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Abstract. This work develops a computational framework that optimizes the performance and emissions of a dual-fuel diesel engine running on 
biomass-derived producer gas as the main fuel and diesel as the pilot fuel. The study connects essential responses, brake thermal efficiency, peak 
combustion pressure, and emissions of nitrogen oxides (NOx), carbon monoxide (CO), and unburnt hydrocarbon (HC) with controllable factors like 
engine load and pilot fuel injection duration. The approach consists of simulating the impacts of these controllable inputs on engine performance, 
then optimization to find the optimal fuel injection pressure to balance performance and emissions. The results show that engine load considerably 
affects NOx emissions and brake thermal efficiency; greater loads lower CO emissions but raise HC emissions at low compression ratios. Although it 
had little effect on NOx emissions, fuel injection pressure was vital in balancing general engine performance. Using optimization, an optimal fuel 
injection pressure value of 218.5 bar was identified, thereby producing a brake thermal efficiency of 27.35% and lowering emissions to 80 ppm HC, 
202 ppm NOx, and 92 ppm CO. This computational method offers a strategic means for improving the efficiency of dual-fuel engines while reducing 
their environmental impact, hence guiding more sustainable and effective engine operation. 
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1. Introduction 

There are significant synergies that might drive global 
evolution when emissions are reduced, the Sustainable 
Development Goals (SDGs) are met, and net zero is being 
approached (Yu et al., 2022). Emissions reduction is a key 
element in the battle against climate change and is one of the 
main objectives of SDG13 (Razzaq et al., 2023). In keeping with 
SDG8, clean energy solutions provide jobs and support 
economic growth. This cooperation covers the social as well as 
the economic aspects. Lowering the incidence of respiratory 
and cardiovascular diseases, emissions reduction also improves 
air quality, which directly affects SDG3 (Grimshaw & Kühn, 
2019). By reducing pollution levels and safeguarding 
ecosystems, the shift to net zero also serves to increase 
environmental protection, which in turn helps to advance 
SDG14 and SDG15. By basically coordinating with and 
quickening the accomplishment of many SDGs, the effort to 
reduce emissions and attain net zero helps to build a coherent 
strategy for sustainable development (Hoang et al., 2023; Skaug 
Saetra et al., 2021).  

While diesel engines have been vital to transportation and 
manufacturing, their pollutants have seriously jeopardized the 
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environment and human health (Cao & Johnson, 2024; S. K. 
Nayak et al., 2022). Particulate matter (PM) and nitrogen oxides 
(NOx) are byproducts of diesel engines, and they aggravate 
respiratory conditions and air pollution (Cao et al., 2020; Dhahad 
et al., 2019; Paramasivama et al., 2024). The main causes of 
smog and acid rain, which damage biodiversity and ecosystems, 
are NOx emissions (Shammas et al., 2020). Particularly 
microscopic particles may go deep into the lungs, putting public 
health at risk and triggering respiratory and cardiovascular 
problems (Barid & Hadiyanto, 2024; Riediker et al., 2019). These 
problems have a workable solution in dual-fuel technology, 
which combines biofuels with diesel. Less dangerous emissions 
are produced by biofuels made from renewable biological 
sources than by traditional diesel (Hebbar, 2014; Shaafi et al., 
2015). The overall carbon footprint of diesel engines may be 
significantly reduced when biofuels are used in a dual-fuel 
system. The reduction of PM and NOx emissions brought about 
by this integration instantly enhances public health and air 
quality. Moreover, dual-fuel technology increases fuel efficiency 
and may be easily adapted with few modifications into existing 
diesel engines (Kan et al., 2020; Liu et al., 2024). It is therefore 
an affordable and practical way to cut emissions in the 

Research Article 

https://doi.org/10.61435/ijred.2025.60927
https://doi.org/10.61435/ijred.2025.60927
http://creativecommons.org/licenses/by-sa/4.0/
mailto:dungtv@ut.edu.vn
https://orcid.org/0000-0003-4915-1048
https://orcid.org/0000-0002-3598-5829
http://crossmark.crossref.org/dialog/?doi=10.61435/ijred.2025.60927&domain=pdf


