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Abstract. In response to changing energy demands, electricity suppliers are increasingly turning to sustainable energy sources, with wind power 
emerging as a promising solution. This study aims to predict wind energy production over four time horizons: hourly, daily, weekly, and monthly, for 
a 12,300 kW wind farm located in Northamptonshire, UK. We employed three artificial intelligence (AI) techniques: an ensemble of bagged decision 
trees, artificial neural networks (ANNs), and support vector machines (SVMs). The paper provides a comparative evaluation of AI-based forecasting 
techniques for wind energy prediction, highlighting differences in model performance across time horizons while emphasizing the strengths and 
limitations of each method in addressing the temporal variability of wind energy production. The models were tested over various times using 
important performance measures, such as the correlation coefficient (R), the coefficient of determination (R²), mean absolute error (MAE), root mean 
squared error (RMSE), and bias. The results indicate that support vector machines achieve the highest accuracy for medium-term forecasts, with a 
coefficient of determination of 0.9722 and a mean absolute error of 44.91 kW. Artificial neural networks perform best in short-term forecasting, 
particularly at the daily level, with a coefficient of determination of 0.948 and a mean absolute error of 36.04 kW. In contrast, long-term predictions 
exhibit greater variability across models, with the coefficient of determination decreasing to 0.778, reflecting the increased complexity of extended 
forecasting. The ensemble of bagged decision trees demonstrates strong predictive capability but with slightly higher error margins compared to 
support vector machines. The obtained results could serve as a reference for selecting the most suitable models based on forecasting objectives and 
time constraints. Future improvements in forecasting accuracy could happen by combining these models with optimization algorithms, especially for 
medium- and long-term predictions, where making accurate forecasts is still very difficult.  
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1. Introduction 

The transition to sustainable energy sources continues rapidly 
as electricity suppliers strive to meet evolving energy demands 
(Acikgoz et al., 2020; Alghamdi et al., 2023; Alvarez et al., 2020; 
Andrade & Bessa, 2017; Haidi & Cheddadi, 2022a; Mat Daut et 
al., 2017; Memarzadeh & Keynia, 2020). Among renewable 
energy sources, wind power has emerged as a promising 
alternative due to its significant benefits and its crucial role in 
moving toward a more sustainable environment (Alghamdi et 
al., 2023; Bouabdallaoui, Haidi, & El Jaadi, 2023; Buturache & 
Stancu, 2021; Cai et al., 2019; Haidi & Cheddadi, 2022b; Idrissi 
et al., 2022; Li et al., 2022). 

Accurate forecasting of wind energy production is 
increasingly vital for the continuous operation of modern grid 
systems (Hassoine et al., 2022; Tyass et al., 2023). Good 
forecasting models are important for predicting changes in 
energy production, which helps improve how the system works 
and coordinates with other energy sources. (Abedinia et al., 
2020; Bouabdallaoui, Haidi, Elmariami, et al., 2023; Hu et al., 
2021; Meng et al., 2022; J. Zheng et al., 2023). 

Various papers in the literature apply several approaches, 
such as statistical analysis, physical modeling, and machine 
learning techniques, to predict wind power production. For 
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instance, (Jamii et al., 2022) suggest an artificial neural network 
(ANN)-based model that uses meteorological variables such as 
wind speed, temperature, and air pressure for predicting wind 
energy output. The study finds ANN to be highly precise and 
efficient, outperforming other methods like decision trees (DT), 
regression vector machines (RVM), and kernel ridge regression 
(KRR). 

Other studies have explored different techniques to improve 
wind energy forecasting. For example, (Taghinezhad & 
Sheidaei, 2022) look at how using an ANN can help predict how 
much power a turbine will produce in different wind conditions, 
and they find that the ANN model, especially the one trained 
with the Levenberg-Marquardt backpropagation method, gives 
better results for estimating turbine power curves. Similarly, 
(You et al., 2022) create a short-term wind energy forecasting 
model that uses support vector machines (SVM) along with a 
method called CEEMDAN to reduce noise. The enhanced 
model shows improved precision and convergence, meeting the 
requirements for safe wind farm operation. Further, (Lian & He, 
2022) propose a model that combines wavelet denoising with 
SVM, refined by the slime mold algorithm, to increase the 
precision of wind energy predictions. The results validate the 
method's high predictive accuracy. 
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The research by (Torres-Barrán et al., 2019) examines how 
well gradient boosted regression (GBR), extreme gradient 
boosting (XGB), and random forest regression (RFR) can predict 
solar radiation and wind power both locally and globally.  The 
research highlights the effectiveness of GBR and XGB as 
competitive alternatives, particularly for broader geographic 
wind energy predictions. 

The primary goal of this paper is forecasting wind energy 
output for a 12,300 kW wind farm in Northamptonshire, United 
Kingdom. Three AI techniques—SVM, ANN, and an ensemble 
of bagged decision trees—are evaluated across very short, 
short, medium, and long-term horizons to determine which 
model offers the highest accuracy in each timeframe. Fig. 1 
presents the organizational structure of the paper. This study 
also seeks to provide a clear comparison of these widely used 
AI methods, focusing on their performance over different time 
scales.  

2. Methods 

The commissioning of the Kelmarsh wind farm in West 

Northamptonshire, East Midlands, England, UK, took place in 

2016. Table 1 lists fundamental information about the park. 

Wind generator data are recorded by a Supervisory Control and 

Data Acquisition (SCADA) monitoring system installed on-site. 

