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Abstract. Sewage sludge, a byproduct of wastewater treatment, poses significant risks to human health and ecosystems due to its high levels of
harmful pollutants, including heavy metals, viruses, and non-biodegradable materials. To mitigate these hazards, thermochemical conversion has
emerged as a sustainable strategy for recovering energy and nutrients while reducing the toxicity of sewage sludge. A comprehensive literature search
across Science Direct, Scopus, and Web of Science yielded 46 peer-reviewed papers from an initial 2,715 publications. This paper presents a
systematic review of the thermochemical conversion processes used to transform sewage sludge into solid fuels, focusing on pyrolysis, torrefaction,
and hydrothermal carbonization. The study highlights the significance of optimizing operational parameters and investigates the physicochemical
properties of the biochar produced. The results indicate that reaction temperature, time, and heating rate significantly influence the quality and yield
of the resulting biochar. Higher temperatures (300-1000°C) enhance the energy content while reducing solid yield. The environmental impacts
associated with thermochemical methods, including emissions and potential pollutants, are discussed along with the challenges in treating and
transforming sewage sludge into solid fuels. These findings indicate that hydrothermal carbonization is a promising method for waste management
and energy production, supporting global efforts to reduce greenhouse gas emissions and dependence on fossil fuels. However, challenges remain in
scaling up these technologies for commercial implementation due to high capital and operational costs This review contributes to the understanding
of thermochemical processes and their potential applications in sustainable waste-management practices. Future research should focus on pilot and
industrial-scale validation, cost-effective pretreatment strategies, and standardized analytical methods. Supportive policy frameworks and investment
in demonstration projects are crucial for promoting thermochemical conversion as a viable waste-to-energy solution, contributing to sustainable
development and climate change mitigation.
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1. Introduction sludge, particularly nitrogen and phosphorus, makes it a

valuable resource for agricultural applications (Khalid et al,

The worldwide demand for fossil fuels is increasing due to the 2012; Zapalowska, 2023). To ensure environmental protection

rapid industrialization and economic development of emerging and human health, a thorough safety assessment is necessary

countries. This places further strain on fossil fuel reserves and . ol .
. . due to the diverse composition of sewage sludge (Zawadzki et
leads to greater focus on alternative energy sources (Naqvi et al,, 2020)

al, 2021). Sewage sludge, a significant byproduct generated
from the treatment of municipal wastewater, has emerged as a
promising alternative, owing to its capacity to be transformed
into valuable energy resources. The composition of sewage
sludge is highly variable, influenced by factors such as
wastewater treatment processes, the nature of the influent, and
regional characteristics. The presence of heavy metals and
organic pollutants, particularly from industrial sources, such as
printing and dyeing, can limit their use as fertilizers (X. Zhang et
al., 2021). However, the nutrient-rich composition of sewage

Climate change stands as one of the most critical global
issues, with profound effects on ecosystems, public health, and
economic systems. The rapid pace of industrialization and
urbanization significantly contributes to the rise in greenhouse
gas (GHG) emissions, which in turn heighten the frequency and
intensity of climate-related events. The COVID-19 pandemic
offered a brief insight into the connection between human
activities and air quality, as illustrated by studies such as
Progiou et al., (2022), which observed marked reductions in air
pollution during lockdowns in urban areas like Athens, Greece.
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These findings emphasize the environmental costs of
conventional industrial practices and the urgent need for
sustainable alternatives. As Martin-ortega et al., (2024) point out,
transparent and integrated mitigation strategies are essential for
meeting climate objectives and managing emissions across
various sectors. In semiarid and climate-sensitive regions, the
sustainable management of resources—such as water and
waste—becomes increasingly crucial, as shown by Nydrioti et
al, (2024), who investigated urban water resource challenges
under different climate scenarios. In this context, the
thermochemical conversion of sewage sludge presents a dual
benefit: reducing environmental pollution and aiding climate
change mitigation by substituting fossil fuels with renewable
energy sources. By transforming waste into energy-rich solid
fuels, these processes support circular economy goals and offer
scalable climate adaptation solutions, particularly for densely
urbanized and industrial regions (Tsimnadis et al, 2023;
Zafeiriou et al., 2022).

