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Maximize the total electric sale profit for a hybrid power plant with

fifteen thermal units and a 100-MW solar photovoltaic farm under a
20-year power generation project
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Abstract. This study investigates the effectiveness of two recently proposed meta-heuristic methods, the Weighted Average Algorithm (WAA) and
Electric Eel Foraging Optimization (EEFO), to maximize the total profit of a hybrid power system. The considered system comprises fifteen thermal
generating units (TGUs) and a 100-MW solar photovoltaic farm (SPP) operating over a 20-year period. Initially, the problem is solved under conditions
of fixed load demand and rated power supply from the renewable energy source while accounting for prohibited operating zone constraint and system
power losses. Comparative results obtained from both algorithms demonstrate that EEFO exhibits superior performance in terms of stability and
convergence speed. Specifically, EEFO demonstrates a lower fluctuation in overall electricity generation cost (OEGC) across multiple independent
runs compared to WAA. Furthermore, EEFO achieves better minimum, mean, and maximum OEGC values of $0.266, $58.890, and $214.225,
respectively. Subsequently, EEFO is reapplied to maximize the profit of the hybrid power system, incorporating load demand variations and real solar
radiation data. This analysis includes the evaluation of initial capital expenditure (CAPEX) and operation and maintenance (O&M) costs for the SPP
over the 20-year period. Current electricity and solar power prices are utilized to illustrate the cumulative profit over time. The results indicate that
the hybrid system experienced the highest loss in the first year, with the minimum loss occurring after 9 years for the TGUs and 7 years for the SPP.
Profitability is achieved after 10 years for the TGUs and 7 years for the SPP. The cumulative profit over 20 years amounts to $14.2 billion for the
TGUs and $0.207 billion for the SPP, representing approximately 83% and 127% of their respective total costs.
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1. Introduction ELD become larger and more complicated because of the

consideration of constraints, meta-heuristic algorithms are
acknowledged to be the most suitable computing tool for
solving the mentioned problems. Specifically, the application
particular meta-heuristic algorithm can be listed such as Squirrel
search optimizer (SSO) (Sumanl et al, 2020), Modified
equilibrium algorithms (MEA) (Duong et al, 2021), The
Enhanced Firefly optimization algorithm (IFA) (Nguyen et al.,
2018), Double-weighed particle swarm optimization (DW-PSO)
(Kheshti et al, 2018), the Artificial algae algorithm (AAA)
(Kumar & Dhillon, 2018), Improved bacterial foraging algorithm
(IBFA) (Pandit et al., 2012), search and rescue algorithm (SRA)
(Said et al, 2022), biogeography-based optimization (BBO)
(Xiong & Shi, 2018), High-Performance Stochastic Fractal
Search Algorithm (Pham et al, 2019), Harmonic search
algorithm (Fesanghary & Ardehali, 2009), Equilibrium optimizer
(EO) (Duong et al, 2021), Salp swarm optimization (SWO)
(Alkoffash et al., 2021), the Improved Jaya algorithm (Chen et
al., 2020), Modified moth swarm algorithm (MMSA) (Ha et al.,
2020), The enhanced Manta ray optimization algorithm
(IMROA) (Hassan et al., 2021) , Ameliorated dragonfly algorithm
(ADA) (Suresh et al., 2019), Grey wolf optimal (GWO) (Pradhan
et al.,, 2016), Fire hawk optimization (FHO) (Tang & Cuong,

Resolving the economic load dispatch (ELD) problem remains
one of the first concerns in operational problems in power
(Nguyen & Vo, 2015). The process of solving the ELD problem
involves optimizing the power output of all thermal generating
units (TGUs) in the system to achieve the target, which is
minimizing the overall electricity generation cost (OEGC) in
most cases (Dasgupta & Banerjee, 2014). Solving the ELD
problem not only benefits the engineering aspects but also
reduces the negative effects on the environment (Wu et al,
2010). In the past, TGUs were in charge of the main generating
sources in solving the ELD problem; however, clean energies,
including solar and wind power, recently have been integrated
more and more into the power system, and they also proved
their role in partly reducing the use of conventional TGUs which
consumed fossil fuel and caused toxic emissions. Based on that,
the ELD problem has been modified to clean energies economic
load dispatch (CE-ELD) (Kherfane et al., 2014; Farag et al., 1995;
Reddy & Bijwe, 2015) with the integration of solar and wind
energy for most cases.

By realizing the key role of solving ELD and its modern
version, CE-ELD, much research has been conducted to unfold
the problem. Moreover, while the scale of both ELD and CE-
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Table 1
The summary of previous studies solving the ELD problem.
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Power sources Objective function

Reference Applied method Thermal Wind solar Cost Emission
(Mokarram et al., 2019) HOA X X X X
(Zhang et al., 2021) MSPSO X X X
(Salim & Abdullah, 2022) FA X X
(Ahmed et al., 2024) ASSA X X X X X
(Nagarajan et al., 2024) ECIA X X X X
(Mishra & Shaik, 2024) AVOA X X X X X
(Diesel)
(Kubicek et al., 2024) RDA X X X
(Ali et al., 2024) MOEAs X X X X X
(Zhang et al., 2024) YALMIP toolkit X X X X
(Jiriwibhakorn & Wongwut, 2024) ANN-ANFIS X X X X
(Chaudhary et al., 2024) CJA X X X X X

2023), Five phases algorithm (FHO) (Wang et al., 2023), Social
optimization algorithm (SOA) (Karimi & Khandani, 2020),
Modified Krill Herd Optimization Algorithm (MKHOA) (Kaur et
al, 2022), and Modified Jaya algorithm (MJA) (Kumar et al.,
2021). These studies have applied different metaheuristic
algorithms for ELD problems with single fuel option, multi-fuel
options, fuel cost functions under convex or nonconvex forms,
prohibited zone operation constraints, ramp rate limits, etc.
Their purpose is to demonstrate that their applied or proposed
algorithms could find global optimal solutions better or faster
than others in previous studies could do. In the studies,
renewable energy sources such as solar and wind have not been
considered. On the contrary, other recent studies have been
concerned with the importance of renewable power sources in
reducing the generation of thermal power plants and cutting the
emission and fuel costs from generating processes. Applied
methods, renewable power sources, and objective functions of
the recent studies are presented in Table 1.