P.Q.P. Nguyen et al Int. J. Renew. Energy Dev 2025, 14(2), 214-223 
| 215 

ISSN: 2252-4940/© 2025. The Author(s). Published by CBIORE 

transportation sector (Wagemakers et al., 2012). In efforts to 
reduce dependency on fossil fuels and promote renewable 
energy sources, the use of biofuels in dual-fuel systems 
improves energy variety and sustainability. In addition to 
improving communities' health and air quality, this shift 
supports the more general goals of climate action and 
sustainable development. Synergistic benefits of dual-fuel 
technology make it a significant player in the quest for a more 
robust and sustainable future (Singh et al., 2021; Sorathia & 
Yadav, 2012).  

Several authors attempted this approach to use dual-fuel 
technology for diesel engines and other thermal engines (Goyal 
et al., 2023; Serbin et al., 2021, 2023; Sharma et al., 2023). The 
biomass gasification-derived producer gas (PG) used in 
combination with diesel/biodiesel for powering engines is 
considered as an useful solution (Akkoli et al., 2021; S.S. 
Halewadimath et al., 2022; B. Nayak et al., 2021). Alruqi et al. 
(Alruqi et al., 2023) used third-generation biodiesel derived from 
algae as pilot fuel and waste biomass-derived PG for powering 
the diesel engine, resulting in a reduction of NOx emissions 
while saving the fossil-based diesel fuel. Le et al. (Le et al., 2024) 
used mango wood-derived PG for powering the diesel engine 
successfully. It was reported that Standard modelling 
techniques face a special difficulty because of the complex and 
nonlinear nature of combustion in dual-fuel engines. Though 
they are black-box techniques, neural networks and fuzzy-based 
techniques, which are extensively used in machine learning, are 
quite helpful in this regard. For accurate engine performance 
and emissions predictions, the study combined SHAP analysis 
with Tweedie and Huber-based regression approaches in a 
unique glass-box modelling approach. Percy et al. (Percy & 
Edwin, 2023) in the course of their research on the emissions 
and performance of a dual-fuel engine, tried different load and 
compression ratios. The PG was employed as secondary fuel. 
Among the feedstocks tested, the rubber shell-driven PG-
powered dual fuel engine has the best diesel replacement and 
brake thermal efficiency (BTE). Both the experimental and the 
optimization data lead to this conclusion. The best operating 
conditions, after much trade-off analysis between power and 
emission, were determined to be a compression ratio of 17 and 
an engine load of 1.87 kW. Raj et al. (Raj et al., 2023) used peach 
biomass for the generation of PG for employment as fuel 
blended with propane in spark ignition engines. By using 
numerical modelling in conjunction with multi-objective 
optimizations, this study was able to determine the optimal 
response of an SI engine in terms of its performance and 
emission qualities. The engine was fuelled by a mixture of 
peach-based PG and propane. FORTRAN programming 
language was used to build a quasi-dimensional computer 
simulation model. A comparison of the model's results with the 
experimental cylinder pressure trace from the earlier work 
supported its conclusions. This model was then used to assess 
the effects of the blending percentage, start of injection timing, 
and equivalency ratio on the emissions as well as engine 
performance of a PG-propane dual fuel sark-ignition engine. 

Biomass gasification produces a mixture of carbon 
monoxide, hydrogen, and other gases that burn differently than 
diesel fuel. Complicating combustion dynamics, combining 
these two fuels changes the patterns of heat release, flame 
propagation, and ignition latency (Dabi & Saha, 2016; Sushrut S. 
Halewadimath et al., 2023). This complexity could work against 
better engine performance, emissions, and fuel economy. 
Response Surface Methodology (RSM) is a useful statistical 
technique that may help with the parametric optimization of this 
dual-fuel system (Kashyap et al., 2021). RSM experiments are 
made to carefully investigate how various factors and their 
interactions impact a response variable, such as engine 
performance or pollution levels (El-Sheekh et al., 2022). 