The dataset was published by Cubico Sustainable Investments 

Ltd. under an open data license, CC-BY-4.0. (Plumley, 2022). 

The collection of data began in 2016 and continued until the 

middle of 2021. It contains more than 250 data points. The data 

that interest us include time, wind energy (kW), wind speed 

(m/s), and wind direction (°). To predict wind power production 

for Kelmarsh Wind Park, three methods were implemented: 

Support Vector Machine (SVM), Artificial Neural Network 

(ANN), and an ensemble of bagged decision trees. This choice 

was made to systematically evaluate different types of models 

from three learning approaches: neural networks, margin-based 

learning, and ensemble methods. Rather than focusing on a 

single class of algorithms, we adopted a comparative approach 

to assess how each performs across multiple forecasting 

horizons, from very short-term to long-term. This selection 

allows for a structured and interpretable evaluation of: 

• a connectionist model (ANN), 
• a kernel-based margin optimizer (SVM), 

• and an ensemble-based decision learner (bagged 
trees), 

Beyond their independent performance, the models 

themselves serve as decent baselines for the future. Their 

examination of shortcomings and strengths by forecasting 

horizon provides a starting point for further development—

hybridization, optimization, or comparison to deep models. By 

bringing each approach's shortcomings and strengths through 

forecasting horizons into view, the study presents working 

knowledge with which to inform future model enhancements. 

2.1 Data Preprocessing 

The dataset contains 57,152 time-stamped records collected 
every 10 minutes from the SCADA system of the Kelmarsh wind 
farm. Each record includes wind speed (m/s), wind direction (°), 
and wind power output (kW), along with a timestamp converted 
into datetime format. The data spans the full year 2020 and 
January 2021. A data quality assessment revealed no missing 
values. However, a small number of records with negative wind 
power values—non-physical under standard operating 
conditions—were identified and removed: 

             ValidRows = {(Xi,Yi) ∣ Yi > 0, Xi ∈ Rn et Yi ∈ R}          (1) 

Xi = [X1i, X2i] represents the inputs, while Yi represents the 
output. Zero values in input or output variables were retained, 
as they reflect plausible operational scenarios (e.g., calm wind 
periods or maintenance shutdowns). No outlier filtering was 
applied beyond this physical consistency check. 
Input features were normalized using min–max scaling into the 
interval [−1,1], using statistics computed from the training 
subset: 

 
Fig. 1 Flow chart of the study structure 

Table 1 
 Principal information of the wind farm chosen 

Name Kelmarsh wind farm 

Status Operating 

 Commissioning 

Year 
2016 

Installed  

Capacity 
12 kW 

Mount type Onshore 

Owner Blue Energy   

Location 

West Northampton-shire, East 

Midlands,  

England, United Kingdom     

Coordination 52.4028, -0.9598      
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                     𝑿𝒊
′ = 𝟐 .  

𝑿𝒊−𝒎𝒊𝒏 (𝑿)

𝒎𝒂𝒙 (𝑿)−𝒎𝒊𝒏 (𝑿)
 − 𝟏                         (2) 

This normalization ensures balanced feature contributions 
and benefits techniques. No additional feature engineering was 
applied. The two input variables were retained in their original 
form as the only available meteorological parameters in the 
SCADA dataset. Wind speed is the primary input for modeling 
turbine behavior, while wind direction provides additional 
spatial context. Their joint use ensures a physically interpreted 
and operationally viable input set. 

We conducted the training and internal testing phase using 
all data from January to December 2020 (52,704 samples), 
employing time-aware data splits for cross-validation. The 
models were then externally validated on a hold-out set of 4,465 
samples from January 2021, a period excluded from training. 
This structure allows for assessing model generalization and 
robustness across multiple forecast horizons: the first hour (very 
short-term), first day (short-term), first week (medium-term), 
and full month (long-term). Table 2 provides details on the 
forecast horizons and the rationale for each period. 

For data exploration, graphical representations are provided 
to illustrate key relationships within the variables. Fig. 2(a) 
illustrates the relationship between wind speed and energy 
output. Data follow a nonlinear increasing pattern, typical of 
turbine power curves: energy generation remains low at low 
wind speeds, increases rapidly within the operational range, and 
tends to saturate at high speeds. A Pearson correlation 
coefficient of 0.93 between wind speed and power further 
confirms this strong functional relationship, highlighting its 

dominant predictive role. Fig. 2(b) shows wind direction plotted 
against power. The absence of a clear trend, supported by a low 
correlation coefficient of 0.08, indicates that wind direction has 
limited linear influence on power output. However, it could 
potentially capture site-specific or directional flow effects, 
leading to its retention as a complementary feature. Fig. 2(c) 
illustrates the distribution of wind speed and direction, 
confirming their near independence (r=0.09) and justifying their 
use as uncorrelated inputs in the model. Figure 3 provides an 
overview of the dataset by showing each variable's mean, 

Table 2 
Time scale of prediction and their typical utilization 

Prediction Horizon Time Scale Study time scale Typical Use 

Very Short-Term 
Minutes to a few hours (0-6 

hours) 
1 hour 

- Real-time energy management 
-  Grid operation 
- Supply-demand balancing 

Short-Term Several hours to several days 1 day 

- Energy trading 
- Resource allocation 
- Maintenance scheduling 
- Grid planning 

Medium-Term Several days to a few months 1week 
- Strategic planning 
- Capacity expansion 
- Long-term energy scenarios 

Long-Term 
Beyond a few months 

(1 month +) 
1month 

- Infrastructure investments 
- Renewable energy project planning 
- Energy policy development 
- Assessment of renewable energy targets. 