Table 1 shows different algorithms were applied to solve
wind and solar power-based ELD problem for a single objective
function (cost or emission reduction) and a two-objective
function with cost and emission reduction using different
optimization tools. In general, the studies applied an existing
optimization algorithm, such as FA (Salim & Abdullah, 2022),
AVOA (Mishra & Shaik, 2024), MOEAs (Ali et al., 2024) and
YALMIP toolkit (Zhang et al., 2024) or developed existing
algorithms to improve their performance, such as HOA
(Mokarram et al, 2019), MSPSO (Zhang et al., 2021), ASSA
(Ahmed et al, 2024), ECIA (Nagarajan et al, 2024), RDA
(Kubicek et al., 2024), ANN-ANFIS (Jiriwibhakorn & Wongwut,
2024) and CJA (Chaudhary et al., 2024). Existing algorithms
were demonstrated to be effective for the ELD problem with
renewable energies since the total emission and fuel cost were
reduced. Modified algorithms could reach smaller costs and
emissions than other existing algorithms. The contributions of
the algorithms are related to cost and emission reduction and
the high-performance proposed algorithms. These are two
significant contributions of the studies; however, they have the
same shortcomings: the need for more practical information on
capital costs, operating and maintaining (O&M) costs, and the
calculation of the payback period for a project.

In this study, the ELD problem is expanded by considering
solar power plants for a project of twenty years. In the study,
real data on solar radiation in a zone of Viet Nam is collected to
calculate the generation of a solar power plant. Real electric
prices are applied to find the total revenues for thermal power
plants and solar power plants, and then the total profit is
calculated for the twenty-year project. The payback period is

analyzed for the project with the solar power plant. Weighted
Average Algorithm (WAA) (Cheng & De Waele, 2024) and
Electric Eel Foraging Optimization algorithm (EEFO) (Zhao et
al., 2024) are applied to determine the most optimal solution to
the problem. The core objective of this study is to reduce the
overall electricity generating cost (OEGC) for all TGUs in the
power system. Besides, power loss from transmisison process
and the prohibited working zones of TGUs are considered.
Moreover, wind and solar energies are also integrated into the
considered power system. The selection of the Weighted
Average Algorithm (WAA) and the Electric Eel Foraging
Optimization (EEFO) methods for this study was based on the
following reasons:

For the research field, both WAA and EEFO are
relatively novel meta-heuristic algorithms.

Prior to their application in this research, WAA and
EEFO have been successfully tested on both theoretical
and practical applications, as documented in (Cheng &
De Waele, 2024) and (Zhao et al., 2024).

The wupdate mechanisms of WAA and EEFO
demonstrate high capabilities in addressing complex
optimization problems, such as the one considered
herein. Specifically, WAA utilizes the difference between
the current, average, and best solutions to guide the
search process during the exploitation phase.
Subsequently, the solution is updated through a random
process governed by Levy flight distribution. EEFO, in
its initial phase, updates solutions based on the
relationship between the current solution and its nearest
neighbors, combined with a random component. In later
phases, EEFO employs various update strategies,
including Levy flight, to refine the search towards the
optimal solution. The performance of EEFO compared
to other metaheuristic algorithms is summarized in
Table 2.

The novelties of the whole study focus on a realistic, long-
term economic analysis of solar power plant (SPP) operation.
Firstly, it moves beyond simplified models by incorporating
actual, historical electric price and solar radiation data spanning
a 20-year project timeframe. This approach allows for more
accurate estimations of expenditure, revenue, and profit,
providing a robust framework for visualizing the project's capital
investment and economic benefits. This realistic data
integration ensures that the results are directly applicable to
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Table 2

The summary of comparisons between EEFO and previous metaheurisitc algorithms
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Tested Optimization

Test Problem/ Suite

Problem Description

Compared Algorithms

23 conventional
benchmark functions

16 multimodal functions and 7 unimodal functions
to test exploration, exploination and local
optimization avoidance

30 CEC 2017
benchmark functions

Benchmark Function
Suites

CEC2011 Test Suite

Rotated, hybrid composite, and shifted
multimodal functions to evaluate exploitation,
tradeoff , exploration, and the avoidance of local
optimal solutions.

Tested in 10, 30, and 50 dimensions.

Real-world optimization problems in engineering
to evaluate exploitation, tradeoff , exploration, and
the avoidance of local optimal solutions.

Levy flight distribution(LFD).
Arithmetic optimization algorithm
(AOA).

Whale optimization algorithm
(WOA).

Sine-cosine algorithm (SCA).
Harris hawk optimization algorithm
(HHO).

Butterfly optimization algorithm
(BOA).

Wind driven optimization(WDO).
Moth flame optimization algorithm
(MFO).

Adaptive evolution strategy
algorithm (AESA).

Gravitational search algorithm

(GSA).

- Weighted differential evolution
(WDE).

- Atom search optimization (ASO).

Three-bar truss
optimization design

Engineering design problems likely focused on
minimizing weight or stress under constraints.

Tension/compression Optimizing coil and wire diameter of spring to

spring optimization

minimize volume/weight under stress, surge

design frequency, and deflection constraints.
Minimizing the welded beam cost consider
Welded beam design conditions of bending stress, shear stress, end

deflection and buckling load.

Minimizing the cylindrical pressure vessel ‘s
Pressure vessel design fabrication cost considering the thickness and

material properties.

Speed reducer
Specific Engineering ~ optimization design

Problems

Minimizing the speed reducer’s weight
considering surface stress, shaft stresses,
deflections, and bending stress.

