 
gas yield, as increased temperature promotes the reaction rate 

and the formation of hydrogen and methane, enhancing 
gasification efficiency and gas yield production (Zhao et al., 
2020; Li et al., 2023). Nevertheless, it is important to note that at 
certain temperatures and residence times, the gas yield may 
decline. Initially, increasing residence time can enhance gas 
yield, but excessively long residence times can decrease 
exergetic efficiency and gas production (Zhang et al., 2019). 

Figure 6c illustrates that increasing feed concentration and 
residence time significantly impacts total gas yield. At lower 
feed concentrations (around 2%) and shorter residence times 
(around 20 minutes), the gas yield is low. However, as the feed 
concentration increases to around 25% and the residence time 
extends to around 80 minutes, gas yield production significantly 
increases. 

The research findings reveal significant challenges in 
optimizing influential parameter values for supercritical water 
gasification (SCWG) to produce H2 selectivity, LHV, and gas 
yield, which are characteristics of syngas from the gasification 
process. To achieve optimal syngas characteristics, each 
variable requires careful optimization. Thus, Response Surface 
Methodology was used to ensure high H2 selectivity production 
within specific residence times and temperatures, as illustrated 
in Figure 7. The ramp function of the optimal solution achieves 
impressive results, with H2 selectivity, LHV, and gas yield 
values of 84.73%, 6.95 MJ/Nm³, and 29.7%, respectively. This 
figure visually demonstrates the contribution of each input 
variable: feed concentration, residence time, and temperature, 
toward the desired responses. It can be observed that both 
residence time and temperature exhibit steep response slopes, 
indicating their dominant influence in enhancing syngas 
characteristics, particularly H2 selectivity. In contrast, feed 
concentration has a relatively limited effect, as reflected in its 
gentler gradient across all response profiles. These findings 
confirm that temperature and residence time are the most 
critical factors in maximizing the SCWG performance, while 
feed concentration only plays a minor role unless combined 

 

 
 (a) (b) (c) 

Fig. 3 2D and 3D Contour Plots for Gas Yield Production Based on the Impact of (a) Residence Time and Temperature, (b) Residence Time 
and Feed Concentration, (c) Feed Concentration and Temperature 
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with elevated temperature and sufficient reaction time. The 
trends observed in the ramp function are also consistent with 
the surface plots presented in Figures 4-6, reinforcing the 
reliability of the optimization outcome. 

Therefore, careful attention must be given to optimizing the 
combination of process variables to achieve maximum 
efficiency as they directly affect the syngas characteristics 
produced. Based on the RSM optimization results, to reach the 

optimal result, a feed concentration of 2%, combined with 
temperature and residence time of 490-495°C and 80 minutes, 
respectively, is required. This study emphasizes the importance 
of meeting the input variables obtained from the optimization 
results to produce syngas characteristics rich in hydrogen. 
However, accurately determining SCWG process parameters 
becomes highly complex and requires validation through 
various methods. Additionally, factors such as biomass content, 

 

Fig. 4 Ramp function  of RSM Optimization 

 

 
 (a) (b) 

 
 (c) (d) 

Fig. 8 (a) ANN Regression Data, (b) Training State, (c) Validation Performance, (d) Error Histogram 
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pressure, and catalysts must be considered to develop the most 
effective SCWG process for producing hydrogen-rich syngas 
with a high LHV. 

3.2 ANN Modelling 

Artificial Neural Network (ANN) modelling is employed to 
determine the relationship between input and output variables. 
This analysis is conducted through several stages, including 
data collection, network development and configuration, 
initialization of weights and biases, training, and testing. The 
optimal selection of neurons is based on the maximum 
regression parameter (R) with the minimum Mean Square Error 
(MSE). This strategy is in line with the approach taken by 
Popoola et al. (2019), who stated that variations in the number 
of hidden neurons and the selection of training algorithms 
significantly affected the performance of the ANN model, where 
the best configuration gave an R-value of 0.99 and an RMSE of 
0.81 (Popoola et al., 2019). Similar optimization approaches 
were also observed in studies by (DEMİRBAY & 

KARAKULLUKÇU, 2020), where the use of 8 neurons in the 
hidden layer with a Bayesian-optimized backpropagation 
algorithm resulted in the lowest MSE and highest regression 
accuracy.  

