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Abstract. In response to changing energy demands, electricity suppliers are increasingly turning to sustainable energy sources, with wind power
emerging as a promising solution. This study aims to predict wind energy production over four time horizons: hourly, daily, weekly, and monthly, for
a 12,300 kW wind farm located in Northamptonshire, UK. We employed three artificial intelligence (AlI) techniques: an ensemble of bagged decision
trees, artificial neural networks (ANNs), and support vector machines (SVMs). The paper provides a comparative evaluation of Al-based forecasting
techniques for wind energy prediction, highlighting differences in model performance across time horizons while emphasizing the strengths and
limitations of each method in addressing the temporal variability of wind energy production. The models were tested over various times using
important performance measures, such as the correlation coefficient (R), the coefficient of determination (R?), mean absolute error (MAE), root mean
squared error (RMSE), and bias. The results indicate that support vector machines achieve the highest accuracy for medium-term forecasts, with a
coefficient of determination of 0.9722 and a mean absolute error of 44.91 kW. Artificial neural networks perform best in short-term forecasting,
particularly at the daily level, with a coefficient of determination of 0.948 and a mean absolute error of 36.04 kW. In contrast, long-term predictions
exhibit greater variability across models, with the coefficient of determination decreasing to 0.778, reflecting the increased complexity of extended
forecasting. The ensemble of bagged decision trees demonstrates strong predictive capability but with slightly higher error margins compared to
support vector machines. The obtained results could serve as a reference for selecting the most suitable models based on forecasting objectives and
time constraints. Future improvements in forecasting accuracy could happen by combining these models with optimization algorithms, especially for
medium- and long-term predictions, where making accurate forecasts is still very difficult.

Keywords: Artificial Neural Networks, Ensemble of bagged decision trees, Machine learning, Renewable Energy, Support Vector Machines, Wind
Energy Forecasting.
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1. Introduction instance, (Jamii et al., 2022) suggest an artificial neural network
(ANN)-based model that uses meteorological variables such as
wind speed, temperature, and air pressure for predicting wind
energy output. The study finds ANN to be highly precise and
efficient, outperforming other methods like decision trees (DT),
regression vector machines (RVM), and kernel ridge regression
(KRR).

Other studies have explored different techniques to improve
wind energy forecasting. For example, (Taghinezhad &
Sheidaei, 2022) look at how using an ANN can help predict how
much power a turbine will produce in different wind conditions,
and they find that the ANN model, especially the one trained

The transition to sustainable energy sources continues rapidly
as electricity suppliers strive to meet evolving energy demands
(Acikgoz et al., 2020; Alghamdi et al., 2023; Alvarez et al., 2020;
Andrade & Bessa, 2017; Haidi & Cheddadi, 2022a; Mat Daut et
al., 2017; Memarzadeh & Keynia, 2020). Among renewable
energy sources, wind power has emerged as a promising
alternative due to its significant benefits and its crucial role in
moving toward a more sustainable environment (Alghamdi et
al., 2023; Bouabdallaoui, Haidi, & El Jaadi, 2023; Buturache &
Stancu, 2021; Cai et al., 2019; Haidi & Cheddadi, 2022b; Idrissi
etal, 2022; Li et al., 2022).

Accurate forecasting of wind energy production is
increasingly vital for the continuous operation of modern grid
systems (Hassoine et al, 2022; Tyass et al., 2023). Good
forecasting models are important for predicting changes in
energy production, which helps improve how the system works
and coordinates with other energy sources. (Abedinia et al.,
2020; Bouabdallaoui, Haidi, Elmariami, et al., 2023; Hu et al,
2021; Meng et al,, 2022; J. Zheng et al., 2023).

Various papers in the literature apply several approaches,
such as statistical analysis, physical modeling, and machine
learning techniques, to predict wind power production. For
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with the Levenberg-Marquardt backpropagation method, gives
better results for estimating turbine power curves. Similarly,
(You et al., 2022) create a short-term wind energy forecasting
model that uses support vector machines (SVM) along with a
method called CEEMDAN to reduce noise. The enhanced
model shows improved precision and convergence, meeting the
requirements for safe wind farm operation. Further, (Lian & He,
2022) propose a model that combines wavelet denoising with
SVM, refined by the slime mold algorithm, to increase the
precision of wind energy predictions. The results validate the
method's high predictive accuracy.
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Fig. 1 Flow chart of the study structure

The research by (Torres-Barran et al., 2019) examines how
well gradient boosted regression (GBR), extreme gradient
boosting (XGB), and random forest regression (RFR) can predict
solar radiation and wind power both locally and globally. The
research highlights the effectiveness of GBR and XGB as
competitive alternatives, particularly for broader geographic
wind energy predictions.

The primary goal of this paper is forecasting wind energy
output for a 12,300 kW wind farm in Northamptonshire, United
Kingdom. Three Al techniques—SVM, ANN, and an ensemble
of bagged decision trees—are evaluated across very short,
short, medium, and long-term horizons to determine which
model offers the highest accuracy in each timeframe. Fig. 1
presents the organizational structure of the paper. This study
also seeks to provide a clear comparison of these widely used
AI methods, focusing on their performance over different time
scales.