Researchers can find the best values for every parameter by 
developing a mathematical model of the process, which will 
boost overall performance and lower emissions. Air-fuel ratio, 
injection time, and fuel composition are only a few of the 
complex interactions between which RSM utilized to dual-fuel 
engines may assist to elucidate. By giving a systematic way of 
analysing the many connections in the combustion process, this 
methodology enables exact adjustments and improvements. As 
such, RSM might be used to produce more effective and cleaner 
dual-fuel engines, therefore encouraging greener energy 
sources and lessening the negative effects of diesel engines.  

The majority of current research on dual-fuel engines 
especially those running PG derived from biomass has explored 
several ways to improve engine performance and lower the 
emissions. Still, there is a notable research vacuum in 
methodically improving controllable variables utilizing 
advanced statistical techniques, including engine load and pilot 
fuel injection time. Although many studies have concentrated 
on experimental evaluations, few have used a computational 
framework including RSM to maximize both performance and 
emissions in dual-fuel engines. The uniqueness of this work is in 
using configurable parameters to build a strong link between 
important engine responses, such as braking thermal efficiency, 
peak combustion pressure, and emission characteristics, with 
respect to RSM. This study aims to maximize the fuel injection 
pressure so that engine performance and emissions are 
reasonably balanced. Particularly in the context of employing 
renewable PG as the main fuel, the study helps to build more 
sustainable and efficient dual-fuel engine technologies by 
bridging this gap. 

2. ⁠Materials and methods  

2.1. Biomass gasification  

Mangifera indica wood was employed in this study to create 
ecologically friendly gaseous fuel in a downdraft gasifier. Under 
controlled conditions, the process known as gasification 
thermochemically converts organic material into a flammable 
gas mixture (Hoang et al., 2022). By use of gasification, 
Mangifera indica wood, and other biomass resources may be 
converted into producing gas (Nguyen et al., 2024). In a 
downdraft gasifier, biomass passes through many stages, 
among these phases are drying, oxidation, reduction, and 
pyrolysis. Pyrolysis is the process of heating biomass in the 
absence of oxygen to break it down into volatile gasses, tar, and 
char (Akubo et al., 2019; Alawa & Chakma, 2023; Fahmy et al., 
2020). After this, in the oxidation zone, the volatile gases mix 
with the air to create a high-temperature environment that 
promotes more chemical reactions. In the reduction zone, at 
last, the gases become PG, the main components of PG are 
methane, hydrogen, and carbon monoxide (Omar et al., 2018; 
Sharma & Bora, 2023).  

The use of Mangifera indica wood during this process has 
many advantages. It also provides conveniently available and 
renewable fuel, which helps to effectively manage agricultural 
waste. Furthermore, several uses for the generated PG include 
the creation of electricity, the supply of heat for industrial 
processes, and the operation of internal combustion engines. 
Furthermore, benefits for the environment are provided by 
using Mangifera indica wood in combination with downdraft 
gasification. Apart from decreasing dependence on fossil fuels 
and greenhouse gas emissions, it also helps to establish 
sustainable energy practices. Further uses for the gasification 
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byproducts, including biochar, in agriculture include increasing 
soil fertility and carbon sequestration.  

2.2. Test setup 

In this study, a diesel engine was converted to work in dual-
fuel mode. A 3.5 kW diesel engine was used in the study for this 
purpose. It was connected with the biomass gasifier with the 
help of a mixer which facilitates the mixing of PG and air for 
supply to the engine as fuel. Diesel was used as pilot fuel for 
igniting the air-PF mixture as it is a low-energy fuel. The 
biomass gasifier-engine setup is depicted in Figure 1. The 
specifications of the test setup are listed in Table 1, while the 
fuel properties of PG and diesel are given in Table 2.  

2.3. Response surface technology 

It is a highly developed statistical and mathematical 
technique that is widely used to understand and optimize 
challenging processes, especially in studies of engine 
combustion and emission. This method is critical in studies 
when many factors affect a certain response, including the 
quantity of pollution an engine produces or the fuel economy 
(El-Sheekh et al., 2023). To investigate the relationships between 
these components and their effects on response, RSM 
constructs trials. Since it makes response measurement 
possible, this makes it possible to identify the ideal engine 
performance circumstances (Das & Goud, 2021). The 
foundation of RSM is the hypothesis that a polynomial equation 
fitted to the experimental data may provide an approximation 
model of the actual system. This is the main idea of RSM. 
Researchers get the chance to evaluate the effect of each 
variable and their interactions on response when they examine 
this model (Keshtegar et al., 2018). Usually, a second-order 
polynomial model is used as it can precisely capture the 
curvature effects seen in real-world combustion processes. RSM 
can optimize the air-fuel ratio, ignition timing, and injection 

