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Abstract. At the 28th Conference of Parties (COP28) a commitment to triple renewable energy capacity by 2030 was made. Currently at 16 GW, 
geothermal accounts for 0.5% of world-wide installed renewable electricity capacity. In this scoping review, Elsevier’s database was used to determine 
the role reservoir simulation has played and could continue to play in assisting the geothermal industry in achieving COP28's goal. The review includes 
journal papers published in English from 2020 to 2023. Particular attention was paid to the applications of TOUGH2 and COMSOL, the benefits of 
Machine Learning (ML) and recent projects that could assist in promoting the geothermal industry. The topics' categories comprised: Enhanced 
Geothermal Systems (EGS), hydrothermal, laboratory, and technology synergies. Outcomes of a bibliometric analysis elucidate these trends: ML is 
vital to ensuring the optimisation of geothermal resources; EGS and cross-industry projects are showing growing global interest. The likelihood of 
meeting the COP28 target for geothermal would be enhanced with increased participation from the South American and African countries. However, 
the industry’s growth in these continents is restricted by high initial investment costs, technical complexities, unclear regulatory frameworks, social 
acceptance, and difficulties with electrical grid integration. Suggestions for overcoming these barriers to development are proposed. A brief country 
case study is also presented. It focuses on the economic, environmental and technical context to understand the unique challenges and opportunities 
for geothermal. Finally, five areas for research and development opportunities were identified: Thermo-Hydro-Mechanical-Chemical processes, 
reinjection and induced seismicity, reservoir characterization, cross-industry collaborations, and laboratory studies. 
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1. Introduction

There has been a long history of simulating reservoirs in the 
petroleum industry, commencing in the late 1940s. The first 
simulators appeared in the mid-1950s as a product of research 
on numerical analysis and the development of methods for 
using available computers (Mattax and Dalton, 1990). Whiting 
and Ramey (1969) were the first to apply petroleum reservoir 
engineering to geothermal. They created a lumped-parameter 
model for the Wairakei field (New Zealand) that accounted for 
steam-water flow. Harlow and Pracht (1972) endeavoured to 
demonstrate geothermal energy extraction from Hot Dry Rocks 
(HDR) through the use of a single phase coupled rock-fracture 
model. Cheng and Takahashi (1973) and Mercer (1973) created 
two-dimensional models of the Hawaii and Wairakei 
geothermal projects, respectively. Toronyi (1974) built a two-
dimensional model coupled with the wellbore and allowed only 
two-phase flow. Brigham and Morrow (1977) allowed some 
spatial variation by developing three lumped-parameter models.  

Since then, more than four dozen simulators have been 
developed (see Table 1). These codes are often used to simulate 
subsurface fluid flow and heat transfer via the implementation 
of different numerical algorithms or methods (e.g. finite 
difference/element/volume; boundary/discrete element). 
Commercially available software packages have also been 
applied to geothermal modelling. There are also graphical user 
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interfaces for some of the codes listed in Table 1. For example: 
Leapfrog, MView, ParaView, PetraSim, REstudio and SKUA-
GOCAD(https://www.itascainternational.com/learning/tutori
als/working-with-paraview-2; https://tough.lbl.gov/pre-and-
post-processors/). 

O´Sullivan et al. (2000) stated that the effective starting point 
for the acceptance of numerical modelling by the geothermal 
industry was the 1980 Code Comparison Study which tested 
several geothermal simulators on a suite of six problems 
(Stanford Geothermal Program, 1980). As geothermal reservoir 
simulation has evolved as a discipline, several reviews have 
been undertaken, all from different perspectives.  

Castanier and Sanyal (1980) classified the different 
modelling approaches as empirical, analytical, semi-analytical 
and numerical. O´Sullivan et al. (2000) recognized 
advancements in the inclusion of dissolved salts or non-
condensable gases and the usefulness of tracer data in the 
calibration step, topics that were identified as a challenge by 
O´Sullivan (1985). Tonkin et al. (2021) emphasised the need for 
more transient geothermal wellbore simulators. Xu et al. (2021) 
reported on improvements in discrete fracture network 
modelling techniques conditioned to seismic point clouds in 
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Enhanced Geothermal Systems (EGS). Gao et al. (2022) 
pinpointed the importance of refining the porosity model for 
accurately calculating the heat transfer process of geothermal 
reservoirs. 

Coupling of reservoir dynamics, stresses, and fluid and heat 
flow processes is essential in the modelling of EGS. 
Combinations of thermal, mechanical, hydraulic and chemical 
effects by different codes for the modelling of HDR and Hot Wet 
Rock reservoirs were discussed by Hayashi et al. (1999). 
Similarly, Pandey et al. (2018) surveyed the capability of several 
simulators to handle coupled geothermal processes. In their 

multi-field coupling study, Li et al. (2022) highlighted the 
challenge of accurately characterising real fracture networks.  

Sanyal et al. (2000) discussed the suitability of GEOCRACK, 
FRACTure, GEOTH3D and FRACSIM-3D for the different 
stages of the modelling of HDR projects. Along with STAR and 
TETRAD, O´Sullivan et al. (2001) identified TOUGH2 (Pruess et 
al., 1999) as the most frequently used software worldwide for 
the modelling of hydrothermal reservoirs from 1990 to 2001. 
Burnell et al. (2012) supported the trend at that time of 
interfacing TOUGH2 with other software, and the flexibility 
offered by the open-source library of subroutines. They pointed 
at the lack of equations of state that could handle mixtures of 

Table 1  
Year of release of main simulators used for geothermal reservoir modelling. 

Year - Name of simulator (Reference) 

1979 - SHAFT78 a predecessor of MULKOM (Pruess and Schroeder, 1980) 
1981 - FEFLOW (https://www.mikepoweredbydhi.com/news) 
1983 - ANSYS Fluent (https://www.nafems.org/blog/posts/analysis-origins-fluent/) 
1983 - AQUA (https://www.environmental-expert.com/software/aqua3d-426833) 
1983 - MULKOM - later TOUGH2 (1987) (Pruess, 1988 and https://tough.lbl.gov/tough-history/ ) 
1983 - STARS (https://www.cmgl.ca/about)  
1984 - MODFLOW (McDonald and Harbaugh, 1984) 
1984 - SUTRA (Voss, 1984) 
1984 - UDEC (https://www.itascacg.com/about/history) 
1986 - FLAC (https://www.itascacg.com/about/history) 
1987 - HST3D (Kipp, 1987) 
1988 - FEHM (Zyvoloski et al., 1988) 
1989 - FRACAS (Cacas, 1989) 
1991 - SING (Nakanishi et al., 1995) 
1991 - TETRAD - (Vinsome, 1991) 
1993 - NUFT (Nitao, 1993) 
1994 - HYDROTHERM (https://volcanoes.usgs.gov/software/hydrotherm/history.html) 
1994 - PFC (https://www.itasca.com.au/software/pfc) 
1995 - FRACTure (Kohl and Hopkirk, 1995) 
1995 - GEOCRACK2D (Swenson et al., 1995) 
1995 - GEOFRAC (https://erlweb.mit.edu/geofrac-and-its-applications) 
1995 - GEOTH3D (Yamamoto et al., 1995) 
1995 - NIGHTS (Pritchett, 1995a) 
1995 - STAR (Pritchett, 1995b) 
1995 - STOMP (White and Oostrom, 1995) 
1996 - GMS (Owens and Holland, 1996) 
1996 - FRACSIM (http://www.rift.mech.tohoku.ac.jp/en/laboratory/hashida_sato_lab.html) 
2002 - AD-GPRS (Automatic Differentiation General Purpose Research Sim.) (Cao, 2002) 
2003 - GMRS (https://uspto.report/TM/78901513) 
2003 - SHEMAT (Clauser, 2003) 
2004 - COMSOL (https://www.comsol.com/release-history) 
2004 - OpenFOAM (https://openfoam.org/download/history/) 
2005 - HEX-S (Kohl and Mégel, 2005) 
2007 - DUMUX (Flemisch et al., 2007; https://dumux.org/about/) 
2007 - PFLOTRAN (Mills et al., 2007) 
2008 - FracaFlow (https://www.beicip.com/fracaflow) 
2008 - MULTIFLUX (Danko, 2008) 
2008 - SPFRAC (Pritchett, 2008) 
2009 - OPM (Rasmussen et al., 2021) 
2009 - PANDAS (Xing et al., 2009) 
2011 - FALCON (Podgorney et al., 2011) 
2012 - OpenGeoSys (Kolditz et al., 2012) 
2013 - CFRAC (McClure and Horne, 2013) 
2013 - GEOPHIRES (Beckers et al., 2013) - Geot Techno-economic Sim. Tool  
2013 - GEOS (https://www.osti.gov/servlets/purl/1248286/) 
2013 - HeatEX (https://www.osti.gov/servlets/purl/1178043) 
2013 - HFR-Sim (Karvounis, 2013) 
2015 - MRST-AD (Krogstad et al., 2015) 
2015 - OOMPFS (Franz, 2015) 
2017 - ECLIPSE Geothermal (Stacey and Williams, 2017) 
2019 - DARTS (Wang et al., 2019)  
2019 - Volsung (Clearwater and Franz, 2019) and (Franz et al., 2019)  
2020 - POREPY (Keilegavlen et al., 2021) 
2020 - Waiwera (Croucher et al., 2020) 
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water, air and carbon dioxide (CO2) for modelling gassy 
geothermal fields. Progress on this front was achieved through 
development of advanced tools in New Zealand that support 
TOUGH2 such as: Leapfrog, a software that can generate a 
conceptual model integrating geoscientific data; TIM, a novel 
open-source graphical tool; Waiwera, the first open-source 
simulator; and a Python scripting library (Nugraha et al., 2022).  

A review of Machine Learning (ML) papers across all 
disciplines by Pugliese et al. (2021) included published 
documents from 1990 to 2020. Their study showed that 
between 1990 and 1998, ML publication was fairly flat, with the 
main fields of application being logistics and medical 
diagnostics. However, from the early 21st century, the number 
of published ML research works increased exponentially, with a 
peak achieved in 2016, followed by a 1-year lull, and exceptional 
growth observed from 2018. By 2020, 11% of ML publications 
were related to engineering. This shows the significance of ML 
to the broader engineering field. Artificial intelligence (AI) as a 
proxy of traditional numerical reservoir modelling, has been 
mostly applied to the areas of reservoir characterization, 
reservoir engineering, and exploration. AI has been less used in 
drilling, which is the high-risk phase of a geothermal project 
(Aljubran et al., 2022). The literature review conducted by 
Okoroafor et al. (2022) showed that between 2002 and 2021, ML 
techniques have been applied to subsurface geothermal 
resource development, with an exponential increase since 2018. 
This aligns with the findings of Pugliese et al. (2021). 

These collective achievements have strengthened the 
understanding of the behaviour of geothermal reservoirs. In 
turn, this has facilitated the development of geothermal as a 
renewable source of energy. These efforts are crucial to mitigate 
the impact of climate change, as stated since the first 
Conference of the Parties (COP) meeting in Berlin (Germany) in 
1995. A main outcome from COP26 was the signing of the 
Glasgow Climate Pact, a call for a phase-down of coal power 
and a roll back of fossil fuel subsidies. Then, at COP27 (Egypt, 
2022), it was stated that the energy transition, based on 
renewable and efficient solutions, must be equitably 
accelerated, and enhanced around the world. 

