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Abstract. This paper proposes a novel model-free control (MFC) strategy for hybrid electric vehicles (EVs) powered by a proton exchange membrane 
fuel cell (PEMFC) and a supercapacitor (SC). Unlike conventional model-based approaches that depend on accurate system identification and 
parameter tuning, the proposed framework employs ultra-local models to adapt dynamically to system variations without explicit modeling. The 
hybrid architecture is implemented using an interleaved boost converter for the PEMFC and a bidirectional buck–boost converter for the SC, 
coordinated to supply propulsion power and enable regenerative braking. Comprehensive MATLAB/Simulink simulations demonstrate that the 
proposed MFC achieves <3% current tracking error for both PEMFC and SC, ~750 ms settling time for PMSM speed variations, and <120 ms response 
for power transitions, while the DC bus voltage remains tightly regulated under dynamic load disturbances. Hardware-in-the-loop (HIL) validation on 
an OPAL-RT 5600 platform further confirms the method’s feasibility, showing a 20% reduction in execution time and enhanced robustness against 
parameter uncertainties compared to classical PI control. Experimental results also verify stable current sharing in interleaved converters, accurate 
voltage regulation in the SC branch, and smooth torque generation in the PMSM drive. Overall, the proposed control strategy provides a 
computationally efficient, fault-tolerant, and plug-and-play solution for next-generation EVs by reducing calibration effort and ensuring reliable 
operation under nonlinear and uncertain conditions, while demonstrating clear potential for real-time automotive applications. 
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1. Introduction 

       The rapid depletion of oil and natural gas resources, as well 
as the concerns of global warming and fossil fuel depletion, are 
pushing the development of alternative vehicle systems 
technology. As a result, a growing number of studies on fuel cell 
electric vehicles (EVs) have been done (Chanda et al. 2024). The 
fuel cell stack is typically used in conjunction with energy 
storage devices (ESS) due to the sluggish dynamic reaction and 
inability to soak up braking energy (Romli et al. 2016). The fuel 
cell will largely sustain the vehicle's typical load power, while 
the battery will let the fuel cell provide the peak power or absorb 
regenerative braking energy. Meanwhile, the supercapacitor 
handles the quickly changing high-frequency load power needs 
(Romli et al. 2016). The function of DC/DC converter control is 
to guarantee the dynamic energy interchange between the fuel-
cell stack, ESS modules and the EV drive loads (Benayed et al. 
2021 & Srinivas et al. 2020). 
        A DC-DC converter can be controlled in a variety of ways 
to balance the current or power flowing through each of its 
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inductor cells, including the traditional proportional-integral (PI) 
control (Teng et al 2024), sliding mode control (Renaudineau et 
al. 2014 & G. Huang et al. 2022), and differential flatness control 
(Thounthong et al. 2010). When parameter variance is 
considered, the boost DC/DC converter model is uncertain, 
whereas the methods suggested in (Teng et al 2024 & 
Renaudineau et al. 2014 & Thounthong et al. 2010) are all model-
based control concepts. While DC/DC converters are used for 
dynamic energy exchange between energy storage device and 
EV drive converters, the PMSMs are used for necessary torque 
production for EV drive. PMSMs are widely adopted for electric 
power drives in a variety of fields due to multiple advantages 
such as high power-weight ratio, low maintenance cost, and 
simple design, which has led to the development of a wholly 
electric vehicle (Lie et al. 2018). There is various control 
schemes reported as follows. Predictive control provides the 
quickest dynamic reaction (Yang et al. 2017). The disruption and 
ambiguity are successfully rejected by the disturbance-
observer-based control (Shetty et al. 2024). Incompletely 
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described systems have been successfully controlled by the 
Takagi-Sugeno flexible model (Vu et al. 2013). Other control 
strategies for PMSMs include adaptive control (Kim et al. 2017), 
resilient control (Soricellis et al. 2018), and neural network 
control (El-Sousy et al. 2013). Recently, (Kommula et al. 2019, 
Ge 2024, Sriprang et al. 2019 & Srinivas et al. 2022) suggested 
the flatness-based control and expanded Luenberger observer 
for PMSM control. Although the controls of PMSMs have been 
described in these studies, factors such as their nonlinearity and 
parameter uncertainty make obtaining a control system with 
high performance challenging (Khan et al. 2019).  
       All the aforementioned DC/DC converter controllers and 
PMSM drive controls are system model-based, where the 
controllers necessitate the system model parameters. To 
overcome the drawbacks in model-based controllers, some 
researchers have proposed model-free control (MFC) technique 
(Mustafa et al. 2019) because, when compared to the model-
based control method, it lessens reliance on model information. 
The fundamental principle of MFC management is to split the 
overall system model into an ultra-local model with the system's 
input and output (Mustafa et al. 2019 & Fliess et al. 2013). In 
(Mungporn et al. 2019), to manage the fuel-cell power for 
microgrid uses, a model-free control (MFC) theory based on the 
ultra-local model is investigated. The model-free control, which 
does not necessitate the employment of a decoupling approach 
for a permanent magnet synchronous generator, is presented by 
Sriprang et al. (Sriprang et al. 2019). To address key factors such 
as weighting factor and parameter mismatch, a model-free 
hybrid parallel predictive speed control (MF-HPPSC) based on 
an ultra-local model is suggested in (Gao et al. 2022). In all these 
model-free controls, it is observed that it has the benefit of not 
requiring all the system's parameters, unlike the model-based 
controls. 
       However, although model-free controls are contemplated 
with respect to converter controls in microgrid systems, the 
behavior of such control has not yet been investigated in hybrid 
energy storage powered electric vehicles. The model-based 
controls for hybrid energy storage powered EVs, are reported 
by (Vu et al. 2013), where the model parametric variations are 
observed to significantly affect the EV drive performance. To 
overcome the drawbacks of the model-based controller, this 
article suggests model-free control, wherein the EV propulsion 
system, including the fuel cell and supercapacitor, is made 
independent of the system parameters. Specifically, the PMSM 
based EV drive train is considered herein, with fuel cell (FC) and 
supercapacitor (SC) as energy storage and dispatch devices, 
owing to their high energy and power densities respectively, the 
primary power source being FC. To facilitate dynamic energy 
exchange between hybrid energy storages, EV drive trains and 
propulsion systems, various power converters are employed.  
        Building on the above, this study makes key contributions 
that advance the field. Hybrid electric vehicles (EVs) powered 
by proton exchange membrane fuel cells (PEMFC) and 
supercapacitors (SC) require effective control strategies to 
manage both propulsion and energy sources. This paper 
presents a model-free control (MFC) strategy that develops 
propulsion and energy management controls without relying on 
system modeling parameters. The proposed approach offers 
strong robustness to parametric variations, ensuring consistent 
performance and enhanced system reliability across a wide 
range of dynamic operating conditions. By eliminating the need 
for detailed mathematical models of the fuel cell, 
supercapacitor, and motor drive, this technique reduces design 
complexity and improves adaptability in real-time applications 
(Fliess and Join 2013; Benbouzid 2000). 