pressure while doing research on engine combustion to improve 
engine efficiency and reduce emissions. By methodically 
changing these elements, for instance, researchers would be 
able to produce a response surface. This surface would show 
how various arrangements of these components impact 
particulate matter and NOx emissions. As such, it becomes 
feasible to ascertain the parameters that provide the best 
performance-to-emissions ratio. 

Scheduling the experiment, running the tests, fitting the 
model, and verifying its correctness are only a few of the 
procedures involved. In RSM, two models often used for 
experimental purposes are the Box-Behnken Design (BBD) and 
the Central Composite Design. These techniques effectively 
traverse the experimental space and minimize the number of 
trials while nevertheless providing enough data to build a 
workable model. Because RSM not only finds ideal 
circumstances but also offers details on the combustion process, 
it is a vital instrument in the area of engine study. When 
engineers are more aware of the factors that affect emissions, 
like the kind of fuel, the shape of the combustion chamber, and 
the recirculation of exhaust gas, they may create cleaner and 
more efficient engines. Furthermore, interactions between 
components may be shown by RSM that are often not easily 
seen by traditional experimental techniques.  

2.4. Uncertainty analysis  

In the present study, each test was conducted thrice to 
reduce uncertainty in measurement. The uncertainty analysis 
primarily estimates possible differences between reference and 
calibrated data. As such, experiments have been conducted 
precisely. Still, occasionally error could occur during 
measurement (Elkelawy, El Shenawy, et al., 2021). The errors 
usually creep in from human errors or vibrations, and the 
calibration methods. Summing the squares of each and every 
parameter obtained during the uncertainty analysis helped one 
to get a result. Appendix A lists all the specifics related to 
measuring tools.  
 

 
Fig. 1 Downdraft gasifier engine system 

 

Table 1  
Engine specification 

Parameter Specification 
Power 3.5 kW 
Fuel injection timing 23°bTDC 
Fuel injection pressure 210 bar 
Cooling Water cooled 
Make Kirloskar, India 
Loading Eddy Current Dynamometer 
Speed 1500 rpm + 50 rpm 
Fuel injector Three holes 
Temperature sensor K-type thermocouple 
Load sensor Strain gauge type 
Water pump Monoblock 

 

Table 2  
Test fuel specification 

Parameter Diesel Producer gas (PG) 

Cetane 60 - 
Density, kg/m3 833 1.283 
Lower heating value, kJ/kg 43350 4850 
Fire point, °C 70 - 
Viscosity, cst 2.98 - 
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3. ⁠Results and discussion 

3.1. Data pre-analysis  

The design matrix, as given in Table 3, developed using BBD 
used in the present study was employed for conducting analysis 
of variance (ANOVA), modelling, and development of surface 
diagram followed by optimization. The data was also used for 
the development of a correlation matrix to comprehend the 
relationship between the data columns of the design matrix. The 
correlation heatmap is depicted in Figure 2. Light is cast on the 
connections between different engine performance and 
emission parameters, including Fuel Injection Pressure (FIP, 
bar), Compression Ratio (CR), Load (%), Brake Thermal 
Efficiency (BTE, %), Hydrocarbon emissions (HC, ppm), 
Nitrogen Oxides emissions (NOx, ppm), and Carbon Monoxide 
emissions (CO, ppm), by the supplied correlation matrix. 

There is little impact on BTE as shown by the extremely 
significant negative (-0.02) correlation with it. With an increase 
in FIP, HC marginally rises, as shown by the very faintly positive 
(0.03) relationship with it. The correlation with CO is very little 
negative (-0.03), indicating that CO marginally reduces with 
rising FIP, but the correlation with NOx is insignificant. The 
compression ratio, or CR, and load zero are unrelated. But CR 
and BTE have a little positive correlation (0.23), suggesting that 
higher CR slightly improves BTE. A strongly negative 
correlation (-0.74) with HC indicates that raising CR significantly 

reduces HC emissions. With a slight positive correlation of 0.35, 
CR increases NOx levels. It is clear from the very negative (-
0.84) correlation with CO that raising CR significantly reduces 
CO emissions (Elkelawy et al., 2018; Elkelawy, Etaiw, et al., 
2021).  