At COP28 (United Arab Emirates, 2023) a commitment to 
triple renewable energy production and double its efficiency by 
2030 was made. To achieve this, solar and wind will play a 
crucial role, but other technologies also have a part to play. 
Currently, geothermal accounts for a mere 0.5% of the total 
installed global renewable electricity capacity, reaching 16 GW 
by the end of 2022, (IRENA and IGA, 2023). There is also about 
173 GW of installed geothermal heating capacity (Cariaga, 
2023). According to the International Geothermal Association 
(IGA) the geothermal sector needs to triple these capacities to 
48 GWe for the power sector and 520 GWt for the heating and 
cooling sector (Cariaga, 2023).  

Gutiérrez-Negrín (2024) recently released a country-update 
of geothermal power for the 2020-2023 period. This 
comprehensive global review was based on reports of the 
operational geothermal plants presented at the last two World 
Geothermal Congresses and IGA guidelines. In the concluding 
remarks he mentioned that to triple the current share of 
geothermal electric generation worldwide, it will be necessary 
to develop all identified hydrothermal and unconventional 
resources.  

It is therefore pertinent and timely to present an analysis of 
the state of play in the geothermal reservoir modelling area in 
order to support its use as a means to decarbonise global energy 
use. Journal papers published in English in the period 2020-2023 
and indexed in the Scopus database were selected as a basis for 
the review. By definition, scoping reviews do not describe 
research findings in detail but aim to provide a means of 

mapping fields of study. This exercise is also useful for depicting 
research patterns that might affect the geothermal industry and 
pilot projects that deploy new or developing technologies.  

The work presented here consists of an integrated 
examination and interpretation of the intersection of three 
elements, i.e. geothermal numerical modelling, ML global 
trends and the installed geothermal electricity capacity. Under 
the constraints of our search, we have identified the need to 
assess where and how the development of the geothermal 
industry could be accelerated through the use of reservoir 
numerical modelling and the increased use of ML applications. 
This work takes into account recent global projects and how 
geothermal is synergistically expanding into cross-industries. 
Given the rising interest in renewables across different 
disciplines, a bibliometric analysis is also provided.  

In summary, it has been almost five decades since the 
release of the first geothermal reservoir simulator. In 2023 an 
outcome of the COP28 meeting was a global commitment to 
triple renewable energy by 2030. The beginning of this 
decennium has been used as the starting point for this scoping 
review and was chosen for two reasons. Firstly, for the rapid 
increase in publications referencing ML in this arena since 2018, 
and secondly, for the impetus provided by the COP meetings 
which allow only five years to demonstrate steep emissions 
reductions. The overall aim of the work presented here is not 
intended to compare software capabilities but to identify ways 
to accelerate the benefits of numerical modelling of geothermal 
reservoirs. 

2. Method  

The methodological framework proposed by Arksey and 
O’Malley (2005), as applied by Bento et al. (2021) in the oil and 
gas industry, was used as a guide for this scoping review. Four 
stages were followed as detailed in the following subsections. 

 
2.1. Identifying the research question 

The work presented here was motivated by the interest in 
identifying trends and opportunities that could assist in finding 
an answer to the review’s research question: “What role does 
reservoir simulation play in assisting the geothermal industry in 
achieving its goal of tripling its output by 2030?”. This main 
question was addressed by analysing the findings into the 
following groups: 

● Published works after COP25 
● The most frequently used simulators 
● The role of Machine Learning 

Derived from scanning the papers included here a guide of 
journals to read and publish geothermal reservoir simulation 
findings is provided.  

 
2.2. Identifying relevant studies 

To answer the main research question the literature search 
was conducted using Elsevier’s Scopus. The curated selection 
presented in this manuscript was narrowed down through the 
use of the Boolean search term “AND”. The search was 
constrained to journal manuscripts published in English 
between 2020 and 2023. 

Following Mongeon and Paul-Hus (2015), Scopus was 
selected given its extensive coverage of the disciplines of 
geosciences and engineering. The validation (i.e. checking that 
the information is indeed acceptable) of the data sources and 
the reliability of this database is essential. Launched by Elsevier 
in 2004, it now has more than 90 million items and offers 
comprehensive author and institution profiles from advanced 
algorithms and manual curation. Scopus’ trustworthiness has 
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prompted its use as a bibliometric data source for large-scale 
analyses in research assessments, landscape studies, science 
policy evaluations, and university rankings (Baas et al., 2020). 
To ensure that literature is scholarly, Scopus indexes only peer-
reviewed journals which provides a solid foundation for a 
research work.  

With regards to the Boolean searches used, the first included 
three terms: “geothermal” AND “software name” AND 
“reservoir”. The word "modelling" was not used in the initial 
search since it is implicit in the software´s purpose. Two factors 
drove the structure of the search terms. Firstly, the range of 
applications of most simulators listed in Table 1 include the 
modelling of energy production from hydrocarbon reservoirs, 
CO2 storage, underground hydrogen storage, environmental 
remediation problems, nuclear waste disposal, vadose zone 
hydrology, and other uses that involve coupled thermal, 
hydrological, mechanical and geochemical processes in 
permeable media. Secondly, the word reservoir was chosen to 
focus solely on the hot and permeable section of a field that can 
be economically exploited for geothermal energy production. 
Therefore, the operator AND was decided on to guarantee both 
terms (geothermal and reservoir) associated with each 
simulator were included in the resulting records. Next, a search 
using the terms "Geothermal" AND "Machine Learning" AND 
"Reservoir" was undertaken. However, since "machine learning” 
is not a software, the term "modelling" was added to ensure ML 
applications were limited to reservoir modelling. Each of the 
Boolean syntax searched the abstract, title and keywords for the 
relevant terms. Although conference proceedings and extended 
journal articles are both valuable for scientific purposes, the 
latter are deemed to be a more complete and mature 
representation of the research output. Additionally, proceedings 
are often later adapted for publications in a journal. Therefore, 
only peer-reviewed manuscripts were included.  

Different parties are actively working towards the global call 
to accelerate the implementation of low emissions technologies. 
Progress is frequently documented and shared in any language, 

in the form of reports, conference abstracts, social media, 
among others. However, English is the lingua franca in science.  

In addition to the information provided towards the end of 
Section 1 (Introduction), the chosen timeframe for this study 
acknowledges the impact of COVID-19 on the global carbon 
emissions reduction and any progress based on decisions taken 
at COP25 in December 2019. Here it was stated that a six-fold 
increase in renewable energy deployment would be required 
compared to the levels at that time, to decarbonise by 2050 the 
energy sector, which was responsible for two-thirds of global 
emissions (Marrakech Partnership for Global Climate Action, 
2019). On the other hand, during the pandemic, global 
confinement resulted in a reduction of carbon emissions by 
almost 9% in the first half of 2020 (Siddique et al., 2021). Hoang 
et al. (2021) stated that post-pandemic, governments faced 
reducing renewables or expanding investment and production 
tax credits to get back to where they were and keep pace with 
the development of clean energy projects, including 
geothermal.  

During the scanning of the papers some publications were 
identified as worthy of consideration, including some in Spanish. 
To balance the comprehensiveness of the results presented in 
Section 3 (Findings), Sections 4.5 and 4.6 discuss research and 
development opportunities and strengths and limitations of this 
study, respectively. 

 
2.3. Study selection and exclusion criterion 

Step one in selecting the papers for this review consisted of 
using the Boolean search described in Section 2.2. The initial 
search for each software listed in Table 1 identified 518 
publications since 1979, the year SHAFT78 was released. Four 
early papers were found, however source information was not 
available for two of them, i.e. with no available online link to the 
documents. The historical data showed TOUGH2, COMSOL 
and STARS as the three simulators most reported in the 

 
Fig. 1. ML related papers: a) Identification and screening steps in current study; b)* Pugliese et al. (2021); c)* Okoroafor et al. (2022) * with 

permission of the authors. 
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scientific literature (37%, 13% and 10%, respectively). The ML 
initial search displayed 115 hits. Once a refined search was 
undertaken by adding the word “modelling”, the number was 
reduced to 41. Note that these numbers are current to 2024 and 
the authors anticipate these numbers to increase rapidly in the 
coming years. 

The second step included using the three filters discussed in 
the previous section. The number of software-related and 
machine learning publications was hence reduced to 94 and 23, 
respectively. It is worth noting that, with regards to geothermal 
reservoir modelling, the earliest ML paper that fits our search 
dates from 2017. The number of papers in this field has 
increased significantly since 2021 (Figure 1a). A null result in the 
years 2018 and 2019 is consistent with the review by Pugliese et 
al. (2021) and Okoroafor et al. (2022) as shown in Figures 1b and 
1c, respectively. From three databases: PubMed, Web of 
Science, and ScienceDirect, Pugliese et al. (2021) selected all 
published documents (i.e., journal papers, reviews, conference 
papers, preprints, code repositories and more). The following 
keywords were used in their Boolean search: "machine learning" 
OR "machine learning-based approach" OR "machine learning 

algorithms". Okoroafor et al. (2022) provided insights into ML 
subsurface applications in geothermal by searching both 
conference and journal papers in the IGA’s database and Google 
Scholar. AI-related keywords in the publications’ titles were 
used in the search by Okoroafor et al. (2022). These keywords 
were: "artificial intelligence", "machine learning", "deep 
learning", "statistical learning", "supervised learning", 
"unsupervised learning", and "neural network". 

Compared to the two aforementioned works, the present 
study focuses on a shorter time range. Additionally, by using 
AND as a Boolean and “machine learning” as the sole keyword, 
fewer papers are considered. This is consistent with the purpose 
of the study: to identify how geothermal reservoir modelling can 
contribute to meet the COP28 commitment of tripling its output 
by 2030. The third step of the software-related search involved 
grouping the papers into one list per simulator for a total of 20 
lists (See Figure 2) where 92 papers were identified. Given the 
clear dominance of COMSOL and TOUGH2 in the results, 53 
papers associated with these simulators were chosen as eligible 
for the review. The number of COMSOL and TOUGH2 related 
papers is rather constant through the 4 years analysed here (15 

 
Fig. 2. Number of papers per simulator displayed by Scopus database between 2020 and 2023, under our constraints. Software with the same 
number of publications are grouped together.  

 

 
Fig. 3. Flow diagram of search strategy for literature review. Number of papers for: software (s) and machine learning (m).  
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in 2020, 16 in 2021, 13 in 2023), with a small decrease in 2022, 
when only 9 papers have been published in journals indexed in 
Scopus. 21 ML papers were identified after discarding two 
manuscripts not related to geothermal. 

The exclusion criterion applied in the last step required 
papers to address geothermal subsurface reservoir modelling. 
This resulted in several citations being excluded on screening 
the titles, keywords and abstracts. Subsequently, 48 software 
(23 COMSOL and 25 TOUGH2) and 13 ML papers were 
included in this review and the findings discussed in Section 3. 
The 4-step search strategy applied to decide on the articles to 
undertake the scoping review as described above is 
summarised in Figure 3. 

