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Maximize the total electric sale profit for a hybrid power plant with 
fifteen thermal units and a 100-MW solar photovoltaic farm under a 
20-year power generation project 

Dao Trong Tran*   and Thang Trung Nguyen   

Power System Optimization Research Group, Faculty of Electrical and Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam  

Abstract. This study investigates the effectiveness of two recently proposed meta-heuristic methods, the Weighted Average Algorithm (WAA) and 
Electric Eel Foraging Optimization (EEFO), to maximize the total profit of a hybrid power system. The considered system comprises fifteen thermal 
generating units (TGUs) and a 100-MW solar photovoltaic farm (SPP) operating over a 20-year period. Initially, the problem is solved under conditions 
of fixed load demand and rated power supply from the renewable energy source while accounting for prohibited operating zone constraint and system 
power losses. Comparative results obtained from both algorithms demonstrate that EEFO exhibits superior performance in terms of stability and 
convergence speed. Specifically, EEFO demonstrates a lower fluctuation in overall electricity generation cost (OEGC) across multiple independent 
runs compared to WAA. Furthermore, EEFO achieves better minimum, mean, and maximum OEGC values of $0.266, $58.890, and $214.225, 
respectively. Subsequently, EEFO is reapplied to maximize the profit of the hybrid power system, incorporating load demand variations and real solar 
radiation data. This analysis includes the evaluation of initial capital expenditure (CAPEX) and operation and maintenance (O&M) costs for the SPP 
over the 20-year period. Current electricity and solar power prices are utilized to illustrate the cumulative profit over time. The results indicate that 
the hybrid system experienced the highest loss in the first year, with the minimum loss occurring after 9 years for the TGUs and 7 years for the SPP. 
Profitability is achieved after 10 years for the TGUs and 7 years for the SPP. The cumulative profit over 20 years amounts to $14.2 billion for the 
TGUs and $0.207 billion for the SPP, representing approximately 83% and 127% of their respective total costs.  
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1. Introduction 

Resolving the economic load dispatch (ELD) problem remains 
one of the first concerns in operational problems in power 
(Nguyen & Vo, 2015). The process of solving the ELD problem 
involves optimizing the power output of all thermal generating 
units (TGUs) in the system to achieve the target, which is 
minimizing the overall electricity generation cost (OEGC) in 
most cases (Dasgupta & Banerjee, 2014). Solving the ELD 
problem not only benefits the engineering aspects but also 
reduces the negative effects on the environment (Wu et al., 
2010). In the past, TGUs were in charge of the main generating 
sources in solving the ELD problem; however, clean energies, 
including solar and wind power, recently have been integrated 
more and more into the power system, and they also proved 
their role in partly reducing the use of conventional TGUs which 
consumed fossil fuel and caused toxic emissions. Based on that, 
the ELD problem has been modified to clean energies economic 
load dispatch (CE-ELD) (Kherfane et al., 2014; Farag et al., 1995; 
Reddy & Bijwe, 2015) with the integration of solar and wind 
energy for most cases.  

By realizing the key role of solving ELD and its modern 
version, CE-ELD, much research has been conducted to unfold 
the problem. Moreover, while the scale of both ELD and CE-
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ELD become larger and more complicated because of the 
consideration of constraints, meta-heuristic algorithms are 
acknowledged to be the most suitable computing tool for 
solving the mentioned problems. Specifically, the application 
particular meta-heuristic algorithm can be listed such as Squirrel 
search optimizer (SSO) (Sumanl et al., 2020), Modified 
equilibrium algorithms (MEA) (Duong et al., 2021), The 
Enhanced Firefly optimization algorithm (IFA) (Nguyen et al., 
2018), Double-weighed particle swarm optimization (DW-PSO) 
(Kheshti et al., 2018), the Artificial algae algorithm (AAA) 
(Kumar & Dhillon, 2018), Improved bacterial foraging algorithm 
(IBFA) (Pandit et al., 2012), search and rescue algorithm (SRA) 
(Said et al., 2022), biogeography-based optimization (BBO) 
(Xiong & Shi, 2018), High-Performance Stochastic Fractal 
Search Algorithm (Pham et al., 2019), Harmonic search 
algorithm (Fesanghary & Ardehali, 2009), Equilibrium optimizer 
(EO) (Duong et al., 2021), Salp swarm optimization (SWO) 
(Alkoffash et al., 2021), the Improved Jaya algorithm (Chen et 
al., 2020), Modified moth swarm algorithm (MMSA) (Ha et al., 
2020), The enhanced Manta ray optimization algorithm 
(IMROA) (Hassan et al., 2021) , Ameliorated dragonfly algorithm 
(ADA) (Suresh et al., 2019), Grey wolf optimal (GWO) (Pradhan 
et al., 2016), Fire hawk optimization (FHO) (Tang & Cuong, 
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2023), Five phases algorithm (FHO) (Wang et al., 2023), Social 
optimization algorithm (SOA) (Karimi & Khandani, 2020), 
Modified Krill Herd Optimization Algorithm (MKHOA) (Kaur et 
al., 2022), and Modified Jaya algorithm (MJA) (Kumar et al., 
2021). These studies have applied different metaheuristic 
algorithms for ELD problems with single fuel option, multi-fuel 
options, fuel cost functions under convex or nonconvex forms, 
prohibited zone operation constraints, ramp rate limits, etc. 
Their purpose is to demonstrate that their applied or proposed 
algorithms could find global optimal solutions better or faster 
than others in previous studies could do. In the studies, 
renewable energy sources such as solar and wind have not been 
considered. On the contrary, other recent studies have been 
concerned with the importance of renewable power sources in 
reducing the generation of thermal power plants and cutting the 
emission and fuel costs from generating processes. Applied 
methods, renewable power sources, and objective functions of 
the recent studies are presented in Table 1. 

Table 1 shows different algorithms were applied to solve 
wind and solar power-based ELD problem for a single objective 
function (cost or emission reduction) and a two-objective 
function with cost and emission reduction using different 
optimization tools. In general, the studies applied an existing 
optimization algorithm, such as FA (Salim & Abdullah, 2022), 
AVOA (Mishra & Shaik, 2024), MOEAs (Ali et al., 2024) and 
YALMIP toolkit (Zhang et al., 2024) or developed existing 
algorithms to improve their performance, such as HOA 
(Mokarram et al., 2019), MSPSO (Zhang et al., 2021), ASSA 
(Ahmed et al., 2024), ECIA (Nagarajan et al., 2024), RDA 
(Kubicek et al., 2024), ANN-ANFIS (Jiriwibhakorn & Wongwut, 
2024) and CJA  (Chaudhary et al., 2024). Existing algorithms 
were demonstrated to be effective for the ELD problem with 
renewable energies since the total emission and fuel cost were 
reduced. Modified algorithms could reach smaller costs and 
emissions than other existing algorithms. The contributions of 
the algorithms are related to cost and emission reduction and 
the high-performance proposed algorithms. These are two 
significant contributions of the studies; however, they have the 
same shortcomings: the need for more practical information on 
capital costs, operating and maintaining (O&M) costs, and the 
calculation of the payback period for a project. 