It is clear from the strong positive correlation between load 
(%) and BTE (0.96) that raising load greatly improves BTE. 
Because load and HC have a moderately positive correlation 
(0.33), higher loads translate into higher HC emissions. As 
shown by the strong positive correlation (0.92) with NOx, 
increasing load significantly increases NOx emissions. Because 
the connection with CO is so negative (-0.34), it seems that a 
higher load reduces CO emissions. BTE and HC are somewhat 
positively correlated (0.15), meaning that higher BTE causes HC 
to rise somewhat. It is clear from the highly positive correlation 
(0.95) with NOx emissions that higher BTE levels significantly 
increase NOx emissions. It seems from the relatively negative (-
0.55) correlation with CO that higher BTE reduces CO 
emissions. Increased hydrocarbons (HC) cause a little increase 
in NOx, as shown by the little positive correlation (0.11) between 
the two. As the correlation with CO is somewhat positive (0.68), 
higher HC emissions are associated with higher CO emissions. 
As the relationship between CO and NOx (Nitrogen Oxides) is 
somewhat negative (-0.54), it seems that higher NOx emissions 
result in lower CO emissions (Singh et al., 2021; Sridhar et al., 
2005).  

This matrix is a helpful tool for analyzing and maximizing 
the trade-offs between emissions and engine performance, 
which drives modifications in engine design and operating 
conditions to achieve the intended outcomes. As is consistent 
with established combustion dynamics, CR has a significant 
impact on emission characteristics, specifically reducing HC 
and CO emissions while boosting NOx emissions. Since load is 
strongly correlated with both BTE and NOx emissions, higher 
engine loads both increase efficiency and raise NOx emissions. 
Efficiency and NOx production are traded off as shown by the 
positive correlation of BTE with NOx emissions and the 
negative correlation with CO emissions. FIP's low effect on the 
measured parameters suggests that other factors are more 
important in determining engine performance and emissions. 

3.2. Analysis of variance  

The ANOVA was conducted for the design matrix data. The 
results are listed in Table 4.  The effects of many factors on 
engine performance and emissions were ascertained using an 
ANOVA on the design matrix data; the results are shown in 
Table 4. Indeed, BTE, HC, NOx, and CO are among the sources 

 

Fig. 2 Correlational heatmap 

 

Table 3  
Design matrix 

Control factors (input) Response variables (output) 
FIP, bar CR Load, % BTE, % HC, ppm NOx, ppm CO, ppm 

240 17.5 100 24.33 106 197 100 
220 17.5 60 16.84 51 174 110 
220 17.5 60 16.84 51 174 110 
240 17.5 20 9.68 80 147 118 
220 17.5 60 16.84 51 174 110 
240 16.5 60 14.34 140 172 137 
220 16.5 20 9.46 125 143 138 
200 18.5 60 17.54 45 191 103 
200 17.5 20 10.11 75 147 118 
200 17.5 100 24.7 105 197 101 
220 16.5 100 21.84 220 196 141 
220 17.5 60 16.84 51 174 110 
220 17.5 60 16.84 51 174 110 
240 18.5 60 17.14 50 191 101 
200 16.5 60 14.54 136 172 139 
220 18.5 100 27.35 77 214 85 
220 18.5 20 11.64 50 164 115 
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of variation for which this table provides the F-values and p-
values. The extremely high F-values of the entire model for BTE 
(558.4508), HC (178.5483), NOx (3818.569), and CO (206.5056) 
indicate that the models are very significant and that the 
variables examined have a substantial impact on the responses. 
The FIP values for BTE are 2.780367, HC is 1.617043, NOx is 0 
and CO is 1.434426, with matching p-values of 0.1394, 0.2441, 
1, and 0.27, respectively. These results show that these response 
variables are unaffected statistically by fuel injection pressure.  