2.4. Analysing and charting the data 

The analysis of findings was conducted under a combination 
of both application-driven and theory-driven approaches. 
Laboratory experiments allow measuring parameters that 
cannot be made in the field. The field experiments complement 
the laboratory data by allowing mapping and testing at larger 
scales. However, both approaches have their limitations and as 
a consequence the laboratory and field results provide a 
motivation for numerical and theoretical models to explore the 
fundamental physics of processes. For this stage the 
categorization of manuscripts follows the global geothermal 
market and technology assessment by IRENA and IGA (2023).  

The most widely developed geothermal energy resources 
are found in hydrothermal reservoirs, which consist of hot fluids 
circulating through deep permeable rocks. Nevertheless, EGS 
applications were identified as a recurrent theme that emerged 
from the papers, so its category has been included. Geothermal 
is synergistically expanding into cross-industry projects such as: 
oil and gas, mineral recovery, harnessing geothermal potential 
of abandoned mines, and Carbon Capture and Storage (CCS). 
Other examples of collaborative applications include Advanced 
Geothermal System (AGS), which involves closed loop heat 
exchangers and electricity generation, and Thermal Energy 
Storage (TES), which combines climatization technology with 
underground heating or cooling resources. Therefore, in 
defining geothermal applications, the work discussed in the 
software-related articles was classified into: hydrothermal, EGS, 
laboratory, and technology synergies (Figure 4). As ML is not a 
software, the analysis of the findings was completed separately. 

3. Findings 

3.1. Published works after COP25 

The search was conducted for each software listed in Table 
1. As shown in Figure 2, a total of 92 software-related papers 
satisfied the three filters discussed in Section 2.2. These data 
show that between 2020 and 2023, under the constraints of this 
work, 56% of the published modelling work cited TOUGH2 and 
COMSOL. In particular, the number of papers using these two 
simulators is at least 20 higher than any of the other softwares 

 
Fig. 4. Classification categories for software-related papers included 

 

Fig. 5. Combined pie chart analysis of journals by numbers of published COMSOL and TOUGH2 papers included in this review. 
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(Figure 2). The usage is suggesting that TOUGH2 and COMSOL 
can address the current demand and specific problems of 
trending interest. TOUGH2 is well-known as a popular 
simulator in the geothermal industry (Burnell 2012; Nugraha et 
al., 2022). The finding about a recent preference for COMSOL 
for geothermal purposes is an outcome of this search. The 
remaining 44% of the manuscripts describe modelling studies 
conducted with the other 20 software packages. This is not to 
say that they do not have the appropriate modelling capabilities, 
but under the constraints of this work are not considered. 

After applying the exclusion criterion, the 48 software-
related papers included in this review were published in 22 

different journals (Figure 5). Geothermics led with 31.2% of 
manuscripts followed by Renewable Energy with 10.4%. The 
segments with solid colour correspond to journals publishing 
both COMSOL and TOUGH2 papers, as also shown later in 
Figure 6. In contrast, the segments with patterned filling 
indicate those journals where only COMSOL papers were 
published. The 14 journals (29.2%) mentioned in Figure 5, 
where one paper per journal was published, are shown in Table 
2 along with the related simulator.  

Figure 6 shows that should this analysis be done separately 
for COMSOL papers, Geothermics and Renewable Energy share 
the second place with 17.4% each. In contrast, Geothermics 

Table 2  
Journals with one paper published. 

Journal Software 

Processes 
Applied Energy 
Water Resources Research 
Natural Resources Research 
Geoenergy Science and Engineering 
Journal of African and Earth Sciences 
Journal of Groundwater Science and Engineering 
International Journal of Rock Mechanics and Sciences 
International Journal of Rock Mechanics and Mining Sciences 
 
Sustainability 
Energy Reports 
Rock Mechanics Bulletin 
International Journal of Mining Science and Technology 
Energy Sources Part A Recovery Utilization and Environmental Effects 

TOUGH2 

 
 
 
 
 
 
 
COMSOL 

 
 

 

 

Fig. 6. Pie charts analysis for journals where COMSOL and TOUGH2 papers included in this review were published. 

 

 

Fig. 7. Chart analysis for journals where ML-related papers included in this review were published. 
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remains the preferred option when reporting on TOUGH2 
works with 44% while 4% appeared in Renewable Energy. With 
regards to the journals where ML papers were published among 
seven journals, as seen in Figure 7, Geothermics remains the 
preferred choice (38.5%), followed by Energies (23%).  

 
3.2. Top 2 most frequently reported simulators under the constraints 
of this search 

3.2.1. TOUGH2 

Thermo-Hydro-Mechanical (THM) modelling of EGS 
processes was a common topic of interest (Zareidarmiyan et al., 
(2020), Zhu et al., (2023), Yu et al., (2023), Liu et al., (2023)). EGS 
long-term fluid injection is usually linked to induced seismicity. 
However, TOUGH2 simulations with Equation of State for pure 
water (EOS1) by Schiavone et al. (2020) showed withdrawal-
reinjection is considerably less critical than simple injection. 
Zareidarmiyan et al. (2020) also investigated effects of water 
injection into naturally fractured rocks using CODE_BRIGHT 
and TOUGH-UDEC. The dissimilar results highlighted the 
challenge of accurately modelling the highly nonlinear nature of 
fractured rocks. Wang et al. (2020) introduced an Embedded 
Discrete Fracture Method (EDFM) that can be implemented in 
TOUGH2-EGS. EDFM allows incorporation of arbitrary 
discontinuities. The accuracy of this approach for heat transfer 
simulation seems more challenging than fluid flow in the porous 
medium. This is due to the thermal diffusivity being typically 
two or three orders of magnitude smaller than the fluid 
diffusivity. On the other hand, Yu et al. (2023) used TOUGH2-
EGS and focused on hybrid fracture patterns which were treated 
as one continuum of Multiple INteracting Continua (MINC). A 
combined Extended Finite Element Method (XFEM) and 
EDFM-MINC Model handled arbitrary fracture shapes. Fracture 
aperture was opened by the cold fluid injection and reservoir 
performance was dominated by the thermal stress/strain. Liu et 
al. (2023), coupled an analytical/laboratory study to investigate 
THM processes. A multi fractured model validated through 
compression tests on Beishan granite was used to model the 
Rittershoffen EGS project (France). Their analysis accounted for 
the impacts of microcracks and fracture variations in the 
macroscopic deformation, permeability and thermal 
conductivity of saturated fractured rocks under coupled 
loading. In terms of EGS economic feasibility, Zhu et al. (2023) 
considered that a complete study must include both the 
connectivity of the artificial fracture network and the most 
efficient energy production mode. Their random fractured 
TOUGH2-BIOT model showed the Chinese Matouying 
reservoir’s fracture network forms in three stages: conducting 
discontinuities’ hydraulic aperture reaches a maximum; 
conductivity is achieved by fractures overcoming in situ stress; 
rock undergoes shear failure: the fracture expands and 
connects. Double vertical wells showed the highest outlet 
temperature while horizontal wells had the highest heat power 
output and heat extraction rate. Similarly, Ma et al. (2022) used 
3DEC code and TOUGH2-EOS1 estimated permeability values, 
to analyse the heat production performance of the Zhacang 
project in the Guide Basin (China). This field was also modelled 
by Liu et al. (2020a). However, there was not enough field data 
to calibrate the Discrete Fracture Network (DFN) model. The 
results were compared to equivalent heat from coal. TOUGH2-
EOS1 was also used by Zeng et al. (2021) to study the factors 
affecting the production performance of the Gonghe Basin 
(China). The results showed that decreasing well spacing and 
increasing fracture spacing reduces the electric power and 
energy efficiency with minimum impact on reservoir 
impedance. Increasing fracture permeability, however, 

improves the energy efficiency, reduces reservoir impedance 
resulting in more stable electric power production over time. 

The Iceland Deep Drilling Project (IDDP) aims to produce 
supercritical (Sc) hydrothermal fluids as an economic 
geothermal energy source. Battistelli et al. (2020) used wellbore 
and reservoir characteristics of the IDDP-1 well in the Krafla 
field, to improve the EOS2 module for simulating H2O-CO2 
mixtures. This was possible by including the capability to model 
thermodynamic conditions of Sc-steam-like reservoirs. The 
improved module coupled with the wellbore-reservoir simulator 
(T2Well-EOS2H) was successfully verified against results from 
iTOUGH2-EOS1Sc, STAR-HOTH2O, AUTOUGH, T2Well-
EWASG and PROFILI. Comparatively, Feng et al. (2021) 
developed an EOS module for simulating Sc-reservoirs. 
Multiphase flow and behaviour between sub- and Sc-
geothermal conditions were considered. A 1-D vertical column 
model was used, and findings were applied to the IDDP-2 well 
conditions to assess its production. Excessive reservoir 
temperature was deemed to lower the mobility of Sc-water 
resulting in an early thermal breakthrough. An updated Krafla 
field model was presented by Scott et al. (2022). The natural 
state temperatures from 40 wells, including IDDP-1, were used. 
ML techniques were applied for calibration and the results 
suggest the existence of an undeveloped resource. A model by 
Aydin and Akin (2021) used data from more than 100 wells of 
the Alaşehir field (Turkey), developed by seven operators. The 
model was used to identify potential problems for harnessing 
the resource. The results agreed with a Monte Carlo simulation 
and suggested unitized reservoir management as the best 
option to maximise production. Also in Turkey, a preliminary 
study for the Yerköy hydrothermal reservoir was undertaken by 
Yilmaz Turali and Simsek (2023). Monte Carlo simulations 
results by Lesmana et al. (2021) were compared with TOUGH2 
runs for the Field Development Plan (FDP) of the Tompaso field 
(Indonesia). The proven reserve was calculated using the Box-
Behnken experimental design and dynamic deliverability 
method. Forecasting suggested that using a stepwise 
development strategy can reduce the required amount of 
reinjection and make-up wells. An FDP for the Indonesian 
Patuha project was presented by Pratama et al. (2021). The 
Patuha reservoir’s top part is steam dominated, while hot liquid 
water occupies the bottom. TOUGH2 was used to simulate the 
effects of the Dry-Steam Cycle Unit (DSCU) and the Integrated 
Geothermal Combined-Cycle Unit (IGCCU) on reservoir 
production sustainability. The higher injection rates into the 
brine zone from IGCCU yielded higher electrical power 
generation than DSCU. Continuing with the volcanic reservoirs, 
Seyedrahimi-Niaraq et al. (2021a) used EOS3 to model the 
Sabalan field (Iran), which was classified as medium-enthalpy 
liquid-dominated. This project’s power production capacity was 
estimated by Seyedrahimi-Niaraq et al. (2021b) through an 
improved EOS1 module validated with data from 10 exploration 
wells. The forecast showed production capacity was controlled 
by drops in pressure and production fluid enthalpy. In Russia, 
near the Koryaksky volcano, a model of the thermal and water 
recharge of the Ketkinsky field was proposed by Kiryukhin et al. 
(2022). iTOUGH2-EWASG simulations of the natural state and 
modelling of the hydrodynamic production history was used to 
estimate the thermal fluid upflow, permeability and 
compressibility. Forecast scenarios confirmed the possibility of 
the field's sustainable operation. Tescione et al. (2021) built 
simulations contrasting previous conceptual models of the 
Torre Alfina medium enthalpy field, near the Bolsena Caldera 
(Italy). The reservoir was interpreted as being mostly recharged 
by lateral advection of heat and fluids from the caldera deep 
high-enthalpy resources, through permeable faults. Guerrero et 
al. (2023) updated the conceptual model of the Las Tres 
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Vírgenes hydrothermal field (Mexico) and ran EOS3 
simulations. A rough temperature match was obtained and well 
test and early production data were recommended for model 
calibration. Faraz et al. (2021) proposed a Local Thermal Non-
Equilibrium (LTNE)-based formulation and results compared to 
AD-GPRS and TOUGH2. The LTNE model made the simulation 
more accurate. If a boiling regime is expected to develop, it may 
be useful considering boiling heat transfer. 

