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Abstract. This work investigates synthesizing activated carbon obtained from rubber seed shells utilizing several activating agents (KOH, CaCl2, and 
ZnCl2) for supercapacitor applications. Activated carbon was produced from a rubber seed shell using hydrothermal carbonization at  275 °C for 60 
minutes and a 120-minute activation treatment at 800 °C. Various activating agents pronounced impacted the pore architecture, surface area, 
crystallinity, and level of graphitization, which collectively determined the electrochemical characteristics of the resulting materials. Incorporating 
activation agents enhances the specific surface area and influences the extent of graphitization of activated carbon. The specific surface area of 
activated carbon products ranges from 367 to 735.2 m² g⁻¹. Further investigation through electrochemical analysis, conducted with a carefully 
engineered two-electrode system, demonstrated a peak electrode capacitance value of 246 F g-1 at 50 mA g-1 for an ACZn-based supercapacitor. 
Supercapacitor cells’ energy and power densities reached significant levels, measuring 5.47 Wh kg-1 and 246 W kg-1, respectively. The RSS-derived 
activated carbon-based supercapacitor exhibited remarkable longevity in a 5000-cycle test, with consistent capacitance retention and coulombic 
efficiency of 100.11% and 100%, respectively. This work presents a sustainable pathway for producing activated carbon electrodes, contributing to 
the global circular economy and demonstrating considerable industrial potential. 
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1.  Introduction 

Renewable energy is currently at the forefront of research 
trends due to the world’s extreme energy needs and ecological 
considerations. Efficient energy storage systems are crucial to 
optimize the utilization of renewable energy sources. Presently 
available energy storage technologies, including lithium-ion 
batteries (LIBs), are confronted with issues related to their 
modest power density and sluggish charging and discharging 
pace (Simon & Gogotsi, 2020). As a result, developing a unique 
energy storage technology is critical and continues to be a 
significant issue. Supercapacitors (SCs) are widely favored for 
energy storage because they offer rapid energy discharge, high 
power density, and exceptional cycling durability as opposed to 
batteries. Supercapacitors are also recognized for their effective 
performance across a broad temperature range. However, their 
primary drawback is their relatively low energy density 
(Gunasekaran et al., 2021). 

The performance characteristics of all three supercapacitor 
variants—double-layer capacitors (DLCs), pseudocapacitors, 
and hybrid capacitors—are intricately governed by a confluence 
of factors, including the specific surface area, pore morphology, 
electronic conductivity, and the exterior chemical of material’s 
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electrode. These attributes collectively dictate the charge 
storage mechanisms, ion accessibility, and overall 
electrochemical behavior, thereby influencing the efficiency and 
energy density of the devices (Zhao & Burke, 2021). 

Electrode materials with extensive surface areas and 
optimal pore structures can store charge, while excellent 
electrical conductivity enhances the movement of charges 
across the electrolyte and electrode contact. Faradaic redox 
reactions are enabled by heteroatoms and surface functional 
groups and thus increase capacitance (Abdul et al., 2021; 
Veeman et al., 2021). The primary goal is to create electrode 
materials with the best matching ability to store and transport 
charges. Carbon material-based supercapacitor electrodes have 
recently been reported as potential candidates because of their 
high surface area, porosity, electrical conductivity, and surface 
functions. This characteristic is because a lot of effort has been 
put into the development of supercapacitor electrodes based on 
activated carbons from biomass since these can be both 
economical and sustainable in the long run (Dujearic-Stephane 
et al., 2021; Lawtae & Tangsathitkulchai, 2021). 

With a diverse range of rubber agricultural by-products, 
seed shells are potentially utilized as precursors for synthesizing 
activated carbon (AC). Rubber seed shells (RSS) comprise 72% 
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cellulose, 25% hemicellulose, and 3.0% lignin (Kanjana et al., 
2021). Due to their low cost and year-round availability, biomass 
resources are excellent precursors for activated carbon 
production and other biomass processing applications. The 
preliminary stage in the biomass valorization chain is the drying 
process. This process is a critical step to mitigate storage and 
transportation expenses and improve the efficiency of 
subsequent operations, including carbonization and pyrolysis. 
The mechanisms underlying drying encompass the diffusion of 
bound moisture alongside the material transport of free water at 
controlled temperatures. The moisture content must remain 
below 10% to ensure optimal processing conditions (Rustamaji 
et al., 2023; Yu et al., 2021). 