With F-values of 258.1487 for BTE, 952.23 for HC, 4150.3 
for NOx, and 1308.254 for CO, all with p-values < 0.0001, 
compression ratio, or C, has a highly substantial impact on all 
response variables. Accordingly, engine performance and 
emissions are significantly influenced by the compression ratio. 
With F-values of 4662.405 for BTE, 146.9641 for HC, 28846.3 
for NOx, and 220.5574 for CO - all with p-values less than 
0.0001, engine load (L) also had a substantial impact. Relevant 
interaction terms include Compression Ratio and Load (CL), FIP 
and CR, and both. CL interacts particularly significantly for BTE 
(F-value 31.46042, p-value 0.0008), HC (F-value 15.65298, p-
value 0.0055), NOx (F-value 12.6, p-value 0.0093), and CO (F-
value 124.9672, p-value < 0.0001). This implies that these two 
factors acting together have a substantial impact on the 
response variables.  

Non-linear relationships are shown by the significant 
consequences quadratic factors like F^2 (Fuel Injection 
Pressure squared) and C^2 (Compression Ratio squared) have 
in many situations, particularly for HC and NOx emissions. 
Significant effects of C^2 are shown, for instance, on HC (F-
value 214.2592, p-value < 0.0001), NOx (F-value 1282.474, p-
value < 0.0001), and CO (F-value 203.0544, p-value < 0.0001). 
The ANOVA results demonstrate overall that engine load and 
compression ratio are significant variables that affect engine 
performance and emissions, even if fuel injection pressure may 
not be a significant one. Complementary optimization strategies 
are required because of the complexity and nonlinearity of the 
combustion process, which is highlighted by the interactions 
and quadratic components.  

3.3. Model development and analysis  

The ANOVA was employed for the development of 
mathematical models for each parameter as given in the 
following Eq. (1) to Eq. (4). These models were used for making 
predictions and estimating residuals for each run as shown in 
Figure 3(a&b), respectively for BTE. The comparison of 
measured and model predicted HC values are depicted in 

Figure 3c while the model residuals are shown in Figure 3d, for 
HC emission. Similarly, the measured and model forecasted 
values of NOx emission are shown in Figure 3f and model 
residuals are shown in Figure 3f.  The CO emission actual values 
and model predicted values are compared in Figure 3g for CO 
emission, while the model residuals are shown in Figure 3h. It 
can be observed that all models were robust enough for efficient 
use in this process.    

BTE = -175.62 + 0.76×FIP + 11.18×CR - 0.27×Load – 
0.0025×FIP×CR + 0.0000187×FIP×   Load + 0.021×CR×Load 
– 0.0016×FIP^2 - 0.29×CR^2 + 0.00064×Load^2       (1) 

 
HC = 11241.94 - 13.25×FIP - 1077.12×CR + 2.19×Load + 
0.0125×FIP×CR – 0.00125×FIP× Load - 0.21×CR×Load + 
0.03×FIP^2 + 29.75×CR^2 + 0.0178×Load^2        (2) 

 
NOx = 2216.75 - 0.138×FIP - 247.38×CR + 1.122×Load - 
0.019×CR×Load + 0.0003×FIP^2 +7.38×CR^2 – 
0.0013×Load^2           (3) 

 
CO = 3345.81+ 0.26×FIP - 365.25×CR + 3.52×Load – 
0.0003×FIP×Load - 0.21×CR×Load -0.000625×FIP^2 + 
10.25×CR^2 – 0.0003×Load^2         (4) 

 

3.4. Response surfaces and parametric influence  

The 3-D response surface diagrams as depicted in Figure 4, 
are useful tools to comprehend the influence of control factors 
on response variables. It is a fact that single factor time plots do 
not depict the influence of multiple control factors in a multi-
factor environment as in the case of dual-fuel engines. The 
surface diagrams for BTE are depicted in Figure 4 (a&b).  

It is seen that engine load has the largest influence over BTE, 
followed by CR, while the FIP has the least impact on BTE. The 
highest BTE is observed in that zone of full load, 18.5 CR, and 
220 bar FIP.  In the case of the HC emission model, the surface 
diagrams are depicted in Figure 4 (c&d). In this case, it was 
observed that CO emission was higher at low load and 
decreased at mid-range and then again at higher engine load, 
and a higher supply of PG led to a spike in CO emission. 
Similarly, at low CR the HC emission was higher which reduced 
at higher CR (Yaliwal et al., 2014). 