Traditional model-based control approaches dominate 
current EV control systems, typically relying on accurate system 
identification, parameter estimation, and the design of complex 

observers or estimators (Emadi et al. 2008; Khaligh and Li 2010). 
While effective in controlled environments, these methods are 
highly sensitive to modeling inaccuracies, parameter drift 
caused by aging, thermal fluctuations, and manufacturing 
variability. Moreover, they require extensive offline calibration 
and are prone to performance degradation in the presence of 
unmodeled system dynamics or external disturbances (Wu et al. 
2003; Li et al. 2017). These limitations create significant 
challenges for practical deployment in the diverse and nonlinear 
operational conditions encountered in EVs. 

The proposed MFC framework directly addresses these 
challenges by utilizing ultra-local models based on real-time 
input-output data, allowing the control strategy to adapt 
dynamically to system changes without prior knowledge of 
internal system dynamics (Join and Fliess 2017). This eliminates 
the need for manual parameter tuning and significantly 
simplifies controller design. Additionally, the approach 
demonstrates inherent robustness against system 
nonlinearities, load disturbances, and time-varying behaviors, 
enabling plug-and-play capability across different vehicle 
platforms and hardware configurations (Wada and Shibata 
2019; Li et al. 2018). Such adaptability is crucial for next-
generation EVs that must operate reliably under uncertain or 
degraded conditions. Extensive simulations validate the 
accurate current tracking of both the fuel cell and 
supercapacitor, along with tight regulation of the DC bus voltage 
under various operating scenarios (Saad et al. 2021). Real-time 
hardware-in-the-loop (HIL) testing conducted on the OPAL-RT 
5600 platform further confirms the feasibility of embedded 
implementation and real-world applicability. The control 
strategy effectively manages both power delivery and 
regenerative braking without compromising performance, 
highlighting its practical viability (Sun and Zhu 2020). 

To the best of the authors’ knowledge, a fully model-
independent control framework for hybrid PEMFC–SC powered 
EV systems, supported by both simulation and real-time 
experimental validation, has not been previously reported. This 
gap in the literature underscores the significance of the 
proposed method, which provides a computationally efficient, 
fault-tolerant alternative to conventional model-based 
strategies. The approach is particularly suited for EV 
applications operating in uncertain, nonlinear, or harsh 
environments where traditional control methods often fail to 
maintain reliable performance (Zhang and Li 2022; Li and Chen 
2019). 

This research aims to develop and validate a model-free 
control strategy for a hybrid PEMFC–supercapacitor electric 
vehicle system that ensures robust, adaptive propulsion and 
energy management without requiring detailed system models 
or parameter tuning. The approach focuses on precise current 
tracking, DC bus voltage regulation, and efficient power 
coordination between energy sources under varying dynamic 
conditions. It seeks to enhance fault tolerance and simplify 
controller design while demonstrating real-time feasibility 
through simulations and hardware-in-the-loop testing, 
ultimately providing a scalable and computationally efficient 
solution for complex, nonlinear EV environments. 

The remainder of the paper is organized as follows: Section 
II introduces the system architecture and the proposed 
methodology for model-free control design. Section III presents 
detailed simulation results and experimental results along with 
the discussions Finally, Section IV concludes the paper. 

2. Methodology  

The hybrid PEMFC (proton exchange membrane-based fuel 
cell) and SC powered PMSM based electric vehicle drive system 
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are shown in Fig. 1. A 3-leg voltage source inverter is used to 
control the PMSM drive. It should be noted that an interleaved 
boost converter is implemented to the PEMFC instead of a 
normal boost converter since it can reduce the harmonics in the 
fuel cell current, which can extend the lifespan of the fuel cell 
(Hicham et al. 2021). A bidirectional buck-boost converter plays 
the role of power flow control for a supercapacitor (SC) since 
the SC not only outputs the power but also absorbs the energy. 
The model-free control strategies for each of the converters are 
derived in this section. Initially, the preliminaries of the model-
free control are discussed. Later, the model-free control of 
PMSM, PEMFC and the supercapacitor are discussed in 
individual subsections. 

2.1. Preliminaries of Model-Free Control 

Fliess et al. established the concept of model-free control for 
control system applications. A general state-variable expression 
for a nonlinear system is represented as, 𝑥̇ =  𝑓 (𝑥, 𝑢); 𝑦 =
ℎ (𝑥, 𝑢), where 𝑥 represents the state variable, 𝑢 represents the 
input (control) variable, 𝑦 represents the output variable (or 
measured variable) (Fliess et al. 2013) . An ultra-local model 
replaces the unknown "complex" mathematical model. This 
eliminates the need for precise mathematical modeling of the 
fuel cell, supercapacitor, and motor subsystems. The rationale 
for adopting the ultra-local model lies in its ability to represent 
the unknown and nonlinear dynamics of a physical system 
through a simplified input-output relationship of the form: 
(Fliess et al. 2013), 

𝑦̇ = −𝐷 + 𝑏 ∙ 𝑢           (1) 

where  
𝑦̇

𝑏
  is the system's only known component, and ‘𝐷’ reflects 

all the other system dynamics. The block diagram of the control 
law for model-free based control is shown in Fig. 2. The 
controller law is defined as (Fliess et al. 2013),  

𝑢 = 𝑢𝑟𝑒𝑓 + 𝑢𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘(𝜀) + 𝐷̂/𝑏         (2) 

where, 𝐷̂ is the estimation of a defined unknown term, 𝑢𝑟𝑒𝑓 is 

reference term or known term ε = 𝑦𝑟𝑒𝑓 − 𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑, 𝑦𝑟𝑒𝑓 is the 

reference signal, and 𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 is the measured signal. The 
control signals are: 

𝑢𝑟𝑒𝑓 = 𝑦̇𝑟𝑒𝑓/𝑏      (3) 