 This has been accompanied by an increased interest in 
biomass utilization on a global scale. The standard industrial 
practice of producing activated carbon (AC) is a direct-fired 
rotary dryer that uses a furnace to burn natural gas as fuel 
(Abdul et al., 2021). The next crucial stage following the drying 
process is activation. Physical and chemical activation methods 
are mainly used to transform natural waste into activated 
carbon. Physical activation generally occurs by heating the AC 
precursor in a continuous stream of steam or gases (Abdel 
Maksoud et al., 2021; Das & Verma, 2019). 
 Wood and plant-based materials undergo a process where 
they are chemically treated with substances, like zinc chloride 
and potassium hydroxide, under temperatures and pressures to 
activate them for purposes. This activation process creates 
pores in these materials while controlling their size distribution 
effectively. Moreover, these treated materials can also be used 
in a self-activation method where cations, from activating 
chemicals, get embedded into the material during a 
carbonization process involving water and heat (Abdel 
Maksoud et al., 2021). This phenomenon is when porous 
activated carbon products are formed due to physical activation 
at high temperatures. In addition, such substances are usually 
employed as electrolytes, which leads to the fact that the pore 
widths of the activated carbons are equal to the radii of the ions, 
which enhances charge storage and transfer (Cheng et al., 2020; 
Tagaya et al., 2020). 
  The present work focuses on preparing activated carbons 
from rubber seed shells (RSS) for supercapacitors using KOH, 
ZnCl₂, and CaCl₂ activation methods after hydrothermal 
carbonization (HTC) and pyrolysis activation. However, despite 
many attempts to prepare activated carbons from these 
feedstocks, no specific attention has been paid to rubber seed 
shells or the comparison of the three activating agents (KOH, 
ZnCl₂, and CaCl₂) through HTC regarding their application in 
supercapacitors (Han et al., 2020; Mostazo-López et al., 2019). 
 Furthermore, the current work is the first to optimize the 
two-step processing of rubber seed shells (RSS) for producing 
supercapacitors using three different activating agents. 
Hydrothermal carbonization (HTC) was performed at 275 
degrees Celsius to carbonize rubber seed shells. Pyrolysis 
followed this process in a nitrogen environment at 800 degrees 
Celsius. Investigations were also conducted into the 
physicochemical features of the activated carbon system and 
the electrochemical properties of the activated carbon 
compounds when they were used as electrodes for 
supercapacitors. 
 
2.  Materials and Methods 

2.1 Synthesis of activated carbon 

` The generation of activated carbons (ACs) from rubber 
seed shells (RSS) is investigated in this study. Several different 

substances were used to investigate the activation agents. The 
activation agents that were used in the investigation include 
Calcium Chloride (CaCl2, Merck, 99.5% wt), Zinc Chloride 
(ZnCl2, Merck, 99.5% wt) and Potassium Hydroxide (KOH, 
Merck, 99.5% wt). Hydrogen chloride acid (HCl, Merck, 37% 
vol) was used to rinse the activated carbon products after they 
had been processed. 

The compounds were procured from Merck in analytical 
grade and did not require additional treatment. Demineralized 
water provided uniformity throughout the experiment. The 
biomass was subjected to a thorough cleaning and drying 
procedure. The materials underwent size reduction by 
combining cutting and grinding methods, resulting in a 
consistent particle size of 250 micrometers. In hydrothermal 
carbonization, each biomass type was carefully mixed with a 
solution of activating chemicals, prepared at half biomass mass 
ratios. The resultant mixes were enclosed in a sealed stainless 
reactor and exposed to thermal processing at 275 °C for 1 hour 
(Rustamaji et al., 2023). 