Optimizing parameters for a multiple disc clutch

Brake design

Rolling element
bearing design

Cantilever beam
design to stress constraints.

Car optimization
design

Compressor

optimization design .
P 8% constraints.

brake, likely minimizing mass or stopping time
under operational constraints.

LFD, AOA, WOA, SCA, HHO, BOA,
AESA, WDO, MFO, GSA, ASO, WDE.

Maximizing the rolling bearing’s dynamic loading
capacity subject to geometric constraints.

Minimizing the cantilever beam’s weight subject

Engineering problem related to weight reduction
or injury criteria in a car side impact scenario
under various constraints.

Optimization design of a compressor station, likely
minimizing cost under flow and pressure

real-world scenarios, enhancing the practical value of the study.
Secondly, the research provides a comprehensive visualization
of the relationships between total cost, revenue, and profit for a
100 MW SPP operating over this extended period. This
visualization serves as a crucial tool for planners and operators,
enabling them to make informed adjustments in response to
dynamic market conditions such as fluctuating government
policies and potential engineering challenges. Furthermore, the
analysis utilizes actual solar radiation data from reputable
sources, ensuring that the power supply calculations are
grounded in verifiable, real-world measurements, thereby
enhancing the study's transparency and reproducibility. Finally,
the study employs and compares novel meta-heuristic
algorithms, specifically WAA and EEFO, to optimize the
planning problem. By leveraging the superior-performing

algorithm, it maximizes the total profit of a hybrid power system,
including the SPP, over the 20-year operational period.
Additionally, the study determines the payback period for this
hybrid system, providing critical economic insights for the long-
term project viability of solar power plants integrating thermal
power plants.

In summary, this study focuses on maximizing the
profitability of a solar power project within a hybrid energy
system. The study aims to assess and evaluate the effectiveness
of a novel optimization algorithm (EEFO) in determining the
optimal investment and operational strategies for both the solar
plant and an existing thermal power plant. Subsequently, the
main objective is to conduct a detailed economic analysis,
including precise payback period calculations and sensitivity
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analysis, to ensure the solar project yields the highest possible
profit.

2. Problem modelling
2.1 The profit models

The profit model of TGU: Similar to other kinds of business on the
market, in this regard, the supplied power from all the TGUs in
the system is considered to be a good for selling. Profits are the
key factor that decide the effectiveness of the particular model
and lead to other important decisions which including, keeping
moving, growing or terminated. For TGUs particularly, the
profit of selling electricity is calculated by using the following
equations.

PrOfitTpp = ReveTpp - (CAPEXTPP + Costggy
+ FCostrpp)

(1)

Where, Profitrpp and Reverpp are the total profit and
revenue of the TPP for 20 years; CAPEXyppis the CAPEX cost
of the TPP; Cost95Mis O&M costs for 20 years; and FCostyppis
the total fuel cost of the TPP for 20 years. The parameters
regarding the finance of the TPP are obtained by:

24
Reverpp = Nyear- Nday (PGn,h- Pry) (2)
h=1
Nthe
CAPEXrpp = CAPEX yw- Z (PGIex) (3)
n=1
Nrhe

Cost28M = CostZ8H. Z (PGI*) (4)
n=1

FCostrpp = Nyear-Nagy- OEGCiqqy (5)

Where OEGCy4,,, is the overall electricity generation cost all
TGUs for one operating day and obtained by:
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24 Nrtng

OEGCIday = Z Z (an + BnPGn,h + YnPG%,h)

h=1 n=1

(6)

where Ny is the quantity of TGUs of the given system; a,,, 8,
and y, are coefficient factors while using particular fuel while
operating TGU n; and PG, is power output of the thermal
power plant n at the hour A.

Figure 1 shows three costs of TPPs, including capital
expenditures (CAPEX) for the initial time of projects, variable
O&M costs for each produced MWh, and fixed O&M costs for
every operating year. The three costs are based on the fossil
energy technology characterization (National Renewable
Energy Laboratory (NREL) for TGU - 2023) . In the study, we
used the variable O&M costs and CAPEX from the industry and
historical data, whereas, the variable O&M costs is replaced
with the fossil fuel costs as suggested in previous studies
(Mokarram et al., 2019; Zhang et al., 2021).

The profit model of SPP: The profit model of an SPP is slightly
different from that of a TGU in terms of the EGC. Particularly,
the operation of SPP does not cause any value of EGC as the
initial input. Therefore, the profit model of SPP is given as
follows:

Profitspp = Revespp — (CAPEXspp + CostIEM

(7)

where Profitspp and Revegpp are the total profit and revenue
of the SPP for 20 years; CAPEXppis the CAPEX cost of the SPP;
Cost9&Mis O&M costs of the SPP for 20 years. The parameters
regarding the finance of the SPP are obtained by:

24

Revespp = Nyear-Nday Z(PSPPJL- Pry)
h=1

(8)

CAPEXspp = CAPEXypy. PINGX (9)

Cost28M = Cost{3. pmax (10)
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Fig. 1 The illustration of O&M cost considering the variable and fixed aspects, and CAPEX of TPPs
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Fig. 2. The illustration of fixed O&M corresponding to CAPEX
costs of a SPP.

A utility-sized solar photovoltaic (SPP) facility's CAPEX and
fixed variable costs are depicted in Figure 2. Here, the SPP is
modeled under the two cost types, benchmarked with industry
and historical data (The SPP data — GAS, 2025). In the study, the
two costs are applied to evaluate the investment effectiveness
of renewable power sources under a utility-scale plant.

2.2 Main objective function.

The study considers a 20-year power generation project with a
power system consisting of 15 TGUs and one solar photovoltaic
farm. So, the core objective is to reach the maximum total profit
of the hybrid power plant with TGUs and one SPP as follows:

Maximize Profityan: = Profitrpp + Profitspp (11)

where Profityqn.is the total profit of the hybrid power plant for
20 years.