 

 

 

Fig. 2 (a) Scatter plot of: (a) wind direction Vs wind power, (b) wind speed Vs wind power, (c) wind speed Vs wind direction 

 

 

(a) (b) (c) 

 
Fig. 3 Statical information about: wind speed (m/s), wind direction 

(°), and wind power (kW) 
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maximum, minimum, and standard deviation. This figure helps 
assess the overall characteristics and variability within the 
dataset. 

2.2 Artificial Neural Networks (ANNs) 

Artificial Neural Networks (ANNs) emulate human brain 
structure and function as closely as possible. Its structure 
consists of interlinked nodes in layers. Neurons process input 
data via weighted connections, incorporating biases and 

activation functions. The training involves iterating input into 
the network until it reaches the desired output. Using ANNs to 
make accurate predictions on new data is becoming more 
common, showing they can be used in various areas like image 
recognition, understanding language, and predicting things like 
wind power (Abedinia & Amjady, 2015; Ateş, 2023; 
Bouabdallaoui, Haidi, Elmariami, et al., 2023; Cali & Sharma, 
2019; Kumar et al., 2020; Tarek et al., 2023; Verma et al., 2023). 

This study trained the ANN to forecast wind power output 
using normalized wind direction and speed. The structure has 
one hidden layer that uses sigmoid (logsig) activation and a 
linear (purelin) output layer, which is good for predicting 
continuous values. We performed training using the Levenberg–
Marquardt backpropagation algorithm (trainlm), incorporating 
Bayesian regularization to prevent overfitting. The learning rate 
and the remaining optimization parameters remained at their 
default values, as the training function dictated them.  We 
conducted a grid search to identify the optimal hidden layer 
neuron count, ensuring the best possible model performance. 
Trial values used were 10, 20, 30, and 34. The model with 34 
neurons possessed the lowest validation root mean squared 
error (RMSE) during cross-validation. 

A 5-fold cross-validation method using training data was 
used to assess how well the model performs and to confirm that 
it works consistently across different groups. The best 
configuration was selected based on the lowest validation 
RMSE. This method provides a robust estimation of model 
performance and reduces sensitivity to data splits. We allowed 
a maximum of 1000 training epochs and activated early 
stopping after six consecutive validation failures. Prior to 
training, we removed constant input columns and initialized 
network weights using the training function's default method. 
Fig. 4 provides a schematic of the ANN training process, while 
Table 3 summarizes all architectural and training parameters. 

2.3 Support Vector Machines (SVMs)  

Supervised machine learning algorithms named Support Vector 
Machines (SVM) operate mainly through classification and 
regression applications. The regression model variant of SVM 
uses input factors as inputs to predict outputs from variables. 
When applied to regression analysis, as this study demonstrates, 
the SVM devises predictions regarding a variable's outcome 
using provided input variables. The SVM regression model finds 
the best position for a hyperplane by using training data, which 
helps it make predictions that are as close as possible to actual 
results. In SVM regression, the hyperplane represents the 
optimal boundary or decision surface computed by the 
algorithm to minimize forecasting errors. It determines the 
predicted output based on the input features. Initially, the 

Table 3 
Hyperparameters of the ANN model used 

Hyperparameter Value 

Architecture One hidden layer with 34 neurons 
Hidden Activation Sigmoid (logsig) 
Output Activation Linear (purelin) 
Training Algorithm Levenberg–Marquardt backpropagation (trainlm) with Bayesian Regularization 
Number of Epochs 1000 
Early Stopping After 6 validation failures 
Learning Rate Default (trainlm) 
Weight Initialization Default 
Cross-Validation Strategy 5-fold cross-validation on training set 
Data Split 80% training, 10% validation, 10% internal test 
Hyperparameter Tuning Grid search on hidden layer size (10–34 neurons) 
Selection Metric Root Mean Squared Error (RMSE) on validation folds 

 
 
 

 
Fig. 4 Flow chart of the ANN model used 
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support vectors select the data points closest to the hyperplane 
to initiate the model-building process, as outlined in the works 
of (Gu et al., 2021; Khosravi et al., 2018; Kuriakose et al., 2020; 
Pinto et al., 2014, p. 202320; Wang et al., 2023; Yuan et al., 2015; 
Y. Zheng et al., 2023). 

In this study, the SVM was used to predict wind power with 
a Gaussian (RBF) kernel, chosen because it can effectively 
handle complex patterns in weather data. Prior to training, input 

features were standardized to zero mean and unit variance, a 
common practice that improves kernel efficiency and 
convergence behavior. 

To maximize model accuracy, a grid search was conducted 
to tune the following hyperparameters: 

• Box Constraint (C): This parameter regulates the trade-
off between training error and model complexity. We 
explored values from 0.01 to 100 on a logarithmic scale.  

• Kernel Scale (σ): This parameter determines how wide 
the Gaussian kernel function is in SVM, influencing how 
well the model picks up on small changes and nonlinear 
patterns in the input data. We tested values between 0.1 
and 10. 