2. Methods

The commissioning of the Kelmarsh wind farm in West
Northamptonshire, East Midlands, England, UK, took place in
2016. Table 1 lists fundamental information about the park.
Wind generator data are recorded by a Supervisory Control and
Data Acquisition (SCADA) monitoring system installed on-site.
The dataset was published by Cubico Sustainable Investments
Ltd. under an open data license, CC-BY-4.0. (Plumley, 2022).
The collection of data began in 2016 and continued until the
middle of 2021. It contains more than 250 data points. The data

Int. J. Renew. Energy Dev 2025, 14(3), 505-517
| 506

Table 1
Principal information of the wind farm chosen

Name Kelmarsh wind farm
Status Operating
C N
ommissioning 2016
Year
I
nstallx?d 12 KW
Capacity
Mount type Onshore
Owner Blue Energy
West Northampton-shire, East
Location Midlands,
England, United Kingdom
Coordination 52.4028, -0.9598

that interest us include time, wind energy (kW), wind speed
(m/s), and wind direction (°). To predict wind power production
for Kelmarsh Wind Park, three methods were implemented:
Support Vector Machine (SVM), Artificial Neural Network
(ANN), and an ensemble of bagged decision trees. This choice
was made to systematically evaluate different types of models
from three learning approaches: neural networks, margin-based
learning, and ensemble methods. Rather than focusing on a
single class of algorithms, we adopted a comparative approach
to assess how each performs across multiple forecasting
horizons, from very short-term to long-term. This selection
allows for a structured and interpretable evaluation of:

e  aconnectionist model (ANN),

e akernel-based margin optimizer (SVM),

e and an ensemble-based decision learner (bagged

trees),

Beyond their independent performance, the models
themselves serve as decent baselines for the future. Their
examination of shortcomings and strengths by forecasting
horizon provides a starting point for further development—
hybridization, optimization, or comparison to deep models. By
bringing each approach's shortcomings and strengths through
forecasting horizons into view, the study presents working
knowledge with which to inform future model enhancements.

2.1 Data Preprocessing

The dataset contains 57,152 time-stamped records collected
every 10 minutes from the SCADA system of the Kelmarsh wind
farm. Each record includes wind speed (m/s), wind direction ( °),
and wind power output (kW), along with a timestamp converted
into datetime format. The data spans the full year 2020 and
January 2021. A data quality assessment revealed no missing
values. However, a small number of records with negative wind
power values—non-physical under standard operating
conditions—were identified and removed:

ValidRows = {(X;Y) | Yi > 0, X e R" et Y; € R} (1)

Xi = [Xu, Xa] represents the inputs, while Yi represents the
output. Zero values in input or output variables were retained,
as they reflect plausible operational scenarios (e.g., calm wind
periods or maintenance shutdowns). No outlier filtering was
applied beyond this physical consistency check.

Input features were normalized using min—max scaling into the
interval [—1,1], using statistics computed from the training
subset:
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Table 2
Time scale of prediction and their typical utilization
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Prediction Horizon Time Scale

Study time scale

Typical Use

Minutes to a few hours (0-6

Very Short-Term hours)

Short-Term

Medium-Term Several days to a few months

Beyond a few months

Long-Term (1 month +)

1 hour

Several hours to several days 1 day

1week

1month

- Real-time energy management

- Grid operation

- Supply-demand balancing

- Energy trading

- Resource allocation

- Maintenance scheduling

- Grid planning

- Strategic planning

- Capacity expansion

- Long-term energy scenarios

- Infrastructure investments

- Renewable energy project planning
- Energy policy development

- Assessment of renewable energy targets.
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Fig. 2 (a) Scatter plot of: (a) wind direction Vs wind power, (b) wind speed Vs wind power, (c) wind speed Vs wind direction
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This normalization ensures balanced feature contributions
and benefits techniques. No additional feature engineering was
applied. The two input variables were retained in their original
form as the only available meteorological parameters in the
SCADA dataset. Wind speed is the primary input for modeling
turbine behavior, while wind direction provides additional
spatial context. Their joint use ensures a physically interpreted
and operationally viable input set.

We conducted the training and internal testing phase using
all data from January to December 2020 (52,704 samples),
employing time-aware data splits for cross-validation. The
models were then externally validated on a hold-out set of 4,465
samples from January 2021, a period excluded from training.
This structure allows for assessing model generalization and
robustness across multiple forecast horizons: the first hour (very
short-term), first day (short-term), first week (medium-term),
and full month (long-term). Table 2 provides details on the
forecast horizons and the rationale for each period.