2.3 The involved constraint

The power balance constraint: This constraint depicts the
correspondence of the amount of power consumed by all loads
plus the power loss, which must equal the overall supplied
power of all the existing power sources as follows.

Nrhe
2 PGy, + Pspp — Pyp = 0 (12)
n=1

where Zgz’f PG, is the power output supplied by all existing

TGUs in considered system configuration; Pspp s is supplied
power generated by the SPP; P, ;, is the power required by loads.

The TGU'’s operational constraint: This constraint is applied to
control the power supplied by each TGU in the given system
must locate in the allowed ranges as follows (Nguyen & Vo,
2015).

PGIM™ < PG, < PGMX (13)

Prohibited operation zone constraint: This constraint refers to the
sub-region of the power output supplied by TGUs, where the
TGUs can be operated effectively and safely without risks to
their physical limitation (Nguyen & Vo, 2015):
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PGM" < PG, < TG,
PG, €E{TGY,_, < PG, < TG!y;
TG, < PG, < PG (14)

k=2, ..,qVneQ

where q is denoted as the quantity of prohibited
operational zones of the TGU n.

The operational constraints of SPPs: Similar to the TGU
mentioned above, this constraint is highly relevant to the
physical limitations of a generator. That means that the power
output of SPP is allowed to change in the operational ranges as
follows (Kherfane et al., 2014):

PR < Pgpp < PIRES (15)

3. Applied method
3.1 Weighted Average Algorithm (WAA)

Introduced in 2024, the Weighted Average Algorithm (WAA)
operates by determining the weighted average location of the
entire population and selecting from two distinct movement
strategies. The WAA's solution update process focuses on
maintaining a delicate equilibrium between the exploitation and
exploration stages, as detailed in the following sections:

The exploitation phase: In this phase, WAA executes three
different strategies subsequently to update the new solution as
follows:

Xpewt = po_q. (Xap — Xgp) + Ho-1- (XAV - XPB,n)

(16)

+ Uo—1-Xay
X}gewz = Uo—1. (XAv — XPB,n) + #0—1-XPB,71 (17)
X_’rlzew3 = Uo—1- (XAV — XGB) + #0—1-XGB (18)

where, X7ewl xmew2 xnew3 are respectively, the nth new
solution while executing the three strategies subsequently with
n=1,2, ..., Npy Xy, is the solution with average weight; and
Xpp n is the so-far best of the solution 7.

The exploration phase: In this phase, WAA executes the update
process by selecting one out of two models as shown in the
following equation.
Xnew — {XGB-HLevy- ifpo—1 > 0.5 (19)
Uo-1.(UB —LB) + LB, else

3.2 Electric Eel Foraging Optimization algorithm (EEFO)

Introduced in 2024, EEFO is an innovative optimization
algorithm. It draws inspiration from the foraging behavior of
electric eels in their natural habitat, specifically their distinct
stages of searching, observing, maneuvering, and attacking.
The position of the eel within each stage is dynamically adjusted
and mathematically represented through the following
equations.

The electric eel position in the first phase is obtained by:
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E
T E, + to—1.NFy. (Egp — Eg), if & > 0.5
{E,, + Ho_1-NFy. (Egp — Ep),if £, < 0.5
{E,, + fo_1.NFy. (Egp — E,),if £, > 0.5
E, + to—1. NFy. (Egp — Eg), if £ < 0.5

if FTg, < FTg,

if FTy, < FTg,

Where E, is the position of the electric ell g in the first phase
with g =1, 2, ..., Nps; E, is the electric eel having the nearest
position with the considered electric eel; Epp is a random
individual picked up from the initial population.

The position update of EEFO in the last three phases is
obtained by:

E,
q
Epy + po—1. (Epr — Eg); ifrf <1/3

= _#Ofl'Eq + #Ofl'ERD - AuLevy' (ERD - Eq); lf Tf > 2/3
Epp + w. Egp. E, otherwise

(21)

Where, Ep, is the position of the potential prey; and w is the
scaling factor; rf is the reference factor in the interval between
0 and 1, rf < 1/3 is the observing phase, while the other two
are corresponding to the maneuvering and the offensive phase.

4. Results

In this section, WAA and EEFO are utilized to solve a range of
optimization problems initially. Afterward, these methods are
applied to find optimal solutions for the specific problem
described in Section 2. The results of these applications are
discussed in the next two subsections.

All simulations and coding for the application of WAA and
EEFO were conducted on a computer with a 2.4 GHz CPU and
16GB of RAM, using MATLAB R2018a.

4.1 The comparison criteria

This study applies WAA (Cheng & De Waele, 2024) and
EEFO (Zhao et al, 2024) to find the optimal solution for
benchmark functions and one engineering problem. To
conclude the performance of the applied algorithms, three
criteria are employed to assess the effectiveness of the
algorithms:

1) solution quality,

2) solution stability,

3) convergence characteristics.
Solution quality, representing the best solution obtained, is key
criteria to assess the effectiveness of particulary meta-heuristic
methods in optimization problems. For example, when
minimizing the overall electricity generation cost (OEGC), as
mentioned in our manuscript, the algorithm achieving the
lowest OEGC is considered superior. If multiple algorithms yield
the same optimal value, solution stability is evaluated. This
criterion assesses the consistency of fitness values across
multiple independent trials. The algorithm with the least fitness
value fluctuation and the lowest overall fitness value across
these trials is deemed more stable and, therefore, better. In
cases where solution stability does not differentiate
performance, convergence characteristics are examined. This
involves comparing the convergence speeds to the minimum,
average, and maximum fitness values observed across the
multiple trials. These convergence curves are plotted on the
same axes for direct comparison. The algorithm exhibiting the
fastest convergence to these values is considered the most
efficient. Note that convergence speed is defined by the quantity
of iteration needed to reach the optimal result. Fewer iterations
indicate faster and more efficient convergence.
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Table 3
Three benchmark functions
Function Dimension (N) Boundaries
Sphere 30 [-100; 100]
Schwefel 30 [-100; 100]
Rastrigin 30 [-5.12; 5.12]

Note that the advantage of a meta-heuristic method over
others is not based on theoretical proofs. These algorithms
operate through repeated steps and are significantly influenced
by stochastic elements Consequently, the determination of an
algorithm's superiority is derived from a series of empirical tests
and analyses of its optimal results across those tests. For
instance, the authors in (Zhao et al., 2024) conducted extensive
tests, encompassing both theoretical and practical optimization
problems, and subsequently compared EEFO's performance
against other algorithms before introducing it to the academic
community.