After the hydrothermal treatment, the resultant hydrochars 
were thoroughly washed to remove any leftover potassium ions 
clinging to their surfaces. Thereafter, they were desiccated at a 
controlled temperature of 60 °C overnight. The third step 
involved physical activation, achieved by exposing the 
hydrochars to a temperature of 800 °C for 2 hours in a nitrogen 
stream environment, with an adjusted thermal rate of 10°C min-

1. The synthesized ACs were subjected to a 10% hydrochloric 
acid solution for one hour. This was succeeded by extensive 
rinsing with demineralized water to achieve a 5-6 pH. The 
products were dried overnight at 105°C, cooled, and placed in 
a desiccator for the next investigation (Rustamaji et al., 2022). 
To enable effective identification, the ACs were assigned based 
on a nomenclature scheme that incorporates the biomass 
source and the activating agent utilized, maintaining a biomass 
ratio of 1:2. Activated carbons produced with KOH, CaCl2, 
ZnCl2, or in their unmodified state are referred to as ACK, ACCa, 
ACZn, and ACO, respectively. 

. 
2.2 Physical characterization 

 The scanning electron microscopy coupled with energy-
dispersive X-ray spectroscopy (SEM-EDS) method (Zeiss, 
MERLIN Compact-Oxford, Aztec ED) was utilized to investigate 
the morphological characteristics and atomic composition of 
the activated carbons that were brought into existence. To 
assess the surface functionality of a BRUKER Tensor 27, Fourier 
Transform Infrared Spectroscopy (FTIR) was employed, with 
the scan range extending from 4500 to 550 cm⁻¹. Raman 
spectroscopy (XploRA PLUS Raman, HORIBA) was performed 
using a 532 nm laser wavelength. At the same time, X-ray 
diffraction spectrometry (XRD, Bruker) employed Cu K-α 
radiation (λ = 1.5406 Å) to analyze the crystalline structure of 
the materials. The surface characteristics of the porous carbon 
materials were assessed with a porosimetry analyzer 
(Quantachrom Instruments, USA), applying the Brunauer-
Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) 
methodologies. 
 
2.3 Fabrication of supercapacitor and electrochemical 

characterization 
 

Researchers developed an electrode utilizing activated carbon, 
enhanced with a 10% weight fraction of PVDF adhesive. The 
composite was dispersed in ethanol and subjected to 
ultrasonication employment for 25 minutes. The dried 
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composite was carefully pelletized to a total weight of 0.2 g 
under pressures ranging from 7 to 10 MPa. The technique 
produced a CR2302 size coin cell with a load of 2.3 mg cm-2 and 
bicircular electrodes. The 6 M KOH solution approximately 3 ml 
was dripped onto the surface of the two electrodes until was 
absorbed into the electrode pores. Then, the two electrodes are 
separated with Whatman filter paper, which has also been 
dripped with electrolytes. After all the components of the coin 
cell are arranged, they are pressed using a crimping machine. 
The coin cell is placed in a cell holder with positive and negative 
poles and is ready to be tested (Rustamaji et al., 2022). 
  To conduct a comprehensive investigation of the 
electrochemical properties, a Gamry ZRA galvanostat was 
utilized in conjunction with two electrode systems to measure 
the working and counter electrodes. Given this, the 
galvanostatic charge-discharge (GCD) experiments that were 
carried out for this investigation were carried out at current 
densities ranging from 30 to 100 milliamperes. The cyclic 
voltammetry (CV) measurements were performed with high 
accuracy, and the scan rate was varied from 4 to 12 millivolts 
per second. The electrochemical impedance spectroscopy (EIS) 
was done carefully over a frequency of 0.01–100,000 Hz. 
Furthermore, a full charge-discharge study of 5000 cycles was 
carried out to assess the system’s lifespan. With the help of 
Equation (1), we could also determine the specific capacitance 
of the cell denoted by Ccell  (Dujearic-Stephane et al., 2021). 

𝐶𝑐𝑒𝑙𝑙 =
𝐼 ∆𝑡

𝑚 ∆𝑉
  

(1) 

            𝐶𝑠𝑝 = 4𝐶𝑐𝑒𝑙𝑙  (2) 
 

For the capacitance of the cell, Ccell, the capacitance, C (F g −1), 
the total load of the symmetrical electrode, m (g), and the 
current, I (A), of the cell, Equation 2 was used. Equations (3) and 
(4) were employed to determine energy and power per unit 
mass (Ecell in Wh kg −1, Pcell in W kg−1) from charge-discharge 
measurement, using equations (3) and (4)  (Wu et al., 2020). 
 