In this study, the ANN model consists of three inputs, one 
hidden layer with five neurons, and three target outputs. A trial-
and-error method is used to achieve the optimal design, 
selecting the architecture with the lowest error (RMSE) and the 
best regression coefficient. The performance of each 
architecture is further evaluated using Mean Absolute Error 
(MAE) and Root Mean Square Error (RMSE), as defined in 
Equations (13) and (14), which quantify the average and squared 
deviations between predicted and actual values, respectively. 
This method of performance evaluation is widely adopted in 
various ANN applications, including environmental modeling 
and energy system forecasting, where MAE and RMSE are 

considered reliable indicators of prediction accuracy  (Córdoba 
et al., 2023; Farooq et al., 2022).  

Figure 1 illustrates the architecture of the observed artificial 
neural network. The difference between the model output and 
the desired data is known as the network error rate. The 
backpropagation algorithm enables neurons to learn new 
information during the testing phase by adjusting weights to 
reach the optimal point, significantly reducing the error value. 
The effectiveness of backpropagation in refining model 
accuracy has been validated in multiple studies, showing its 
ability to improve learning in both small and large datasets 
(Kavitha Mayilvaganan & Naidu, 2011).  

The results indicate that a regression coefficient value close 
to 1 result in a more accurate trendline. Figure 8a presents 
several regression coefficient models and comparisons between 
the regression and ANN models during training, testing, and 
overall results. In the training phase (Training: R=0.99968), a 
regression coefficient (R) value of 0.99968 suggests an almost 
perfect correlation between the model's predicted results and 
the target values, indicating excellent model performance. 
During testing (Test: R=0.92485), a regression coefficient (R) 
value of 0.92485 still indicates a strong correlation, though 
slightly lower than during training. The combined data (All: 
R=0.98469) shows a regression coefficient (R) value of 0.98469, 
demonstrating that the ANN model has very good and accurate 
predictive capability overall. This level of accuracy is consistent 
with the performance reported in similar ANN-based predictive 
models in energy, environmental, and materials science 
domains (Córdoba et al., 2023; Farooq et al., 2022). 

Figures 8b-d display the training state, ANN model 
performance, and error histogram results. The training state 
indicates that when the MSE of the validation sample increases, 
training automatically stops. Variations in the gradient 
coefficient are also observed due to the number of epochs. The 
error histogram shows the difference between target and 
prediction values after training, explaining various patterns of 

 
 (a) (b) (c) 

 
Fig. 9 Actual Values versus Correlation Values of ANN and RSM for (a) H2 Selective, (b) LHV, (c) Gas Yield 

 

 
(a)                             (b)                                                             (c) 

Fig. 5 Comparison of MOGA RSM, MOGA ANN, MOALO RSM, and MOALO ANN for (a) H2 Selective vs Gas Yield, (b) H2 Selective vs LHV, 
(c) Gas Yield vs LHV 
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expected levels and goals, with the performance graph 
illustrating the network's best validation efficiency. To predict 
the target data for H2 selectivity, LHV, and gas yield, the 
experimental equation model obtained based on Figure 8a is 
output = 1 * target + 0.069, with the performance plot in Figure 
8c, showing the training process stopping at 0.22582 at epoch 
63 within the allowed data range. 

Figure 9 illustrates the relationship graph of actual data 
with RSM and ANN values. Figures 9a-c show that both ANN 
and RSM can predict LHV values with good accuracy, with ANN 
demonstrating an advantage in terms of prediction accuracy 
and consistency. This advantage is likely due to the regression 
coefficient result with an R-value of 0.98. This high R2 value 
indicates that the ANN model can capture and replicate the 
fundamental relationships in the data with high fidelity, making 
its predictive values more accurate. This finding aligns with 
results from recent studies on gasification modeling. Umar et al. 
(2024) applied an ANN model with a 3–10–2 architecture for co-
gasification of oil palm biomass and reported that it significantly 
outperformed RSM, achieving R2 values above 0.95 and 
maintaining robustness across varying operating conditions 
(Umar et al., 2024). Similarly, Ramaswamy et al. (2023) 
demonstrated that ANN provided more accurate predictions of 
syngas composition particularly for H2 and CO during the 
gasification of Aegle Marmelos shell. Their analysis showed that 
ANN was better suited to capturing the influence of parameters 
such as moisture content and particle size due to its capability 
to represent nonlinear process dynamics (Ramaswamy et al., 
2025). These findings emphasize that ANN offers more reliable 
and generalizable performance than RSM when applied to 
thermochemical systems like gasification, where multiple input 
parameters interact in complex, nonlinear ways. 