Three papers addressed cross-industry applications. Xu et 
al. (2020) used T2Well to investigate the heat extraction 
performance of co-axial geothermal closed-loop processes. The 
findings discuss the benefits of intermittent production cycles 
for heat extraction and maintenance. Additionally, Xu et al. 
(2020) found higher production temperatures and lower heat 
extraction rates were directly proportional to increments in the 
injection temperature. While permeability and porosity had little 
effect on productivity, higher heat conductivity and geothermal 
gradients led to higher output temperature and overall influence 
on the closed-loop performance. Ezekiel et al. (2020) proposed 
ScCO2 as a working fluid for Enhanced Gas Recovery (CO2-
EGR) and extracting geothermal energy (CO2-Plume 
Geothermal – CPG) from natural gas reservoirs, while ultimately 
storing the injected CO2. Simulations with EOS7C coupled to a 
wellbore heat-transfer model confirmed its technical feasibility. 
Modelling of this combined technology by Ezekiel et al. (2021) 
showed the natural gas recovery performance was most 
sensitive to permeability anisotropy and reservoir temperature. 
The geothermal power generation performance, on the other 
hand, was deemed most susceptible to reservoir temperature 
and production wellbore diameter. Of these two, reservoir 
temperature has between five and ten times greater beneficial 
effect on the power output than any other parameter evaluated. 

 
3.2.2. COMSOL 

This review shows that COMSOL is widely used to provide 
a better understanding of EGS behaviour, through the 
simulation of coupled THM processes. In particular, simulations 
focused on 1) validation of numerical models with field data 
from the Fenton Hill HDR test site in New Mexico (Aliyu and 
Archer, 2021a); 2) analysis of the impact of wellbore alignment 
and placement, with single and multiple planar fractures. This 
includes the effects of fracture spacing and number on: 
production temperature, recovery, and thermal extraction rates 
(Aliyu and Archer, 2021b); 3) study of the effect of cold fluid 
circulation and the consequent rock contraction, causing the 
thermoelastic effect on fractures (Aliyu et al., 2023); and 4) 
investigation of the impact of heat recovery capability of: 
injection water temperatures and rates; injection-production 
pressure differentials; and reservoir’s initial temperature (Wang 
et al., 2023). Simulations were also applied at the wellbore scale 
to predict temperature and heat loss within the GPK-2 
production well of the operating EGS at Soultz-sous-Forêts in 
Alsace (France) (Akhmetova et al., 2023). The papers included 
in the EGS category also provided an overview of alternative 
approaches to represent fractured reservoirs. Liu et al. (2020b) 
for instance, combined thousands of small fractures, randomly 
generated with the natural discontinuities identified through 
field investigations. From this, a 2D geological model of the 
fracture network was built for the granite of Sanguliu area 
located in the Liaodong Peninsula, Eastern China. McLean and 
Espinoza (2023) pursued a more complex model for an EGS 
project. They used 2D fractures embedded in a 3D porous rock 
intersecting production and injection wells to study the 
influence of thermo-poroelastic interaction on decreasing the 
system's performance. They compared two scenarios with 2 and 
5 fractures and demonstrated that thermal short-circuiting 
occurs earlier when more fractures are considered. This is due 

to the thermal and mechanical interaction of the fractures. Hu et 
al. (2022) worked with between 5 and 15 discrete horizontal 
fractures for the production of heat required for oil sands 
separation in Alberta, Canada. Specifically, they compared the 
performance of doublet and triplet EGS configurations. Aliyu 
and Archer (2021a; 2021b) built a 3D reservoir model with few 
vertical fractures (< 10). This was based on data from the 
Fenton Hill HDR site. Wang et al. (2022) built a model with a 
single horizontal fracture, intersected by production and 
injection wells, while Wang et al. (2023) considered 2 discrete 
fractures (vertical and horizontal) as the main pathways for heat 
transfer. 

The use of COMSOL for the modelling of hydrothermal 
reservoirs is not as common as it is for EGS (Qarinur et al., 2020). 
However, the simulation of the reservoir’s natural state, before 
production, is required to quantify the impact of fluid extraction 
and ensure sustainability in hydrothermal fields. One such field 
is the Lahendong geothermal field, in North Sulawesi 
(Indonesia) investigated by Qarinur et al. (2020). A different type 
of hydrothermal resource was modelled by Aguilar-Ojeda et al. 
(2021a), to improve the understanding of the submarine 
hydrothermal vent in the Maneadero geothermal field (Mexico). 
Wang et al. (2021) studied the injection of low-temperature tail 
water into a carbonate reservoir in the geothermal field of Xian 
County (China), highlighting that reinjection pressure, 
temperature and well spacing are the main factors for the 
control of geothermal production and reinjection. Another key 
factor for optimal reservoir management is the change in 
porosity. For example, Thermo-Hydro-Chemical (THC) 
coupling was applied to model the combined effects of porosity 
reduction and generation of enthalpy caused by silica 
precipitation (Gisler and Miller, 2021). Liu et al. (2022) also used 
THC simulations, but focused their study on the prediction of 
the thermal breakthrough of production wells in the Xianxian 
geothermal field (China). Numerical simulations can also be 
used to assess the economic output of geothermal production, 
as done by Daniilidis et al. (2020). They analysed the lifetime, 
generated Net Present Value, and produced energy of single 
doublet within a faulted block, in a conduction dominated 
sedimentary geothermal reservoir. The effects of varying the 
well spacing and placement, reservoir layers, fault properties, 
injection and production flow rates were studied.  

COMSOL was also used to model laboratory-scale 
experiments. Kumari and Ranjith (2022) investigated the 
impacts of water viscosity and density reduction on Australian 
Strathbogie granite cylindrical specimens under high-
temperature and pressure triaxial conditions. They predicted 
permeability, pressure and strain under extreme conditions. 
Additionally, thermal shock and fatigue on the rock mass on 
granite cuboid samples collected at outcrops at Xinjiang (China) 
were studied by Hu et al. (2021). They provided a better 
understanding of the variation of rock properties and heat 
transfer performance after thermal damage. Finally, a large 
sandbox experiment was conducted by Li et al. (2023) to 
investigate the internal temperature evolution in a sandstone 
aquifer under different reinjection scenarios, considering THC 
coupling. Quantifications of the impact of the reinjection 
temperature, rate, and well spacing on the thermal 
breakthrough time of the production well were offered. 

Insights into geothermal reservoir simulation trends include 
the growing interest in recent technologies. Among AGS, 
coaxial borehole heat exchangers are seen as an option to reuse 
depleted petroleum wells in Alberta (Canada) (Hu et al., 2020), 
and also to unlock the EGS resources in the Matouying uplift in 
Northern China (Niu et al., 2023). With this technology, several 
parameters show an impact on the heat extraction performance. 
These include inlet temperature and flow rate, the thermal 
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conductivities of the cement, the inner tube and the reservoir 
borehole diameter, fluid de-circulation mode, and geothermal 
gradient (Niu et al., 2023). However, significant debate still 
remains as to the feasibility, performance, and cost 
competitiveness of AGS, for either co-axial or U-loop systems, 
analysed with the GEOPHIRES v2.0 techno-economic 
assessment tool (Beckers et al., 2022).  

Underground water storage and heat production from 
abandoned mines is increasingly being considered for energy 
savings and emissions reduction. One such example is the Jiahe 
abandoned coal mine modelled by Guo et al. (2023). Another is 
Thermal Energy Storage (TES). Among all the available TES 
options, the use of Aquifers (ATES) is widely used in some 
places, such as The Netherlands, China, and North America, as 
mentioned by Stober et al. (2023). These authors also presented 
a case study in the Buntsandstein aquifer, in the Upper Rhine 
Graben (Germany). 

 
3.3. The role of Machine Learning (ML) 

ML is a subcategory of artificial intelligence that allows 
computers to train from data, without requiring specific-purpose 
programming. A subset of ML is Deep Learning, which is based 
on neuronal networks. For the sake of clarity, hereafter both 
Deep Learning and ML will be referred to as ML algorithms. 
These are usually applied to subsurface reservoir modelling 
given their great potential for emulating computationally 
intensive components of numerical simulations using surrogate 
models (Rajabi and Chen 2022; Collard et al., 2023). Jiang et al. 
(2022) stated that data-driven models have less complexity than 
the traditional numerical models, although the latter offer the 
most comprehensive dynamic approaches. In fact, ML methods 
allow for a quick estimation of reservoir variables.  

Duplyakin et al. (2022) showed that while a typical reservoir 
simulation run takes approximately 4 hours to complete; the 
corresponding ML model yields accurate 20-year predictions 
for temperatures, pressures, and produced geothermal energy 
in 0.9 seconds. Since available geothermal field data are usually 
not enough to provide a training set for ML, the numerical 
physics-based reservoir simulations can be used to generate 
those data sets (Rajabi and Chen 2022; Duplyakin et al., 2022). 

Abrasaldo et al. (2023), for example, developed a workflow 
combining data analytics and numerical reservoir models with 
TOUGH2 to analyse the behaviour of weak production wells. 
Suzuki et al. (2022) explored the use of ML methods for inverse 
analysis in reservoir modelling, a task that is usually 
computationally expensive when using traditional tools such as 
iTOUGH2, UCODE and PEST. Duplyakin et al. (2022) used 
TETRAD and STARS to generate a training data set for ML 
algorithms, using a synthetic, yet realistically data-populated, 
reservoir. This was specifically built to feature the Brady Hot 
Springs in Nevada (USA), where there is an operating 
geothermal power plant. TETRAD was also used by Jiang et al. 
(2022) for short and long-term prediction of energy production 
from a synthetic geothermal field. Gudala and Govindarajan 
(2021) built a THM model with COMSOL and trained and 
validated 6 ML algorithms to predict production temperature 
considering changes in reservoir´s pressure, temperature and 
geomechanics as well as the rock´s physical, mechanical and 
thermal properties. In summary, these studies demonstrated the 
utility of ML algorithms for predicting reservoir performance 
without the need for intensive computational effort, through 
their combination with traditional numerical modelling 
software.  