4.2. The simulations results for three benchmark functions

In this section, both WAA and EEFO are tested with three
different theoretical functions, including the sphere, Schwefel,
and Rastrigin functions. The mathematical expression,
boundaries, and the number of dimensions of each function will
be given as follows:

N
R = ) 2 )
=
N
R =) (ll+] k) (23)
J'?vl
F3(x) = Ay + Z[sz — A x cos(2mx;)] (24)
=

The information regarding the different dimensions and the
variable boundaries for the three benchmark functions will be
given in Table 3. Both methods were run with 100 iterations and
a population of 30 for a balanced comparison.

Figure 3 shows the minimum convergence achieved by WAA
and EEFO while tested by the three benchmark functions as
described above. Note that, the rows a), b), and c) represent the
testing results of three different benchmark functions including
the Sphere, the Schwefel, and the Rastrigin function, while the
collumns i), ii), and iii) show three convergence curves including
the minimum, average, and maximum convergence of WAA
and EEFO. The two algorithms can reach the optimal value of
considered benchmark functions after less than 50 iterations for
their best run. Besides, EEFO provides a better convergence
speed than WAA while dealing with Sphere and Rastrigin
benchmark functions; however, this method is slower than WAA
when testing with the Schwefel test function.

In terms of the average and maximum convergences, EEFO
still maintains the superiority while dealing with the Sphere and
Rastrigin function and is slightly slower than WAA while tested
with the Schwefel function.

4.3 The simulation results for the power system with 15 thermal units

This subsection applies WAA (Cheng & De Waele, 2024) and
EEFO (Zhao et al., 2024) to find an engineering problem’s most
optimal solutions. The optimal solution is comprised of the
optimal power output for 15-TGU power systems so that the
OEGC of all TGUs in the system reaches the minimum value.
The system’s load is 2650 MW. Besides, a 100 MW SPP and 200
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Fig. 4 The results after 50 test runs of the two applied methods

MW WPP are also connected with the given power system to
reduce the emissions caused by the operation of TGUs. The
load demand and data of thermal generating units are taken
from the study (Vo et al,, 2013). The two applied methods are
evaluated for their performance while solving the RE-ELD by
using 100 for maximum iteration and 40 for population size.

Moreover, both methods are executed for 50 test runs for
optimal solutions before comparisons

Figure 4 shows the results after 50 test runs achieved by
WAA and EEFO. In the figure, it is very easy to recognize that
EEFO can reach many more optimal solutions than WAA. On
the other hand, the fluctuation of the fitness value achieved by
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Figure 6 displays the worst, mean, and best convergences
obtained by WAA and EEFO after solving the CE-ELD problem.
The observation of the three figures indicates that EEFO
performs better in determining the minimum value of OEGC,
which is presented in Figure 6a, while WAA cannot even in its
best run. Furthermore, the magnified view in Figure 6a
demonstrates that EEFO exhibits a faster response time
compared to WAA. This rapid response capability is a
significant advantage of EEFO in managing the operational
scenarios of the problem, as it can reduce waiting times and
facilitate timely decision-making by dispatchers in response to
fluctuating power system load demands. Additionally, while the
difference in the optimal OEGC obtained by the two algorithms
is relatively small, and the exact number is 0.226 $, as can be
defined by the data provided in Figure 5, this represents the cost

aspects. savings achieved by EEFO compared to WAA for a single
operational period. That means that for the realistic scenario, s
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Fig. 6 The presentation of minimum, average, and maximum convergence characteristics of WAA and EEFO

EEFO is noticeably less than WAA. In fact, Standard deviation
(STD) is a commonly used statistical measure to quantify the
fluctuation of fitness values across multiple independent runs of
an algorithm. A smaller STD indicates greater stability, while a
larger STD suggests instability. By analyzing the STD in
conjunction with the fitness values presented in the figure,
EEFO is more stable and effective than WAA in solving the
considered problem.

Figure 5 compares WAA and EEFO results, such as the best,
mean and maximum OEGC. The comparison observation
indicated that EEFO not only offers a better finding of the best
OEGC value, but the method is also superior to WAA on other
criteria, such as the mean OEGC and the worst OEGC.
Particularly, EEFO can save $0.266 per hour compared to WAA
on the best OEGC. While the difference in optimal energy
generation cost (OEGC) savings between EEFO and WAA is
relatively small, this difference indicates that EEFO yields a
more optimized solution. Specifically, an hourly saving of
$0.266, though seemingly marginal, accumulates significantly
over extended periods such as daily, monthly, annual, and the
20-year operational lifespan. On the two remaining criteria, the
savings cost by EEFO over WAA is more noticeable, at $58.890
for the mean OEGC and $214.225 for the worst OEGC
corresponds to approximately 0.2% and 0.73%.
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Fig. 7. a) The power output and b) the EGC values for each
TGU achieved by WAA and EEFO
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Table 4
SPP’s information

Location
Geographical coordinates

The configuration of PV systems

Dong Hai Ward, Phan Rang Thap Cham City, Ninh Thuan Province, Vietnam

11.550392°, 109.028377° (11°33'01", 109°01'42")

Ground-mounted large scale*

System size (MWp) 100
The PV panels’ applied tilt 110
The PV panels’ applied azimuth 180°
prices in Vietnam are used to calculate the hybrid power plant’s
mJan  ®mOct Dec Apr  EMay ®Jun total revenue (Nguyen et al., 2022).

a) m Jul mAug  mSep mMar ®Nov  mFeb

o
o

w)

Power output (M
S
o

Jul

Jan

Hour 1719 9 23

2500

1 35 7 9 11 13

Hour

15

Load demand (MW)

17 19

Fig. 8 a) The power supplied by SPP in a year and b) The load
demand variation within a day.