3.3 MOGA and MOALO Optimization 

The analysis of the Multi-Objective Genetic Algorithm 
(MOGA) and Multi-Objective Ant Lion Optimization (MOALO) 
was conducted using MATLAB software to generate Pareto 
charts for three objective functions: H2 selectivity, LHV, and gas 
yield. The optimization process also utilized estimations derived 
from the Design of Experiments (DoE) in equations (17)-(19). 
These three objective values were then maximized to obtain 
hydrogen-rich syngas with a high LHV. Furthermore, the 
MOGA and MOALO analyses were performed based on 
estimations from an Artificial Neural Network (ANN). The input 
ranges for feed concentration, residence time, and reaction 
temperature were determined based on previous experimental 
data. The constructed network function demonstrated high 
accuracy in predicting H2 selectivity, LHV, and gas yield values. 
The function derived from the ANN was subsequently used as 
the fitness function in the optimization process. 

This approach is consistent with recent developments in 
syngas optimization using artificial intelligence. Rawat et al. 
(2024) demonstrated that integrating ANN with MOGA in a co-
pyrolysis system resulted in significantly higher hydrogen 
(54.5%) and methane yields compared to RSM-based 
optimization, emphasizing the superior capability of ANN-
MOGA in handling complex nonlinear interactions (Rawat et al., 
2024). Similarly, Ramaswamy et al. (2023) reported that ANN 
outperformed RSM in predicting syngas composition during 
biomass gasification, particularly in capturing the effects of 
moisture content and particle size (Ramaswamy et al., 2025). In 
another study, Abioye et al. (2024) compared the performance 
of ANN and RSM in co-gasifying palm oil decanter cake and 
alum sludge, concluding that ANN produced more reliable 

predictions with a coefficient of determination (R2) of 0.971 
(Abioye et al., 2024). 

Comparison of MOGA RSM, MOGA ANN, MOALO RSM, 
and MOALO ANN for each output variable, including (a)H2 
Selectivity vs. Gas Yield, (b) H2 Selectivity vs. LHV, and (c) Gas 
Yield vs. LHV, is presented in Figure 10. This figure illustrates 
the distribution of optimal solutions obtained from each method, 
where the plotted points represent the range of predicted values 
from the entire population of Pareto-optimal solutions ot only 
the final selected outputs. The optimization values generated 
through the Design of Experiments (DoE) equations are 
represented by MOGA RSM and MOALO RSM values. The 
Pareto chart reveals that the highest values achieved for H2 
selectivity, LHV, and gas yield are 100%, 31.50%, and 7.33 
Mj/Nm3 for MOGA RSM, respectively, and 100%, 27.53%, and 
6.78 Mj/Nm3 for MOALO RSM, respectively. The minimum 
values obtained from the optimization are 82.16%, 16.97%, and 
4.24 MJ/Nm3 for MOGA RSM, and 86.05%, 16.48%, and 4.17 
Mj/Nm3 for MOALO RSM, indicating that the optimization 
results via DoE equations fall within the same range. These 
results indicate that MOGA RSM outperforms MOALO RSM in 
maximizing gas yield and LHV, while MOALO RSM provides 
better H selectivity. 

Figure 10 also depicts the optimization values generated 
through the Artificial Neural Network (ANN) model using the 
Bayesian Regularization method, as indicated by the Pareto 
chart. Optimization using the MOGA ANN prediction model 
yielded maximum ideal values for H2 selectivity, LHV, and gas 
yield of 100%, 27.63%, and 6.73 Mj/Nm3, respectively, with the 
lowest optimization values being 70.17%, 15.09%, and 3.26 
Mj/Nm3, respectively. Similarly, the maximum ideal value 
MOALO ANN prediction model for H2 selectivity, LHV, and gas 
yield are 99.98%, 28.05%, and 6.72 Mj/Nm3, respectively, with 
the lowest optimization values being 69.89%, 15.33%, and 3.05 
Mj/Nm3, respectively.  

These results demonstrate that the MOALO and MOGA 
ANN prediction models have relatively similar value ranges. 
Overall, the distribution patterns in the Pareto charts reveal that 
ANN-based methods are more capable of reaching ultra-high 
H2 selectivity, while DoE-based methods, especially MOGA 
RSM, show a strength in optimizing gas yield and energy value 
(LHV), offering distinct advantages depending on the syngas 
performance target. 