The implementation of ML tools helps reservoir exploration, 
characterization, and management: from the estimation of 
properties distribution at reservoir scale, such as permeability 
(Suzuki et al., 2022; Zhang and Wu 2023) and mineralogical 
composition (Hu et al., 2023) to the optimisation of the 
management of geothermal reservoirs (Abrasaldo et al., 2023; 
Duplyakin et al., 2022; Jiang et al., 2022; Rajabi and Chen 2022; 
Gudala and Govindarajan 2021). Zhang and Wu (2023) applied 
an optimised version of the deep belief network (DBN) model to 
predict the permeability of the sandstone reservoir of the 
Baiyanghe Formation in the geothermal field of Zhangye Basin 
(China). Hu et al. (2023) used a hybrid ML architecture to 
describe the mineralogical compositions from well logs from the 
Horn River Basin, northeast British Columbia (Canada). Another 
relevant example is the application of ML to maximise the Rate 
of Penetration (ROP) and hence reduce geothermal drilling 
costs: Ben Aoun et al. (2022) used data from the FORGE field 
laboratory in Utah (USA) to collect drilling data such as the ROP, 

Table 3 
ML algorithms used in the papers included in this review. 

Research Area 
Topic 

ML Algorithm (Reference) 

Exploration 
Play Fairway Analysis 
Depleted oil and gas reservoirs 
 
Drilling 
Maximisation of the ROP 
 
Reservoir Characterization 
Geochemical databases 
Reservoir permeability distribution 
Reservoir permeability distribution 
Hydrothermal dolomitization 
Mineral composition 
 
Production and Injection Well Engineering 
Low permeability wells 
Energy production 
Optimization of energy production 
Simulation-optimization 
 
Reservoir Engineering 
THM modelling 

 
BNN, PCAk (Smith et al., 2023) 
GFCM (Topor et al., 2023) 
 
 
RF, ANN (Ben Aoun et al., 2022) 
 
 
DT, SVM, RF (Santamaría-Bonfil et al., 2022) 
LR, SVR, MLP, RF, gBoost, KNN (Suzuki et al., 2022) 
DBN (Zhang and Wu, 2022) 
RF, GBoost, AdaBoost, SVM, MLP (Collard et al., 2023) 
CNN, XGBoost (Hu et al., 2023) 
 
 
RF, gBoost (Abrasaldo et al., 2023) 
RNN, FCNN, LSTM (Jiang et al., 2023) 
NN (Duplyakin et al., 2022) 
NN, CNN, RNN, RF (Rajabi and Chen, 2022) 
 
 
LR, SGD, DT, RF, SVM, DNN (Gudala and Govindarajan, 2021) 
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weight on bit, temperature, and pump pressure. The ML tool 
created from these data enabled better selection of drilling 
parameters for the FORGE site. This validates the usefulness of 
ML algorithms in reducing the risks associated with drilling, one 
of the main barriers to geothermal field development. 

Considering geochemistry, ML algorithms were employed 
to fill the gaps in a geochemical database of geothermal fluids 
based on literature available data from 140 geothermal sites 
located in twenty-five countries (Santamaría-Bonfil et al., 2022). 
The outputs from this exercise were used to predict dissolution 
and precipitation of calcite and dolomite, which can enhance or 
reduce reservoir porosity (Collard et al., 2023). Distinct 
applications of ML were the improvement of Play Fairway 
Analysis for geothermal potential maps in the Great Basin region 
of Nevada (Smith et al., 2023) and the identification of high 
potential in two depleted oil and gas reservoirs in Poland (Topor 
et al., 2023). 

Based on the classification suggested by Okoroafor et al. 
(2022), Table 3 shows most of the reviewed ML studies 
addressed the topics of reservoir characterization and 
production/injection well engineering. Considering that drilling 
is the most crucial phase in the development of a geothermal 
power project, and only one study (Ben Aoun et al., 2022) was 
identified under the constraint of this search, this is a possible 
field for further research. 

Also shown in Table 3, mainly Neural Networks (NN) and 
Random Forest (RF) were applied in the reviewed studies. 
Among NN, several variants were mentioned: Artificial (ANN); 
Recurrent (RNN); Fully Connected (FCNN); Bayesian 
probabilistic (BNN); Inversion (INN); Convolutional (CNN); 
Physics-Informed (PINN); Long Short-Term Memory (LSTM), 
and Deep Belief Network (DBN). LSTM is a particular type of 
RNN, which is designed to learn long-term dependencies. Other 
tools were the Linear Regression (LR) and its variants for model 
regularisation (ridge and Lasso), Support Vector Regression 
(SVR), Multi Layer Perceptron (MLP), Stochastic Gradient 
Descent (SGD), Decision Tree (DT), Gradient Boosting (gBoost), 
eXtreme Gradient Boosting (XGBoost), Adaptive Boosting 
(AdaBoost), K-Nearest Neighbors (KNN), Support Vector 
Machines (SVM), Generalised c-Means (GFCM), and Principal 
Component Analysis paired with k-means clustering (PCAk). 

4. Discussion 

4.1. Bibliometric trends as pointers to future directions  

Biblioshiny is a web-based interface for the open-source R 
package bibliometrix (Aria and Cuccurullo, 2017). KeyWords Plus 
are words or phrases that appear in the titles of a manuscript’s 
references, but not in the title of the document itself. Figures 8-

 
Fig. 8. Word cloud comparison using KeyWords Plus for papers on: a) TOUGH2+COMSOL and b) ML 

 

 
Fig. 9. Co-occurrence density plot for KeyWords Plus for (a) TOUGH2+COMSOL and (b) ML+software-related papers included in this review.  

 
 
 

 



 
E.M.Llanos and D. Blessent Int. J. Renew. Energy Dev 2025, 14(4), 668-693 

| 679 

 

ISSN: 2252-4940/© 2025. The Author(s). Published by CBIORE 

10 allow analysing these text data within the context of scientific 
published trends. Figure 8 displays the most frequently used 
terminology by font size in word clouds. Figure 9 depicts 
KeyWords Plus co-occurrence in the same paper in the form of 
density plots. Figure 10 shows the interrelationship between 
authors’ research topic, country, and affiliation. In three-field 
diagrams, the size of the rectangle in each list indicates the 
number of manuscripts associated with an element.  

Figure 8 depicts a word cloud comparison of the 48 
publications on TOUGH2/COMSOL (Figure 8a) versus 13 
papers on ML (Figure 8b). The visualisation illustrates a 
prominent focus on “heat transfer” and “forecasting” when 
using software or ML, respectively. The modelling of fractured 
media with simulators seems to be an actively studied topic as 
highlighted by “fracture”, “EGS”, “fracture network”, 
“permeability” and “hydraulic fracturing”. Key ML themes 
encompass “geochemistry,” “dolomitization” and “chemical 
analysis.” These align with major research findings, 
accentuating the challenge of fully coupled THMC simulations 
in geothermal reservoirs. Among ML algorithms, neural 
networks are the most cited. Oil and gas is a common topic, and 
demonstrates the skills transferability and adaptability to 
geothermal resources. Finally, carbon dioxide appears in both 
clouds showing industry synergy with geothermal.  

To highlight the impact of ML compared to traditional 
numerical models, Figures 9 and 10 also include a combined 
representation, i.e. software + ML-related papers. The 
relevance of “numerical model” (underlined in cyan in Figure 
9a) seems more impactful than when the ML papers are 
included in the visualisation (Figure 9b). Instead, the word 
‘forecasting’ rises within a new cluster (inside the green ellipse). 
This suggests that ML algorithms could be used to improve 
accuracy and by default reduce computational cost when 
combined with numerical models. 

Figure 10a shows China is the leading country, with 7 
institutes co-authoring COMSOL or TOUGH2 publications. This 
is followed by Mexico, Canada, Indonesia, USA, Iran, and 
Japan. Among the top 15 KeyWords Plus (Figure 10b), it is 
interesting to see that when the analysis includes the 13 ML 
papers, the keyword “petroleum reservoir engineering” rises in 
the list. This is most likely to do with the benefits of the findings 
of artificial intelligence inherited in geothermal from the oil and 
gas industry, as suggested by Okoraofor (2022). 

Figure 11 shows that amongst the 61 manuscripts included 
for this review, the most cited paper was published by Hu et al 
(2020) titled “Numerical modeling of a coaxial borehole heat 
exchanger to exploit geothermal energy from abandoned petroleum 
wells in Hinton, Alberta”. This was followed by the publication by 
Ezekiel et al., (2020) titled “Combining natural gas recovery and 
CO2-based geothermal energy extraction for electric power 
generation”. The third most cited paper, “Changes in the 
thermodynamic properties of alkaline granite after cyclic quenching 
following high temperature action” was written by Hu et al., (2021). 
Judging by these number of citations, two topics cover 70% of 
the top 10 most cited documents: EGS and the technology 
synergies. This observation indicates a trend in the modelling 
arena. The most referenced papers were published in Elsevier’s 
Renewable Energy. 

As its name indicates, open-source software are computer 
codes made available for use and/or modification by users. This 
allows public development and collaboration and could be a 
good alternative for spreading the benefits of modelling. From 
Table 1, eleven open-source software were identified: CFRAC, 
DARTS, Falcon, Geophires, Hydrotherm, OpenFoam, 
OpenGeoSys, PFlotran, Porepy, SUTRA and Waiwera. From 
this list, DARTS and Waiwera seemed to be the most used, with 
combined 26 modelling studies identified, representing 46%. 

 

Fig. 10. Three-field plot showing per column the relation between Countries (left), KeyWord Plus (middle) and affiliations (right) for the a) 

COMSOL+TOUGH2 and b) ML+software-related papers included in this review. 
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This number is comparable with the studies undertaken with 
TOUGH2 (25) and COMSOL (23).  

Open-source applications are deemed more often employed 
in the United States and Europe (Figure 12), while TOUGH2 and 
COMSOL are mainly used in China (Figure 10). The three most 
cited documents from the open-source modelling studies (with 
84, 70, and 46 citations respectively), are slightly less referenced 
than their equivalent to TOUGH2 or COMSOL (114, 79, and 76, 
Figure 11). However, the wide availability of open-source 
software offers a valid alternative to pursue research work 
especially in academia. Publications on models using open-
source software are less cited than those undertaken with 
commercial software. However, given their low or null cost, 
they could be more affordable in countries with less economical 
resources. 

4.2. TOUGH2 and COMSOL comparative analysis 

Major advantages of COMSOL, over some software, include 
the capability to handle complicated geometrical structures, 
advanced and flexible mesh generation. In recent years, 
scripting has allowed easing of modelling automation, highly 

desirable for more complex simulations. The PyTOUGH library, 
for instance, enables users to potentially control simulation 
aspects from grid generation and model setup through 
execution, post-processing and analysis. A pythonic scripting 
interface is also available for COMSOL Multiphysics. The library 
is called MPh after the file extension of COMSOL models, which 
stands for multi-physics. MPh covers common scripting tasks, 
such as loading a model from a file, modifying parameters, 
importing data, to then run the simulation and results evaluation 
and exporting. Additionally, LiveLink™ enables integrating 
COMSOL with MATLAB to extend the users’ modelling with 
programming in the MATLAB environment and use its 
toolboxes in preprocessing of data, model manipulation, and 
postprocessing. Likewise, iMatTOUGH supports the generation 
of inputs required for both TOUGH2 and iTOUGH2 and the 
output visualisation. A comparison of detailed capabilities of 
each simulator for the modelling of geothermal reservoirs is 
presented in Table 4.  