23
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uch as a day, a month, a year, or a ten-year operation. The
cumulative savings costs will be noticeable and cannot be
ignored. Besides, the superiority of EEFO over WAA can be
viewed more vividly in Figure 6b and Figure 6c. These figures
show that EEFO is far more effective than WAA in these two
regards. Figure 7 displays each TGU’ generation and electricity
generating cost (EGC). In Figure 7a, the power output of the
TGUs with high EGC found by EEFO is lower than those of
WAA. The extra output required by the load is allocated to the
TGUs with lower than EGC, so the OEGC found by EEFO is less
than WAA overall.

4.4 The results of performing optimization to the system with 15
TGUs and one solar farm for a 20-year project

In this section, the CE-ELD problem is resolved considering the
demand variations and actual data from the SPP within 24
hours. Besides, the economic profit of having an SPP in the
system will be calculated after twenty years of operation. As
stated in the previous section, the sole SPP’s basic information
is reported in Table 4 (The SPP data — GAS, 2025). The electric

Figure 8 shows the 24-hour power supply from the SPP
(Subfigure 8a) and the 24-hour load demand (Subfigure 8b)
across twelve months.

4.5. The evaluation of the reduction cost with SPP

Figure 9a) compares each month's EGC values for the case
where the system with power is supplied by SPP. The reduction
cost of an average day of each month will be determined by the
subtraction between the cases without SPP and the cases with
SPP of each month. It should be noted that the reduction in EGC
is only observed from the 6th to the 18th hour daily. This
limitation is due to the physical constraints of the SPP, which
can only generate power during daylight hours, thereby
offsetting the EGC during this period. During the remaining
hours, the EGC remains unchanged, as the SPP does not
contribute. The "No_SPP" scenario demonstrates a substantial
increase in EGC from the 10th hour, peaking at the 13th and
14th hours, followed by a sharp decrease after the 17th hour.

34
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Fig. 9 a) The OEGC value for twelve 12 compared to the case
without SPP and b) The corresponding cost reduction for each
months.
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However, these peak hours coincide with periods of high solar
radiation, resulting in significant power output from the SPP.
This correlation leads to a noticeable reduction in EGC,
consistently observed across all twelve months. The
observation from the figure indicated that the lowest reduction
cost is in November, while the highest is in May.

Figure 9b presents the reduction cost of EGC each month for
the case where the system with power supplied from SPP. The
reduction cost of an average day of each month is determined
by the subtraction between the cases without SPP and those
with SPP of each month. While Figure 9a illustrates the
comparative reduction of Electricity Generation Costs (EGC) for
scenarios with and without SPPs, Figure 9b provides a
quantitative measure of the EGC reduction for an average day
of each month across the entire year. Consistent with Figure 9a,
the reduction is observed from the 6th to the 17th hour daily.
The observation from the figure indicated that the lowest
reduction cost is in November, while the highest reduction cost
is in March.
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Fig. 10 The illustration in 24 hours of a) the EGC for each TGU,
b) Power output of TGUs over 24 hours, and c) Fuel price per
MWh without SPP
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4.6.The evaluation of profit of the whole system

This section investigates the profit generated by
incorporating a Solar Photovoltaic Plant (SPP) and Thermal
Generation Units (TGUs) into the system. Based on the
mathematical model described in Egs. (8)-(10), Figure 10
presents the components necessary for determining the
operational profit of the TGUs. Specifically, Figure 10a shows
the 24-hour Energy Generation Cost (EGC) for each TGU.
Figure 10b depicts the 24-hour electricity supply from each
TGU. Using the data from these figures and Eq. (9), Figure 10c
displays the calculated cost per MW of electricity generated by
each TGU.

The power outputs of thermal power plants in Figure 10b
and the electric prices are substituted into Eq. (7) to calculate
the total fuel cost and profit. Figure 11la presents the total
cumulated cost, cumulated revenue, and cumulated profit after
each year from 2024 to 2043. The total revenue for twenty years
is $31,356,508,271; meanwhile, the total cost and total profit are
$26,607,299,625 and $4,749,208,646, respectively. The TGUs
optimization operation can reach a total profit of $4,749,208,646
for 20 operating years. On the other hand, power plants have
CAPEX and O&M costs (CAPEX and O&M of TGU, NREL -
2023). The CAPEX per kW in 2024 is $3492.254 per kW, and
O&M costs for the period from 2024 to 2043 are given in
(CAPEX and O&M of TGU, NREL - 2023). To calculate the
CAPEX for 15 TGUs, the total capacity of the fifteen thermal
power plants is calculated, equaling 3542 MW. Finally, the total
CAPEX is $12,369,563,668.