On the other hand, the NOx emission response surfaces, 
shown in Figure 4 (e&f), depict that engine load is the main 
factor influencing the NOx emission. The influence of CR was 

Table 4 
Results of ANOVA for design matrix data 

 BTE, % HC, ppm NOx, ppm CO, ppm 

Source Value (F) p-value Value (F) p-value Value (F) p-value Value (F) p-value 

Model 558.4508 < 0.0001 178.5483 < 0.0001 3818.569 < 0.0001 206.5056 < 0.0001 

F 2.780367 0.1394 1.617043 0.2441 0 1 1.434426 0.27 

C 258.1487 < 0.0001 952.23 < 0.0001 4150.3 < 0.0001 1308.254 < 0.0001 

L 4662.405 < 0.0001 146.9641 < 0.0001 28846.3 < 0.0001 220.5574 < 0.0001 

FC 0.113484 0.7461 0.014374 0.9079 0 1 0 1 

FL 0.010214 0.9223 0.229979 0.6462 0 1 0.114754 0.7447 

CL 31.46042 0.0008 15.65298 0.0055 12.6 0.0093 124.9672 < 0.0001 

F^2 20.73546 0.0026 34.86005 0.0006 0.368421 0.563 0.120794 0.7384 

C^2 4.053259 0.084 214.2592 < 0.0001 1282.474 < 0.0001 203.0544 < 0.0001 

L^2 50.07954 0.0002 196.6324 < 0.0001 106.4737 < 0.0001 0.483175 0.5094 

F denotes Fuel injection pressure, C denotes compression ratio, and L denotes engine load  
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also noteworthy, however the FIP could not influence the NOx 
emission much. The lowest NOx emission was observed in the 
zone of 20% engine load, 16.5 CR, and 200 bar FIP. In the case 
of CO emission model, as depicted in Figure 4 (g&h), the lowest 
CO emission was observed at full engine load and CR of 18. 

3.5. Desirability-based parametric optimization  

The previous section demonstrated that engine load has the 
most influence on emissions and engine performance. This 
effect is evident in many different parameters; however, it has 
both positive and bad effects, so an optimization plan is 
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Fig. 3 (a) BTE actual vs predicted model; (b) BTE model residuals; (c) HC actual vs predicted model; (d) HC model residuals; (e) NOx 

actual vs predicted model; (f) NOx model residuals; (g) CO actual vs predicted model; (h) CO model residuals 
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necessary to balance the outcomes. For this goal, the 
desirability approach seems to be a good fit. One may simplify 

the optimization process by combining many responses into a 
single composite score using the desirability function (Padilla-
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Fig. 4 (a) BTE model’s response diagrams engine load vs FIP; (b) BTE model’s response diagrams engine load vs CR; (c) HC model’s response 
diagrams engine load vs FIP; (d) HC model’s response diagrams engine load vs CR; (e) NOx model’s response diagrams engine load vs FIP; (f) 
NOx model’s response diagrams engine load vs CR; (g) CO model’s response diagrams engine load vs FIP; (h) CO model’s response  diagrams 
engine load vs CR; 
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Atondo et al., 2021; Vera Candioti et al., 2014). This approach 
assesses the trade-offs between several performance and 
emission metrics, therefore enabling the choice of optimal 
operating conditions that satisfy the required criteria. The 
desirability approach may be used to optimize the engine load 
to get a balanced rise in engine performance and emission 
control, therefore raising overall efficiency and environmental 
compliance. The Design-Expert commercial software was 
employed for optimization. The developed desirability plots are 
shown in Figure 5.  

It was noted in the previous part that the engine load has the 
most impact on emissions and engine performance. This impact 
is noticeable for several factors, but it is also positive and 
negative, hence an optimization strategy is required to balance 
these results. For this reason, the desirability strategy seems to 
be a desirable choice. Simplifying the optimization process, one 
may combine many answers into a single composite score by 
using the desirability function. This method enables the finding 
of ideal operating conditions that meet the required 
requirements by considering the trade-offs between various 
performance and emission indicators. The optimal parameter 
values for improving engine performance and reducing 
emissions are shown by the desirability-based optimization 
results in Table 5.  