In this study, the ELD problem is expanded by considering 
solar power plants for a project of twenty years. In the study, 
real data on solar radiation in a zone of Viet Nam is collected to 
calculate the generation of a solar power plant. Real electric 
prices are applied to find the total revenues for thermal power 
plants and solar power plants, and then the total profit is 
calculated for the twenty-year project. The payback period is 

analyzed for the project with the solar power plant. Weighted 
Average Algorithm (WAA) (Cheng & De Waele, 2024) and 
Electric Eel Foraging Optimization algorithm (EEFO) (Zhao et 
al., 2024) are applied to determine the most optimal solution to 
the problem. The core objective of this study is to reduce the 
overall electricity generating cost (OEGC) for all TGUs in the 
power system. Besides, power loss from transmisison process 
and the prohibited working zones of TGUs are considered. 
Moreover, wind and solar energies are also integrated into the 
considered power system. The selection of the Weighted 
Average Algorithm (WAA) and the Electric Eel Foraging 
Optimization (EEFO) methods for this study was based on the 
following reasons: 

• For the research field, both WAA and EEFO are 
relatively novel meta-heuristic algorithms. 

• Prior to their application in this research, WAA and 
EEFO have been successfully tested on both theoretical 
and practical applications, as documented in (Cheng & 
De Waele, 2024) and (Zhao et al., 2024). 

• The update mechanisms of WAA and EEFO 
demonstrate high capabilities in addressing complex 
optimization problems, such as the one considered 
herein. Specifically, WAA utilizes the difference between 
the current, average, and best solutions to guide the 
search process during the exploitation phase. 
Subsequently, the solution is updated through a random 
process governed by Levy flight distribution. EEFO, in 
its initial phase, updates solutions based on the 
relationship between the current solution and its nearest 
neighbors, combined with a random component. In later 
phases, EEFO employs various update strategies, 
including Levy flight, to refine the search towards the 
optimal solution. The performance of EEFO compared 
to other metaheuristic algorithms is summarized in 
Table 2. 

The novelties of the whole study focus on a realistic, long-
term economic analysis of solar power plant (SPP) operation. 
Firstly, it moves beyond simplified models by incorporating 
actual, historical electric price and solar radiation data spanning 
a 20-year project timeframe. This approach allows for more 
accurate estimations of expenditure, revenue, and profit, 
providing a robust framework for visualizing the project's capital 
investment and economic benefits. This realistic data 
integration ensures that the results are directly applicable to 

Table 1 
The summary of previous studies solving the ELD problem. 

Reference Applied method 
Power sources Objective function 

Thermal Wind solar Cost Emission 

 (Mokarram et al., 2019)  HOA x x x x  
 (Zhang et al., 2021)  MSPSO x  x x  

(Salim & Abdullah, 2022)  FA x  x   
(Ahmed et al., 2024)  ASSA X X X X X 

 (Nagarajan et al., 2024) ECIA x x x x  

(Mishra & Shaik, 2024) AVOA 
X 

(Diesel) 
X x X X 

(Kubicek et al., 2024) RDA X X  X  
(Ali et al., 2024) MOEAs X X X X X 

(Zhang et al., 2024) YALMIP toolkit x x x  X 
(Jiriwibhakorn & Wongwut, 2024) ANN-ANFIS x x x X  

(Chaudhary et al., 2024) CJA x x x x x 
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real-world scenarios, enhancing the practical value of the study. 
Secondly, the research provides a comprehensive visualization 
of the relationships between total cost, revenue, and profit for a 
100 MW SPP operating over this extended period. This 
visualization serves as a crucial tool for planners and operators, 
enabling them to make informed adjustments in response to 
dynamic market conditions such as fluctuating government 
policies and potential engineering challenges. Furthermore, the 
analysis utilizes actual solar radiation data from reputable 
sources, ensuring that the power supply calculations are 
grounded in verifiable, real-world measurements, thereby 
enhancing the study's transparency and reproducibility. Finally, 
the study employs and compares novel meta-heuristic 
algorithms, specifically WAA and EEFO, to optimize the 
planning problem. By leveraging the superior-performing 

algorithm, it maximizes the total profit of a hybrid power system, 
including the SPP, over the 20-year operational period. 
Additionally, the study determines the payback period for this 
hybrid system, providing critical economic insights for the long-
term project viability of solar power plants integrating thermal 
power plants. 

In summary, this study focuses on maximizing the 
profitability of a solar power project within a hybrid energy 
system. The study  aims to assess and evaluate the effectiveness 
of a novel optimization algorithm (EEFO) in determining the 
optimal investment and operational strategies for both the solar 
plant and an existing thermal power plant. Subsequently, the 
main objective is to conduct a detailed economic analysis, 
including precise payback period calculations and sensitivity 

Table 2 
The summary of comparisons between EEFO and previous metaheurisitc algorithms 

Test 
Tested Optimization 

Problem/Suite 
Problem Description Compared Algorithms 

Benchmark Function 
Suites 

23 conventional 
benchmark functions 

16 multimodal functions and 7 unimodal functions 
to test exploration, exploination and local 
optimization avoidance 

- Levy flight distribution(LFD). 
- Arithmetic optimization algorithm 

(AOA). 
- Whale optimization algorithm 

(WOA). 
- Sine-cosine algorithm (SCA). 
- Harris hawk optimization algorithm 

(HHO). 
- Butterfly optimization algorithm 

(BOA). 
- Wind driven optimization(WDO). 
- Moth flame optimization algorithm 

(MFO). 
- Adaptive evolution strategy 

algorithm (AESA). 
- Gravitational search algorithm 

(GSA). 
- Weighted differential evolution 

(WDE). 
- Atom search optimization (ASO). 

30 CEC 2017 
benchmark functions 

Rotated, hybrid composite, and shifted 
multimodal functions to evaluate exploitation, 
tradeoff , exploration, and the avoidance of local 
optimal solutions. 
 Tested in 10, 30, and 50 dimensions. 

CEC2011 Test Suite 
Real-world optimization problems in engineering 
to evaluate exploitation, tradeoff , exploration, and 
the avoidance of local optimal solutions. 

Specific Engineering 
Problems 

Three-bar truss 
optimization design 

Engineering design problems likely focused on 
minimizing weight or stress under constraints. 

 
 
 
 
 

LFD, AOA, WOA, SCA, HHO, BOA, 
AESA, WDO, MFO, GSA, ASO, WDE.  

Tension/compression 
spring optimization 

design 

Optimizing coil and wire diameter of spring to 
minimize volume/weight under stress, surge 
frequency, and deflection constraints. 

Welded beam design 
Minimizing the welded beam cost consider 
conditions of bending stress, shear stress, end 
deflection and buckling load. 

Pressure vessel design 
Minimizing the cylindrical pressure vessel ‘s 
fabrication cost considering the thickness and 
material properties. 

Speed reducer 
optimization design 

Minimizing the speed reducer’s weight 
considering surface stress, shaft stresses, 
deflections, and bending stress. 

Brake design 
Optimizing parameters for a multiple disc clutch 
brake, likely minimizing mass or stopping time 
under operational constraints. 

Rolling element 
bearing design 

Maximizing the rolling bearing’s dynamic loading 
capacity subject to geometric constraints. 

Cantilever beam 
design 

Minimizing the cantilever beam’s weight subject 
to stress constraints. 

Car optimization 
design 

Engineering problem related to weight reduction 
or injury criteria in a car side impact scenario 
under various constraints. 

Compressor 
optimization design 

Optimization design of a compressor station, likely 
minimizing cost under flow and pressure 
constraints. 
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analysis, to ensure the solar project yields the highest possible 
profit. 