For data exploration, graphical representations are provided
to illustrate key relationships within the variables. Fig. 2(a)
illustrates the relationship between wind speed and energy
output. Data follow a nonlinear increasing pattern, typical of
turbine power curves: energy generation remains low at low
wind speeds, increases rapidly within the operational range, and
tends to saturate at high speeds. A Pearson correlation
coefficient of 0.93 between wind speed and power further
confirms this strong functional relationship, highlighting its

dominant predictive role. Fig. 2(b) shows wind direction plotted
against power. The absence of a clear trend, supported by a low
correlation coefficient of 0.08, indicates that wind direction has
limited linear influence on power output. However, it could
potentially capture site-specific or directional flow effects,
leading to its retention as a complementary feature. Fig. 2(c)
illustrates the distribution of wind speed and direction,
confirming their near independence (r=0.09) and justifying their
use as uncorrelated inputs in the model. Figure 3 provides an
overview of the dataset by showing each variable's mean,

250
207538
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1000 02 63216
360,00 & -
HD ATE 195.93 93.46
BAX 598 4m 286
0 AN ..vcll.tll.o-r am .:-".
Maximum Minimum Mean Standard
deviation
sWindspeed mwind direction = Wind power

Fig. 3 Statical information about: wind speed (m/s), wind direction
(°), and wind power (kW)
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Table 3
Hyperparameters of the ANN model used
Hyperparameter Value
Architecture One hidden layer with 34 neurons
Hidden Activation Sigmoid (logsig)
Output Activation Linear (purelin)
Training Algorithm Levenberg—Marquardt backpropagation (trainlm) with Bayesian Regularization
Number of Epochs 1000
Early Stopping After 6 validation failures

Learning Rate

Weight Initialization
Cross-Validation Strategy
Data Split
Hyperparameter Tuning
Selection Metric

Default (trainlm)
Default

5-fold cross-validation on training set

80% training, 10% validation, 10% internal test

Grid search on hidden layer size (10-34 neurons)
Root Mean Squared Error (RMSE) on validation folds

maximum, minimum, and standard deviation. This figure helps
assess the overall characteristics and variability within the
dataset.

2.2 Artificial Neural Networks (ANNs)

Artificial Neural Networks (ANNs) emulate human brain
structure and function as closely as possible. Its structure
consists of interlinked nodes in layers. Neurons process input
data via weighted connections, incorporating biases and
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Fig. 4 Flow chart of the ANN model used

activation functions. The training involves iterating input into
the network until it reaches the desired output. Using ANNs to
make accurate predictions on new data is becoming more
common, showing they can be used in various areas like image
recognition, understanding language, and predicting things like
wind power (Abedinia & Amjady, 2015; Ates, 2023;
Bouabdallaoui, Haidi, Elmariami, et al., 2023; Cali & Sharma,
2019; Kumar et al., 2020; Tarek et al., 2023; Verma et al., 2023).

This study trained the ANN to forecast wind power output
using normalized wind direction and speed. The structure has
one hidden layer that uses sigmoid (logsig) activation and a
linear (purelin) output layer, which is good for predicting
continuous values. We performed training using the Levenberg—
Marquardt backpropagation algorithm (trainlm), incorporating
Bayesian regularization to prevent overfitting. The learning rate
and the remaining optimization parameters remained at their
default values, as the training function dictated them. We
conducted a grid search to identify the optimal hidden layer
neuron count, ensuring the best possible model performance.
Trial values used were 10, 20, 30, and 34. The model with 34
neurons possessed the lowest validation root mean squared
error (RMSE) during cross-validation.

A 5-fold cross-validation method using training data was
used to assess how well the model performs and to confirm that
it works consistently across different groups. The best
configuration was selected based on the lowest validation
RMSE. This method provides a robust estimation of model
performance and reduces sensitivity to data splits. We allowed
a maximum of 1000 training epochs and activated early
stopping after six consecutive validation failures. Prior to
training, we removed constant input columns and initialized
network weights using the training function's default method.
Fig. 4 provides a schematic of the ANN training process, while
Table 3 summarizes all architectural and training parameters.

2.3 Support Vector Machines (SVMs)

Supervised machine learning algorithms named Support Vector
Machines (SVM) operate mainly through classification and
regression applications. The regression model variant of SVM
uses input factors as inputs to predict outputs from variables.
When applied to regression analysis, as this study demonstrates,
the SVM devises predictions regarding a variable's outcome
using provided input variables. The SVM regression model finds
the best position for a hyperplane by using training data, which
helps it make predictions that are as close as possible to actual
results. In SVM regression, the hyperplane represents the
optimal boundary or decision surface computed by the
algorithm to minimize forecasting errors. It determines the
predicted output based on the input features. Initially, the

ISSN: 2252-4940/© 2025. The Author(s). Published by CBIORE
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Table 4
Hyperparameters of SVM model used
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Hyperparameter Value / Description

Kernel Function Gaussian (RBF)
Kernel Scale (o)

Regularization Parameter (C)

Grid search: values in [0.1, 10]; optimal = 1.4
Grid search: values in [0.01, 100]; optimal = 6.161

Standardization Yes (zero mean, unit variance)

Training Algorithm Sequential Minimal Optimization (SMO)
Number of Iterations 12,999

Bias Term 1006

Cross-Validation
Model Selection Criterion

5-fold, used during grid search
Root Mean Squared Error (RMSE) on validation folds

support vectors select the data points closest to the hyperplane
to initiate the model-building process, as outlined in the works
of (Gu et al., 2021; Khosravi et al., 2018; Kuriakose et al., 2020;
Pinto et al., 2014, p. 202320; Wang et al., 2023; Yuan et al., 2015;
Y. Zheng et al., 2023).