𝐸𝑐𝑒𝑙𝑙 =
1

2

𝐶𝑐𝑒𝑙𝑙  ∆𝑉2

3.6
 (3) 

𝑃𝑐𝑒𝑙𝑙 =
3600 𝐸𝑐𝑒𝑙𝑙

∆𝑡
 (4) 

∆t & ∆V represent period (s) and voltage (V) during the charge 
release process. 

 
3. Results and Discussion 

3.1 Physical properties 

 The surface morphology of activated carbon that was 
created from RSS using various activation chemicals was 
studied through scanning electron microscopy, and the images 
obtained are displayed in Figure 1. The surface structures of any 
product are chaotic and uneven. The surface of AC0 synthesized 
without an activating agent exhibits some rounded properties 
and a less defined pore structure (Figure 1a). All AC samples 
exhibit well-developed porous structures upon the addition of 
activating agents. The surface of ACCa (Figure 1c) shows a 
porous nature with structural voids. In contrast, the surface of 
ACK (Figure 1b) displays a pore architecture characterized by 
interconnected pore clusters of the modified activated carbon. 
The influence of activating agents on morphological structure. 

The SEM micrographs indicate that the activating agents’ 
efficacy in enhancing biomass porosity is ACZn > ACK > ACCa 
> AC0. The shape, especially the existence of cavities, is 
essential for energy storage, as these cavities facilitate the 
retention of electrolyte ions. The construction of a few uneven 
cavities on the material exterior is associated with the thermal 

 
 
Fig. 1. Scanned electron microscopy of the (a) AC0, (b) ACK, (c) 
ACCa, and (d) ACZn. 

 

 

 
Fig. 2. (a) EDS examining the atomic composition and (b) IR 
spectrum of all synthesized activated carbon. 
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degradation of lignocellulosic materials, resulting in the 
evaporation of volatile chemicals and the development of new 
pores (Cheng et al., 2020; Wang et al., 2020). 

Energy-dispersive X-ray spectroscopy (EDS) was utilized to 
examine a qualitative of the elemental fraction of the activated 
carbon (AC) surface. The EDS outcome indicated that the AC 
samples primarily comprised carbon and oxygen. At the same 
time, trace elements constituted less than 5%, as demonstrated 
in Figure 2a. Figure 2a indicates that incorporating an activating 
agent elevates carbon concentration while diminishing oxygen 
levels. Introducing an activating agent promotes the removal of 
hydrogen and oxygen from the precursor material, leading to a 
minimal loss of volatile substances and tars; hence, a 
comparatively high reaction yield is achieved. 

The functional groups of the produced activated carbons 
were examined utilizing the FTIR technique. Figure 2b 
illustrates that the FITR spectra of activated carbons are 
analogous, demonstrating various functional groups typically 
present in activated carbon (Shabik et al., 2020). We focus on 
heteroatom-containing functional groups, recognized for their 
impact on the electrostatic characteristics of the produced 
porous carbon. The vibrational frequencies for the AC 
framework are as follows: OH extending (about 3429 cm⁻¹), CH 
extending (approximately 2920 cm⁻¹), C=O stretching 
(approximately 2372 cm⁻¹), CH extending (approximately 2331 
cm⁻¹), C-C extending (approximately 1582 cm⁻¹). C-O 
extending (approximately 1132 cm⁻¹).  
 The activated carbon surface may exhibit diverse 
functional groups, encompassing aromatic rings, primary 
alcohols, phenolic compounds, and carboxylic acids, each 
contributing to its chemical reactivity and interaction 
properties. Electrode materials loaded with heteroatoms 
enhance charge transfer and capacitance in aqueous 
electrolytes, rendering them optimal for supercapacitor 
applications, although there is none in this instance 
(Gopalakrishnan & Badhulika, 2020; Lin et al., 2021). 