 
2. Problem modelling 

2.1 The profit models 

The profit model of TGU: Similar to other kinds of business on the 
market, in this regard, the supplied power from all the TGUs in 
the system is considered to be a good for selling. Profits are the 
key factor that decide the effectiveness of the particular model 
and lead to other important decisions which including, keeping 
moving, growing or terminated. For TGUs particularly, the 
profit of selling electricity is calculated by using the following 
equations.  

𝑃𝑟𝑜𝑓𝑖𝑡𝑇𝑃𝑃 = 𝑅𝑒𝑣𝑒𝑇𝑃𝑃 − (𝐶𝐴𝑃𝐸𝑋𝑇𝑃𝑃 + 𝐶𝑜𝑠𝑡𝑇𝑃𝑃
𝑂&𝑀

+ 𝐹𝐶𝑜𝑠𝑡𝑇𝑃𝑃) 
(1) 

Where, 𝑷𝒓𝒐𝒇𝒊𝒕𝑻𝑷𝑷 and 𝑹𝒆𝒗𝒆𝑻𝑷𝑷 are the total profit and 
revenue of the TPP for 20 years; 𝑪𝑨𝑷𝑬𝑿𝑻𝑷𝑷is the CAPEX cost 

of the TPP; 𝑪𝒐𝒔𝒕𝑻𝑷𝑷
𝑶&𝑴is O&M costs for 20 years; and 𝑭𝑪𝒐𝒔𝒕𝑻𝑷𝑷is 

the total fuel cost of the TPP for 20 years. The parameters 
regarding the finance of the TPP are obtained by:  

𝑅𝑒𝑣𝑒𝑇𝑃𝑃  = 𝑁𝑦𝑒𝑎𝑟 . 𝑁𝑑𝑎𝑦∑(𝑃𝐺𝑛,ℎ. 𝑃𝑟ℎ)

24

ℎ=1

 (2) 

𝐶𝐴𝑃𝐸𝑋𝑇𝑃𝑃  = 𝐶𝐴𝑃𝐸𝑋1𝑀𝑊. ∑ (𝑃𝐺𝑛
𝑚𝑎𝑥)

𝑁𝑇ℎ𝐺

𝑛=1

 (3) 

𝐶𝑜𝑠𝑡𝑇𝑃𝑃
𝑂&𝑀  = 𝐶𝑜𝑠𝑡1𝑀𝑊

𝑂&𝑀 . ∑ (𝑃𝐺𝑛
𝑚𝑎𝑥)

𝑁𝑇ℎ𝐺

𝑛=1

 (4) 

𝐹𝐶𝑜𝑠𝑡𝑇𝑃𝑃 = 𝑁𝑦𝑒𝑎𝑟 . 𝑁𝑑𝑎𝑦. 𝑂𝐸𝐺𝐶1𝑑𝑎𝑦 (5) 

Where 𝑶𝑬𝑮𝑪𝟏𝒅𝒂𝒚 is the overall electricity generation cost all 

TGUs for one operating day and obtained by: 

𝑂𝐸𝐺𝐶1𝑑𝑎𝑦 =  ∑ ∑(𝛼𝑛 + 𝛽𝑛𝑃𝐺𝑛,ℎ + 𝛾𝑛𝑃𝐺𝑛,ℎ
2

𝑁𝑇ℎ𝐺

𝑛=1

)

24

ℎ=1

 (6) 

where 𝑁𝑇ℎ𝐺 is the quantity of TGUs of the given system; 𝛼𝑛, 𝛽𝑛, 
and 𝛾𝑛 are coefficient factors while using particular fuel while 
operating TGU n; and 𝑃𝐺𝑛,ℎ is power output of the thermal 

power plant n at the hour h. 
Figure 1 shows three costs of TPPs, including capital 

expenditures (CAPEX) for the initial time of projects, variable 
O&M costs for each produced MWh, and fixed O&M costs for 
every operating year. The three costs are based on the fossil 
energy technology characterization (National Renewable 
Energy Laboratory (NREL) for TGU - 2023) . In the study, we 
used the variable O&M costs and CAPEX from the industry and 
historical data, whereas, the variable O&M costs is replaced 
with the fossil fuel costs as suggested in previous studies 
(Mokarram et al., 2019; Zhang et al., 2021).   

The profit model of SPP: The profit model of an SPP is slightly 
different from that of a TGU in terms of the EGC. Particularly, 
the operation of SPP does not cause any value of EGC as the 
initial input. Therefore, the profit model of SPP is given as 
follows: 

𝑃𝑟𝑜𝑓𝑖𝑡𝑆𝑃𝑃 = 𝑅𝑒𝑣𝑒𝑆𝑃𝑃 − (𝐶𝐴𝑃𝐸𝑋𝑆𝑃𝑃 + 𝐶𝑜𝑠𝑡𝑆𝑃𝑃
𝑂&𝑀) (7) 

where 𝑃𝑟𝑜𝑓𝑖𝑡𝑆𝑃𝑃 and 𝑅𝑒𝑣𝑒𝑆𝑃𝑃 are the total profit and revenue 

of the SPP for 20 years; 𝐶𝐴𝑃𝐸𝑋𝑆𝑃𝑃is the CAPEX cost of the SPP; 

𝐶𝑜𝑠𝑡𝑆𝑃𝑃
𝑂&𝑀is O&M costs of the SPP for 20 years. The parameters 

regarding the finance of the SPP are obtained by: 

𝑅𝑒𝑣𝑒𝑆𝑃𝑃  = 𝑁𝑦𝑒𝑎𝑟 . 𝑁𝑑𝑎𝑦∑(𝑃𝑆𝑃𝑃,ℎ . 𝑃𝑟ℎ)

24

ℎ=1

 (8) 

𝐶𝐴𝑃𝐸𝑋𝑆𝑃𝑃  = 𝐶𝐴𝑃𝐸𝑋1𝑀𝑊. 𝑃𝑆𝑃𝑃
𝑚𝑎𝑥 (9) 

𝐶𝑜𝑠𝑡𝑇𝑃𝑃
𝑂&𝑀  = 𝐶𝑜𝑠𝑡1𝑀𝑊

𝑂&𝑀 . 𝑃𝑆𝑃𝑃
𝑚𝑎𝑥 (10) 

 
Fig. 1 The illustration of O&M cost considering the variable and fixed aspects, and CAPEX of TPPs 
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A utility-sized solar photovoltaic (SPP) facility's CAPEX and 
fixed variable costs are depicted in Figure 2. Here, the SPP is 
modeled under the two cost types, benchmarked with industry 
and historical data (The SPP data – GAS, 2025). In the study, the 
two costs are applied to evaluate the investment effectiveness 
of renewable power sources under a utility-scale plant. 

2.2 Main objective function. 

The study considers a 20-year power generation project with a 
power system consisting of 15 TGUs and one solar photovoltaic 
farm. So, the core objective is to reach the maximum total profit 
of the hybrid power plant with TGUs and one SPP as follows: 

Maximize 𝑃𝑟𝑜𝑓𝑖𝑡𝑝𝑙𝑎𝑛𝑡 = 𝑃𝑟𝑜𝑓𝑖𝑡𝑇𝑃𝑃 + 𝑃𝑟𝑜𝑓𝑖𝑡𝑆𝑃𝑃 (11) 

where 𝑃𝑟𝑜𝑓𝑖𝑡𝑝𝑙𝑎𝑛𝑡is the total profit of the hybrid power plant for 

20 years. 