Each parameter pair was evaluated through 5-fold cross-
validation on the training data. This validation strategy was 
selected for its balance between statistical reliability and 
computational efficiency. It ensures that all samples contribute 
to both training and validation, reducing the risk of overfitting. 
The optimal hyperparameter combination was selected based 
on the lowest average root mean squared error (RMSE) across 
the folds. 

The final model was trained using the Sequential Minimal 
Optimization (SMO) algorithm. It converged after 12,999 
iterations, with a resulting bias term of 1006 and a small weight 
vector norm (1.8974e-05), consistent with the support vector 
framework. Table 4 presents the hyperparameters. Fig. 5 
illustrates the SVM modeling process used in this study. 

2.3  Ensemble of bagged decision trees 

The ensemble of bagged decision trees operates in a coherent 
way to enhance the accuracy and reliability of the regression 
task. Various decision trees, trained on different subsets of 
training data generated by bootstrap sampling with 
replacement, form the basis of this method. Each decision tree 
learns the models and relationships of the inputs and from its 
subset separately. During prediction, the ensemble averages 
each individual tree's predictions, most often by taking an 
average, to provide a more accurate and stable prediction. This 
technique helps in overcoming overfitting, which is a problem 
that is often encountered with individual decision trees, as 
diversity is introduced into the learning process (Alghamdi et al., 
2023; Khan et al., 2021). 

In this case, bagging was selected for its ability to improve 
prediction reliability while maintaining interpretability and low 
model complexity. Each tree receives the full set of input 
features—normalized wind speed and direction—and learns 
independently from its bootstrapped data. The ensemble 
prediction aggregates the individual outputs, yielding a 
smoother and more generalizable forecast of wind power. 

The model was configured with 30 learning cycles, meaning 
30 individual decision trees were trained. The minimum leaf size 
was set to 8, which controls the granularity of splits in each tree 

Table 4 
Hyperparameters of SVM model used 

Hyperparameter Value / Description 

Kernel Function Gaussian (RBF) 
Kernel Scale (σ) Grid search: values in [0.1, 10]; optimal = 1.4 
Regularization Parameter (C) Grid search: values in [0.01, 100]; optimal = 6.161 
Standardization Yes (zero mean, unit variance) 
Training Algorithm Sequential Minimal Optimization (SMO) 
Number of Iterations 12,999 
Bias Term 1006 
Cross-Validation 5-fold, used during grid search 
Model Selection Criterion Root Mean Squared Error (RMSE) on validation folds 

 

 
Fig. 5 Flow chart of the SVM model used 



D. Bouabdallaoui et al  Int. J. Renew. Energy Dev 2025, 14(3), 505-517 

| 510 

 

ISSN: 2252-4940/© 2025. The Author(s). Published by CBIORE 

and prevents overfitting on small data partitions. The ensemble 
was trained using MATLAB's standard "bag" method, which 
implements bootstrap sampling with replacement. 
Hyperparameters were selected empirically to balance 
performance and model simplicity. 

From a methodological perspective, the choice of bagging 
over more complex ensemble methods such as boosting or 
random forests was deliberate. Boosting relies on sequential 
learning and is sensitive to noise and hyperparameter settings, 
which may complicate comparisons in multi-model studies. 
Random forests introduce feature subsampling at each split, 
which provides little benefit in our case due to the limited 
number of input features. In contrast to it, bagging is a 
controlled ensemble technique, sufficiently appropriate for low-
dimensional input spaces and insensitive to different training 
runs. This characteristic makes bagged trees a robust baseline 
for comparing against other learning paradigms such as kernel-
based (SVM) and neural models (ANN). The structure of the 
bagging workflow is illustrated in Fig. 6. Table 5 shows 
hyperparameters used. 

2.5. Evaluation metrics 

The effectiveness of machine learning techniques is evaluated 
using various metrics in wind energy forecasting. These metrics 
shed light on how accurate and trustworthy projections are. The 
present study's key evaluation criteria are as follows: 

The coefficient of correlation (R), commonly known as 
Pearson's correlation coefficient, quantifies the linear 
relationship and the variance in the dependent variable (y) that 
is predictable from the independent variable (x). The scale runs 
from -1 to 1, where 1 represents a fully positive connection.  
 

           𝑅 =  
∑(𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)

∑(𝑥𝑖 − 𝑥̅)²(𝑦𝑖 − 𝑦̅)²
⁄          (3) 

The coefficient of determination (R²) quantifies how closely 
expected values (y) match observed values (yi). It denotes the 
percentage of the variance in the dependent variable explained 
by the independent variable. 

                     𝑅2 =
∑(𝑦𝑖 − 𝑦̂𝑖)²

∑(𝑦𝑖 − 𝑦̅)²
⁄                         (4) 

The metric represents the mean absolute difference (MAE) 
between the expected (ŷi) and observed (yi) values. It offers an 
indication of the typical error magnitude. 

                   𝑀𝐴𝐸 = 1
𝑛⁄ ∑ |𝑦𝑖 − 𝑦̂𝑖|                                           (5) 

The Root Mean Squared Error (RMSE) is a measure of the 
average magnitude of residuals, which are the disparities 
between observed and anticipated values. Large mistakes are 

penalized more severely than MAE. 