The optimization values obtained using the TOPSIS method 
for MOGA and MOALO, generated through MATLAB software, 
and the optimization values for Response Surface Methodology 
(RSM) through Design Expert software, can be utilized to 

 

Fig. 6 3D plot MOGA RSM, MOGA ANN, MOALO ANN, MOALO 
RSM, and RSM Optimization 

 



B.A.Saputro et al  Int. J. Renew. Energy Dev 2025, 14(4), 629-645 

| 642 

 

ISSN: 2252-4940/© 2025. The Author(s). Published by CBIORE 

determine the optimal values for each optimization method. As 
depicted in Figure 11, which presents a 3D plot comparative 
analysis of various optimization methods such as MOGA RSM, 
MOALO RSM, MOGA ANN, MOALO ANN, and RSM 
optimization for the Supercritical Water Gasification (SCWG) 
process. The red spheres in the Pareto chart represent the 
optimization values of the MOGA RSM model, where the 
optimal point for this model is at an H2 selectivity of 82.16%, a 
Gas Yield of 31.50%, and an LHV of 7.33 MJ/Nm3. This 
indicates that the MOGA RSM method is highly effective in 
achieving high gas yields at high LHV values, with reasonably 
good H2 selectivity. The selection of this optimal point is 
suitable for applications prioritizing high gas production with 
adequate hydrogen efficiency. The MOGA ANN model, 
represented by blue spheres in the Pareto chart, shows the 
optimal point of this optimization model at an H2 selectivity of 
87.03%, a Gas Yield of 27.63%, and an LHV of 6.59 MJ/Nm3, 
indicating greater variability in H2 selectivity with similar LHV 
and gas yield values compared to MOGA RSM. 

The optimization values with the MOALO RSM model are 
represented by green spheres in Figure 11, where the ideal 
optimization point for this model is at an H2 selectivity of 
86.52%, a Gas Yield of 27.54%, and an LHV of 6.65 MJ/Nm3. 
For the MOALO ANN model, the ideal optimization point 
obtained is at an H2 selectivity of 88.69%, a Gas Yield of 28.06%, 
and an LHV of 6.61 MJ/Nm3. Overall, MOALO ANN is superior 
in maximizing the total gas yield and shows higher potential H2 
selectivity at some optimal points compared to MOALO RSM. 
However, MOALO RSM demonstrates more consistent H2 
selectivity. 

The RSM optimization method is represented by green 
stars, marking the optimal point achieved through RSM 
Optimization, indicating an H2 selectivity of 84.736%, a Gas 
Yield of 29.07%, and an LHV of 6.951 MJ/Nm3. This balance of 
results makes it optimal for applications requiring good overall 
performance. The selection of the optimization model depends 
on the application's priorities, whether it prioritizes high total 
gas yield or higher H2 selectivity. MOGA RSM excels in total gas 
yield, while MOALO ANN excels in H2 selectivity. RSM 
optimization shows a good balance between the two. 

Table 4 presents the results of each optimization method, 
focusing on factors such as feed concentration, residence time, 
and reaction temperature, as well as response variables 
including H2 selectivity, gas yield, and LHV. The parameter 
values fall within the ranges shown in Table 3, which includes 
actual data. Overall, based on the table, MOGA RSM excels in 
total gas yield, while MOALO ANN is superior in H2 selectivity. 
RSM optimization demonstrates a good balance between the 
two. By analyzing these optimal values, it is evident that each 
method offers distinct advantages depending on the specific 
goals of the application. For high total gas yield, MOGA RSM is 
the preferred choice. For high H2 selectivity, MOALO ANN is 

the most effective. For a balanced performance, RSM 
optimization is the optimal method. 

Although optimization results identified a feed 
concentration of 2 wt% as optimal for maximizing H2 selectivity, 
its application at the industrial scale poses practical challenges. 
The process requires handling highly diluted biomass at such 
low concentrations, leading to increased water usage, larger 
reactor volumes, and higher energy demand for pressurization 
and heating to supercritical conditions. These factors may 
significantly raise operational costs and affect the system's 
economic viability. Thus, while the 2 wt% condition is useful for 
determining theoretical performance limits, moderately higher 
concentrations (e.g., 5–15 wt%) may offer a more realistic 
balance between energy input and hydrogen yield in practical 
applications. 

Regarding the optimization methods, the choice between 
MOGA and MOALO should align with the objectives of the 
optimization task. MOGA demonstrated faster convergence and 
broader solution diversity, making it suitable for early-stage 
design and sensitivity analysis. In contrast, MOALO showed 
better performance in avoiding local optima and achieved 
slightly higher H2 selectivity, suggesting its advantage in later-
stage process refinement where precision is critical. 