2.3 The involved constraint 

The power balance constraint: This constraint depicts the 
correspondence of the amount of power consumed by all loads 
plus the power loss, which must equal the overall supplied 
power of all the existing power sources as follows. 

∑ 𝑃𝐺𝑛

𝑁𝑇ℎ𝐺

𝑛=1

+ 𝑃𝑆𝑃𝑃 − 𝑃𝐿𝐷 = 0 (12) 

where ∑ 𝑃𝐺𝑛
𝑁𝑇ℎ𝐺
𝑛=1  is the power output supplied by all existing 

TGUs in considered system configuration; 𝑃𝑆𝑃𝑃,𝑠 is supplied 

power generated by the SPP; 𝑃𝐿𝐷 is the power required by loads. 

The TGU’s operational constraint: This constraint is applied to 
control the power supplied by each TGU in the given system 
must locate in the allowed ranges as follows (Nguyen & Vo, 
2015). 
 

𝑃𝐺𝑛
𝑚𝑖𝑛 ≤ 𝑃𝐺𝑛 ≤ 𝑃𝐺𝑛

𝑚𝑎𝑥 (13) 

Prohibited operation zone constraint: This constraint refers to the 
sub-region of the power output supplied by TGUs, where the 
TGUs can be operated effectively and safely without risks to 
their physical limitation (Nguyen & Vo, 2015): 

𝑷𝑮𝒏 ∈ {

𝑷𝑮𝒏
𝒎𝒊𝒏 ≤ 𝑷𝑮𝒏 ≤ 𝑻𝑮𝒏𝟏

𝒊

𝑻𝑮𝒏𝒌−𝟏
𝒌 ≤ 𝑷𝑮𝒏 ≤ 𝑻𝑮𝒏𝒌

𝒊

𝑻𝑮𝒏𝒒
𝒌 ≤ 𝑷𝑮𝒏 ≤ 𝑷𝑮𝒏

𝒎𝒂𝒙

; 

𝒌 = 𝟐,… , 𝒒; ∀𝒏 ∈ 𝛀 

(14) 

where 𝒒 is denoted as the quantity of prohibited 
operational zones of the TGU n. 

The operational constraints of SPPs: Similar to the TGU 
mentioned above, this constraint is highly relevant to the 
physical limitations of a generator. That means that the power 
output of SPP is allowed to change in the operational ranges as 
follows (Kherfane et al., 2014): 

𝑃𝑆𝑃𝑃,𝑠
𝑚𝑖𝑛 ≤ 𝑃𝑆𝑃𝑃 ≤ 𝑃𝑆𝑃𝑃,𝑠

𝑚𝑎𝑥  (15) 

3. Applied method 

3.1 Weighted Average Algorithm (WAA) 

Introduced in 2024, the Weighted Average Algorithm (WAA) 
operates by determining the weighted average location of the 
entire population and selecting from two distinct movement 
strategies.  The WAA's solution update process focuses on 
maintaining a delicate equilibrium between the exploitation and 
exploration stages, as detailed in the following sections: 

The exploitation phase: In this phase, WAA executes three 
different strategies subsequently to update the new solution as 
follows: 

𝑋𝑛
𝑛𝑒𝑤1 = 𝜇0−1. (𝑋𝐴𝑣 − 𝑋𝐺𝐵) + 𝜇0−1. (𝑋𝐴𝑣 − 𝑋𝑃𝐵,𝑛)

+ 𝜇0−1. 𝑋𝐴𝑣 
(16) 

𝑋𝑛
𝑛𝑒𝑤2 = 𝜇0−1. (𝑋𝐴𝑣 − 𝑋𝑃𝐵,𝑛) + 𝜇0−1. 𝑋𝑃𝐵,𝑛 (17) 

𝑋𝑛
𝑛𝑒𝑤3 = 𝜇0−1. (𝑋𝐴𝑣 − 𝑋𝐺𝐵) + 𝜇0−1. 𝑋𝐺𝐵 (18) 

where, 𝑿𝒏
𝒏𝒆𝒘𝟏, 𝑿𝒏

𝒏𝒆𝒘𝟐, 𝑿𝒏
𝒏𝒆𝒘𝟑 are, respectively, the nth new 

solution while executing the three strategies subsequently with 
n = 1, 2, …, Nps; 𝑿𝑨𝒗 is the solution with average weight; and 
𝑿𝑷𝑩,𝒏 is the so-far best of the solution n. 

The exploration phase: In this phase, WAA executes the update 
process by selecting one out of two models as shown in the 
following equation. 

𝑋𝑛
𝑛𝑒𝑤 = {

𝑋𝐺𝐵. 𝜇𝐿𝑒𝑣𝑦 .                             if 𝜇0−1 > 0.5

𝜇0−1. (𝑈𝐵 − 𝐿𝐵) + 𝐿𝐵,               else
 (19) 

3.2 Electric Eel Foraging Optimization algorithm (EEFO) 

Introduced in 2024, EEFO is an innovative optimization 
algorithm. It draws inspiration from the foraging behavior of 
electric eels in their natural habitat, specifically their distinct 
stages of searching, observing, maneuvering, and attacking.  
The position of the eel within each stage is dynamically adjusted 
and mathematically represented through the following 
equations. 

The electric eel position in the first phase is obtained by:  

 
Fig. 2. The illustration of fixed O&M corresponding to CAPEX 

costs of a SPP. 
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𝐸𝑞

= 

{
 
 

 
 {
𝐸𝑝 + 𝜇0−1.𝑁𝐹1. (𝐸𝑅𝐷 − 𝐸𝑞), 𝑖𝑓 𝜀1 > 0.5

𝐸𝑝 + 𝜇0−1. 𝑁𝐹2. (𝐸𝑅𝐷 − 𝐸𝑞), 𝑖𝑓 𝜀1 ≤ 0.5
 𝑖𝑓 𝐹𝑇𝐸𝑝 < 𝐹𝑇𝐸𝑞

{
𝐸𝑝 + 𝜇0−1.𝑁𝐹1. (𝐸𝑅𝐷 − 𝐸𝑞), 𝑖𝑓 𝜀2 > 0.5

𝐸𝑝 + 𝜇0−1. 𝑁𝐹2. (𝐸𝑅𝐷 − 𝐸𝑞), 𝑖𝑓 𝜀2 ≤ 0.5
𝑖𝑓 𝐹𝑇𝐸𝑝 < 𝐹𝑇𝐸𝑞

 
(20) 

Where 𝑬𝒒 is the position of the electric ell q in the first phase 

with q = 1, 2, …, Nps; 𝑬𝒑  is the electric eel having the nearest 

position with the considered electric eel; 𝑬𝑹𝑫 is a random 
individual picked up from the initial population. 

The position update of EEFO in the last three phases is 
obtained by:  

𝐸𝑞

= {

𝐸𝑃𝑟 + 𝜇0−1. (𝐸𝑃𝑟 − 𝐸𝑞);                                      𝑖𝑓 𝑟𝑓 < 1/3 

−𝜇0−1. 𝐸𝑞 + 𝜇0−1. 𝐸𝑅𝐷 − 𝜇𝐿𝑒𝑣𝑦. (𝐸𝑅𝐷 − 𝐸𝑞);  𝑖𝑓 𝑟𝑓 > 2/3  

𝐸𝑅𝐷 + 𝜔. 𝐸𝑅𝐷. 𝐸𝑞                                                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 
(21) 

Where, 𝑬𝑷𝒓 is the position of the potential prey; and 𝝎 is the 
scaling factor;  𝒓𝒇 is the reference factor in the interval between 
0 and 1, 𝒓𝒇 < 𝟏/𝟑 is the observing phase, while the other two 
are corresponding to the maneuvering and the offensive phase. 