                        𝑅𝑀𝑆𝐸 = √∑(𝑦𝑖 − 𝑦̂𝑖)²
𝑛⁄                                   (6) 

When comparing predictions to observed values, bias is the 
average propensity of the predictions to be higher or lower. 
Predictions are generally too high when there is a positive bias, 
and vice versa. 

                               𝐵𝐼𝐴𝑆 = 1
𝑛⁄ ∑(𝑦𝑖 − 𝑦̂𝑖)                         (7) 

4.   Results and Discussion 

4.1 Long-term prediction results 

The three predictive techniques, SVMs, ensemble of bagged 
decision trees, and ANNs, are compared in terms of 
performance utilizing important criteria for long-term wind 
power prediction on a one-month horizon. Fig. 7 presents the 
scatter plot of expected output vs. actual values in the long-term 
horizon of each method. The coefficient of determination and 
the correlation coefficient indicate moderate linear links 
between the actual and forecast wind power outputs using all 
available methodologies. Despite not being particularly high (for 
R: SVM = 0.890, ensemble of bagged trees = 0.889, ANN = 

Table 5 
Hyperparameters of the ensemble of bagged decision trees model 
used 

Hyperparameter Value 

Ensemble Method Bagging (bootstrap aggregating) 
Number of Trees 30 learning cycles 
Bootstrap Sampling Enabled (sampling with replacement) 
Minimum Leaf Size 8 
Feature Sampling None (all features used at each split) 
Final Prediction Average of individual tree outputs 
Implementation MATLAB's “Bag” method 

 

 
Fig. 6 Flow chart of the ensemble of bagged decision trees model 

used 
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0.889; for R²: SVM SVM= 0.778, ensemble of bagged trees = 
0.776, ANN = 0.776). These measurements nonetheless show a 
useful degree of reliability. When examining the mean absolute 
error (MAE), the ANN approach has the lowest average error 
(ANN = 100.925), suggesting more accurate wind power 
forecasts. SVM and ensemble of bagged decision trees 
approaches trail closely behind, showing marginally higher 
MAE values while retaining respectable precision (SVM = 
101.995, ensemble of bagged trees = 101.271). The 
effectiveness of SVM is shown by the Root Mean Squared Error 
(RMSE), which has the lowest total errors when looking at both 
the amount and direction of mistakes (SVM = 285.766) 
compared to the ensemble of bagged trees (286.960) and ANN 
(287.058). The RMSE statistic highlights SVM's effectiveness in 
reducing mistakes even while it doesn't reach large levels. The 
systematic propensity to overestimate or underestimate, 
measured by bias values, is comparatively constant across all 
techniques. When compared to SVM, the bias for both the ANN 
and ensemble of bagged decision tree approaches is marginally 
smaller, suggesting that the various models' prediction abilities 
are well distributed (SVM = 39.587, ensemble of bagged trees = 
38.192, ANN = 38.033). 

To check if the differences in forecasting performance 
between the ANN, Ensemble (Bagged Trees), and SVM models 
are meaningful, we used two methods: Confidence Intervals (CI) 
and Wilcoxon Signed-Rank Tests. Confidence intervals (CI) are 
a statistical tool used to estimate the uncertainty around a 
performance metric, in this case, the Mean Absolute Error 
(MAE) and the Root Mean Square Error (RMSE). A 95% 

confidence interval indicates the range of values within which 
the true performance metric is likely to lie, with 95% certainty. 
These intervals were calculated using the bootstrap method 
(with 1000 resamples), providing a robust estimate of the 
variability and precision of the performance metrics (Cumming, 
2013). Wilcoxon signed-rank tests are non-parametric statistical 
tests used to assess whether the differences between paired 
observations—in this context, the prediction errors (absolute 
and squared errors) of two different models—are statistically 
significant. A p-value less than 0.05 indicates that the observed 
differences in performance metrics are unlikely to be due to 
chance, thus confirming a genuine difference in predictive 
performance between the compared models (Taheri & 
Hesamian, 2013). Tables 6 and 7 summarize the results. 

The statistical validation confirms that the differences in 
MAE and RMSE among the models are statistically meaningful. 
Specifically, ANN significantly outperforms both the ensemble 
of bagged trees and SVM models in terms of MAE, with 
particularly strong significance observed against SVM. For 
RMSE, the differences are still statistically significant, showing 
that ANN, ensemble of bagged trees, and SVM models have 
different forecasting abilities. Although confidence intervals 
overlap slightly, the statistical tests highlight clear systematic 
differences between these methods for monthly wind power 
forecasting. These statistical findings demonstrate that the 
differences in performance are not merely because of random 
variation but represent genuine differences in the forecasting 
capabilities of each modeling approach.  