In this study, the SVM was used to predict wind power with
a Gaussian (RBF) kernel, chosen because it can effectively
handle complex patterns in weather data. Prior to training, input
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Fig. 5 Flow chart of the SVM model used

features were standardized to zero mean and unit variance, a
common practice that improves kernel efficiency and
convergence behavior.

To maximize model accuracy, a grid search was conducted
to tune the following hyperparameters:

e Box Constraint (C): This parameter regulates the trade-
off between training error and model complexity. We
explored values from 0.01 to 100 on a logarithmic scale.

e Kernel Scale (o): This parameter determines how wide
the Gaussian kernel function is in SV), influencing how
well the model picks up on small changes and nonlinear
patterns in the input data. We tested values between 0.1
and 10.

Each parameter pair was evaluated through 5-fold cross-
validation on the training data. This validation strategy was
selected for its balance between statistical reliability and
computational efficiency. It ensures that all samples contribute
to both training and validation, reducing the risk of overfitting.
The optimal hyperparameter combination was selected based
on the lowest average root mean squared error (RMSE) across
the folds.

The final model was trained using the Sequential Minimal
Optimization (SMO) algorithm. It converged after 12,999
iterations, with a resulting bias term of 1006 and a small weight
vector norm (1.8974e-05), consistent with the support vector
framework. Table 4 presents the hyperparameters. Fig. 5
illustrates the SVM modeling process used in this study.

2.3 Ensemble of bagged decision trees

The ensemble of bagged decision trees operates in a coherent
way to enhance the accuracy and reliability of the regression
task. Various decision trees, trained on different subsets of
training data generated by bootstrap sampling with
replacement, form the basis of this method. Each decision tree
learns the models and relationships of the inputs and from its
subset separately. During prediction, the ensemble averages
each individual tree's predictions, most often by taking an
average, to provide a more accurate and stable prediction. This
technique helps in overcoming overfitting, which is a problem
that is often encountered with individual decision trees, as
diversity is introduced into the learning process (Alghamdi et al.,
2023; Khan et al., 2021).

In this case, bagging was selected for its ability to improve
prediction reliability while maintaining interpretability and low
model complexity. Each tree receives the full set of input
features—normalized wind speed and direction—and learns
independently from its bootstrapped data. The ensemble
prediction aggregates the individual outputs, yielding a
smoother and more generalizable forecast of wind power.

The model was configured with 30 learning cycles, meaning
30 individual decision trees were trained. The minimum leaf size
was set to 8, which controls the granularity of splits in each tree

ISSN: 2252-4940/© 2025. The Author(s). Published by CBIORE
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Table 5

Hyperparameters of the ensemble of bagged decision trees model

used
Hyperparameter
Ensemble Method
Number of Trees 30 learning cycles
Bootstrap Sampling ~ Enabled (sampling with replacement)
Minimum Leaf Size 8
Feature Sampling None (all features used at each split)
Final Prediction Average of individual tree outputs
Implementation MATLAB's “Bag” method

Value
Bagging (bootstrap aggregating)

and prevents overfitting on small data partitions. The ensemble
was trained using MATLAB's standard "bag" method, which
implements  bootstrap  sampling  with  replacement.
Hyperparameters were selected empirically to balance
performance and model simplicity.

From a methodological perspective, the choice of bagging
over more complex ensemble methods such as boosting or
random forests was deliberate. Boosting relies on sequential
learning and is sensitive to noise and hyperparameter settings,
which may complicate comparisons in multi-model studies.
Random forests introduce feature subsampling at each split,
which provides little benefit in our case due to the limited
number of input features. In contrast to it, bagging is a
controlled ensemble technique, sufficiently appropriate for low-
dimensional input spaces and insensitive to different training
runs. This characteristic makes bagged trees a robust baseline
for comparing against other learning paradigms such as kernel-
based (SVM) and neural models (ANN). The structure of the
bagging workflow is illustrated in Fig. 6. Table 5 shows
hyperparameters used.

2.5. Evaluation metrics

The effectiveness of machine learning techniques is evaluated
using various metrics in wind energy forecasting. These metrics
shed light on how accurate and trustworthy projections are. The
present study's key evaluation criteria are as follows:

The coefficient of correlation (R), commonly known as
Pearson's correlation coefficient, quantifies the linear
relationship and the variance in the dependent variable (y) that
is predictable from the independent variable (x). The scale runs
from -1 to 1, where 1 represents a fully positive connection.

_ Y- D7)
R= fsei-voi-pr ®

The coefficient of determination (R?) quantifies how closely
expected values (y) match observed values (yi). It denotes the
percentage of the variance in the dependent variable explained
by the independent variable.

R2 = LUV ﬁi)z/z(yi 5y (4)

The metric represents the mean absolute difference (MAE)
between the expected (yi) and observed (yi) values. It offers an
indication of the typical error magnitude.