4. Results 

In this section, WAA and EEFO are utilized to solve a range of 
optimization problems initially.  Afterward, these methods are 
applied to find optimal solutions for the specific problem 
described in Section 2. The results of these applications are 
discussed in the next two subsections.   

All simulations and coding for the application of WAA and 
EEFO were conducted on a computer with a 2.4 GHz CPU and 
16GB of RAM, using MATLAB R2018a. 

4.1 The comparison criteria 

This study applies WAA (Cheng & De Waele, 2024) and 
EEFO (Zhao et al., 2024) to find the optimal solution for 
benchmark functions and one engineering problem. To 
conclude the performance of the applied algorithms, three 
criteria are employed to assess the effectiveness of the 
algorithms: 

 1) solution quality, 
 2) solution stability, 
 3) convergence characteristics.  

Solution quality, representing the best solution obtained, is key 
criteria to assess the effectiveness of particulary meta-heuristic 
methods in optimization problems. For example, when 
minimizing the overall electricity generation cost (OEGC), as 
mentioned in our manuscript, the algorithm achieving the 
lowest OEGC is considered superior. If multiple algorithms yield 
the same optimal value, solution stability is evaluated. This 
criterion assesses the consistency of fitness values across 
multiple independent trials. The algorithm with the least fitness 
value fluctuation and the lowest overall fitness value across 
these trials is deemed more stable and, therefore, better. In 
cases where solution stability does not differentiate 
performance, convergence characteristics are examined. This 
involves comparing the convergence speeds to the minimum, 
average, and maximum fitness values observed across the 
multiple trials. These convergence curves are plotted on the 
same axes for direct comparison. The algorithm exhibiting the 
fastest convergence to these values is considered the most 
efficient. Note that convergence speed is defined by the quantity 
of iteration needed to reach the optimal result. Fewer iterations 
indicate faster and more efficient convergence.  

Note that the advantage of a meta-heuristic method over 
others is not based on theoretical proofs. These algorithms 
operate through repeated steps and are significantly influenced 
by stochastic elements Consequently, the determination of an 
algorithm's superiority is derived from a series of empirical tests 
and analyses of its optimal results across those tests. For 
instance, the authors in (Zhao et al., 2024) conducted extensive 
tests, encompassing both theoretical and practical optimization 
problems, and subsequently compared EEFO's performance 
against other algorithms before introducing it to the academic 
community. 

4.2. The simulations results for three benchmark functions 

In this section, both WAA and EEFO are tested with three 
different theoretical functions, including the sphere, Schwefel, 
and Rastrigin functions. The mathematical expression, 
boundaries, and the number of dimensions of each function will 
be given as follows: 

𝐹1(𝑥)  =  ∑𝑥𝑗
2

𝑁

𝑗=1

  

 

(22) 

𝐹2(𝑥)  =  ∑(|𝑥𝑗| +∏|𝑥𝑗|)

𝑁

𝑗=1

  (23) 

𝐹3(𝑥)  =  𝐴𝑁 +∑[𝑥𝑗
2 − 𝐴 × 𝑐𝑜𝑠(2𝜋𝑥𝑗)]

𝑁

𝑗=1

 (24) 

The information regarding the different dimensions and the 
variable boundaries for the three benchmark functions will be 
given in Table 3. Both methods were run with 100 iterations and 
a population of 30 for a balanced comparison. 

Figure 3 shows the minimum convergence achieved by WAA 
and EEFO while tested by the three benchmark functions as 
described above. Note that, the rows a), b), and c) represent the 
testing results of three different benchmark functions including 
the Sphere, the Schwefel, and the Rastrigin function, while the 
collumns i), ii), and iii) show three convergence curves including 
the minimum, average, and maximum convergence of WAA 
and EEFO. The two algorithms can reach the optimal value of 
considered benchmark functions after less than 50 iterations for 
their best run. Besides, EEFO provides a better convergence 
speed than WAA while dealing with Sphere and Rastrigin 
benchmark functions; however, this method is slower than WAA 
when testing with the Schwefel test function.  

In terms of the average and maximum convergences, EEFO 
still maintains the superiority while dealing with the Sphere and 
Rastrigin function and is slightly slower than WAA while tested 
with the Schwefel function. 

4.3 The simulation results for the power system with 15 thermal units 

This subsection applies WAA (Cheng & De Waele, 2024) and 
EEFO (Zhao et al., 2024) to find an engineering problem’s most 
optimal solutions. The optimal solution is comprised of the 
optimal power output for 15-TGU power systems so that the 
OEGC of all TGUs in the system reaches the minimum value. 
The system’s load is 2650 MW. Besides, a 100 MW SPP and 200 

Table 3 
Three benchmark functions 

Function Dimension (N) Boundaries 

Sphere 30 [-100; 100] 

Schwefel 30 [-100; 100] 

Rastrigin 30 [-5.12; 5.12] 
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MW WPP are also connected with the given power system to 
reduce the emissions caused by the operation of TGUs. The 
load demand and data of thermal generating units are taken 
from the study (Vo et al., 2013). The two applied methods are 
evaluated for their performance while solving the RE-ELD by 
using 100 for maximum iteration and 40 for population size. 

Moreover, both methods are executed for 50 test runs for 
optimal solutions before comparisons 

Figure 4 shows the results after 50 test runs achieved by 
WAA and EEFO. In the figure, it is very easy to recognize that 
EEFO can reach many more optimal solutions than WAA. On 
the other hand, the fluctuation of the fitness value achieved by 

 
Fig. 3. Prformance comparison of WAA and EEFO algorithms over 100 iterations. The plots show the convergence of fitness values for: a) 

Sphere, b) Schwefel, and c) Rastrigin test functions. Subfigures i), ii), and iii) represent the best, average, and maximum convergences 
achieved, respectively. 

 
 

 
Fig. 4 The results after 50 test runs of the two applied methods 
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EEFO is noticeably less than WAA. In fact, Standard deviation 
(STD) is a commonly used statistical measure to quantify the 
fluctuation of fitness values across multiple independent runs of 
an algorithm. A smaller STD indicates greater stability, while a 
larger STD suggests instability. By analyzing the STD in 
conjunction with the fitness values presented in the figure, 
EEFO is more stable and effective than WAA in solving the 
considered problem. 

Figure 5 compares WAA and EEFO results, such as the best, 
mean and maximum OEGC. The comparison observation 
indicated that EEFO not only offers a better finding of the best 
OEGC value, but the method is also superior to WAA on other 
criteria, such as the mean OEGC and the worst OEGC. 
Particularly, EEFO can save $0.266 per hour compared to WAA 
on the best OEGC. While the difference in optimal energy 
generation cost (OEGC) savings between EEFO and WAA is 
relatively small, this difference indicates that EEFO yields a 
more optimized solution. Specifically, an hourly saving of 
$0.266, though seemingly marginal, accumulates significantly 
over extended periods such as daily, monthly, annual, and the 
20-year operational lifespan. On the two remaining criteria, the 
savings cost by EEFO over WAA is more noticeable, at $58.890 
for the mean OEGC and $214.225 for the worst OEGC 
corresponds to approximately 0.2% and 0.73%. 