4.2 Medium-term prediction results 

Using the same measures, the approaches are contrasted in 
medium-term wind power forecast over a one-week horizon. 
Fig. 8 displays the scatter plot of the method's expected output 
against actual values. Strong positive correlations are seen in all 
three approaches, suggesting that the techniques adequately 
represent the overall patterns in the data. The best R value is 
obtained using SVM, suggesting a more precise linear fit. The 
percentage of variation explained by the models is further 
quantified by R2. Because of its higher R² value, SVM appears to 
offer a more accurate depiction of the variability in the wind 
power data (for R: SVM = 0.9879, ensemble of bagged trees = 
0.9876, ANN = 0.9872; for R²: SVM = 0.9722, ensemble of 
bagged trees = 0.9696, ANN = 0.9681). In terms of statistical 
notation, MAE stands for mean absolute error between 
expected and observed values. With its lowest MAE (ensemble 
of bagged trees = 44.91), the ensemble of bagged decision trees 
provides outputs that are, on average, closest to the real values. 
When it comes to minimizing absolute mistakes, an ensemble of 
bagged decision trees is a better option since it suggests that it 

Table 6 
Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) with Confidence Intervals (monthly horizon) 

Model MAE 95% CI (MAE) RMSE 95% CI (RMSE) 

ANN 100.95 [92.95, 109.14] 287.09 [268.52, 304.65] 
Bagged Trees  101.29 [93.15, 109.49] 286.99 [268.48, 304.89] 
SVM 102.02 [94.68, 110.04] 285.80 [267.51, 303.99] 

 

 
Table 7 
Wilcoxon Test Results (monthly horizon) 

Comparison Test Statistic (MAE) p-value (MAE) Test Statistic (RMSE) p-value (RMSE) 

ANN vs Bagged Trees 4721,622 0.0022 4779,213 0.0168 
ANN vs SVM 4518,422 6.01e-08 4707,796 0.0013 
Bagged Trees vs SVM 4690,291 0.0006 4785,939 0.0207 

 

 
Fig. 7 Scatter plot of predicted values against real values in long 

term 
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is more accurate in terms of size. The MAE of SVM and ANN 
models are close (SVM=45.79, ANN=45.06), indicating 
equivalent accuracy. The SVM method has the lowest RMSE 
(SVM = 59.94), indicating that its average predictions are more 
in line with the real values. Lower RMSE values (ensemble of 
bagged trees = 62.70, ANN = 64.19) demonstrate better overall 
prediction accuracy. For every approach, the BIAS values are 
negative, indicating a consistent tendency to underestimate. As 
the SVM model has the lowest negative BIAS, it is likely to 
estimate wind power more accurately. To evaluate the 
statistical relevance of observed between-model variations in 
performance, we computed 95% confidence intervals for both 
MAE and RMSE using bootstrap resampling and performed 
pairwise Wilcoxon signed-rank tests. Tables 8 and 9 present the 
outcomes. 

These results indicate that both ANN and SVM significantly 
outperform the ensemble of bagged trees across most error 
metrics. The performance difference between ANN and SVM is 
less pronounced: while the RMSE difference is statistically 

significant in favor of SVM, the MAE difference does not reach 
significance. This suggests that both ANN and SVM are suitable 
choices for weekly wind power forecasting, with SVM exhibiting 
a marginal edge in terms of error magnitude. 

4.3 Short-term prediction results 

When comparing the performance measures for predicting wind 
power across a daily time span for the three artificial intelligence 
methodologies, the high R-values for all methods suggest that 
the models capture the overall trends in wind power well, with 
ANN displaying a slightly stronger correlation (SVM = 0.975, 
ensemble of bagged trees = 0.965, ANN = 0.978). The 
impressive R² values of all the approaches highlight their 
capacity to forecast and explain fluctuations in wind power 
(SVM = 0.946, ensemble of bagged trees = 0.921, ANN = 0.948). 
Once more, ANN is superior in this regard. Comparable and 
lower MAE values are shown by SVM and ANN, beating the 
ensemble approach (SVM = 36.65, ensemble of bagged trees = 

 
Fig. 8 Scatter plot of predicted values against real values in 

medium term 

 

 
Fig. 9 Scatter plot of predicted values against real values in short 

term 

 

Table 8 
Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) with 95% Confidence Intervals (weekly horizon) 

Model MAE 95% CI (MAE) RMSE 95% CI (RMSE) 

ANN 7.52 [4.67, 10.50] 9.35 [5.56, 11.97] 
Bagged Trees 25.42 [20.22, 30.65] 28.14 [22.55, 33.42] 
SVM 5.13 [3.17, 7.07] 6.70 [4.02, 9.04] 

Table 9 
Wilcoxon Signed-Rank Test Results (weekly horizon) 

Comparison Test Statistic (MAE) p-value (MAE) Test Statistic (RMSE) p-value (RMSE) 

ANN vs .Bagged Trees 215347.0 0.000089 201864.0 0.00000007 
ANN vs. SVM 235282.0 0.0814 218047.0 0.00029 
Bagged Trees vs .SVM 245192.0 0.5084 230750.0 0.0253 

 

Table 10 
Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) with Confidence Intervals (daily horizon) 

Model MAE 95% CI (MAE) RMSE 95% CI (RMSE) 

ANN 7.55 [3.96, 11.86] 9.24 [4.14, 11.79] 
Ensemble 24.91 [16.28, 33.64] 27.45 [16.66, 33.72] 
SVM 5.20 [2.56, 7.63] 6.36 [2.53, 7.92] 

 
 
Table 11 
Wilcoxon Test Results (daily horizon) 

Comparison Test Statistic (MAE) p-value (MAE) Test Statistic (RMSE) p-value (RMSE) 

ANN vs Ensemble 0.0 0.0156 0.0 0.0156 
ANN vs SVM 6.0 0.219 6.0 0.219 
Ensemble vs SVM 1.0 0.0313 1.0 0.0313 
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47.47, ANN = 36.04). From this, it may be inferred that SVM and 
ANN offer generally more precise predictions. With a greater 
RMSE than the ensemble technique, ANN gets the lowest , 
closely followed by SVM (SVM = 52.79, ensemble of bagged 
trees = 63.87, ANN = 51.70). Comparing SVM and ANN to the 
ensemble, the results imply that both provide greater precision. 
SVM has the least bias, followed by ANN and the ensemble 
method. The negative values indicate a tendency to 
underestimate wind power, with SVM being the least biased 
(SVM = -13.86, ensemble of bagged trees = -21.22, ANN = -
19.07). Figure 9 shows the scatter plot of the method's expected 
output against actual values. To ensure these observed 
differences are not due to random variation, Wilcoxon signed-
rank tests and confidence intervals for MAE and RMSE were 
applied. Tables 10 and 11 summarize the results. 