Since 2020, developments for TOUGH2 include toughio-
dash, a web application to simplify setting up TOUGH 
simulations. This provides a user-friendly graphical user 
interface and relies on the open-source Python library toughio 

 

Fig. 11. Top 10 most global cited documents 

 
 

 

Fig. 12. Three-field plot showing per column the relation between Countries (left), KeyWord Plus (middle) and affiliations (right) for the Open-

source simulators. 
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and Plotly Dash. The EOS2H module has been developed to 
handle subcritical and steam-like supercritical H2O-CO2 
mixtures. The newest version of COMSOL, Version 6.2, 
released in May 2024, increased the computational speed of 
their simulation apps using data-driven surrogate models.  

Overall, COMSOL is considered a more user-friendly 
program, as highlighted in the recent work by Wang et al. (2023). 
Although the learning curve for TOUGH2 could be steeper, this 
suite of simulators has a larger applicability for large-scale 
complex fractured geothermal reservoirs. COMSOL can also be 
used to easily build models of geothermal well doublets and to 
introduce user-defined coupling equations. Fractured 
geological media can be more readily simulated with TOUGH2 
than with COMSOL. 

4.3. Insights from Machine Learning 

According to Table 3, the 3 most used ML algorithms in the 
studies included in this review are NN, RF, and Boosting 
algorithms. Expert opinion, while not being unanimous, states 
that RF generally outperforms NN for small datasets (Qi 2012; 
Han et al., 2021). However, different algorithms need to be 
assessed to select the best option for the specific problem 
analyzed (Ahmad et al., 2017). The algorithm selection should 
be based on several criteria, such as its robustness, 
comprehensibility, and computational cost.  

RF offers a balance between complexity and results. It uses 
multiple decision trees whose results are combined to obtain a 
single model, which is more robust compared to the results of 
each tree separately (Espinosa-Zúñiga, 2020). RF can handle 
missing data efficiently (Tang and Ishwaran 2017), but 
prediction can be slower than other algorithms. In contrast, 
Gradient Boosting algorithms focus on sequential correction of 
errors, since the learning algorithms are combined in series to 
achieve a strong learner (“boosting”) from the individual 
decision trees connected sequentially (Di Salvo, 2022). 
Following this approach, XGBoost, for example, requires larger 
computational resources, but it has higher predictive accuracy 
than RF. Depending on the geothermal project stage 
(exploration, field development, and production), the quantity 
and quality of field data change. It is therefore recommended 
that ML algorithms are compared to identify the most 
appropriate, based on the available data and modelling purpose. 
Table 3 provides a useful guide for this selection. 

Data scarcity, model validation, and computational 
constraints are key challenges for ML applications. Data 
scarcity can be a challenge when applying ML algorithms, since 
their predictions can be inaccurate, can fail in pattern 
recognition and can cause overfitting (Bobadilla, 2020). A 
detailed overview on strategies to tackle data scarcity in deep 
learning is offered by Alzubaidi et al. (2023). They highlighted 

that an initial large dataset improves the algorithm’s ability to 
learn and identify patterns. They also mentioned a related 
challenge, which is data diversity. If the dataset included a 
variety of data types and sources, the algorithm can better 
generalize to new conditions and be reliable in real-world 
applications. 

The validation methodology is based on the measurement 
of the model accuracy with a new dataset, to ensure the final 
product can handle new data (Bobadilla, 2020). The accuracy is 
the measure of correct predictions made by the model, after it 
has been trained. There is not a rule to establish the optimum 
ratio of training and validation data, but recent studies provide 
a guide (Di Salvo, 2022). This approach is similar to the 
validation of a numerical model, where field data different from 
those used for model calibration should be used for its 
validation.  

The successful application of ML algorithms is based on the 
availability of a large amount of high-quality data. Therefore, 
data management and processing implies a high computational 
cost. This is demonstrated by the Department of Energy (DOE) 
of the United States that recently announced the colocation of 
data centers on its lands (DOE, 2025). The simplicity, fast run 
time, and acceptable accuracy of ML algorithms have made 
them popular. Recently, theory-guided machine learning, was 
applied to inverse modeling of groundwater dynamics (Adombi 
et al., 2022). This new approach incorporates, during the training 
stage, certain constraints related to the governing equations 
describing a numerical model. By following this approach, ML 
algorithms do not deviate too far from the laws of physics. On 
the other hand, the link between ML algorithms and traditional 
numerical models is getting stronger with Reinforcement 
Learning (RL), an approach that introduces new mechanisms to 
cope with data scarcity (Duplyakin et al., 2022). According to Di 
Salvo (2022), ML models do not offer a complete representation 
of the physical system and, thus, cannot be used to substitute 
traditional numerical models. Nonetheless, they can be used to 
improve predictions at specific locations, for better model 
calibration. 

 
4.4. The role of numerical modelling  

The last three subsections summarise the core concepts and 
findings covered in the literature included for this review. This 
decanting process involved understanding the paper's main 
arguments and the overall implications of the research. In order 
to distil this information into a concise form, a Venn diagram is 
used as a visual depiction (Figure 13). This graphic analysis 
maps three streams of work here compared, i.e. (i) geothermal 
numerical modelling, (ii) ML global trends and (iii) installed 
geothermal electricity capacity, in order to elucidate the needs 

Table 4  
Capability comparison between TOUGH2 and COMSOL for the modelling of geothermal reservoirs 

Capability TOUGH2 COMSOL 

Fracture discretization   
Normal stress- dependent fracture aperture   
Shear-fracture aperture   
Stress induced flow channelling   
Porous flow in matrix   
Thermo-elastic effects   
Multiphase flow   
3D   
Flexible mesh generation   
Reactive transport modelling   

Tracer transport   

Phase displacement   
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to be addressed. The studies conducted by Suzuki et al. (2022) 
with TOUGH2, and by Gudala and Govindarajan (2021) with 
COMSOL were found to fit in the overlap between ML global 
trends and numerical modelling. The work of Nugraha et al. 
(2022) converges the topics of geothermal numerical modelling 
and power generation in operational geothermal fields. The 
third intersection is given by the review by Okoroafor et al. 
(2022), who identified a research area as production and 
injection, crucial to optimise the geothermal resource for power 
generation. 

The significance of the overlapping of these streams is 
discussed in the following subsections taking into account 
geographical and policy insights. Suggestions for overcoming 
barriers for development are also proposed. Finally, a country 
case study is briefly presented, focusing on the economic, 

environmental and technical context to understand its unique 
challenges and opportunities for geothermal. 

4.4.1. Geographical Insights 

According to IRENA (2024a), in 2014 the world net 
generating capacity for geothermal energy was 11.25 GW. 
North America had the most with 3.38 GW, while Africa (0.373 
GW) and South America (no installed capacity) were the two 
regions with the lowest geothermal development. Nine years 
later, the total world value rose to 14.85 GW, an increase of 32%. 
It is interesting to note that North America expanded its 
industry by 8.7%, while Kenya showed a growth of 166%, 
becoming a geothermal leader in Africa. As a matter of fact, as 
of December 2023, geothermal meets approximately 45% of 
Kenya´s total energy generation (EPRA, 2024). Gutiérrez-

 
Fig. 13. Venn representation of the analysed contents, overlapping themes and identified needs.  

 

Table 5 
Most recent references about South American geothermal resources and data 

Argentina 
Geothermal Country Update of Argentina: 2015-2020 (Chiodi et al., 2021) 
Bolivia 
Construction of Bolivia’s first geothermal plant progressing (Cariaga, 2022) 
Geothermal Development in Bolivia (Villarroel, 2014) 
Brazil 
Integrated assessment and prospectivity mapping of geothermal resources for EGS in Brazil (Lacasse et al., 2022) 
Present geothermal field of the Santos Basin, Brazil (Zuo et al., 2023) 
Chile 
Heat in the news: Geothermal energy in Chilean newspaper coverage (Vargas Payera, 2024) 
BrineMine-sustainable raw material and fresh water production from thermal fluids (Kählert, 2023) 
Colombia 
Approach to the geothermal potential of Colombia (Alfaro et al., 2021) 
Predicting the geothermal gradient in Colombia: A machine learning approach (Mejía-Fragoso et al., 2024) 
Ecuador 
Geothermal resource exploration in South America using an innovative GIS-based approach: A case study in Ecuador (Jara-Alvear et al., 2023) 
Guyana 
Guyana IRENA’s energy profile (IRENA, 2024b) 
Paraguay 
Paraguay IRENA’s energy profile (IRENA, 2024c) 
Peru 
Characterization of southern Peru hydrothermal systems: new perspectives for geothermal along the Andean forearc (Taillefer et al., 2024) 
Suriname 
Suriname IRENA’s energy profile (IRENA, 2024d) 
Uruguay 
Potential of geothermal energy in the onshore sedimentary basins of Uruguay (Morales et al., 2021) 
Venezuela 
Approach to geothermal energy. A link additional for the Energy transition in Venezuela (Oquendo et al., 2024) 
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Negrín (2024) reviewed the evolution of the global geothermal 
industry for the 2020-2023 period and reported no change in 
Ethiopia’s installed capacity since 2018 (7.3 MW).  

The momentum in African geothermal development 
extends beyond Kenya and Ethiopia, with Eastern and Western 
states on the continent announcing exploration activities, 
thanks to investments projected to reach $35 billion by 2050  
(AOW, 2024). Another country with promising development of 
its geothermal resources is Algeria, which is leading in the direct 
utilisation of geothermal energy in Africa. This has been 
supported by the government’s energy efficiency and 
renewable energies program in 2011 (Lebbihiat et al., 2021). In 
Algeria there is particular interest in electricity generation from 
medium enthalpy resources with ORC technology (Semmari et 
al., 2024). Such growth would have Africa potentially surpassing 
Europe's geothermal capacity within the decade (AOW, 2024).  

Latin America's geothermal potential is high thanks to the 
abundant volcano-hosted hydrothermal resources. However, 
only seven countries are producing geothermal electricity 
(Chile, Costa Rica, El Salvador, Guatemala, Honduras, Mexico, 
and Nicaragua). The industry leaders are Mexico, Costa Rica, 
and El Salvador, with 83% of the total installed capacity (1.7 
GW) in the region (Castillo-Reyes et al., 2024). In South America 
there is only one conventional geothermal power generation 
plant located in Cerro Pabellón (Chile) with an installed capacity 
of 80 MW (IRENA and IGA, 2023). According to Gutiérrez-
Negrín (2024), Latin America showed an increase of 49.9 MW, 
a 3% increase over the period 2020-2023. This was mainly due 
to two countries: Chile, through the expansion by 33 MW of 
Cerro Pabellón, and Colombia, with 0.1 MW in a co-production 
plant. However, news and reporting on geothermal in South 
American countries seems to be increasing, as summarised in 
Table 5.  