MAE =1/, ¥ |yi - 9i| (5)

The Root Mean Squared Error (RMSE) is a measure of the
average magnitude of residuals, which are the disparities
between observed and anticipated values. Large mistakes are
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penalized more severely than MAE.

RMSE = 20— 9D%/ (6)

When comparing predictions to observed values, bias is the
average propensity of the predictions to be higher or lower.
Predictions are generally too high when there is a positive bias,
and vice versa.

BIAS =1/ 3(yi — i) (7)

4. Results and Discussion

4.1 Long-term prediction results

The three predictive techniques, SVMs, ensemble of bagged
decision trees, and ANNs, are compared in terms of
performance utilizing important criteria for long-term wind
power prediction on a one-month horizon. Fig. 7 presents the
scatter plot of expected output vs. actual values in the long-term
horizon of each method. The coefficient of determination and
the correlation coefficient indicate moderate linear links
between the actual and forecast wind power outputs using all
available methodologies. Despite not being particularly high (for
R: SVM = 0.890, ensemble of bagged trees = 0.889, ANN =

ISSN: 2252-4940/© 2025. The Author(s). Published by CBIORE
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Table 6

Int. J. Renew. Energy Dev 2025, 14(3), 505-517
[ 511

Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) with Confidence Intervals (monthly horizon)

Model MAE 95% CI (MAE) RMSE 95% CI (RMSE)
ANN 100.95 [92.95, 109.14] 287.09 [268.52, 304.65]
Bagged Trees 101.29 [93.15, 109.49] 286.99 [268.48, 304.89]
SVM 102.02 [94.68, 110.04] 285.80 [267.51, 303.99]
Table 7
Wilcoxon Test Results (monthly horizon)
Comparison Test Statistic (MAE) p-value (MAE) Test Statistic (RMSE) p-value (RMSE)
ANN vs Bagged Trees 4721,622 0.0022 4779,213 0.0168
ANN vs SVM 4518,422 6.01e-08 4707,796 0.0013
Bagged Trees vs SVM 4690,291 0.0006 4785,939 0.0207
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Fig. 7 Scatter plot of predicted values against real values in long
term

0.889; for R* SVM SVM= 0.778, ensemble of bagged trees =
0.776, ANN = 0.776). These measurements nonetheless show a
useful degree of reliability. When examining the mean absolute
error (MAE), the ANN approach has the lowest average error
(ANN = 100.925), suggesting more accurate wind power
forecasts. SVM and ensemble of bagged decision trees
approaches trail closely behind, showing marginally higher
MAE values while retaining respectable precision (SVM =
101.995, ensemble of bagged trees = 101.271). The
effectiveness of SVM is shown by the Root Mean Squared Error
(RMSE), which has the lowest total errors when looking at both
the amount and direction of mistakes (SVM = 285.766)
compared to the ensemble of bagged trees (286.960) and ANN
(287.058). The RMSE statistic highlights SVM's effectiveness in
reducing mistakes even while it doesn't reach large levels. The
systematic propensity to overestimate or underestimate,
measured by bias values, is comparatively constant across all
techniques. When compared to SVM, the bias for both the ANN
and ensemble of bagged decision tree approaches is marginally
smaller, suggesting that the various models' prediction abilities
are well distributed (SVM = 39.587, ensemble of bagged trees =
38.192, ANN = 38.033).

To check if the differences in forecasting performance
between the ANN, Ensemble (Bagged Trees), and SVM models
are meaningful, we used two methods: Confidence Intervals (CI)
and Wilcoxon Signed-Rank Tests. Confidence intervals (CI) are
a statistical tool used to estimate the uncertainty around a
performance metric, in this case, the Mean Absolute Error
(MAE) and the Root Mean Square Error (RMSE). A 95%

confidence interval indicates the range of values within which
the true performance metric is likely to lie, with 95% certainty.
These intervals were calculated using the bootstrap method
(with 1000 resamples), providing a robust estimate of the
variability and precision of the performance metrics (Cumming,
2013). Wilcoxon signed-rank tests are non-parametric statistical
tests used to assess whether the differences between paired
observations—in this context, the prediction errors (absolute
and squared errors) of two different models—are statistically
significant. A p-value less than 0.05 indicates that the observed
differences in performance metrics are unlikely to be due to
chance, thus confirming a genuine difference in predictive
performance between the compared models (Taheri &
Hesamian, 2013). Tables 6 and 7 summarize the results.

The statistical validation confirms that the differences in
MAE and RMSE among the models are statistically meaningful.
Specifically, ANN significantly outperforms both the ensemble
of bagged trees and SVM models in terms of MAE, with
particularly strong significance observed against SVM. For
RMSE, the differences are still statistically significant, showing
that ANN, ensemble of bagged trees, and SVM models have
different forecasting abilities. Although confidence intervals
overlap slightly, the statistical tests highlight clear systematic
differences between these methods for monthly wind power
forecasting. These statistical findings demonstrate that the
differences in performance are not merely because of random
variation but represent genuine differences in the forecasting
capabilities of each modeling approach.