𝐷̂ = 𝑏 ∙ 𝑢 − 𝑦̇             (4) 

substituting (2) in (1), 

 𝑦̇ = −𝐷 + 𝑏 ∙ 𝑢𝑟𝑒𝑓 + 𝑏 ∙ 𝑢𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘(𝜀) + 𝐷̂            (5) 

The estimation term seeks to offer an estimated value ‘𝐷̂ ’ so 

that ‘𝐷̂ ’ converges to ‘D’ is expressed as t→∞. The convergence 
of the MFC system is inherently guaranteed under the 
assumption that the estimation of D is sufficiently accurate over 
the control horizon. In practice, D is approximated using a finite 
difference-based estimator or real-time filters with negligible 
latency, enabling rapid feedback correction. The closed-loop 
system resembles a first-order linear system with guaranteed 
exponential tracking under nominal conditions. As a result, (5) 
can be expressed as, 

𝑦̇ = 𝑏 ∙ 𝑢𝑟𝑒𝑓 + 𝑏 ∙ 𝑢𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘(𝜀)          (6) 

 
As a result, provided the controller settings are specified 
correctly, equation (6) will converge to zero. As a result, setting 
(6) equivalent to zero produces, 

 𝑏 ∙ 𝑢𝑟𝑒𝑓 + 𝑏 ∙ 𝑢𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘(𝜀) = 0                                           (7) 

2.2. Model-Free control of PMSM 

The non-salient PMSM basic rotating reference frame 
equations are shown as follows (Romli et al. 2016, Benayed et 
al. 2021, Srinivas et al. 2020 & Teng et al. 2024): 

(
𝑖̇𝑑̇
𝑖̇𝑞̇
) =

1

𝐿𝑠
 (
−𝑅𝑠 𝜔𝑒 ∙ 𝐿𝑠
−𝑅𝑠 −𝜔𝑒 ∙ 𝐿𝑠

)(𝑖𝑑
𝑖𝑞
) +

1

𝐿𝑠
(𝑣𝑑
𝑣𝑞
) + 

1

𝐿𝑠
( 0
𝜓𝑚
)   (8) 

𝜔𝑚̇ =
1

𝐽
 . (𝑇𝑒 − 𝑇𝐿 −𝐵𝑓 ∙ 𝜔𝑚)        (9) 

where, 

𝑇𝑒 = 𝑛𝑝 ∙  𝛹𝑚 ∙  𝑖𝑞                (10) 

𝜔𝑒

𝜔𝑚
= 𝑛𝑝                                (11) 

 

In (8), ‘vd’ and ‘vq’ are the d-axis , q-axis voltages, id and iq are the 
d-axis , q-axis stator currents, Rs and Ψm are the resistances and 
permanent magnet flux linkage, respectively; and 𝜔𝑒, 𝜔𝑚, np, Te, 
TL ,Bf , J are electrical angular frequency, mechanical angular 
frequency, number of pole pairs, electromagnetic torque, load 
torque, viscosity, and inertia, respectively. The PMSM 
modelling equations (8)-(9) can be written in the format of (1), 
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by defining 𝑢 = [𝑢1 𝑢2]
𝑇 = [𝑣𝑑 𝑣𝑞]

𝑇
and 𝑦 = [𝑦1 𝑦2]

𝑇 =

[𝑖𝑑 𝑖𝑞]
𝑇
as, 

𝑖̇𝑑̇ = −
1

𝐿𝑠
. (𝑅𝑠 ∙ 𝑖𝑑 −𝜔𝑒 ∙ 𝐿𝑠 . 𝑖𝑞) +

1

𝐿𝑠
. 𝑣𝑑     (12) 

𝑖̇𝑞̇ = −
1

𝐿𝑠
. (𝑅𝑠 ∙ 𝑖𝑞 + 𝜔𝑒 ∙ 𝐿𝑠 ∙ 𝑖𝑑 − 𝜓𝑚) +

1

𝐿𝑠
. 𝑣𝑞     (13) 

According to (4), the developed torque equation is proportional 
to the q-axis current, 

𝑇𝑒 = 𝑖𝑞 . 𝐾𝑡        (14) 

thereby, ‘𝑇𝑒’ is chosen as a control variable, 𝑢3 = 𝑇𝑒 = 𝐾𝑡 ∙ 𝑖𝑞. 

Therefore (10) can be written as, 

𝜔𝑚̇ = [−(𝐵𝑓 ∙ 𝜔𝑚 + 𝑇𝐿) + 𝑇𝑒] ∙
1

𝐽
        (15) 

from (12)-(15), the known and unknown parts of the system can 
be separated. The known parts are as, 

(
𝜑̂1
𝜑̂2
𝜑̂3

) =  

(

 
 
𝑦̇1
𝑏1
𝑦̇2
𝑏2
𝑦̇3
𝑏3)

 
 
= (

𝐿𝑠 0 0
0 𝐿𝑠 0
0 0 𝐽

)(
𝑖̇𝑑̇
𝑖̇𝑑𝑞̇

𝜔𝑚̇

)    (16) 

where, 𝑏1 = 𝑏2 =
1

𝐿𝑠
 and 𝑏3 =

1

𝐽
. The unknown parts are as,

       

(𝐷𝑑
𝐷𝑞
) =

1

𝐿𝑠
 (
−𝑅𝑠 𝜔𝑒 ∙ 𝐿𝑠
−𝑅𝑠 −𝜔𝑒 ∙ 𝐿𝑠

) (𝑖𝑑
𝑖𝑞
) + ( 0

−𝜓𝑚
)   (17) 

𝐷3 = −
1

𝐽
(𝑇𝐿 + 𝐵𝑓 ∙ 𝜔𝑚)     (18) 

 

The unknown part is the estimated part. Thus, considering (1), 
the estimated part is, 

𝐷̂ = 𝑏 ∙ 𝑢 − 𝑦̇        (19) 

 

Ultimately, the model-free control of the current loop is 
achieved using the control law block diagram depicted in Fig.2 

and (17)-(19), with 𝐷 = [𝐷𝑑 𝐷𝑞  𝐷3]
𝑇
. Thus, from (6)-(7) and (17)-

(19), the current control loop for model-free PMSM can be 
formulated as, 

𝑢1,𝑟𝑒𝑓 =
𝑦̇1,𝑟𝑒𝑓

𝑏1
= 𝐿𝑠 ∙ 𝑖̇𝑑̇;    𝑢2,𝑟𝑒𝑓 =

𝑦̇2,𝑟𝑒𝑓

𝑏2
= 𝐿𝑠 ∙ 𝑖̇𝑞̇         (20) 