 The statistical validation confirms that the differences in 
MAE and RMSE among the models are meaningful. In 
particular, SVM significantly outperforms the ensemble method, 
and ANN also shows advantages over the ensemble. The close 
performance of ANN and SVM indicates they are both reliable 
for weekly wind power forecasting, with slight differences that 
favor ANN in this specific scenario. 

4.4 Very short-term prediction results 

The following insights are revealed by the hourly wind power 
forecast results: There is a significant linear relationship 
between the prediction output and real data, as approved by the 
R-values (SVM = 0.986, ANN = 0.981, ensemble of bagged trees 
= 0.880). The ensemble approach, on the other hand, shows a 
lower R, which may indicate a possible divergence from 
linearity or systemic inaccuracies in the forecasts. The high R² 
values (SVM = 0.995, ANN = 0.995, ensemble of bagged trees 
= 0.976) indicate that all methods are very good at explaining 
the changes in hourly wind power. The values are true for all 
methods. High R-values indicate an excellent explanatory 
ability to capture the variation in the hourly wind power. All 
approaches yield consistent values. Low MAE values 
demonstrate accurate forecasts. SVM and ANN have lower 
MAE values than the ensemble technique, which means they are 
more accurate (SVM = 3.465, ANN = 4.431, ensemble of bagged 
trees = 13.533). The RMSE values (SVM = 4.847, ANN = 5.599, 
ensemble of bagged trees = 14.013) demonstrate the accuracy 
of the forecasts. Once more, ANN and SVM show reduced 
RMSE, suggesting more precise predictions in comparison to 
the ensemble approach. Systematic mistakes are present, as 
shown by BIAS readings (SVM = -2.433, ANN = -0.457, and 
ensemble of bagged trees = 1.417). When compared to SVM 
and ANN, the ensemble approach shows a positive BIAS, 
indicating a propensity to overestimate wind power. The scatter 

plot of the method's expected output against actual values is 
shown in Fig. 10.  The significance of these differences was 
assessed through Wilcoxon signed-rank tests and confidence 
intervals for MAE and RMSE. Results presented in Tables 12 
and 13 confirm that the performance differences are not due to 
random variation. 

The SVM model consistently shows the lowest MAE and 
RMSE values with narrow confidence intervals, highlighting its 
superior predictive performance. The Wilcoxon tests support 
the finding of those variations as being statistically significant, 
especially when comparing the ensemble method to the other 
models. While ANN and SVM exhibit closer accuracy, the SVM 
model remains the most robust and reliable choice to predict 
very short-term hourly wind energy. 

To better understand the strengths and weaknesses of each 
forecasting model across various time horizons, it is essential to 
analyze key performance metrics. According to (Miettinen et al., 
2020), metrics such as MAE, RMSE, and BIAS are critical 
indicators in evaluating forecasting accuracy. Fig. 11 illustrates 
the distribution of these metrics across the three forecasting 
methods. 

The MAE histogram reveals that SVM achieves lower error 
values predominantly at medium-term horizons, confirming its 
robustness to moderate fluctuations. The ANN model shows 
low MAE at short time frames, but the error varies more as the 
time frames get longer, which matches what  (Ahmadi et al., 
2020; Soman et al., 2010) found. Bagged trees present the 
highest dispersion of errors, indicating declining accuracy as the 
forecast duration increases. The RMSE distributions highlight 
that SVM performs well, especially when dealing with larger 
errors in short- and medium-term forecasts, which matches 
what (Heinermann & Kramer, 2014) found. The ANN model 

Table 12 
Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) with Confidence Intervals (hourly horizon) 

Model MAE 95% CI (MAE) RMSE 95% CI (RMSE) 

ANN 4.43 [2.08, 7.04] 5.60 [1.94, 6.93] 
Ensemble 13.53 [10.98, 16.24] 14.01 [11.08, 16.32] 
SVM 3.47 [1.28, 6.29] 4.85 [1.30, 6.24] 

 
 
Table 13 
Wilcoxon Test Results (hourly horizon) 

Comparison Test Statistic (MAE) p-value (MAE) Test Statistic (RMSE) p-value (RMSE) 

ANN vs. Ensemble 0.0 0.0156 0.0 0.0156 
ANN vs. SVM 7.0 0.297 7.0 0.297 
Ensemble vs. SVM 0.0 0.0156 0.0 0.0156 

 

 
Fig. 10 Scatter plot of predicted values against real values in the 

very short term 
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shows higher sensitivity to substantial forecast deviations, 
especially beyond medium-term horizons. Bagged trees exhibit 
distinct clusters at higher RMSE values (~300), underscoring 
their limited reliability at extended horizons. BIAS analysis 
indicates that all three models consistently produce slightly 
negative forecasts (underestimation). SVM and ANN display 
moderate negative bias (-10 to -20), whereas bagged trees 
demonstrate a more pronounced negative bias (up to -40), 
particularly at longer horizons. 