Figure 3a illustrates the XRD studies of pure and porous 
carbon products utilizing different activating agents. The XRD 
appearances in every example show a prominent peak (002) at 
2θ = 26° and a subtle band (100) at 2θ = 43°. The diffraction 
band corresponds to hexagonal carbon, as per JCPDS standard 
no. 41-1487 (Han et al., 2020). The prominent peak at (002) 
indicates amorphous carbon post-activation, whereas the 
decline at 100 signifies graphitic carbon. As an additional point 
of interest, the crystallinity percentages of AC0, ACK, ACCa, 
and ACZn products were 19.3%, 21.8%, 16.2%, and 21.7%. A 
higher proportion of crystallinity is correlated with activating 
substances, as this figure highlights the correlation. 
 The activated carbon’s chemical characteristics 
underwent a comprehensive analysis through Raman 
spectroscopy, with the resulting spectra illustrated in Figure 3b. 
The notable peaks identified at 1330 cm⁻¹ and 1560 cm⁻¹ act as 
markers for the evolution of sp² hybridization within the carbon 
framework. The peak observed at 1330 cm⁻¹, known as the D 
band (ID), is attributed to the A₁g mode of blowing in a ring and 
indicates the presence of structural flaws and irregularities 
within the material. On the other hand, the peak observed at 
around 1560 cm⁻¹, referred to as the G band (IG), is linked to the 
E₂g vibrational mode, which is related to the sp² vibrational 
mode exhibiting two degenerate forms (Cheng et al., 2020; Deng 
et al., 2020). 
 According to Tuinstra and Koenig’s law, the proportion of 
ID/IG indicates the degree of graphitization in graphitic carbons. 
A lower ID/IG ratio indicates improved graphitization (De et al., 
2020). Figure 3b presents the ID/IG ratios from all ACs for 

comparison analysis. The degree of graphitization for activated 
carbons obtained with various activating agents differs.  
 The KOH, CaCl2, and ZnCl2 self-activation methods 
enhance porosity in the activated carbon structure and increase 
the material’s disorder. Incorporating an activating agent in 
producing biomass-derived-activated carbon enhances the 
impact of faults. The D peak’s intensity escalates with an 
increase of faults, whilst the G peak’s intensity diminishes, 
lowering the degree of graphitization (Nanda & Badhulika, 2022). 
Nonetheless, ACZn demonstrates the greatest extent of 
graphitization among RSS-derived activated carbons. Using 
CaCl2 and ZnCl2 enhances both porosity and graphitization in 
rubber seed shells. This atypical behavior will be further 
examined in the future.  
 The porosity of the activated carbon specimens was 
investigated through the physical adsorption of nitrogen. 
Porosity can generally be sorted according to the size and 
accessibility of their pores, with open pores being distinguished 
from closed ones. Figure 4 displays each activated carbon’s 
equilibrium values for adsorpting and adding nitrogen. Each 
sample demonstrated a type-IV isotherm, as categorized by 
IUPAC, characterized by a pronounced hysteresis loop within 
the pressure span of 0.11–0.98 P/P₀, indicative of a mesoporous 
structure (Mei et al., 2018). Notably, the quantity of nitrogen 
adsorbed at a P/P₀ value of 0.97 showed a marked higher, 

 

Fig. 3. (a) X-ray diffraction (XRD) characteristics of the activated 
carbon materials and (b) the Raman spectral profile of the product. 
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particularly in samples activated with KOH and ZnCl₂, 
suggesting the presence of significant voids and/or mesopores 
within the material. 
 Figure 4a demonstrates a gradual reduction in the volume 
of nitrogen adsorbed with the addition of activating agents. The 
pore diameter profile analysis presented in Figure 4b 
corroborates the characteristics of the porous activated carbon, 
revealing specimens with pore sizes varying around 1.6 to 10 
nm. Notably, some specimens illustrated in Figure 4b exhibited 
a pore diameter profile characterized by slim peaks within the 
1.6 to 4.1 nm span, thereby under the significant impact of the 
activating agents on the pore architecture (Yadav et al., 2021). 
 Table 1 delineates the Brunauer-Emmett-Teller surface 
area (SBET) alongside the porosity properties of the activated 
carbon. According to Table 1, the RSS-derived activated carbon 
activated with KOH exhibits the largest surface area of 735.2 m2 
g-1. After thermal treatment, ZnCl₂ and CaCl₂ significantly 
dehydrate lignocellulosic components (Prakoso et al., 2022).The 
precursor’s dehydration decreases particle size; however, this 
reduction is partially mitigated as the reactant stays enclosed 
during thermal treatment, serving as a template for porosity 
formation. 
 The proposed mechanism for porosity formation by salt-
activating agents (ZnCl2 and CaCl2) is attributed to the voids left 
by the activating agent during the in-cleaning process. This idea 
relies on the opposites of the volumes of ZnCl2 or CaCl2 with the 
resultant micropore and mesopore volumes from the 
synthesized activated carbons. Only micropores are being 
formed, with mesoporous volume according to the reactant 
volume, indicating the template behavior of the activating agent.  
 The diminutive dimensions of the activating chemical 
molecule or its hydrates may elucidate the uniform and minute 
size of the resultant micropores. At elevated concentrations of 
the activating agent, where the growth of mesoporosity is 
significant, a discrepancy arises between the volumes, with the 
pore volume being less than that of the activating agent. The 
nature of this phenomenon has been clarified by asserting the 
intense assault on the unaltered material by the activating 
substance (Ouyang et al., 2019; Zhang et al., 2019). 
 KOH does not function as a dehydrating agent for the 
precursor. The chemical activation process that uses 
hydroxides involves removing carbon atoms from the carbon 
matrix and transforming them into inorganic compounds, such 
as carbonates. Simultaneously, a secondary mechanism unfolds 
in which metal atoms, produced through hydroxide reduction, 
are thought to intercalate between the graphene layers of the 
residual carbon, potentially enhancing the overall activation 
process (Hamza et al., 2022). The activating agents initiate this 
reaction at temperatures surpassing 700 °C, and the hydroxide 
activation, as previously established, is characterized as a solid-
liquid reaction, which is believed to progress according to the 
stoichiometric Equation (Kanjana et al., 2021):  
 