Figure 6 displays the worst, mean, and best convergences 
obtained by WAA and EEFO after solving the CE-ELD problem. 
The observation of the three figures indicates that EEFO 
performs better in determining the minimum value of OEGC, 
which is presented in Figure 6a, while WAA cannot even in its 
best run. Furthermore, the magnified view in Figure 6a 
demonstrates that EEFO exhibits a faster response time 
compared to WAA. This rapid response capability is a 
significant advantage of EEFO in managing the operational 
scenarios of the problem, as it can reduce waiting times and 
facilitate timely decision-making by dispatchers in response to 
fluctuating power system load demands.  Additionally, while the 
difference in the optimal OEGC obtained by the two algorithms 
is relatively small, and the exact number is 0.226 $, as can be 
defined by the data provided in Figure 5, this represents the cost 
savings achieved by EEFO compared to WAA for a single 
operational period. That means that for the realistic scenario, s 

 

Fig. 5 A comparative analysis of WAA and EEFO on different 
aspects. 
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Fig. 6 The presentation of minimum, average, and maximum convergence characteristics of WAA and EEFO 
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Fig. 7. a) The power output and b) the EGC values for each 

TGU achieved by WAA and EEFO 
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uch as a day, a month, a year, or a ten-year operation. The 
cumulative savings costs will be noticeable and cannot be 
ignored.  Besides, the superiority of EEFO over WAA can be 
viewed more vividly in Figure 6b and Figure 6c. These figures 
show that EEFO is far more effective than WAA in these two 
regards. Figure 7 displays each T  ’ generation and electricity 
generating cost (EGC). In Figure 7a, the power output of the 
TGUs with high EGC found by EEFO is lower than those of 
WAA. The extra output required by the load is allocated to the 
TGUs with lower than EGC, so the OEGC found by EEFO is less 
than WAA overall. 

4.4 The results of performing optimization to  the system with 15 
TGUs and one solar farm for a 20-year project 

In this section, the CE-ELD problem is resolved considering the 
demand variations and actual data from the SPP within 24 
hours. Besides, the economic profit of having an SPP in the 
system will be calculated after twenty years of operation. As 
stated in the previous section, the sole S  ’s basic information 
is reported in Table 4 (The SPP data – GAS, 2025). The electric 

prices in Vietnam are used to calculate the hybrid power plant’s 
total revenue (Nguyen et al., 2022). 

Figure 8 shows the 24-hour power supply from the SPP 
(Subfigure 8a) and the 24-hour load demand (Subfigure 8b) 
across twelve months. 
 
4.5. The evaluation of the reduction cost with SPP 

Figure 9a) compares each month's EGC values for the case 
where the system with power is supplied by SPP. The reduction 
cost of an average day of each month will be determined by the 
subtraction between the cases without SPP and the cases with 
SPP of each month. It should be noted that the reduction in EGC 
is only observed from the 6th to the 18th hour daily. This 
limitation is due to the physical constraints of the SPP, which 
can only generate power during daylight hours, thereby 
offsetting the EGC during this period. During the remaining 
hours, the EGC remains unchanged, as the SPP does not 
contribute. The "No_SPP" scenario demonstrates a substantial 
increase in EGC from the 10th hour, peaking at the 13th and 
14th hours, followed by a sharp decrease after the 17th hour. 

Table 4 
S  ’s information 

Location Dong Hai Ward, Phan Rang Thap Cham City, Ninh Thuan Province, Vietnam 

Geographical coordinates 11.550392°, 109.028377° (11°33'01", 109°01'42") 

The configuration of PV systems  Ground-mounted large scale* 

System size (MWp) 100 

The PV panels’ applied tilt 110 

The PV panels’ applied azimuth 1800 

 

 
Fig. 8  a) The power supplied by SPP in a year and b) The load 

demand variation within a day. 
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Fig. 9 a) The OEGC value for twelve 12 compared to the case 
without SPP and b) The corresponding cost reduction for each 

months. 
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However, these peak hours coincide with periods of high solar 
radiation, resulting in significant power output from the SPP. 
This correlation leads to a noticeable reduction in EGC, 
consistently observed across all twelve months. The 
observation from the figure indicated that the lowest reduction 
cost is in November, while the highest is in May. 

Figure 9b presents the reduction cost of EGC each month for 
the case where the system with power supplied from SPP. The 
reduction cost of an average day of each month is determined 
by the subtraction between the cases without SPP and those 
with SPP of each month. While Figure 9a illustrates the 
comparative reduction of Electricity Generation Costs (EGC) for 
scenarios with and without SPPs, Figure 9b provides a 
quantitative measure of the EGC reduction for an average day 
of each month across the entire year. Consistent with Figure 9a, 
the reduction is observed from the 6th to the 17th hour daily.  
The observation from the figure indicated that the lowest 
reduction cost is in November, while the highest reduction cost 
is in March. 

4.6.The evaluation of profit of the whole system 

This section investigates the profit generated by 
incorporating a Solar Photovoltaic Plant (SPP) and Thermal 
Generation Units (TGUs) into the system. Based on the 
mathematical model described in Eqs. (8)-(10), Figure 10 
presents the components necessary for determining the 
operational profit of the TGUs. Specifically, Figure 10a shows 
the 24-hour Energy Generation Cost (EGC) for each TGU. 
Figure 10b depicts the 24-hour electricity supply from each 
TGU. Using the data from these figures and Eq. (9), Figure 10c 
displays the calculated cost per MW of electricity generated by 
each TGU. 

The power outputs of thermal power plants in Figure 10b 
and the electric prices are substituted into Eq. (7) to calculate 
the total fuel cost and profit. Figure 11a presents the total 
cumulated cost, cumulated revenue, and cumulated profit after 
each year from 2024 to 2043. The total revenue for twenty years 
is $31,356,508,271; meanwhile, the total cost and total profit are 
$26,607,299,625 and $4,749,208,646, respectively. The TGUs 
optimization operation can reach a total profit of $4,749,208,646 
for 20 operating years. On the other hand, power plants have 
CAPEX and O&M costs (CAPEX and O&M of TGU, NREL - 
2023). The CAPEX per kW in 2024 is $3492.254 per kW, and 
O&M costs for the period from 2024 to 2043 are given in 
(CAPEX and O&M of TGU, NREL - 2023). To calculate the 
CAPEX for 15 TGUs, the total capacity of the fifteen thermal 
power plants is calculated, equaling 3542 MW. Finally, the total 
CAPEX is $12,369,563,668. 