4.2 Medium-term prediction results

Using the same measures, the approaches are contrasted in
medium-term wind power forecast over a one-week horizon.
Fig. 8 displays the scatter plot of the method's expected output
against actual values. Strong positive correlations are seen in all
three approaches, suggesting that the techniques adequately
represent the overall patterns in the data. The best R value is
obtained using SVM, suggesting a more precise linear fit. The
percentage of variation explained by the models is further
quantified by R2 Because of its higher R? value, SVM appears to
offer a more accurate depiction of the variability in the wind
power data (for R: SVM = 0.9879, ensemble of bagged trees =
0.9876, ANN = 0.9872; for R% SVM = 0.9722, ensemble of
bagged trees = 0.9696, ANN = 0.9681). In terms of statistical
notation, MAE stands for mean absolute error between
expected and observed values. With its lowest MAE (ensemble
of bagged trees = 44.91), the ensemble of bagged decision trees
provides outputs that are, on average, closest to the real values.
When it comes to minimizing absolute mistakes, an ensemble of
bagged decision trees is a better option since it suggests that it
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Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) with 95% Confidence Intervals (weekly horizon)

Model MAE 95% CI (MAE) RMSE 95% CI (RMSE)

ANN 7.52 [4.67, 10.50] 9.35 [5.56, 11.97]

Bagged Trees 25.42 [20.22, 30.65] 28.14 [22.55, 33.42]

SVM 5.13 [3.17,7.07] 6.70 [4.02, 9.04]
Table 9

Wilcoxon Signed-Rank Test Results (weekly horizon)

Comparison Test Statistic (MAE) p-value (MAE) Test Statistic (RMSE) p-value (RMSE)
ANN vs .Bagged Trees 215347.0 0.000089 201864.0 0.00000007
ANN vs. SVM 235282.0 0.0814 218047.0 0.00029

Bagged Trees vs .SVM  245192.0 0.5084 230750.0 0.0253
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Fig. 8 Scatter plot of predicted values against real values in
medium term

is more accurate in terms of size. The MAE of SVM and ANN
models are close (SVM=45.79, ANN=45.06), indicating
equivalent accuracy. The SVM method has the lowest RMSE
(SVM = 59.94), indicating that its average predictions are more
in line with the real values. Lower RMSE values (ensemble of
bagged trees = 62.70, ANN = 64.19) demonstrate better overall
prediction accuracy. For every approach, the BIAS values are
negative, indicating a consistent tendency to underestimate. As
the SVM model has the lowest negative BIAS, it is likely to
estimate wind power more accurately. To evaluate the
statistical relevance of observed between-model variations in
performance, we computed 95% confidence intervals for both
MAE and RMSE using bootstrap resampling and performed
pairwise Wilcoxon signed-rank tests. Tables 8 and 9 present the
outcomes.

These results indicate that both ANN and SVM significantly
outperform the ensemble of bagged trees across most error
metrics. The performance difference between ANN and SVM is
less pronounced: while the RMSE difference is statistically

Table 10

1200

1000

800

600

Wind power (kW)

400

01/1/21 00:00 01/1/21 04:48 01/1/21 09:36 01/1/21 14:24 01/1/21 19:12 02/1/21 00:00
@ Real wind power  BANN A Ensemble of bagged decision trees SYm

Fig. 9 Scatter plot of predicted values against real values in short
term

significant in favor of SVM, the MAE difference does not reach
significance. This suggests that both ANN and SVM are suitable
choices for weekly wind power forecasting, with SVM exhibiting
a marginal edge in terms of error magnitude.

4.3 Short-term prediction results

When comparing the performance measures for predicting wind
power across a daily time span for the three artificial intelligence
methodologies, the high R-values for all methods suggest that
the models capture the overall trends in wind power well, with
ANN displaying a slightly stronger correlation (SVM = 0.975,
ensemble of bagged trees = 0.965, ANN = 0.978). The
impressive R? values of all the approaches highlight their
capacity to forecast and explain fluctuations in wind power
(SVM = 0.946, ensemble of bagged trees = 0.921, ANN = 0.948).
Once more, ANN is superior in this regard. Comparable and
lower MAE values are shown by SVM and ANN, beating the
ensemble approach (SVM = 36.65, ensemble of bagged trees =

Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) with Confidence Intervals (daily horizon)

Model MAE 95% CI (MAE) RMSE 95% CI (RMSE)

ANN 7.55 [3.96, 11.86] 9.24 [4.14, 11.79]

Ensemble 24.91 [16.28, 33.64] 27.45 [16.66, 33.72]

SVM 5.20 [2.56, 7.63] 6.36 [2.53, 7.92]
Table 11

Wilcoxon Test Results (daily horizon)

Comparison Test Statistic (MAE) p-value (MAE) Test Statistic (RMSE) p-value (RMSE)
ANN vs Ensemble 0.0 0.0156 0.0 0.0156

ANN vs SVM 6.0 0.219 6.0 0.219

Ensemble vs SVM 1.0 0.0313 1.0 0.0313
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47.47, ANN = 36.04). From this, it may be inferred that SVM and
ANN offer generally more precise predictions. With a greater
RMSE than the ensemble technique, ANN gets the lowest ,
closely followed by SVM (SVM = 52.79, ensemble of bagged
trees = 63.87, ANN = 51.70). Comparing SVM and ANN to the
ensemble, the results imply that both provide greater precision.
SVM has the least bias, followed by ANN and the ensemble
method. The negative values indicate a tendency to
underestimate wind power, with SVM being the least biased
(SVM = -13.86, ensemble of bagged trees = -21.22, ANN = -
19.07). Figure 9 shows the scatter plot of the method's expected
output against actual values. To ensure these observed
differences are not due to random variation, Wilcoxon signed-
rank tests and confidence intervals for MAE and RMSE were
applied. Tables 10 and 11 summarize the results.