The scatter plots in Fig. 12 comprehensively visualize these 
error dynamics. Optimal forecasting performance corresponds 
to low MAE, low RMSE, and minimal bias. SVM and ANN 
predominantly occupy this optimal space, particularly at short- 
and medium-term horizons. In contrast, bagged trees struggle 
with higher prediction errors and substantial bias, increasingly 
evident as the forecast horizon lengthens. 

The models’ predictive capability, quantified by R², further 
elucidates performance differences across forecast horizons. At 
very short horizons, all models achieve high precision (R² close 
to 1). Performance divergence becomes noticeable at short-
term horizons, where bagged trees begin to degrade markedly 
(R² < 0.85), whereas SVM and ANN remain above 0.90. This 
divergence further accentuates at medium- and long-term 
horizons, with SVM and ANN maintaining R² values around 
0.75–0.80, compared to bagged trees’ significantly reduced R² 
(~0.50–0.75).These differences can be accounted for in terms of 
the intrinsic trade-offs between model complexity and 
regularization. ANN models are highly flexible, which makes 
them well-suited to modeling short-term nonlinear 

dependencies but prone to overfitting at longer horizons. SVM 
finds a good middle ground between being complicated and 
being able to apply to different situations by using its margin-
based regularization, which helps it handle uncertainty and 
changes over time for medium-term predictions. Trees that are 
combined together can reduce errors by averaging, but they 
struggle to capture complex time-related patterns, leading to 
significant errors over long periods. It’s important to understand 
that the model's performance is limited by the data from SCADA 
measurements, which only includes wind direction and speed. 
This data is not enough for real-time forecasting because it 
doesn’t cover other important weather factors like changes in 
atmospheric pressure or temperature differences. These 
unmodeled variables would be significant sources of forecast 
errors observed at longer horizons. Moreover, this study focuses 
exclusively on data from a single wind farm. Although this work 
provides controlled comparability, direct generalization to other 
sites is not guaranteed without further validation. Nonetheless, 
it is reasonable to expect comparable performance on wind 
farms exhibiting similar meteorological and operational 
characteristics, provided model hyperparameters are 
appropriately tuned. 

Fig. 13 synthesizes these insights visually through a radar 
chart, clearly depicting model performance across forecasting 
horizons. While all models perform similarly in the very short 
term, SVM and ANN show better adaptability and consistent 
predictions as the time frames get longer, highlighting their 
strength in handling complex data and changing time patterns.  

 
Fig.11 Histograms of the distribution of key evaluation metrics: MAE, RMSE, and BIAS for the predictive models 

 

 
Fig.12 Scatter plots illustrating the relationships between key evaluation metrics: MAE, RMSE, and BIAS of the predictive models 
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Overall, the comparison shows that ANN and SVM are better at 
predicting wind energy over multiple time periods, performing 
significantly better than bagged decision trees for complex, 
long-term forecasts.  

6. Conclusion 

This research looked at how well three machine learning 
models—Support Vector Machine (SVM), Artificial Neural 
Network (ANN), and a group of bagged decision trees—could 
predict wind power generation at the Kelmarsh wind farm in the 
UK. Based on the observations of wind speed and direction 
collected by the site's SCADA system, forecasts were issued for 
different time horizons: one hour, one day, one week, and one 
month. With this systematic protocol, it was possible to make a 
systematic comparison of the predictability of each model, 
which provided information on their accuracy and reliability 
under varying temporal scales. The SVM model showed better 
prediction results, especially for short- and medium-term 
forecasts, with very high accuracy scores (R² = 0.9949 for hourly 
predictions, MAE = 3.47 for weekly predictions). This is because 
it has its own margin-based learning mechanism that can 
effectively balance model complexity and generalization 
capability. The ANN model also showed strong performance, 
particularly for short-term predictions (R² = 0.9808 for hour-
ahead forecasts), indicating its ability to recognize complex, 
small time patterns. However, as the forecast period got longer, 
the model's performance dropped, showing it was sensitive to 
changes and might have been too closely fitted to the training 
data, highlighting the need for careful adjustment of its settings 
and controls. The bagged decision trees model showed 
consistent performance at very short forecasting horizons but 
exhibited decreasing accuracy as the prediction horizon 
increased. The inherent structural vulnerabilities of tree 
ensembles, such as their limited capacity to handle high-order 
nonlinearities and long-term temporal relationships, explain this 
decline. These results indicate that there are important 
compromises between variance and bias, highlighting the 
importance of carefully setting up and adjusting models for 
different forecasting time frames. This study, based solely on 
wind speed and direction, demonstrates the basic accuracy of 
the machine learning methods selected to predict wind power. 

This study's methods and results can be applied to other wind 
farms with similar technology and weather, as long as the model 
settings are adjusted properly. Future research could improve 
forecasting abilities by looking into mixed modeling techniques, 
such as combining ANN with statistical methods or mixing 
ensemble learning with deep learning. Also, adding weather 
data and information from nearby weather stations could 
improve how well the model works, especially for longer-term 
forecasts. 
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