Figure 11b presents the total cumulated cost, total 
cumulated revenue, and total cumulated profit from 2024 to 
2043. Here, the total cost is the sum of total CAPEX, total fuel 
cost, and total O&M cost. The calculations of the total cost and 
profit is based on Eq. (1). The total cumulated profit in Figure 
11a is reused and put in Figure 11b. The total cost is shown in 
blue points. The total cumulated profit after the first year, 2024, 
is minus and equal to about -11 billion dollars. The total 
cumulated profit can be increased from 2024 to 2032, and the 
total cumulated profit is the smallest minus value, with the total 
cumulated profit of -0.3987 billion dollars after 2032. After 2033, 
the total cumulated profit becomes positive, with 0.931 billion 
dollars. The total cumulated profit continues to increase and 
reach about 14.2 billion dollars after 2043. The total cumulated 
cost after 2043 is 17.1 billion dollars. See Figure 11a; the total 
cumulated cost and profit for the case, neglecting the O&M and 
CAPEX costs, are about 4.75 and 26.6 billion dollars. So, for an 
actual project considering the O&M and CAPEX costs, the total 
cumulated profit after 20 years is 14.2/26.6=53.4%.  Next, the 
profit from having an SPP in the system is investigated. As seen 
from Equation (20), besides the Revenue, CAPEX and O&M 
costs must be determined before calculating the profit. 
According to (CAPEX and O&M of SPP, NREL - 2023), the 
CAPEX value is 1289.51$ per kW; therefore, this value of a 
100MW SPP is 128950700 $.. The solar power plant’s total 
cumulated cost and the cumulated profit after each year can be 
calculated. Figure 11c presents the total cumulated cost, 
revenue and profit of the SPP after 20 years. After 2024, the 
solar power plant project suffers the highest loss, with about -
0.112 billion dollars. The loss can be reduced gradually seven 
years later, from 2024 to 2030. 2030 is the last year that the 
project suffered a loss, with the smallest value of about -13.23 
million dollars. After 2031, the project started getting a small 
profit, with 3.5 million dollars. The total cumulated profit 
continues to increase and reach about 0.207 billion dollars after 
2043. The total cost after 2043 is 0.163 billion dollars. So, for an 
actual project considering the CAPEX and O&M costs, the total 
cumulated profit after 20 years is 0.207/0.163=127%. 

 
Fig. 10 The illustration in 24 hours of a) the EGC for each TGU, 
b) Power output of TGUs over 24 hours, and c) Fuel price per 

MWh without SPP 

 

1
 
 
10
1 
16
1 
22

0

1000

2000

 000

 000

5000

6000

 
o
u
r

 
 
 
  
  

1
 
 
10
1 
16
1 
22

0

100

200

 00

 00

500

600

 
o
u
r

 
o
w
er
 o
u
tp
u
t 
 M

W
 

0 100 100 200 200  00  00  00  00 500 500 600

T
 
 
1

T
 
 
2

T
 
 
 

T
 
 
 

T
 
 
5

T
 
 
6

T
 
 
 

T
 
 
 

T
 
 
 

T
 
 
1
0

T
 
 
1
1

T
 
 
1
2

T
 
 
1
 

T
 
 
1
 

T
 
 
1
5

0

10

20

 0

 0

1 5  
1 

1 
21

 
u
el
 c
o
st
 p
er
 M

W
h
  
  
M
W
h
 0 10

10 20

20  0

 0  0

  

  

  



D.T. Tran and T.T. Nguyen Int. J. Renew. Energy Dev 2025, 14(3), 563-576 
|573 

 

ISSN: 2252-4940/© 2025. The Author(s). Published by CBIORE 

In summary, a project with 15 TGUs and the 100-MW SPP 
suffered the highest loss after the first year, and the loss is the 
smallest after 9 years for TGUs and 7 years for the SPP. The loss 
disappears, and the profit comes after 10 years for the TGUs 
and 7 years for the SPP. The total cumulated profit is about 83% 
of the total costs for the TGUs and 127% of the total costs for 
the SPP after 20 years. 

5. Discussion on Factors Affecting Project Output 

The results presented in the previous sections were derived 
from calculations incorporating various economic factors, 

including electricity prices, solar power prices, and fixed costs 
such as the O&M and CAPEX costs. CAPEX and O&M costs 
were estimated based on Annual Technology Baseline of the 
National Renewable Energy Laboratory (CAPEX and O&M of 
TGU, NREL – 2023;  CAPEX and O&M of SPP, NREL - 2023) 
and are illustrated in Figures 1 and 2 for both thermal generating 
units (TGUs) and solar photovoltaic plants (SPPs). However, 
electricity and solar power prices are subject to significant 
market and economic fluctuations, contributing to the output 
variations observed in the previous section. This section will 
briefly describe three key elements, not previously evaluated, 
that are acknowledged to have a major influence on the time at 
which profitability is achieved: 

5.1. Fuel Price Fluctuations  

The fundamental operational dependence of TGUs on fuel 
consumption renders them particularly vulnerable to price 
volatility.  A rapid increase in natural gas or coal prices will 
directly a significant change in operating costs.  To deal with 
this situation, the generation company's owner must execute the 
electricity price regulation, avoiding losses or at least keeping 
their marginal profit. To address this issue, the authors (Wang 
et al., 2013) introduced a two-stage probabilistic model for 
independent power producers (IPPs), known as price-based unit 
commitment (PBUC), designed to optimize profits in a 
deregulated electricity market where their role as price takers. 
This model accounts for the unpredictable nature of market 
prices and wind energy production. The initial stage involves 
decisions regarding unit commitment of thermal and 
hydroelectric generators and the quantity of electricity offered 
in the day-ahead market. The subsequent stage focuses on the 
real-time market, encompassing generation dispatch, actual 
wind power utilization, and the discrepancy in energy between 
day-ahead bids and real-time generation, which can incur 
penalties. Beyond fossil fuel prices, other factors like 
geopolitical instability and supply chain disruptions pose 
significant financial risks to project owners. Specifically, rising 
oil import costs can influence political outcomes in 
democracies, as public dissatisfaction with fuel prices fuels 
protests and impacts elections (Arezki et al., 2022). 
Furthermore, efficient supply chains are crucial for converting 
raw materials such as coal, liquefied natural gas, and oil into 
electricity through transportation, acquisition, and trade. 
Disruptions caused by geopolitical events, natural disasters, or 
economic instability can lead to shortages of these materials, 
consequently driving up electricity prices across the market 
(Yang & Fu, 2025). In general, long-term profitability is 
contingent upon accurate fuel price forecasting and the 
implementation of effective risk mitigation strategies, such as 
hedging or the securing of favorable long-term supply 
agreements.  Conversely, TGUs possessing fuel flexibility or 
advantageous supply agreements are positioned to capitalize on 
market volatility, thereby gaining a competitive advantage 
during periods of heightened prices. 

5.2. Inflation (Affecting Both TGUs and SPPs):  

This is the second factor not previously evaluated. For both 
thermal generating units (TGUs) and solar photovoltaic plants 
(SPPs), inflation directly impacts initial capital expenditures 
(CAPEX), increasing the costs of construction materials, 
equipment, and labor. Consequently, payback periods are 
extended, and returns on investment are reduced. Furthermore, 
operational costs, including regular maintenance, wages, and 
administrative expenses, also rise with inflation. If electricity 
prices do not adequately adjust to inflationary pressures, profit 

 
Fig. 11 a) Total cumulated fuel cost, revenue and profit from 2024 to 
2043, b) The total cost, revenue and profit after using CAPEX and 
O&M costs, and c) The total cumulated cost, revenue and profit of 
the SPP after 20 years. 
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margins will significantly decrease. Inflation significantly 
impacts financial modeling by influencing discount rates. As 
evidenced by (Shea & Ramgolam, 2019), ncreased discount 
rates diminish the current worth of future cash inflows, 
negatively affecting project valuations. The discount rate 
represents the concept of the time value of money, and its 
fluctuations, influenced by inflation and perceived risk, are 
pivotal for determining net present value and informing 
investment strategies. Therefore, careful selection of an 
appropriate discount rate, tailored to the specific project 
context, is essential to avoid significant miscalculations and 
flawed financial forecasts. In the case of solar power plants 
(SPPs) and other renewable energy projects, if power purchase 
agreements (PPAs) lack inflation adjustments, the real value of 
revenue streams will diminish over time (Guaita-Pradas & 
Blasco-Ruiz, 2020). 