In the measured range of 200 to 240 bar, the ideal FIP value 
is 218.5 bar, suggesting that a rather high injection pressure is 
advantageous for reaching the required balance between 
performance and emissions. The higher compression ratio adds 
favourably to the optimization requirements, perhaps increasing 
combustion efficiency and lowering certain emissions. The 
optimal CR is 17.9, near the top limit of the measured range 
(16.5 to 18.5). Although it must be carefully controlled because 
of its major influence on emissions and performance, running 
the engine at full load is advantageous for achieving the overall 
optimization objectives since the engine load is optimized at the 

greatest level tested, 100%. The success of the optimization in 
raising engine performance is shown by the 26.08% optimized 
BTE, which is near the highest measured efficiency (27.35%). 
Significantly below the top limit of 185 ppm, the optimized HC 
emission level of 80 ppm indicates a successful optimization in 
reducing unburned hydrocarbons, which helps to improve 
emission control. In the upper end of the measured range (143 
to 214 ppm), the NOx emissions are optimal at 202 ppm. Even 
if this suggests a trade-off, it also shows how important it is to 
balance NOx emissions with other performance criteria. 
Lowering the top limit of 141 ppm, the optimized CO emission 
level of 92 ppm shows how well the optimization reduced CO 
emissions, which are essential for achieving environmental 
criteria. 

4. ⁠Conclusion 

In the present study, PG was used as fuel in diesel engines 
through dual-fuel technology. Diesel fuel was utilized as pilot 
fuel and a waste biomass-derived PG was used as primary fuel. 
A computational framework to establish a link between 
adjustable engine parameters and the dependent response 
variables was employed. Controllable factors were engine load, 
pilot fuel injection pressure, and compression ratio. Response 
variables were chosen to be BTE and exhaust emission. It was 
observed that engine load was the main influencing factor and 
had positive effects on BTE and a negative influence on NOx 
emission. The highest BTE was observed in the full load zone, 
18.5 CR, and 220 bar FIP. Higher CO emission was observed at 
lower load, it decreased at mid-range, and again at higher 
engine load. Higher PG supply spikes CO emissions. The lowest 
CO emission at full engine load and 18.5 CR. At low CR, HC 
emission is higher at low load, and it tends to reduce at higher 
CR. Engine load is the main factor influencing NOx emission. 
FIP has minimal influence on NOx emission. Desirability-led 
optimization revealed the ideal FIP value as 218.5 bar for 
balance between performance and emissions. The optimized 
value of CR was 17.9, near the top limit of the range, and full 
engine load.  At the optimized settings, the engine BTE was 
27.35%, the optimized HC emission level was 80 ppm, the 
optimized NOx emissions were 202 ppm, and the optimized CO 
emission was 92 ppm. The future scope of the study includes 
investigation of co-gasification with low grade coal.   

 

Nomenclature 

ANOVA Analysis of variance 
BBD Box-Behnken Design 
BTE Brake thermal efficiency 
CO Carbon monoxide  
CR Compression Ratio 

FIT Fuel injection pressure 
HC Hydrocarbon 
NOx Nitrogen oxide 
RSM Response Surface Methodology 
PG Producer gas 
PM Particulate matter 
SDG Sustainable Development Goal 
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Appendix A 
Accuracy of measuring apparatus and instruments 

Parameter Measuring instrument Accuracy 

Gas flow meter  Thermal type  + 0.2 lpm 

Engine load  Load cell (Staring gauge)  + 0.1 

Flow rate of diesel  Burette   0.2 mL 

Temperature  Thermocouple  0.1 °C 

Crank angle  Encoder optical type  0.5 °CA 

Flow rate of air   Orifice meter  0.000006 m3/s 

In-cylinder pressure  Pressure sensor piezo electric type  33 pC/Bar 

Emission NOx, CO, HC Exhaust gas analyser 2% 

BTE  Calculated  0.5% 

 