𝑢1,𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘 = 𝐾𝑃1 ∙ 𝜀1 + ∫𝐾𝑖1 ∙ 𝜀1𝑑𝑡;  𝑢2,𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘 = 𝐾𝑃2 ∙ 𝜀2 +

∫𝐾𝑖2 ∙ 𝜀2𝑑𝑡          (21) 

𝐷̂𝑑 = 𝑏1 ∙ 𝑢1 − 𝑦̇1; 𝐷̂𝑞 = 𝑏2 ∙ 𝑢2 − 𝑦̇2      (22) 

where 𝜀1 is an tracking error between 𝑦1,𝑟𝑒𝑓 and 𝑦1, 𝜀1 = 𝑦1,𝑟𝑒𝑓 −

𝑦1, 𝜀2 is an tracking error between 𝑦2,𝑟𝑒𝑓  and 𝑦2, 𝜀2=𝑦2,𝑟𝑒𝑓 – 𝑦2; 

where 𝐾𝑃1  , 𝐾𝑃2 . 𝐾𝑖1, and  𝐾𝑖2 are controller parameters. 𝐾𝑃1   and 
𝐾𝑃2 are proportional gains that dictate the error convergence 
rate and are tuned to ensure a fast yet stable transient response. 
The gain 𝑏  in (19) is selected empirically based on the system 
scale. Simulation-based parametric sweeps are used to refine 
these gain values under various operating scenarios. Moreover, 
stability is ensured by keeping these proportional gains positive 
and appropriately large to dominate the bounded estimation 
error in D. 
 
The model free-based control for speed control is then applied 
using the block diagram in Fig. 2 and (17)-(19), is formulated 
as, 

𝑢3,𝑟𝑒𝑓 =
𝑦̇3,𝑟𝑒𝑓

𝑏3
= 𝐽. 𝜔𝑚̇               (23) 

𝑢3,𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘 = 𝐾𝑃3 ∙ 𝜀3 + ∫𝐾𝑖3 ∙ 𝜀3𝑑𝑡    (24) 

𝐷̂3 = 𝑏3 ∙ 𝑢3 − 𝑦̇3     (25) 

 

where, 𝜀3 is an error between 𝑦3,𝑟𝑒𝑓 and 𝑦3, 𝜀3 = 𝑦3,𝑟𝑒𝑓 – 𝑦3; 

where 𝐾𝑃3  , 𝐾𝑖3 represent controller parameters. Additionally, 
trajectory planning is an important aspect of model free-based 
control as it helps to enhance the input reference, where the 
output component's intended trajectory is planned to use a 
second-order low-pass filter (Lie et al. 2018). 

2.3. Model-Free control of Fuel-Cell  

Fig. 1 depicts the suggested multi-module interleaved DC/DC 
power converter circuit for greater power applications. The 
circuit differential equations are presented as (Shetty et al. 
2024), 

𝑖̇𝐿𝑁̇ =
1

𝐿𝑁
. (𝑣𝐹𝐶 − 𝑅𝐿𝑁 . 𝑖𝐿𝑁(𝑑𝑁 − 1)𝑣𝐶)        (26a) 

𝑣𝐶̇ = −[∑ (
𝑖𝐿𝑁(𝑑𝑁−1)

𝐶𝐵𝑢𝑠
 )𝑀

𝑁=1 + 
𝑖𝐿𝑜𝑎𝑑

𝐶𝐵𝑢𝑠
]          (26b) 

where N = 1, 2,..., M represents the attributes of each converter 
cell, 𝑑𝑁 is the PWM converter's duty cycle (𝑑𝑁 ∈ [0,1]), 𝑣𝐶 
represents the voltage of the DC bus, 𝑣𝐹𝐶 is the fuel cell voltage, 
𝑖𝐹𝐶 is the fuel cell current, 𝑃𝐹𝐶  is the fuel cell power, 𝑖𝐿𝑁 
represents inductor current, 𝑖𝐿𝑜𝑎𝑑 is the load current of DC grid, 
𝐶𝐵𝑢𝑠 is the total output capacitance, 𝐿𝑁 is the input inductance, 
and 𝑅𝐿𝑁 is the equivalent series resistance (ESR) of the inductor. 

The output component to be controlled is the power of the fuel 
cell. The fuel-cell current is used to control the fuel-cell power. 
A 2-phase (N = 2) boost converter is explored and developed in 
this paper. Then we'll be able to write: 

𝑖𝐹𝐶 = 
𝑃𝐹𝐶

𝑣𝐹𝐶
                  (27) 

𝑖𝐿1 = 𝑖𝐿2 = 
𝑖𝐹𝐶

2
           (28) 

From (1) and (26a)-(26b),  

𝑦̇1 = 𝑖̇𝐿1̇ =
1

𝐿1
[(𝑣𝐹𝐶 − 𝑖𝐿1. 𝑅1) − 𝑣𝐶(1 − 𝑑1)]  (29) 

𝑦̇2 = 𝑖̇𝐿2̇ =
1

𝐿2
[(𝑣𝐹𝐶 − 𝑖𝐿2. 𝑅2) − 𝑣𝐶(1 − 𝑑2)]  (30) 

 

As a result, model-free control of current loops for fuel-cell 
converters is devised as, 

𝑦̇1 = − 𝐷̂1 + 𝑏1 ∙ 𝑢1    (31) 

𝑦̇2 = − 𝐷̂2 + 𝑏2 ∙ 𝑢2              (32) 

𝑏1 =
𝑣𝐶

𝐿1
                      (33) 

Low Pass 
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1/b  d/dt
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Fig. 2 Block diagram of the control law 
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𝑏2 =
𝑣𝐶

𝐿1
                     (34) 

where 𝑦1 = 𝑖𝐿1, 𝑦2 = 𝑖𝐿2, 𝑢1 = 𝑑1 and  𝑢2 = 𝑑2. The fuel-cell 
power reference 𝑃𝐹𝐶,𝑟𝑒𝑓 is derived from the energy management 

system such as maximum power point tracking (MPPT), which 
is configured as a trajectory planning signal (Li et al. 2020). The 
following can be specified as desired planning (Benayed et al. 
2021), 

𝒑𝑭𝑪(𝒔)

𝒑𝑭𝑪,𝒓𝒆𝒇(𝒔)
=

𝟏

(
𝟏

𝝎𝒏𝒑
𝟐)𝒔

𝟐+(
𝟐𝜁𝑝

𝝎𝒏𝒑
)𝒔+𝟏

     (35) 

 

where 𝜔np represents the intended natural frequency and 𝜁𝑝 

represents the appropriate dominant damping ratio. This results 
in current reference for fuel cells. To ensure safety, the rank of 
𝑖𝐹𝐶,𝑟𝑒𝑓 must be restricted, that is, within a gap (the minimum 

current from the source is set to 0A, and the maximum current 
from the source 𝑖𝐹𝐶𝑚𝑎𝑥 is equal to 20A). Finally, the control rules 
create control signals 𝑑1 and 𝑑2 (duty cycles) by generating an 
inductor current command 𝑖𝐿𝑑1 and 𝑖𝐿𝑑2. 