5.3. Policy Changes:  

This factor affects both TGUs and SPPs' operations. Particularly, 
the regulatory framework plays a key role in shaping the 
economic viability of energy projects. The rigorous 
environmental regulations such as emissions trading schemes 
or carbon taxes, impose substantial financial burdens on TGUs, 
increasing their operating costs and potentially rendering them 
less competitive. Conversely, these policies can bolster the 
economic attractiveness of SPPs, as they are inherently low-
carbon. Soon, decarbonization has become a large trend in 
almost all countries in the EU. By following the trend, many 
countries have soon begun to transit their economy-oriented 
green and low to zero carbon with the support of the whole 
society, leaders of administrations, and the maturity of related 
technologies   arosławska-Sobór, 2021). Government also 
support for renewable energy development, reducing feed-in 
tariffs, tax benefits, and renewable portfolio standards, 
significantly boosts the economic viability of Solar Photovoltaic 
Plants (SPPs). In China, for instance, the government has 
implemented four key strategies to accelerate the expansion of 
renewable energy sources, including fostering research and 
development, providing rapid financial and tax support for 
renewable energy projects, facilitating the development of 
policies that allow for the integration of renewable energy into 
the grid, and finally, expanding the market for renewable energy 
(Zhao et al., 2016). However, abrupt policy shifts can cause 
significant uncertainty and increase the risks of long-term 
investments. The unexpected modifications in grid connection 
regulations and permitting procedures can also impede project 
progress and escalate costs for both Thermal Generating Units 
(TGUs) and SPPs. Furthermore, energy market deregulation 
can create both opportunities and risks, potentially lowering 
electricity prices but also introducing greater volatility. Changes 
to fuel import or export rules can dramatically affect the cost 
and availability of fuel, which directly affects TGUs. 

6. Conclusions 

This study applied two novel meta-heuristic algorithms, 
including WAA and EEFO, developed in 2024 to maximize the 
total profit over 20 operating years for a hybrid power plant with 
15 thermal generating units and a 100-MW solar farm. In the 
first study case, the two algorithms were applied to reach the 
optimal solution for the 15 TGUs at one peak load hour. In the 
second study case, the TPP was integrated into one 100-MW 
solar photovoltaic farm for a 20-year operating project. The 
CAPEX, O&M, and fuel costs for real thermal power plants and 
the CAPEX and O&M costs for real solar photovoltaic power 

plants were considered. In addition, the electric prices and solar 
radiation were also taken from an electric power company and 
a real zone in Vietnam, respectively. Results from the simulation 
can be summarized as follows: 
1. For the first study case, EEFO could find smaller 

minimum, mean, and maximum costs than WAA by 
$0.266, $58.890, and $214.225, respectively. So, EEFO is 
more suitable than WAA for the study. 

2. For the second study case, the 15 thermal units and the 
10-MW SPP could reach a greater revenue than the total 
costs after nine years and seven years, respectively. The 
TPP could reach a profit of 14.2 billion dollars, and the SPP 
could reach a total profit of 0.207 billion dollars after 20 
years. The total profit was about 83% of the total costs for 
the TPPs and 127% of the total costs for the SPP. 

The results above indicated the noteworthy contributions of the 
study. EEFO was a powerful algorithm to solve the problem, and 
the results from the algorithm were validated. The total costs of 
a real thermal power plant and a real solar power plants were 
considered in addition to the real electric prices. The 
optimization operation of the hybrid power plant could bring a 
high profit after nine years, and the profit after 20 years was 
significant. This information can show the overview to investors 
for developing power sources when the load demand is really 
high nowadays. While this study offers valuable contributions, it 
also presents several limitations that warrant careful 
consideration to enhance practical applicability. These 
limitations are outlined below: 

1. Market Price Fluctuations: The study does not 
account for market-driven electricity and solar power 
price variations. In reality, these prices are subject to 
supply and demand dynamics, and applying constant 
prices is not close to what happens in real-world 
scenarios.  

2. Static Load Demand: The assumption of constant load 
demand constitutes another significant limitation. In 
practice, load demand is expected to increase 
proportionally with population and economic growth. 

As mentioned above, future research should assess the impact 
of price variations and load demand growth. Furthermore, a 
comprehensive evaluation of other factors influencing the 
operation of a solar power plant (SPP) over 20 years is 
necessary. This evaluation should include, but not be limited to, 
the plant's ability to maintain designed operational 
characteristics, regulatory policy changes affecting SPP 
operation, and operational costs such as staff salaries. 
Additionally, In future work, load demand, solar radiation, and 
electric prices will be predicted by using modern techniques or 
software to obtain more exact results for the project with the 
combination of thermal power plants and solar power plants. 

Abbreviation 

HOA Hybrid optimization algorithm 

MSPSO Modified symbiosis particle swarm optimization 

FA Firefly Algorithm 

ASSA Adaptive salp swarm algorithm  

ECIA Enhanced Cheetah-inspired algorithm 

AVOA African vulture optimization algorithm 

RDA Robust Distributed Algorithm 

MOEAs Multi-objective evolutionary algorithms 

ANN-

ANFIS 

Artificial Neural Network and Adaptive Neuro-Fuzzy 

Inference System  
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CJA Chaotic Jaya algorithm 

Nomenclature 

𝑁𝑦𝑒𝑎𝑟 The number of (20) years for the project 

𝑁𝑑𝑎𝑦 
The number of days in one year (selected to be 
360 days) 

𝐶𝐴𝑃𝐸𝑋1𝑀𝑊 The capital expenditure per MW ($/MW) 

𝐶𝑜𝑠𝑡1𝑀𝑊
𝑂&𝑀 

The operating and maintenance cost per MW 
per year ($/MW-year) 

𝑃𝐺𝑛; 𝑃𝐺𝑚 The power output of the TGU n and m 

𝑃𝐺𝑛
𝑚𝑖𝑛; 𝑃𝐺𝑛

𝑚𝑎𝑥 
The highest and lowest value of power output 
supplied by TGU n 

𝑃𝑆𝑃𝑃,𝑠
𝑚𝑖𝑛  ; 𝑃𝑆𝑃𝑃,𝑠

𝑚𝑎𝑥  
The minimum and maximum power output of 
SPP s 

𝑃𝑊𝑃𝑃,𝑤
𝑚𝑖𝑛 ; 𝑃𝑊𝑃𝑃,𝑤

𝑚𝑎𝑥  
The minimum and maximum power output of 
WPP w 

Nps The initial population size 
𝜇0−1  A random value between 0 and 1 

𝑋𝐺𝐵  
The best solution of the whole population at 
current iteration 

𝑋𝑛
𝑛𝑒𝑤  

The new solution updated in the exploration 
phase 

𝜇𝐿𝑒𝑣𝑦  
A random value based on Levy flight 
distribution 

𝑈𝐵;  𝐿𝐵  
The upper and lower boundaries of the search 
space 

𝑁𝐹1; 𝑁𝐹2 The navigation factors 
𝜀1; 𝜀2 The reference factors 
𝐹𝑇𝐸𝑝; 𝐹𝑇𝐸𝑞 The fitness values of the electric eels p and q 
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