Future research should integrate these optimization findings 
with techno-economic assessments and process simulation to 
ensure industrial relevance. Aspen Plus or SuperPro Designer 
can support detailed evaluations of energy use, heat integration, 
and utility requirements. Additionally, incorporating life-cycle 
assessment (LCA) and cost-benefit analysis would offer valuable 
insights into environmental and economic trade-offs, facilitating 
the transition of SCWG from conceptual research to 
commercially feasible solutions. 

4. Conclusion 

This study integrates Response Surface Methodology 
(RSM), Artificial Neural Networks (ANN), and Multi-Objective 
Genetic Algorithm Optimization (MOGA) to optimize the 
Supercritical Water Gasification (SCWG) process for producing 
hydrogen-rich syngas from solid waste. The results demonstrate 
that the MOGA RSM approach achieves optimal values with an 
H2 selectivity of 82.16%, a gas yield of 31.50%, and an LHV of 
7.33 MJ/Nm³, making it highly effective for applications 
requiring high gas yields at high LHV values. Conversely, the 
MOGA ANN model shows optimal values with an H2 selectivity 
of 87.03%, a gas yield of 27.63%, and an LHV of 6.59 MJ/Nm³, 
indicating greater variability in H2 selectivity with similar LHV 
and gas yield values compared to MOGA RSM. MOALO RSM 
achieves ideal optimization values with an H2 selectivity of 
86.52%, a gas yield of 27.54%, and an LHV of 6.66 MJ/Nm³, 
demonstrating good consistency in H2 selectivity. Meanwhile, 
the MOALO ANN model excels in maximizing gas yield with 

Table 4 
Comparison of the optimal value results from each model 

Optimization Method Feed Conosentration (wt%) 
Residence 
Time (s) 

Temperature 
Reaction (C) 

H2 Selective (%) Gas yield (%) LHV (Mj/Nm) 

MOGA RSM 2 80 500 82.16 31.5 7.33 

MOGA ANN 2.27 58.63 499.89 87.03 27.63 6.59 

MOALO RSM 2 76.28 491.06 86.52 27.54 6.65 

MOALO ANN 2.01 50.22 500 88.69 28.05 6.61 

RSM Optimization 2 80 494.13 84.736 29.07 6.951 
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optimal values of H2 selectivity at 88.69%, a gas yield of 28.06%, 
and an LHV of 6.61 MJ/Nm³, showing higher potential H2 
selectivity at some optimal points compared to MOALO RSM. 
The RSM optimization method provides a balanced 
performance with optimal values of H2 selectivity at 84.736%, a 
gas yield of 29.07%, and an LHV of 6.951 MJ/Nm³, making it 
suitable for applications requiring good overall performance. 

Key factors influencing hydrogen production include 
reaction temperature and residence time, where higher 
temperatures and longer residence times generally enhance 
hydrogen yield. Feed concentration must be carefully balanced 
to optimize syngas output and energy efficiency, as higher 
concentrations can reduce hydrogen yield. ANN models 
provided highly accurate predictions with R² values exceeding 
0.95, validating their effectiveness for predictive analysis in the 
SCWG process. Both MOGA and MOALO algorithms effectively 
identified optimal process parameters, illustrated through 
Pareto charts, highlighting trade-offs between H2 selectivity, 
gas yield, and LHV. The TOPSIS method was employed to rank 
the optimal solutions generated by MOGA and MOALO, 
providing a clear methodology to select the best alternative 
based on proximity to the ideal solution. 

The combined use of RSM, ANN, and MOGA/MOALO 
offers a robust framework for optimizing SCWG processes. 
While the predictive models demonstrated strong performance 
with R² values exceeding 0.95, further validation using 
independent datasets or pilot-scale experimentation is 
recommended to improve the robustness and applicability of 
the proposed models. The integration of response surface plots, 
regression models, and Pareto-based optimization contributes 
to improved interpretability by illustrating parameter 
interactions and trade-offs across multiple objectives. The 
optimized conditions, particularly those achieving high 
hydrogen selectivity and elevated LHV, provide a practical 
reference for industrial SCWG system development. Future 
studies should incorporate techno-economic analysis and 
environmental impact assessments to evaluate the broader 
feasibility and sustainability of this approach. 
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