The statistical validation confirms that the differences in
MAE and RMSE among the models are meaningful. In
particular, SVM significantly outperforms the ensemble method,
and ANN also shows advantages over the ensemble. The close
performance of ANN and SVM indicates they are both reliable
for weekly wind power forecasting, with slight differences that
favor ANN in this specific scenario.

4.4 Very short-term prediction results

The following insights are revealed by the hourly wind power
forecast results: There is a significant linear relationship
between the prediction output and real data, as approved by the
R-values (SVM = 0.986, ANN = 0.981, ensemble of bagged trees
= 0.880). The ensemble approach, on the other hand, shows a
lower R, which may indicate a possible divergence from
linearity or systemic inaccuracies in the forecasts. The high R?
values (SVM = 0.995, ANN = 0.995, ensemble of bagged trees
= 0.976) indicate that all methods are very good at explaining
the changes in hourly wind power. The values are true for all
methods. High R-values indicate an excellent explanatory
ability to capture the variation in the hourly wind power. All
approaches yield consistent values. Low MAE values
demonstrate accurate forecasts. SVM and ANN have lower
MAE values than the ensemble technique, which means they are
more accurate (SVM = 3.465, ANN = 4.431, ensemble of bagged
trees = 13.533). The RMSE values (SVM = 4.847, ANN = 5.599,
ensemble of bagged trees = 14.013) demonstrate the accuracy
of the forecasts. Once more, ANN and SVM show reduced
RMSE, suggesting more precise predictions in comparison to
the ensemble approach. Systematic mistakes are present, as
shown by BIAS readings (SVM = -2.433, ANN = -0.457, and
ensemble of bagged trees = 1.417). When compared to SVM
and ANN, the ensemble approach shows a positive BIAS,
indicating a propensity to overestimate wind power. The scatter

Table 12
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Fig. 10 Scatter plot of predicted values against real values in the
very short term

plot of the method's expected output against actual values is
shown in Fig. 10. The significance of these differences was
assessed through Wilcoxon signed-rank tests and confidence
intervals for MAE and RMSE. Results presented in Tables 12
and 13 confirm that the performance differences are not due to
random variation.

The SVM model consistently shows the lowest MAE and
RMSE values with narrow confidence intervals, highlighting its
superior predictive performance. The Wilcoxon tests support
the finding of those variations as being statistically significant,
especially when comparing the ensemble method to the other
models. While ANN and SVM exhibit closer accuracy, the SVM
model remains the most robust and reliable choice to predict
very short-term hourly wind energy.

To better understand the strengths and weaknesses of each
forecasting model across various time horizons, it is essential to
analyze key performance metrics. According to (Miettinen et al.,
2020), metrics such as MAE, RMSE, and BIAS are critical
indicators in evaluating forecasting accuracy. Fig. 11 illustrates
the distribution of these metrics across the three forecasting
methods.

The MAE histogram reveals that SVM achieves lower error
values predominantly at medium-term horizons, confirming its
robustness to moderate fluctuations. The ANN model shows
low MAE at short time frames, but the error varies more as the
time frames get longer, which matches what (Ahmadi et al,
2020; Soman et al, 2010) found. Bagged trees present the
highest dispersion of errors, indicating declining accuracy as the
forecast duration increases. The RMSE distributions highlight
that SVM performs well, especially when dealing with larger
errors in short- and medium-term forecasts, which matches
what (Heinermann & Kramer, 2014) found. The ANN model

Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) with Confidence Intervals (hourly horizon)

Model MAE 95% CI (MAE) RMSE 95% CI (RMSE)
ANN 4.43 [2.08, 7.04] 5.60 [1.94, 6.93]
Ensemble 13.53 [10.98, 16.24] 14.01 [11.08, 16.32]
SVM 3.47 [1.28, 6.29] 4.85 [1.30, 6.24]

Table 13

Wilcoxon Test Results (hourly horizon)
Comparison Test Statistic (MAE) p-value (MAE) Test Statistic (RMSE) p-value (RMSE)
ANN vs. Ensemble 0.0 0.0156 0.0 0.0156
ANN vs. SVM 7.0 0.297 7.0 0.297
Ensemble vs. SVM 0.0 0.0156 0.0 0.0156
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Fig.12 Scatter plots illustrating the relationships between key evaluation metrics: MAE, RMSE, and BIAS of the predictive models

shows higher sensitivity to substantial forecast deviations,
especially beyond medium-term horizons. Bagged trees exhibit
distinct clusters at higher RMSE values (~300), underscoring
their limited reliability at extended horizons. BIAS analysis
indicates that all three models consistently produce slightly
negative forecasts (underestimation). SVM and ANN display
moderate negative bias (-10 to -20), whereas bagged trees
demonstrate a more pronounced negative bias (up to -40),
particularly at longer horizons.