Figure 11b presents the total cumulated cost, total
cumulated revenue, and total cumulated profit from 2024 to
2043. Here, the total cost is the sum of total CAPEX, total fuel
cost, and total O&M cost. The calculations of the total cost and
profit is based on Eq. (1). The total cumulated profit in Figure
11a is reused and put in Figure 11b. The total cost is shown in
blue points. The total cumulated profit after the first year, 2024,
is minus and equal to about -11 billion dollars. The total
cumulated profit can be increased from 2024 to 2032, and the
total cumulated profit is the smallest minus value, with the total
cumulated profit of -0.3987 billion dollars after 2032. After 2033,
the total cumulated profit becomes positive, with 0.931 billion
dollars. The total cumulated profit continues to increase and
reach about 14.2 billion dollars after 2043. The total cumulated
cost after 2043 is 17.1 billion dollars. See Figure 11a; the total
cumulated cost and profit for the case, neglecting the O&M and
CAPEX costs, are about 4.75 and 26.6 billion dollars. So, for an
actual project considering the O&M and CAPEX costs, the total
cumulated profit after 20 years is 14.2/26.6=53.4%. Next, the
profit from having an SPP in the system is investigated. As seen
from Equation (20), besides the Revenue, CAPEX and O&M
costs must be determined before calculating the profit.
According to (CAPEX and O&M of SPP, NREL - 2023), the
CAPEX value is 1289.51$ per kW; therefore, this value of a
100MW SPP is 128950700 $.. The solar power plant’s total
cumulated cost and the cumulated profit after each year can be
calculated. Figure 1lc presents the total cumulated cost,
revenue and profit of the SPP after 20 years. After 2024, the
solar power plant project suffers the highest loss, with about -
0.112 billion dollars. The loss can be reduced gradually seven
years later, from 2024 to 2030. 2030 is the last year that the
project suffered a loss, with the smallest value of about -13.23
million dollars. After 2031, the project started getting a small
profit, with 3.5 million dollars. The total cumulated profit
continues to increase and reach about 0.207 billion dollars after
2043. The total cost after 2043 is 0.163 billion dollars. So, for an
actual project considering the CAPEX and O&M costs, the total
cumulated profit after 20 years is 0.207/0.163=127%.
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Fig. 11 a) Total cumulated fuel cost, revenue and profit from 2024 to
2043, b) The total cost, revenue and profit after using CAPEX and
O&M costs, and c) The total cumulated cost, revenue and profit of
the SPP after 20 years.

In summary, a project with 15 TGUs and the 100-MW SPP
suffered the highest loss after the first year, and the loss is the
smallest after 9 years for TGUs and 7 years for the SPP. The loss
disappears, and the profit comes after 10 years for the TGUs
and 7 years for the SPP. The total cumulated profit is about 83%
of the total costs for the TGUs and 127% of the total costs for
the SPP after 20 years.

5. Discussion on Factors Affecting Project Output

The results presented in the previous sections were derived
from calculations incorporating various economic factors,
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including electricity prices, solar power prices, and fixed costs
such as the O&M and CAPEX costs. CAPEX and O&M costs
were estimated based on Annual Technology Baseline of the
National Renewable Energy Laboratory (CAPEX and O&M of
TGU, NREL - 2023; CAPEX and O&M of SPP, NREL - 2023)
and are illustrated in Figures 1 and 2 for both thermal generating
units (TGUs) and solar photovoltaic plants (SPPs). However,
electricity and solar power prices are subject to significant
market and economic fluctuations, contributing to the output
variations observed in the previous section. This section will
briefly describe three key elements, not previously evaluated,
that are acknowledged to have a major influence on the time at
which profitability is achieved:

5.1. Fuel Price Fluctuations

The fundamental operational dependence of TGUs on fuel
consumption renders them particularly vulnerable to price
volatility. A rapid increase in natural gas or coal prices will
directly a significant change in operating costs. To deal with
this situation, the generation company's owner must execute the
electricity price regulation, avoiding losses or at least keeping
their marginal profit. To address this issue, the authors (Wang
et al., 2013) introduced a two-stage probabilistic model for
independent power producers (IPPs), known as price-based unit
commitment (PBUC), designed to optimize profits in a
deregulated electricity market where their role as price takers.
This model accounts for the unpredictable nature of market
prices and wind energy production. The initial stage involves
decisions regarding unit commitment of thermal and
hydroelectric generators and the quantity of electricity offered
in the day-ahead market. The subsequent stage focuses on the
real-time market, encompassing generation dispatch, actual
wind power utilization, and the discrepancy in energy between
day-ahead bids and real-time generation, which can incur
penalties. Beyond fossil fuel prices, other factors like
geopolitical instability and supply chain disruptions pose
significant financial risks to project owners. Specifically, rising
oil import costs can influence political outcomes in
democracies, as public dissatisfaction with fuel prices fuels
protests and impacts elections (Arezki et al, 2022).
Furthermore, efficient supply chains are crucial for converting
raw materials such as coal, liquefied natural gas, and oil into
electricity through transportation, acquisition, and trade.
Disruptions caused by geopolitical events, natural disasters, or
economic instability can lead to shortages of these materials,
consequently driving up electricity prices across the market
(Yang & Fu, 2025). In general, long-term profitability is
contingent upon accurate fuel price forecasting and the
implementation of effective risk mitigation strategies, such as
hedging or the securing of favorable long-term supply
agreements. Conversely, TGUs possessing fuel flexibility or
advantageous supply agreements are positioned to capitalize on
market volatility, thereby gaining a competitive advantage
during periods of heightened prices.

5.2. Inflation (Affecting Both TGUs and SPPs):

This is the second factor not previously evaluated. For both
thermal generating units (TGUs) and solar photovoltaic plants
(SPPs), inflation directly impacts initial capital expenditures
(CAPEX), increasing the costs of construction materials,
equipment, and labor. Consequently, payback periods are
extended, and returns on investment are reduced. Furthermore,
operational costs, including regular maintenance, wages, and
administrative expenses, also rise with inflation. If electricity
prices do not adequately adjust to inflationary pressures, profit
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margins will significantly decrease. Inflation significantly
impacts financial modeling by influencing discount rates. As
evidenced by (Shea & Ramgolam, 2019), ncreased discount
rates diminish the current worth of future cash inflows,
negatively affecting project valuations. The discount rate
represents the concept of the time value of money, and its
fluctuations, influenced by inflation and perceived risk, are
pivotal for determining net present value and informing
investment strategies. Therefore, careful selection of an
appropriate discount rate, tailored to the specific project
context, is essential to avoid significant miscalculations and
flawed financial forecasts. In the case of solar power plants
(SPPs) and other renewable energy projects, if power purchase
agreements (PPAs) lack inflation adjustments, the real value of
revenue streams will diminish over time (Guaita-Pradas &
Blasco-Ruiz, 2020).