Figure 14 shows the installed geothermal electricity 
capacity was 15.8 GW in 2021. It also depicts the geolocations 
of the case studies described in the papers included in this 
review, and reported in Section 3.2. Worthy of note is the direct 

correlation between the regions with high installed geothermal 
capacity (Asia and Oceania, North America) and the number of 
numerical modelling investigations. The map also shows that 
North America is leading ML publications. Also of note is the 
diversity of projects in China where clearly EGS is of high 
interest. The northern hemisphere seems to be testing the 
possibilities of finding synergies between renewable 
technologies.  

The lack of scientific journal publications in Latin America 
and Africa is a reflection of the developing status of these 
regions. As can be seen from the regional analysis above, 
industry expansion may be achieved through greater 
dissemination of the findings of simulation studies. Therefore, it 
is essential that research, academia and industry collaborate to 
assist these regions so that their geothermal potential can be 
realised. Financing and regulatory framework barriers to 
geothermal development in these regions are examined next. 
This is followed by a discussion on specific actions that 
governments, industry, and academia should take. 

4.4.2. Barriers to geothermal development in South America and 
Africa 

A geothermal industry can be developed in Africa and South 
America, but currently growth is still limited by high initial 
investment costs, technical complexity of geothermal 
exploration, unclear regulatory frameworks, social acceptance, 
and electrical grid integration (Castillo-Reyes et al., 2024). 
Geothermal energy also has to compete with low-cost 
renewables, such as solar and wind (IRENA and IGA, 2023). The 
financing of these projects is hindered by these risks as well as 
by country-specific factors. These include investors’ 
perceptions of local conditions such as social, political stability, 
market, unfavourable logistical and limited technical expertise. 
Mungai et al. (2022) identified barriers for investing in renewable 
energy in Sub-Saharan Africa, home to 14% of the world’s 
population. Obstacles include reluctance of the private sector to 
finance projects to mitigate climate change; poorly executed or 

 

 
Fig. 14. Map of case studies described in the papers included in this scoping review and installed geothermal electricity capacity by region 

(modified from IRENA and IGA, 2023). 
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implemented policy and regulatory measures; and lack of state-
based funding while subsidies of fossil fuel projects remain in 
place. The authors state governments and organizations should 
regard climate change as a development problem, rather than 
an environmental one.  

To address some of the aforementioned risks and 
challenges, schemes such as the Geothermal Risk Mitigation 
Facility in the East African Rift (GRMF) and the Geothermal 
Development Facility in Latin America (GDF) have started to 
operate at a regional level (IRENA and IGA, 2023). Since 2012, 
for instance, the GRMF endorses early-stage development of 
geothermal projects in 12 countries (Burundi, Comoros, Congo, 
Djibouti, Eritrea, Ethiopia, Kenya, Rwanda, Somalia, Tanzania, 
Uganda and Zambia). Similarly, since 2016, the GDF Latin 
America has supported projects in 11 countries (Bolivia, Chile, 
Colombia, Ecuador, Peru, Costa Rica, El Salvador, Guatemala, 
Honduras, Nicaragua and Mexico). Financing mechanisms have 
also been offered by multilateral Banks (KfW, World, Inter 
American- and Caribbean- Development). The Japan 
International Cooperation Agency (JICA) has provided country-
based risk mitigation solutions. This is offered by way of 
technical and financial assistance for geothermal project 
assessment and development.  

The International Geoscience Programme (IGCPP), a 
flagship of the United Nations Educational, Scientific and 
Cultural Organization (UNESCO), supports the project called 
“Geothermal resources for energy transition”. IGCP636 fosters 
international collaboration and young researchers' involvement 
in geothermal from 15 different countries. African and South 
American participant countries include Argelia, Chile, Colombia 
and Peru. 

4.4.3. Policy Insights 

Recently, the International Energy Agency (IEA, 2024) 
showed only 10% of the countries have active policies and/or 

regulatory framework on geothermal energy. Thus, the IGA is 
calling for awareness and education in this matter and 
understanding the terminology is relevant. Following Brommer 
(2025), policies are principles adopted by governments or 
institutions to achieve objectives as outlined in official 
documents. Instruments for policy implementation include 
regulations, financial incentives, market mechanisms, and 
voluntary agreements. Primary legislations are enacted by the 
parliament or congress to regulate sectors, including 
geothermal energy, environmental protection, and taxation. 
Secondary regulations are the rules established by legal 
authorities to manage specific activities. Subsequently, 
legislation and regulations form the structured set of procedural 
rules known as the regulatory framework. The latter in turn 
ensures compliance with laws and hence the policies.  

In geothermal development the Act sets the legal 
framework while regulations define the procedures to be 
followed (Brommer, 2025). Policy implementation requires 
understanding how each country defines Acts and regulations. 
Costa Rica is one of the few countries that regulates geothermal 
under the environmental protection law. Kenya and Turkey take 
the mining law as a regulator. On the other hand, New Zealand 
and Iceland have a dedicated geothermal resources Act.  

In summary, strong geothermal policies, and strong 
renewable energy targets are essential to achieving national 
targets to reduce CO2 emissions, as shown in Figure 15. Costa 
Rica is the only Latin America country that seems to fit these 
criteria. Kenya, Chile and Canada seem to be on the rise but 
there is still room for improvement. Upcoming Congresses like 
LATAM (El Salvador, 2025) and World Geothermal (Canada, 
2026) will provide good platforms to consolidate collaborative 
paths to move forward. 

International policy recommendations focusing on reservoir 
simulations may contribute to the development of geothermal 
energy and should be embraced. A comparative and 

 
Fig. 15. Policy versus renewable target strength (Brommer, 2025), with permission of the author. 
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comprehensive analysis of current legal frameworks in the 
countries with identified geothermal resources should be 
conducted to identify how reservoir modelling is included. An 
exercise along these lines has been undertaken for South 
America by Torre Muñoz (2022). However, reservoir modelling 
was not discussed. As per O’Sullivan and O’Sullivan (2024) the 
benefits of carrying out computer modeling from early stages of 
a project have been widely demonstrated. This offers a valuable 
verification of the conceptual models and may assist in deciding 
the most critical data for understanding the system’s behavior. 
Similarly, the guidelines for model calibration and validation 
required to ensure reliable and robust results by Nugraha et al. 
(2022) should be standardised worldwide. 

Here we suggest items that should be included in new 
international policies focused on geothermal reservoir 
modelling:  

1. Open-access database/collaborative platforms to 
promote sharing of available model inputs and results; 

2. Government grants and programs to support research 
and development in advanced simulation technologies 
and methodologies; 

3. Tax incentives (e.g., those based on CO2 emissions) for 
companies adhering to geothermal simulation 
technologies; 

4. Creation of advanced reservoir modelling training 
programs as per ESMAP (2023); 

5. Inclusion of geothermal reservoir simulation topics in 
academic curricula in Earth Science-related schools 
and energy management courses. 

 

4.4.4. Collaborative opportunities and industry development 

Countries with established oil and gas industries, and 
geothermal potential have an advantage to pursue projects. 
Moreover, the interest for green hydrogen may represent an 
opportunity to expand geothermal development (IRENA and 
IGA, 2023). The application of geothermal direct uses based on 
heating and cooling needs is expected to take off, driven by 
dissemination, good practices and demonstration pilot projects, 
particularly in Chile and Central American countries (Aviña 
2022; The World Bank 2023). Recently announced geothermal 
projects and research initiatives as listed below can also provide 
new collaborative opportunities and industry development: 

 
1. The International Energy Agency Geothermal 

operates under the auspices of the Technology 
Collaboration Programme (TCP). Also called the 
Geothermal TCP, it fosters international collaboration 
to advance research, development, commercialisation 
and deployment. Its 6th term runs from 1 March 2023 
to 29 February 2028. As of 2025 it has 16 members, 
none from Africa and only Mexico from Latin America. 

2. The 12 Centers of Excellence in geothermal (CoEs) 
around the world, where cutting-edge research, 
international collaboration, and skill development are 
supported to address the challenges faced today in 
geothermal. The IGA’s Academy fosters the 
relationships built with these CoEs (IGA, 2024).  

3. The investment from JICA to develop the 
Chachimbiro project in Ecuador to build a 50 MW 
power plant (Project Management Global, 2024). 

4. The startup Fervo Energy passed its 30-day well test. 
This milestone posts EGS as a promising and reliable 
technology that could be replicated worldwide 
(Golden, 2023).  

5. The relaunch of geothermal energy in Italy, based on 
the discussion about the National Integrated Plan for 

Energy and Climate held between representatives of 
the government and experts from the industry and 
research institutions at the beginning of October 2024 
(Cariaga, 2024).  

 
4.4.5. Case study: Colombia 

The promotion of this technology in countries along the 
Andean Mountain range with the use of reservoir simulation is 
crucial. Using Colombia as a case study, there are superficial 
exploration data from the 1980s. So far one exploratory 
geothermal borehole (Nereidas) was drilled in 1997 by the 
Nevado del Ruíz volcano (Monsalve et al., 1998). The well, 1500 
metres deep, registered a high bottomhole temperature (200°C), 
but no fluid. Because of the limited technical and financial 
resources available at that time, the subsurface exploration was 
stopped. González and Palacio (2021) reported this area has 
around 65 MW estimated power capacity. According to Alfaro 
et al. (2021), Colombia has 1.1 GWe untapped geothermal 
potential for electricity generation. This value needs to be 
validated with exploratory wells, given that high uncertainties 
affect the variables of the volumetric method applied for the 
estimation, since no measured subsoil data are available.  

The Colombian geothermal licence requirements are now 
clear (Decree 1318, 2022; Resolution 40302). Decree 1598 of 
2024, which modifies Decree 1073 of 2015, strives to introduce 
a competitive process for permit allocation, as well as providing 
guidelines to strengthen the interaction of developers with local 
communities. However, the implementation of these Decrees 
are time bound. Additionally, relevant financial incentives and 
risk mitigation mechanisms are needed, in particular for the 
drilling exploratory phase. The use of numerical modelling with 
ML enhancements should reduce uncertainties, and hence risks, 
including financial, involved in this phase of work. 

Although in Colombia reservoir simulation is incipient 
(Vélez et al., 2018; Moreno et al., 2018), all parties involved in 
the field of geothermal energy would benefit from numerical 
modelling and/or ML at each stage of a project, i.e., exploration, 
prefeasibility, feasibility, development and production. This 
strategy could save modelling time and make it feasible for the 
country to start producing at least half of its current estimated 
potential in the next decade. Colombia could also gain time in 
its energy transition journey by producing geothermal energy 
through co-production with active oil wells, as the pilot projects 
described by Céspedes et al. (2022); to the use of depleted 
hydrocarbon wells; and abandoned mines. 

 
4.5. Research and development opportunities 

Another option that should be pursued so that tripling the 
size of the geothermal industry by 2030 (5 years from now) is 
achieved, involves scaling up production of developed projects. 
This needs to be done in parallel with outreach activities with 
local communities. This review shows there is room for 
investigation and improvement of numerical simulation through 
the use of ML in the modelling of four areas discussed below. 