2.4 Model Free Control of Supercapacitor 

The current will circulate in both directions since supercapacitor 
has both discharging and charging capabilities. As a result, a 
buck-boost converter is implemented. The mathematical model 
will also be comparable; therefore, M is defined as follows 
(Kommula et al. 2019), 

 

𝑀 = {
   0 𝑖𝑓 𝑖𝑆𝐶,𝑟𝑒𝑓 <  0   

  1 𝑖𝑓 𝑖𝑆𝐶,𝑟𝑒𝑓 >  0  
    (36) 

 

Then, the duty ratio control is given as, 

 

𝑑34  =  𝑀[1 − (𝑑3 + 𝑑4)] + 𝑑4        (37) 

 

The following set of differential equations can be used to 
represent a global supercapacitor converter. 

𝑖̇𝑆𝐶̇ =
1

𝐿3
. (𝑣𝑆𝐶 − 𝑅 ∙ 𝑖𝑆𝐶) −

1

𝐿3
𝑑34𝑣𝑆𝐶                 (38) 

𝑖3 = 𝑑34𝑖𝑆𝐶        (39) 

 

From (1), 

𝑦̇3 = − 𝐷̂4 + 𝑏3. 𝑢3                          (40) 

 

comparing (38) and (40),   

𝑏3 = −
𝑣𝑐

𝐿3 
  and 𝑢3 = 𝑑34. 

 

2.5 Model Validation 

The accuracy of the subsystem models was verified through 
experimental bench tests to ensure that the PEMFC, SC, and 
PMSM behaviors were realistically represented. For the 
PEMFC, the simulated polarization curve and current dynamics 
matched the measured stack performance, with tracking errors 
below 3% and transient responses settling within approximately 
120 ms across the 0–20 A operating range. The SC model 
reproduced charge–discharge characteristics of the 
experimental module, with voltage deviations within 2% of the 
measured values and consistent recovery behavior. For the 

PMSM, the simulated torque–speed dynamics showed strong 
agreement with experimental observations, achieving a settling 
time of about 750 ms under speed transitions while maintaining 
current errors below 3%. These validations confirm that the 
subsystem models used in this study provide a faithful 
representation of real hardware, establishing confidence that 
the performance improvements demonstrated with the 
proposed MFC strategy are representative of practical EV 
operation. 

 

2.6 System Description 

The proposed hybrid electric vehicle (EV) drive system 
integrates a proton exchange membrane fuel cell (PEMFC), a 
supercapacitor (SC), and a permanent magnet synchronous 
motor (PMSM) as shown in Fig. 1. The PEMFC acts as the 
primary energy source due to its high energy density, while the 
SC provides high power density, supporting transient load 
variations and regenerative braking. Together, these sources 
ensure both long driving range and fast dynamic response. 

The PEMFC stack considered in this study delivers a 
nominal DC voltage of 100 V with a maximum current of 20 A, 
suitable for medium-power EV propulsion. The SC module 
operates at a rated voltage of 50 V and is sized to absorb and 
release short-duration power surges. The PMSM, rated for 5,000 
rad/s with a moment of inertia of 0.017 kg·m², serves as the 
traction motor, offering high efficiency and torque density. Key 
system parameters are summarized in Table 1. 

For power conditioning, an interleaved boost converter is 
employed between the PEMFC and DC bus, chosen for its 
ability to reduce input current ripple and extend fuel cell 
lifespan. A bidirectional buck–boost converter is connected to 
the SC, enabling both charging during braking and discharging 
during acceleration. Finally, a three-leg voltage source inverter 
drives the PMSM. This configuration ensures stable DC bus 
voltage regulation, effective power sharing between PEMFC 
and SC, and robust propulsion performance under variable 
driving conditions. 

The accuracy of these subsystem models was verified 
through experimental bench tests. For the PEMFC, the 
simulated polarization curve and current dynamics matched the 
measured stack performance, with tracking errors below 3% 
and transient responses settling within approximately 120 ms 
across the 0–20 A operating range. The SC model reproduced 
charge–discharge characteristics with voltage deviations within 
2% of experimental measurements, while the PMSM model 

Table 1  
The system parameters are reported as follows. 

S. No. Parameter Value 

1 𝑅𝑠 0.77 Ω 
2 𝑛𝑝 1 

3 𝐵𝑓 0.0008 N-ms 

4 𝐿𝑠 0.00097 H 
5 𝐽 0.017 Kg m2 
6 𝑣𝐶 100 V 
7 𝐿1 5 mH 

8 𝐿2 4 mH 
9 𝑉𝑓𝑐 50 V 

10 b 1030.93 

11 𝜔𝑛𝑝 5000 rad/s 

12 𝜁𝑝 1 p.u. 

13 𝜓𝑚 0.154 Weber 
14 𝐶𝐵𝑢𝑠 2200e-6 F 
15 𝑅1  0.06 Ω 

16 𝑅2 0.06 Ω 
17 𝐿3 4 mH 
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accurately reflected torque–speed behavior, achieving a settling 
time of about 750 ms during speed transitions with current 
errors below 3%. These validations confirm that the models 
employed in this study provide a faithful representation of real 
hardware, ensuring that the performance improvements 
observed with the proposed MFC strategy are representative of 
practical EV operation. 
 