6 KOH + 2C → 2K + 3H2 + 2K2CO3 
 
 
3.2. Electrochemical analysis 
 

The electrochemistry behavior of all activated carbon was 
meticulously examined within a symmetrical electrode 
arrangement. CV characterization seeks to ascertain the 
supercapacitor’s properties and capacitance worth. Figure 5a 
illustrates the cyclic voltammetry analysis of supercapacitors 
constructed from activated carbon generated from RSS, both 
with and without the activating agent, at a pace of scanning of 4 
mV s-1.  

The voltammogram for ACZn-based supercapacitor cell 
approximates a quasi-rectangular shape devoid of redox 
phenomena. In their study, Wang et al. (2019) found that the 
ideal rectangular shape of the cyclic voltammogram is an 
indication of electric double-layer capacitance in which the 
adsorption of several ions on the surface of the electrode is the 
rate-determining step and is controlled by the diffusion rate of 
the electrolyte. As a further point of interest, the sample curves 
for ACK and ACCa are almost rectangular. 
   In their paper, Wolff et al. (2018) pointed out that the 
shape of the AC0 sample is a slanted trapezium, which indicates 
high rate capability, small IR drop, and high power. Since the 
ACZn material has the largest enclosed area among all the 
materials, it can be deduced that it has the highest capacitance. 
The cyclic voltammetry curve of AC0, ACK, ACCa, and ACZn 

Table 1.  
Porosity properties of RSS-based-porous carbon synthesized using 
various activating agents. 

Sample SBET (m² g-1) Dap (m² g-1) Vtt (cm3 g-1) 

AC0 367.0 2.8 0.5 

ACK 735.2 1.6 0.8 

ACCa 418.0 2.3 0.3 

ACZn 641.5 1.7 0.6 

    

D ap: average pore diameter, Vtt: total pore volume  
 

 
Fig. 4. The sample’s distinctive (a) nitrogen adsorption-desorption 

isotherm and (b) pore size distribution profile. 
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is presented at various scan rates (4–12 mV s−1), as shown in 
Figure 5b–e.  
  There is a positive correlation between increased scan 
rate and a clearer parallelogram shape formation in the cyclic 
voltammogram of all the samples that did not exhibit redox 
bursts. It is a signature of the absence of pseudocapacitive 
behavior, and therefore, the optimum performance is achieved 
(Mei et al., 2020). Capacitive features are suitable for the cyclic 
voltammogram when the scan rate is decreased. However, 
these ideal qualities are accompanied by disadvantages, such as 
increasing the scan rate and decreasing the capacitive behavior 
and features. This common phenomenon in activated carbon 
electrodes is ascribed to the restricted transport of ions and 
sorption in the narrow pores of large-grain materials at high 
scan rates. This leads to decreased specific capacitance (Zhou 
et al., 2023).  