 
4.5.1. THMC processes 

Several papers reviewed here dealt with THM or THC 
coupled processes, however, THMC (Thermo-Hydro-
Mechanical-Chemical) processes were rarely addressed. 
According to Collard et al. (2023), surrogate geochemical 
modelling based on ML techniques has gained popularity in 
addressing the limitations of THM and chemical coupling. This 
is usually computationally expensive. An example is the use of 
ANN, XGBoost, or KNN for reactive transport modelling 
(Collard et al., 2023). The understanding of THMC processes is 
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critical to ensuring long-term sustainable and economically 
feasible geothermal field production.  

 
4.5.2. Reinjection and induced seismicity 

A sustainable field production also relies on a proper 
reinjection strategy, and locating the wells is probably the most 
important issue in the design step. This is an essential 
requirement for optimal geothermal field development, and can 
be addressed by numerical simulations (Rivera Díaz et al., 2015; 
Kaya and Zarrouk 2017; Li et al., 2023). Gerardi et al. (2023) 
provided a study of geomechanical numerical modelling of the 
Muara Laboh geothermal field (Indonesia), identifying the 
relationship between natural and induced seismicity and the 
activation of a fault zone due to reinjection. For seismicity risk 
management, robust and informative forecasting models must 
be developed (Ritz et al., 2024). To face this challenge, ML 
techniques provide useful tools. One example is the 
unsupervised K-means clustering technique, shown in the work 
of Iaccarino et al. (2023) when analysing the moderate 
magnitude-induced earthquakes at The Geysers geothermal 
field in California.  

 
4.5.3. Reservoir characterization 

Another area that benefits from recent deployment of ML 
tools is reservoir characterization. In all types of geothermal 
resources, harnessed through conventional power technologies, 
EGS, or AGS, heterogeneity has a significant impact on fluid 
flow and heat transfer behaviour. ML can be used to explore 
subsurface uncertainty without the entire computational cost of 
numerical flow simulations to support optimum and timely 
decision-making (Maldonado-Cruz and Pyrcz 2022). The 
understanding of the physical mechanisms behind the 
engineering problem is very important for improve the 
performance of the ML tools to predict petrophysical 
parameters (Chen and Zhang 2020; Zou et al., 2021; Maldonado-
Cruz and Pyrcz 2022; Ali et al., 2023; Castillo-Reyes et al., 2023; 
Yan et al., 2023).  

It is useful to have methods that allow the inclusion of 
arbitrary discontinuities. However, modelling of the nonlinearity 
of fractured rocks remains a challenging area. Understanding of 
the effects of water cooling on fracture permeability 
enhancement and induced seismicity is also crucial, especially 
for EGS. More studies are needed on water mobility under 
supercritical conditions and its effects on thermal breakthrough.  

 
4.5.4. Cross-industry and laboratory 

Technology synergies of geothermal with other industries 
have been mentioned by the Department of Energy (DOE) since 
2019. Promising applications for geothermal are direct use, 
thermal storage, clean heat for industry, and mineral recovery 
(DOE, 2019). Several possibilities for further reservoir 
simulation research to continue fostering innovation, driving 
collaboration, and accelerating growth in both the geothermal 
and related technologies are proposed here: 

a) Modelling of scaling associated with critical mineral 
extraction from geothermal brines. A review by Szanyi 
et al. (2023) who also conducted a cost–benefit 
analysis to assess the financial feasibility of the 
technology could be used for reference.  

b) The Stillwater triple hybrid power plant (Zhu and 
Turchi, 2017) and the recent conversion of the 
Alaşehir field where the geothermal power plant is 
being supplemented with solar, sets a worldwide 
example. The National Renewable Energy 
Laboratory’s System Advisor Model (SAM), mainly 
used for techno-economic analysis of energy 

technologies, allows simulating of geothermal 
production and solar processes. SAM however, only 
considers the surface plant operation and does not 
allow subsurface simulation. This could open options 
for building a hybrid geothermal/solar simulator.  

c) Silica from geothermal brines could be reused in CCS 
for CO2 leakage containment (Castañeda-Herrera et 
al., 2018) or to create an in-depth flow diverter (Llanos 
et al., 2022).  

d) The conversion of underground coal mines into 
geothermal resources has been considered in China 
since the beginning of this century, but most projects 
remain at the planning stage (Huang et al., 2023). 
These authors analysed the feasibility and 
sustainability of harnessing energy from underground 
coal mines for heating purposes, through modelling 
with OpenGeoSys. The same software was used by 
Todd et al. (2024) in the context of underground 
thermal heat storage (UTES): THM modelling was 
conducted to analyse mechanical stability of the 
mine’s structure during heat extraction and injection 
into the mine water systems. However, UTES 
resources are still under-utilised and heterogeneously 
developed across the globe (Goetzl et al., 2023). 

e) Experiments taking place at Monash University 
provide an excellent base for building numerical 
models to allow upscaling to field conditions. In the 
geothermal reservoir area this Australian group is 
researching three promising novel stimulation 
technologies for application in EGS and CCS, as 
follows: 
● Foam based, which requires minimum water and 

chemicals (Zhu et al., 2020)  
● Thermal, with can generate complex 

microfractures (Harshini et al., 2024) 
● Slow releasing energy material, an alternative to 

conventional techniques to control fracture 
propagation (De Silva et al., 2018). 

 
4.6. Strengths and limitations of this study  

This study has identified the most frequently used 
simulators, under the constraints applied, and their contribution 
to the development of the geothermal industry. The discrepancy 
with the findings of O'Sullivan (2001) on most popular software 
is due to the timeframe and the basis of our scoping review 
being a database as opposed to the worldwide survey of all 
geothermal projects undertaken by O'Sullivan (2001). The 
inclusion in this work of emergent ML work opens the 
possibilities for new research projects. Additionally, the 
information relating to journals dealing with geothermal topics 
represents a useful guide for anyone interested in the study or 
application of geothermal reservoir engineering. However, this 
study has some limitations, as described next. 

 
4.6.1. Boolean syntax 

Elsevier’s Scopus Application Programming Interfaces 
supports a Boolean syntax, i.e. a search that allows users to 
combine keywords with operators such as AND, NOT and OR 
to refine the search results. The operator AND was solely used 
for this review, which retrieved only those documents that, in 
the abstract, keywords and title, contained all the search terms. 
This limitation meant some published software-related papers 
might not have been identified in the search, for example, 
papers by Aguilar-Ojeda et al. (2021b) and Rinaldi et al. (2022) 
that dealt with TOUGH3. The former presents a MATLAB code 
for converting a three-dimensional conceptual model of Los 
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Humeros geothermal field (Mexico) from ArcMap to TOUGH3. 
The latter relates to CCS and nuclear waste disposal; however, 
the proposed approach has potential applicability for 
geothermal. 

Based on ML papers included in this review, it was possible 
to identify that some publications used the term “system” 
instead of “reservoir” to define the geothermal subsurface 
complex. This means more manuscripts could have been 
identified using the operator OR (“reservoir” OR “system”). 
Additionally, a few papers in languages other than English, 
satisfied the Boolean search criteria (journals and years): for 
example, two TOUGH2 and ten COMSOL papers written in 
Chinese were identified. Also, the name of two simulators, 
STAR and STARS, required a specialised search term to 
differentiate them.  

 
4.6.2. Other simulators and methodologies 

The exclusion criterion used for this review implied 
discarding a paper by Croucher et al. (2020), because the main 
purpose of the paper was to describe the development of a new 
simulator, Waiwera. The results of this program however were 
successfully compared to outcomes from TOUGH2, TOUGH3 
and AUTOUGH2. Waiwera was built at Auckland University, by 
the developers of AUTOUGH2 with the purpose of speeding up 
geothermal model runs. Hence, it is worth acknowledging the 
value of this new parallelised, object-oriented system written in 
Fortran 2003, as it is also the first to be released under a free, 
open-source software licence. Additionally, it is version-
controlled using Git with developer documentation auto-
generated using FORD1 and user documentation created using 
Sphinx. The up to sixty times faster simulation times achieved 
by Waiwera allow a faster calibration and refinement of models. 
These changes improve production predictions, support 
decision-making, and enable modelling to strengthen the value 
of geothermal projects. A few new geothermal simulators 
developed on the same methodology as TOUGH2 and comprise 
TOUGH+ (TOUGH2.2 rewritten in modern Fortran) and 
TOUGH3 (updated version of TOUGH2). Another promising 
software within the group of newest geothermal programs is 
Volsung. This simulator is combined with a graphical user 
interface and integrates reservoir., well and surface network 
models. 

Potential contributions of well established codes using more 
modern programming languages and more integrated 
parallelization include OpenFOAM, OpenGeoSys, DuMux, 
PFLOTRAN, STOMP, FALCON (built on the MOOSE 
framework) and DARTS. An example of a novel application 
involves using PFC for studying the possibility of harnessing 
thermal energy from road pavement constructed using 
demolition waste in Australia (Baghban et al., 2021). 

Compared with analytical and experimental methods, 
numerical simulation can consider both complex boundary 
conditions and large-scale models with less investigation and a 
shorter calculation period. Finally, due to the use of the 
exclusion criterion, ML-related papers discussing the prediction 
of petrophysical parameters of subsurface reservoirs were not 
included (e.g., Chen and Zhang 2020; Zou et al., 2021; 
Maldonado-Cruz and Pyrcz 2022; Ali et al., 2023; Castillo-Reyes 
et al., 2023; Yan et al., 2023). However, these methodologies 
could be applied to geothermal reservoirs as discussed in 
Section 3.3.  

 
5.Conclusions 

The main motivation of the work presented in this article is 
to show how numerical modelling could assist in achieving the 
COP28 commitment. From 555 initially identified publications, 

61 journal papers here included have allowed the screening of 
various modelling options to improve the understanding and 
performance of geothermal reservoirs. TOUGH2 is mainly 
applied for hydrothermal while COMSOL is used for EGS. The 
results also showed that North America is leading in the 
publication of ML case studies; China has high interest in EGS; 
while the northern hemisphere, particularly Europe, is 
researching synergies with renewable technologies. No case 
studies were reported from South America or Africa. Using 
structural, thermal, geophysical and geochemical archived data 
sets, ML is shown as a promising tool to assist in appraising 
developing geothermal fields. Additionally, technology synergy 
options could help maximise production in countries with 
mature geothermal industries. Such an integrated approach can 
accelerate the growth of the geothermal industry, and by 
fostering these strategies, economic, environmental, and social 
benefits can be achieved. More informed decision-making and 
reduced risks and uncertainties associated with geothermal 
reservoir development are also an additional benefit of a wider 
use of proper geothermal modelling tools. There is an intimate 
connection between simulation tools, optimum reservoir 
management, and field optimization. 

Other challenges include improved accuracy in the 
simulation of heat transfer; fluid flow; mechanical aspects and 
chemical reactions simultaneously; and interactively. This 
multiphysics modelling approach should yield more cost-
competitive utilisation of the geothermal resources. Addressing 
skill shortage is demanding, but regions and countries with 
suitable geothermal resources and existing oil and gas 
industries are in the best position to play to these natural 
advantages.  

Tripling the output of geothermal energy by 2030 is a big 
task. However, attaining the target is feasible should numerical 
modelling be used from the exploratory project stages to abide 
more accurate decision making and lower overall project risk.  
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