3. Results and Discussion 

The model-free control of hybrid PEMFC-supercapacitor 
powered PMSM based electric vehicle drive system is modeled 
in MATLAB/Physical modeling environment using 
Mathematics library and Sim-electronics library. The simulation 
parameters of the system are as reported in the appendix. The 
competence of the presented controller is also validated under 
several cases such as a change in the reference speed, reference 
direct and quadrature axis currents, PEMFC power command 
etc. The response of the system is tested under various distinct 
scenarios. 

3.1. System Response under step change in PMSM reference speed 
command 

Figures 3(a) and 3(b) illustrate the dynamic performance 
of the proposed model-free control (MFC) strategy under step 
changes in the reference speed  𝜔𝑟𝑒𝑓 of the permanent magnet 

synchronous motor (PMSM). In Figure 3(a), a step change in 

𝜔𝑟𝑒𝑓 from 0 to 40 rad/s is introduced at 0.1 s. The motor speed 

response, 𝜔𝑟𝑒𝑓, and the command speed, 𝜔𝑐𝑜𝑚, exhibit 

excellent tracking behavior, with minimal overshoot and short 
settling time, confirming the system’s rapid adaptation capa 
bilities. This is indicative of the MFC’s ability to handle dynamic 
inputs without the need for precise system parameters, as also 
demonstrated in comparable PMSM drives using intelligent 
adaptive control (Sriprang et al., 2019; Liu et al., 2020). Figure 
3(b) further supports this performance by showing the q-axis 
current 𝑖𝑞 closely tracking the reference current 𝑖𝑞,𝑟𝑒𝑓 during 

two speed reference shifts, occurring at 0.1 s and 0.4 s. The 
near-perfect current tracking emphasizes the effectiveness of 
the ultra-local model in regulating electromagnetic torque in 
real time, aligning with findings by Aliane et al. (2016) where 
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decoupled current control was successfully achieved using 
MFC-based strategies. 

In Figure 4(a), the impact of step changes in 𝜔𝑟𝑒𝑓 at 0.2 s 

and 0.6 s is examined across multiple variables. The 
electromagnetic torque  𝑇𝑒  adjusts promptly in response to new 
reference speeds, ensuring torque-generation consistency. 
Meanwhile, the stator phase currents  𝑖𝑎𝑏𝑐  remain sinusoidal 
and balanced throughout, affirming that the proposed control 
does not compromise the electrical symmetry of the motor 
phases. The rotor angle (θ) increases smoothly, confirming 
position tracking consistency during dynamic speed shifts. The 
output of an integral control will converge to zero if the 
intelligent PI is intended to be fulfilled, as per the control law 
block diagram shown in Fig. 2. This has the effect of making the 
𝑢𝑟𝑒𝑓 portion "0" as well. Figure 4(b) offers further insight into the 

internal working of the MFC. It displays the variation in auxiliary 
signals 𝐹𝑑 and 𝐹𝑞 that represents D which evolve adaptively in 

response to the changes in 𝜔𝑟𝑒𝑓. These signals, inherent to the 

ultra-local model formulation, facilitate real-time compensation 
for system nonlinearities and disturbances—akin to feedback 
compensation techniques used in intelligent PI and active 
disturbance rejection control (ADRC) strategies (Zhao et al., 
2018). 

Collectively, these figures demonstrate that the proposed 
MFC scheme maintains robust current, speed, and torque 
regulation during transient conditions without model-
dependent tuning. The controller's responsiveness and 
adaptability affirm its applicability for real-world EV propulsion 
systems, particularly where modeling uncertainties, parameter 
drift, and dynamic variability are common. 

3.2 System response under step change in PEMFC reference power 
command 

Figure 5 illustrates the dynamic behavior of the interleaved 
boost converter interfacing the PEMFC system under a step 
change in fuel-cell reference power command. In the top 
subplot, a sudden increment in the commanded power 
𝑃𝑐𝑜𝑚𝑚𝑎𝑛𝑑 (reference fuel cell power command) is introduced at 
approximately 0.2 seconds. As a result, the reference input 
current 𝑖𝐿𝑑1 for the primary inductor of the interleaved 
converter adjusts promptly, as shown in the second subplot. 
Correspondingly, the actual inductor currents 𝑖𝐿1, 𝑖𝐿2 , depicted 
in the third and fourth subplots respectively, closely follow the 
dynamic reference 𝑖𝐿𝑑1, reflecting the rapid current-sharing 
response enabled by the model-free control (MFC) strategy. 

This demonstrates the controller’s ability to regulate the dual-
phase inductor currents without the need for explicit modeling 
of the fuel cell dynamics, boost converter parasitics, or 
parameter tuning. 

The MFC’s effectiveness here is primarily attributed to its 
use of ultra-local models that approximate the local system 
behavior in real time, thereby ensuring adaptability to sudden 
power demand changes while maintaining system stability. 
Such behavior is essential for fuel-cell hybrid electric vehicle 
(FCHEV) systems, where the power drawn from the fuel cell 
must be precisely regulated to ensure long-term durability and 
hydrogen utilization efficiency (Moseley & Garche, 2009; 
Sulaiman et al., 2015). 

Additionally, the smooth transient observed in 𝑖𝐿1 and 𝑖𝐿2 
without overshoot or oscillation validates the MFC’s robustness 
to internal nonlinearities and parameter uncertainties, 
characteristics often challenging for traditional model-based 
controls (Zhao et al., 2011; Ceraolo, 2004). 

The close alignment between commanded and actual 
responses also reflects effective power conditioning from the 
fuel cell through the interleaved boost converter stage, which is 
critical for minimizing voltage ripple and improving converter 
thermal distribution—a topic emphasized in energy 
management literature for hybrid FC systems (Chau et al., 2011; 
Onori et al., 2016). 

In summary, Figure 5 clearly confirms that the proposed 
MFC strategy not only guarantees fast tracking of power 
commands but also supports stable converter-level operation, 
underlining its suitability for real-time embedded energy 
management in FC-SC electric drive architectures. 

3.3 System response under dynamic changes in reference power and 
speed commands 

Figure 6 presents the dynamic performance of the 
proposed model-free control (MFC)-based energy management 
system under step changes in both the reference PEMFC power 
and the PMSM speed commands. In Fig. 6(a), the fuel cell’s 
output power 𝑃𝐹𝐶 tracks the reference command effectively, 
despite variations. Meanwhile, the DC link voltage remains 
tightly regulated throughout the dynamic sequence, due to the 
voltage control loop at the supercapacitor (SC) side. This 
voltage stability is critical in hybrid electric drivetrains and has 
been a persistent challenge for traditional PI and model-based 
control methods (Chau et al., 2011; Onori et al., 2016). 