 The capacitance drop is ascribed to the barriers for ion 
transfer out of the solution to the electrode superficies, which 
block mainly the electrode pores at higher scan rates (Wang et 
al., 2019). The high specific surface area and the high extent of 
mesoporous structure enhance the ion adsorption into the 
active sites. The impact of the variation of the scan rate (4–12 
mV s−1) on the CV curve shape is also different for each sample 
and is shown in Figure 5b–e. 
   The Galvanostatic charge-discharge curve, or the GCD 
curve, is a tool that gives an idea of the potential of the 
supercapacitor cells tested under constant current conditions.   
The potential was measured during charge and discharge, and 
GCD studies were performed at 30, 50, 70, and 100 milliamperes 
applied currents. The curves of the specimens in Figure 6 have 
a low voltage drop and symmetrical triangular shape, as 
suggested by Liu et al. (2016). These are characteristics of 
carbon-based supercapacitor cells. 

 

  

 
 

 

 
 
 
 
 
 
 
 
Fig. 5. Supercapacitor cells’ cyclic voltammetry (CV) curves 

demonstrate their performance. a) All of the samples have 
been scanned at a rate of 2 millivolts per second, b) AC0, c) 
ACK, d) ACCa, and e) ACZn. 
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 Previous research has also demonstrated that a low 
potential is a good predictor of the good power characteristics 
of the supercapacitor cell (Hasegawa et al., 2015). According to 
Bokhari et al.’s research from 2020, the GCD curve is used to 
establish the charging voltage compatible with the 
supercapacitor cells. According to Figure 6, the optimal 
potential for a single supercapacitor cell is observed to be 

between 0.9 and 1.0 volts, which is the normal operating voltage 
of the cell. 
 Simulating the performance of the supercapacitor, Eqs. (3) 
and (4) were used; the findings are displayed in Table 2. The 
energy density was a minimum of 3.2 Wh kg-1 for AC0 and a 
maximum of 5.5 Wh kg-1 for ACZn. In addition, the power 
density was also the highest for ACZn with 246 W kg-1

, and the 
lowest for AC0 with 134 W kg-1. Hence, the specific capacitance 
of the ACZn-based activated carbon was counted to be 267 F g-

1. These findings indicate that incorporating an activating agent 
in the synthesis of activated carbon greatly improves energy 
density and power output, scribed to the increased surface area 
and enhanced electrical conductivity of the activated carbon  
(Lemartinel et al., 2022). 
 A high degree of graphitization guarantees superior 
conductivity in electrode materials. Nevertheless, the 
augmentation of sp2 interaction between different types of 

Table 2. 
Capacitance, energy, and power density of supercapacitor at 25 
mA g-1. 

Sample 
Ccell  
(F g-1) 

Csp 

(F g-1) 
Ecell  
(Wh kg-1) 

Pcell  
(W kg-1) 

AC0 35.6 142.5 3.2 134.1 

ACK 53.7 215.0 4.8 191.1 

ACCa 47.5 190.0 3.7 157.2 

ACZn 61.5 246.0 5.5 246.0 

 

  

  

 

 
 
 
 
 
 
 
 
 
 
 
Fig. 6. GCD curve of supercapacitor. (a) All specimens at 30 mA, (b) 

AC0, (c) ACK, (d) ACCa, and (e) ACZn. 
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carbon may inadvertently result in detrimental porosity, 
diminishing its ability to store charges and its particular surface 
area (Zhang et al., 2022). Therefore, the material’s charge 
transport and storage properties must be in a substantial state 
of balance. The rationale effectively elucidates the greatest Csp 
value (246 F g-1) attributed to ACZn, which possesses a greater 
degree of graphitization (low ID/IG ratio) and a significantly 
lower surface area than ACK. The exceptionally small pore size 
distribution contributes to the elevated Csp value of ACZn.  
 Figure 7 illustrates the Ragone plot, showcasing the cell’s 
energy and power densities. According to this research, 
activated carbon with a mesoporous framework and an ordered 
pore architecture holds significant potential for enhancing 
energy density, owing to the synergistic effects of tailored pore 
distribution and improved electrochemical performance. 