5.3. Policy Changes:

This factor affects both TGUs and SPPs' operations. Particularly,
the regulatory framework plays a key role in shaping the
economic viability of energy projects. The rigorous
environmental regulations such as emissions trading schemes
or carbon taxes, impose substantial financial burdens on TGUs,
increasing their operating costs and potentially rendering them
less competitive. Conversely, these policies can bolster the
economic attractiveness of SPPs, as they are inherently low-
carbon. Soon, decarbonization has become a large trend in
almost all countries in the EU. By following the trend, many
countries have soon begun to transit their economy-oriented
green and low to zero carbon with the support of the whole
society, leaders of administrations, and the maturity of related
technologies (Jarostawska-Sobér, 2021). Government also
support for renewable energy development, reducing feed-in
tariffs, tax benefits, and renewable portfolio standards,
significantly boosts the economic viability of Solar Photovoltaic
Plants (SPPs). In China, for instance, the government has
implemented four key strategies to accelerate the expansion of
renewable energy sources, including fostering research and
development, providing rapid financial and tax support for
renewable energy projects, facilitating the development of
policies that allow for the integration of renewable energy into
the grid, and finally, expanding the market for renewable energy
(Zhao et al., 2016). However, abrupt policy shifts can cause
significant uncertainty and increase the risks of long-term
investments. The unexpected modifications in grid connection
regulations and permitting procedures can also impede project
progress and escalate costs for both Thermal Generating Units
(TGUs) and SPPs. Furthermore, energy market deregulation
can create both opportunities and risks, potentially lowering
electricity prices but also introducing greater volatility. Changes
to fuel import or export rules can dramatically affect the cost
and availability of fuel, which directly affects TGUs.

6. Conclusions

This study applied two novel meta-heuristic algorithms,
including WAA and EEFO, developed in 2024 to maximize the
total profit over 20 operating years for a hybrid power plant with
15 thermal generating units and a 100-MW solar farm. In the
first study case, the two algorithms were applied to reach the
optimal solution for the 15 TGUs at one peak load hour. In the
second study case, the TPP was integrated into one 100-MW
solar photovoltaic farm for a 20-year operating project. The
CAPEX, O&M, and fuel costs for real thermal power plants and
the CAPEX and O&M costs for real solar photovoltaic power
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plants were considered. In addition, the electric prices and solar
radiation were also taken from an electric power company and
areal zone in Vietnam, respectively. Results from the simulation
can be summarized as follows:

1. For the first study case, EEFO could find smaller
minimum, mean, and maximum costs than WAA by
$0.266, $58.890, and $214.225, respectively. So, EEFO is
more suitable than WAA for the study.

2. For the second study case, the 15 thermal units and the
10-MW SPP could reach a greater revenue than the total
costs after nine years and seven years, respectively. The
TPP could reach a profit of 14.2 billion dollars, and the SPP
could reach a total profit of 0.207 billion dollars after 20
years. The total profit was about 83% of the total costs for
the TPPs and 127% of the total costs for the SPP.

The results above indicated the noteworthy contributions of the
study. EEFO was a powerful algorithm to solve the problem, and
the results from the algorithm were validated. The total costs of
a real thermal power plant and a real solar power plants were
considered in addition to the real electric prices. The
optimization operation of the hybrid power plant could bring a
high profit after nine years, and the profit after 20 years was
significant. This information can show the overview to investors
for developing power sources when the load demand is really
high nowadays. While this study offers valuable contributions, it
also presents several limitations that warrant -careful
consideration to enhance practical applicability. These
limitations are outlined below:

1. Market Price Fluctuations: The study does not
account for market-driven electricity and solar power
price variations. In reality, these prices are subject to
supply and demand dynamics, and applying constant
prices is not close to what happens in real-world
scenarios.

2. Static Load Demand: The assumption of constant load
demand constitutes another significant limitation. In
practice, load demand is expected to increase
proportionally with population and economic growth.

As mentioned above, future research should assess the impact
of price variations and load demand growth. Furthermore, a
comprehensive evaluation of other factors influencing the
operation of a solar power plant (SPP) over 20 years is
necessary. This evaluation should include, but not be limited to,
the plant's ability to maintain designed operational
characteristics, regulatory policy changes affecting SPP
operation, and operational costs such as staff salaries.
Additionally, In future work, load demand, solar radiation, and
electric prices will be predicted by using modern techniques or
software to obtain more exact results for the project with the
combination of thermal power plants and solar power plants.

Abbreviation
HOA Hybrid optimization algorithm
MSPSO Modified symbiosis particle swarm optimization
FA Firefly Algorithm
ASSA Adaptive salp swarm algorithm
ECIA Enhanced Cheetah-inspired algorithm
AVOA African vulture optimization algorithm
RDA Robust Distributed Algorithm
MOEAs Multi-objective evolutionary algorithms
ANN- Artificial Neural Network and Adaptive Neuro-Fuzzy
ANFIS Inference System
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CJA Chaotic Jaya algorithm
Nomenclature

Nyear The number of (20) years for the project

N The number of days in one year (selected to be
day 360 days)

CAPEX yw The capital expenditure per MW ($/MW)

CostO&M The operating and maintenance cost per MW
0stimw per year ($/MW-year)

PG,; PG, The power output of the TGU n and m

pGmin. pgmax The highest and lowest value of power output
n ’ n

supplied by TGU n
min . pmax The minimum and maximum power output of
PSPP S PSPP S
” ’ SPPs
pmin . pmax The minimum and maximum power output of
WPP,w> £ WPP,w WPP w
Nps The initial population size
Ho—1 A random value between 0 and 1
X The best solution of the whole population at
GB current iteration
xnew The new solution updated in the exploration
n phase
A random value based on Levy flight
Hrevy distribution
UB: LB The upper and lower boundaries of the search
space
NF,; NF, The navigation factors
&5 & The reference factors
FTg,; FTg, The fitness values of the electric eels p and ¢
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