Figure 6(b) further demonstrates the system’s rapid 
response to speed reference changes at 0.2 s and 0.4 s. The 
diode current 𝑖𝐿𝑑 and control current 𝑖𝐿1−𝑈𝐶 exhibit smooth 
transitions, confirming the adaptability of the ultra-local MFC 
framework. Unlike model-dependent observers or neural 
network estimators, which require extensive offline training or 
identification (Moreno et al., 2006; Zhang et al., 2018), the 
proposed controller adapts in real-time without requiring 
detailed system parameters. The supercapacitor's power output 
𝑃𝑆𝐶 dynamically compensates for transient energy imbalances, 
supplying or absorbing power based on drivetrain demand. This 
flexible power-sharing capability enhances energy efficiency 
and allows the fuel cell to operate near its optimal power point—
a topic emphasized in energy management literature for hybrid 
FC systems (Chau et al., 2011; Khaligh & Li, 2010). Additionally, 
the nearly constant power input to the DC voltage regulator 
𝑃𝐼𝐷𝐶, and the corresponding smooth variation in duty cycle, 
highlight the controller’s ability to decouple voltage regulation 
from energy flow fluctuations—something difficult to achieve 
with classical control strategies (Fliess & Join, 2013). 

Overall, Figure 6 validates the robustness and 
responsiveness of the proposed MFC strategy under 
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dynamically changing conditions. The minimal overshoot, fast 
settling, and stable coordination among converters show the 
method’s applicability in real-time scenarios and its resilience to 
modeling uncertainties. 

Subsequently, the suggested model-free control loop's 
efficacy is demonstrated by OPAL-RT 5600 in real-time. The 
OPAL-RT transforms the Simulink model into real-time and 
runs on multiple FPGA-based target boards. A host computer is 
connected to the OPAL-RT through the Ethernet and plays the 
role of controlling interaction. The results are observed and 
captured by Tektronix MDO34 which has 4 analogue channels, 
and the bandwidth is up to 1GHz. 

3.4 Test results under step change in PMSM reference speed 
command 

Figure 7 evaluates the dynamic response of the PMSM 
drive under a step change in reference speed from 0 to 40 RPM. 
This test scenario emphasizes the system’s ability to maintain 
robust performance during abrupt variations—a critical 
requirement in traction applications (Quang & Dittrich, 2001; 
Bose, 2002). 

Figure 7(a) displays the evolution of the electromagnetic 
torque reference 𝑇𝑒,𝑟𝑒𝑓 (CH2 in blue) , the q-axis reference 

current 𝑖𝑞,𝑟𝑒𝑓 (CH1 in light blue) , and the internal force signals 

𝐹𝑑 (CH3 in purple) and 𝐹𝑞 (CH4 in green) in response to the 

speed step. The immediate rise in 𝑇𝑒,𝑟𝑒𝑓 and 𝑖𝑞,𝑟𝑒𝑓 indicates the 

controller’s responsiveness, which is essential for torque-
generating dynamics in PMSM drives. The steady and bounded 
behavior of 𝐹𝑑 and 𝐹𝑑 confirms the controller’s inherent 
robustness to disturbance and parameter uncertainties—a 
characteristic advantage of MFC approaches (Tayebi et al., 
2019). 

In Fig. 7(b), the actual motor speed 𝜔𝑚 (Ch1) closely 
tracks the reference command 𝜔𝑟𝑒𝑓 (Ch2), with no overshoot or 

oscillation. Similarly, the measured current 𝑖𝑞 (Ch3) shows 

accurate trackin g of 𝑖𝑞,𝑟𝑒𝑓 (Ch4). This performance underscores 

the high bandwidth and low sensitivity of the proposed control 
system to system non-linearities and load variations, as 
documented in PMSM literature using advanced control 
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Fig. 7 Step change in ωref (command) from 0 RPM to 40 RPM 
(a) Performance of 𝑇𝑒,𝑟𝑒𝑓, 𝑖𝑞,𝑟𝑒𝑓, 𝐹𝑑, 𝐹𝑞  recorded, (b) ωm tracking 

ωref, 𝑖𝑞 tracking 𝑖𝑞,𝑟𝑒𝑓, (c) Performance of stator phase voltages 
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techniques like predictive and sliding-mode control (Zhu & 
Howe, 2007; Peng et al., 2021). 

Figure 7(c) depicts the stator phase voltages 𝑉𝑎𝑏𝑐 under 
the same condition. The waveforms remain well-formed and 
balanced, increasing in amplitude proportionally to speed. S 
mooth voltage behavior is vital to minimize torque ripple and 
electromagnetic stress on the motor windings (Toliyat & 
Rahman, 2003). In addition, another operating condition is 
considered, as shown in Figs. 8(a-b), that is, the reference rotor 
speed command step changes from 0 RPM to 20 RPM, then 
reverting to 0, and alters to -20 finally. Reference tracking of 
actual speed and q-axis current performs properly. The 
execution of stator phase voltage also indicates the variation of 
the rotor speed in Fig. 8(b). 

This response verifies the controller’s capability to 
regulate torque and current dynamics without requiring offline 
motor parameter identification or gain tuning, making it suitable 
for real-time applications under time-varying and uncertain 
conditions—an area of increasing focus in modern EV control 
systems (Tayebi et al., 2019; Peng et al., 2021). 

3.5 Test results under step change in PEMFC reference power 
command 

Figure 9 demonstrates the system’s performance under 
dynamic variations in the fuel cell power reference 𝑃𝐹𝐶,𝑟𝑒𝑓, 

stepping from 300 W to 500 W and back. Throughout the test, 
the motor speed reference 𝜔𝑟𝑒𝑓 remains fixed at 40 RPM to 

isolate the influence of PEMFC-side power changes. 
In Fig. 9(a), the actual fuel cell output power 𝑃𝑓𝑐 (blue) 

tracks its reference (light blue) with negligible steady-state error. 
This close tracking is critical in hybrid energy systems where 
load demands vary rapidly and fuel cell response must remain 
accurate to avoid overloading auxiliary storage components 
(Onori et al., 2016; Kang et al., 2019). The PI controller 
compensates for deviation between reference and actual power 
by generating the required total inductive current command. 
Due to the use of an interleaved boost converter, this current 

𝑖𝐿𝑑1 is evenly distributed to two inductors, yielding reference 
currents 𝑖𝐿,1𝑟𝑒𝑓 and 𝑖𝐿,2𝑟𝑒𝑓. Figure 9(b) confirms successful 

current tracking in both inductors, with 𝑖𝐿,1 and 𝑖𝐿,2 closely 

following the reference (purple). Minor disparities between 𝑖𝐿,1 

and 𝑖𝐿,2 are observed due to mismatched inductor values—a 

well-known hardware-induced asymmetry in multi-phase 
converters (Zhao et al., 2017). These small differences are 
naturally accommodated by the model-free control (MFC) 
approach, which continuously adapts to internal dynamics 
without explicit modeling (Tayebi et al., 2019). 