An extensive endurance evaluation of the ACZn electrode 
was performed, encompassing 5000 charge-discharge cycles 
within a voltage window of 0−0.9 V at a specific current 80 mA 
g⁻¹. The corresponding outcome is depicted in Fig. 8. Notably, 
the capacitance (Csp) exhibited an initial increment of 
approximately 0.11% over the first 1000 cycles, achieving a 
capacitance retention of 100.11%. By the 1000th cycle, the Csp 
values stabilized at 100%, and this retention level was 
remarkably high for the remaining 5000 cycles. These findings 
highlight the exceptional electrochemical stability of the 
electrode. 

 EIS, which stands for electrochemical impedance 
spectroscopy, was utilized to explore the interfacial dynamics at 
the interface between the electrolyte and the electrode 
(Vicentini et al., 2021). Figure 9 gives the EIS data of the 
electrodes AC0, ACK, ACCa, and ACZn. This is something that 
can be observed at a glance. Based on the data that was 
collected, it was found that the electrolyte resistance (Rs) of 
AC0, ACK, ACCa, and ACZn were, respectively, 1.6, 1.0, 1.3, 
and 1.4 ohms. According to the findings, the values of the 
semicircular charge transfer resistance (Rct) were 4.0, 0.5, 0.6, 
and 0.4 ohms, and the Warburg impedance (Rw) values were 0.6, 
0.6, 1.0, and 0.7 ohms, respectively. 
   The differences in electrolyte resistance at the electrode 
are influenced by the type of activation agent used, whereas the 
charge transfer resistance is fairly consistent among all the 
activated carbon materials; however, this value is quite variable 
for the unactivated activated carbon (Mei et al., 2018). From the 
findings, it is clear that the electrochemical properties of 
supercapacitor electrodes based on activated carbon 
electrodes, especially the specific capacitance (Csp), are better 
for activators of potassium hydroxide, calcium chloride, and 
zinc chloride. This work indicates that it is possible to prepare 
activated carbon from biomass on an industrial scale. It suggests 
that employing reduced amounts of activators is a more 
environmentally friendly and sustainable way of activating 
carbon than the current methods (Kwiatkowski & Hu, 2021). 
Expanding on the proof of concept presented in this paper 
through application to real systems, this research, which builds 
on both physical and chemical activation approaches, will 
demonstrate the effectiveness of the suggested approach by 
comparing Csp values with those from previous literature. 
  As shown in Table 3, the specific capacitance (Csp) values 
of AC electrodes for supercapacitors generated from biomass 
can be compared. The results show that the Csp values obtained 
from this work using hydrothermal and pyrolysis procedures are 
relatively high, as seen with the carbon values reported for other 
biomass sources in previously published works. This shows that 
developing more environmentally friendly synthesis methods 
for generating excellent supercapacitor electrodes from 
renewable materials is feasible. 

 
4. Conclusion 

The primary goal of this study was to find an ecologically 
friendly way to synthesize carbon-based compounds from 
rubber seed shells for use as supercapacitors. The 

 
Fig. 7. Ragon plot supercapacitor cell based on all activated carbon. 

 

 

Fig. 8. The cyclic durability of the ACZn-based electrode 
supercapacitor.  

 

 

Fig. 9. The Nyquist plot illustrates the electrochemical impedance 
characteristics of all evaluated samples. 
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electrochemical properties of the porous carbon were 
determined by the porous framework, surface area, crystallinity, 
and degree of graphitization, all of which were significantly 
affected by the employment of different activating agents. The 
pore framework featured expansive mesopores with a narrow 
pore size distribution. At the same time, the crystallinity of the 
activat ed carbons exhibited well-defined planes, indicating 
short-range ordering within the graphitic layers. The engineered 
carbon electrodes demonstrated excellent electrochemical 
performance. The capacitance of the RSS-derived electrodes 
was largely dictated by the surface area, with the ZnCl₂-
activated carbon achieving the highest capacitance of 246 F g⁻¹ 
due to its finely-tuned pore size distribution and balanced 
charge storage and transfer capabilities. Among the samples, 
the ACZn electrode emerged as the most promising for 
supercapacitor applications, offering superior capacitance, 
minimal polarization resistance, and exceptional reliability over 
5000 cycles of storing and releasing. This work presents a 
sustainable pathway for producing activated carbon electrodes, 
contributing to the global circular economy and demonstrating 
considerable industrial potential. 
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