The scatter plots in Fig. 12 comprehensively visualize these
error dynamics. Optimal forecasting performance corresponds
to low MAE, low RMSE, and minimal bias. SVM and ANN
predominantly occupy this optimal space, particularly at short-
and medium-term horizons. In contrast, bagged trees struggle
with higher prediction errors and substantial bias, increasingly
evident as the forecast horizon lengthens.

The models’ predictive capability, quantified by R?, further
elucidates performance differences across forecast horizons. At
very short horizons, all models achieve high precision (R* close
to 1). Performance divergence becomes noticeable at short-
term horizons, where bagged trees begin to degrade markedly
(R? < 0.85), whereas SVM and ANN remain above 0.90. This
divergence further accentuates at medium- and long-term
horizons, with SVM and ANN maintaining R* values around
0.75-0.80, compared to bagged trees’ significantly reduced R?
(~0.50-0.75).These differences can be accounted for in terms of
the intrinsic trade-offs between model complexity and
regularization. ANN models are highly flexible, which makes
them well-suited to modeling short-term nonlinear

dependencies but prone to overfitting at longer horizons. SVM
finds a good middle ground between being complicated and
being able to apply to different situations by using its margin-
based regularization, which helps it handle uncertainty and
changes over time for medium-term predictions. Trees that are
combined together can reduce errors by averaging, but they
struggle to capture complex time-related patterns, leading to
significant errors over long periods. It’s important to understand
that the model's performance is limited by the data from SCADA
measurements, which only includes wind direction and speed.
This data is not enough for real-time forecasting because it
doesn’t cover other important weather factors like changes in
atmospheric pressure or temperature differences. These
unmodeled variables would be significant sources of forecast
errors observed at longer horizons. Moreover, this study focuses
exclusively on data from a single wind farm. Although this work
provides controlled comparability, direct generalization to other
sites is not guaranteed without further validation. Nonetheless,
it is reasonable to expect comparable performance on wind
farms exhibiting similar meteorological and operational
characteristics, provided model hyperparameters are
appropriately tuned.

Fig. 13 synthesizes these insights visually through a radar
chart, clearly depicting model performance across forecasting
horizons. While all models perform similarly in the very short
term, SVM and ANN show better adaptability and consistent
predictions as the time frames get longer, highlighting their
strength in handling complex data and changing time patterns.

ISSN: 2252-4940/© 2025. The Author(s). Published by CBIORE



D. Bouabdallaoui et al

Short-Term

MediumTerm o @ '@ o »VeryshortTerm

LongTerm

Fig.13 Radar chart of forecasting model performance across the
four time horizons

Overall, the comparison shows that ANN and SVM are better at
predicting wind energy over multiple time periods, performing
significantly better than bagged decision trees for complex,
long-term forecasts.

6. Conclusion

This research looked at how well three machine learning
models—Support Vector Machine (SVM), Artificial Neural
Network (ANN), and a group of bagged decision trees—could
predict wind power generation at the Kelmarsh wind farm in the
UK. Based on the observations of wind speed and direction
collected by the site's SCADA system, forecasts were issued for
different time horizons: one hour, one day, one week, and one
month. With this systematic protocol, it was possible to make a
systematic comparison of the predictability of each model,
which provided information on their accuracy and reliability
under varying temporal scales. The SVM model showed better
prediction results, especially for short- and medium-term
forecasts, with very high accuracy scores (R* = 0.9949 for hourly
predictions, MAE = 3.47 for weekly predictions). This is because
it has its own margin-based learning mechanism that can
effectively balance model complexity and generalization
capability. The ANN model also showed strong performance,
particularly for short-term predictions (R* = 0.9808 for hour-
ahead forecasts), indicating its ability to recognize complex,
small time patterns. However, as the forecast period got longer,
the model's performance dropped, showing it was sensitive to
changes and might have been too closely fitted to the training
data, highlighting the need for careful adjustment of its settings
and controls. The bagged decision trees model showed
consistent performance at very short forecasting horizons but
exhibited decreasing accuracy as the prediction horizon
increased. The inherent structural vulnerabilities of tree
ensembles, such as their limited capacity to handle high-order
nonlinearities and long-term temporal relationships, explain this
decline. These results indicate that there are important
compromises between variance and bias, highlighting the
importance of carefully setting up and adjusting models for
different forecasting time frames. This study, based solely on
wind speed and direction, demonstrates the basic accuracy of
the machine learning methods selected to predict wind power.
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This study's methods and results can be applied to other wind
farms with similar technology and weather, as long as the model
settings are adjusted properly. Future research could improve
forecasting abilities by looking into mixed modeling techniques,
such as combining ANN with statistical methods or mixing
ensemble learning with deep learning. Also, adding weather
data and information from nearby weather stations could
improve how well the model works, especially for longer-term
forecasts.
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