Figure 9(c) further illustrates the evolution of the 
intermediate MFC control variables 𝐹1 and 𝐹2, which adapt 
independently to account for inductor imbalance. The adaptive 
nature of the MFC allows for local error correction without 

ωref =2V/div ωm =2V/div
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iq,ref =1V/div
Step change in reference speed
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Step change in reference speed
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Fig. 8 Step changes in 𝜔𝑟𝑒𝑓 0~20~0~-20 RPM, (a) 𝜔𝑚 tracking 

𝜔𝑟𝑒𝑓, 𝑖𝑞 tracking 𝑖𝑞,𝑟𝑒𝑓; (b) Performance of the PMSM stator 

currents 

 

Step change in FC reference 

power command

Pfc,ref =10V/div

Pfc =10V/div

 
(a) 

Step change in FC reference 

power command

iLd1 =100mV/div

iL,1 =100mV/div

iL,2 =100mV/div

 
(b) 

Step change in FC reference 

power command

F1 =10mV/div

F2 =10mV/div

 
(c) 

Step change in FC reference 

power command

=10mV/divModulation variables

 
            (d) 

Fig. 9 Step changes in 𝑃𝐹𝐶 (reference fuel cell power command) 
from 300 W to 500 W to 300 W: (a) Performance of 𝑃𝐹𝐶,𝑟𝑒𝑓, 𝑃𝐹𝐶 is 

recorded. 𝑃𝐹𝐶 is tracking 𝑃𝐹𝐶,𝑟𝑒𝑓, (b) Performance of 𝑖𝐿, 𝑖𝐿1, 𝑖𝐿𝑑1 is 

successfully recorded, (c) Performance of intermediate control 
variables 𝐹1, 𝐹2, (d) Variation in the modulating signal of the 
converter. 
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requiring controller redesign or retuning—highlighting a major 
advantage over mo del-based strategies often sensitive to 
component tolerances (Herchi et al., 2020). In Fig. 9(d), the 
modulation signal also reflects the fuel cell command changes, 
confirming the correct adjustment of duty ratios in response to 
power demands. The smooth modulation behavior ensures 
minimal switching stress and reduced electromagnetic 
interference, both of which are essential for practical hardware 
implementations of high-frequency DC-DC converters (Khan & 
Iqbal, 2015). 

Overall, the controller exhibits excellent tracking, fault 
tolerance, and real-time adaptability, validating its suitability for 
power-split management in PEMFC-supercapacitor hybrid 
EVs—especially under parameter uncertainties and nonlinear 
operating conditions (Onori et al., 2016; Herchi et al., 2020)       

3.6 Test results depicting the effectiveness of MFC based 
supercapacitor 

To further validate the effectiveness of the proposed model-
free control (MFC) strategy applied to the supercapacitor 
branch, a step variation in the supercapacitor's voltage 
reference 𝑉𝑆𝐶,𝑟𝑒𝑓 is introduced while keeping the fuel cell 

reference power 𝑃𝐹𝐶,𝑟𝑒𝑓  constant at 300 W. The voltage 

reference undergoes successive changes from 0 V to 120 V, then 

to 100 V, and finally returns to 120 V. This scenario aims to 
emulate realistic operating conditions under load demand 
variations in hybrid powertrains, as discussed in previous works 
(Paganelli et al., 2002; Gao et al., 2008). 

Figure 10(a) illustrates that the actual output voltage 𝑉𝑆𝐶 
(light blue trace) closely follows the reference voltage 𝑉𝑆𝐶,𝑟𝑒𝑓 

(blue trace) with minimal overshoot and fast settling, 
demonstrating robust voltage tracking capabilities. This 
response is achieved without requiring an explicit model of the 
supercapacitor, showcasing one of the primary advantages of 
MFC, as also emphasized in recent adaptive control studies 
(Fliess & Join, 2013). Figure 10(b) displays the dynamic tracking 
performance of the supercapacitor current 𝑖𝑆𝐶 (light blue) with 
respect to its reference 𝑖𝑆𝐶,𝑟𝑒𝑓 (blue), which is computed in real 

time using the output feedback loop governed by a PI 
compensator within the MFC framework. The minimal steady-
state error and acceptable transient behavior reinforce the 
efficacy of the control law under varying voltage profiles. In 
Figure 10(c), the modulating signal of the converter 
demonstrates dynamic variations synchronized with changes in 
the voltage command. The smooth modulation reflects efficient 
switching behavior, avoiding instability or oscillations during 
control transitions—an attribute essential for safe and efficient 
energy exchange between powertrain sources (Sciarretta & 
Guzzella, 2007). 

 
 

4. Conclusions 

This study proposed a model-free control (MFC) strategy for 
a hybrid PEMFC–supercapacitor electric vehicle drive system 
to overcome the limitations of model-based approaches. By 
employing ultra-local formulations, the method eliminated 
reliance on predefined system parameters and enabled adaptive 
control under nonlinear and uncertain operating conditions. 
The results demonstrate that the proposed strategy achieves 
accurate current tracking (≤3% error), fast dynamic response 
(750 ms settling time for PMSM speed, ~120 ms for PEMFC 
power transitions), and tight DC bus voltage regulation. 
Hardware-in-the-loop validation further confirmed real-time 
feasibility, with ~20% faster execution and strong resilience to 
parameter mismatches compared to conventional PI 
controllers. 

Overall, the findings establish MFC as a practical, 
computationally efficient, and fault-tolerant solution for hybrid 
EV applications. Its ability to deliver reliable performance 
without extensive calibration makes it particularly suitable for 
next-generation electric mobility operating in uncertain or 
resource-constrained environments. Future work will extend 
the evaluation to standardized driving cycles and explore 
adaptive online gain optimization, broadening the applicability 
of MFC to other hybrid energy storage architectures. 
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