The management of sewage sludge is essential in
wastewater treatment plant operations. The financial costs
associated with the management and disposal of sewage sludge
can represent 40-60% of the total expenditure incurred by
wastewater treatment facilities, encompassing expenses related
to labor, maintenance, energy consumption, and the processing
and disposal of sludge (Domini et al, 2022). The amount of
sludge is becoming a global environmental concern, driven by
factors such as population growth and the expansion of industry
and agriculture. As urban populations increase, the volume of
wastewater generated also increases, resulting in an increased
volume of sewage sludge. The global production of sewage
sludge has led to diverse treatment strategies across countries,
each adapting its own unique infrastructure and environmental
policies. Effective management of sewage sludge is essential to
mitigate its environmental impact and harness its potential as a
resource (Lamastra et al., 2018).

The worldwide generation of sewage sludge and various
treatment methodologies has significantly increased, as shown
in Table 1. Different methods have been employed globally for
the treatment of sewage sludge, including incineration,
landfilling, agricultural use, composting, and other innovative
techniques. India is the leading country for sewage sludge
production, generating 75 million tonnes of dry matter annually,
followed by China with 39.04 million tonnes (Li et al, 2024).
Japan and Germany generate more sewage sludge than the
European Union, with 20 million tonnes per year whereas the
United States, Indonesia, and the European Union generate
over 10 million tons each. In contrast, Singapore and Malaysia
produce 160,000 tonnes and 7 million tonnes, respectively, with
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Singapore having only four treatment units while effectively
managing its production. Landfilling remains the predominant
disposal method in Malaysia, with a total of 161 landfills,
consisting of 147 non-sanitary landfills and 14 sanitary landfills
(Ministry of Energy, 2017). By 2030, almost 80% of Malaysia's
open garbage sites will be closed, as they reach their maximum
capacity (Yong et al., 2019).

Landfilling is widely used in the management of sewage
sludge in developed nations, particularly in areas with abundant
available land. The bulk of sludge is immediately disposed of in
landfills after undergoing mechanical dewatering, resulting in a
moisture content of over 80% and extremely poor compressive
strength (Zhen et al, 2017). However, these methods are
currently discouraged owing to the significant risks of
secondary contamination and stringent environmental laws.
Moreover, landfills require additional land and contribute to
global warming by emitting gases into the atmosphere (Naqvi et
al., 2021). Alternatively, modern methods, such as agricultural
use, soil amendment, incineration, and anaerobic digestion, are
widely employed for the treatment and disposal of sewage
sludge (Jumasheva, 2023). The utilization of sewage sludge is
gaining attention owing to its alignment with the principles of
circular economy and ecological sustainability (Duan et al.,
2022). In the European Union, agricultural use is a significant
disposal option (Mancuso et al., 2021). However, challenges
such as the presence of heavy metals and hazardous substances
within the sludge limit its direct agricultural application, making
thermochemical conversion methods suitable alternatives for
disposal (Kosinski et al., 2023).

Thermochemical conversion technologies offer promising
solutions for transforming sewage sludge into valuable solid
fuels. The potential of sewage sludge as a solid fuel source has
been increasingly acknowledged owing to its inherent energy
content and capacity for volume reduction (Trinh et al., 2013).
Various studies have explored different methods for
transforming sewage sludge into solid fuel, including pyrolysis
(Languer et al., 2020), hydrothermal carbonization (Wilk et al.,
2023), and torrefaction (Poudel et al., 2015). These processes
aim to increase the energy efficiency of sewage sludge drying
and enhance its heating value, thereby rendering it a feasible
substitute for fossil fuels (Kim et al, 2021). Thermochemical
conversion methods can effectively lower the volume of sewage
sludge, reclaim energy and materials, and improve pathogen
removal (Hu et al, 2021). Additionally, these processes can
enhance the dewatering capabilities of sewage sludge,
facilitating its handling and transportation (X. Zhang et al,
2020). Moreover, thermochemical methods offer a sustainable

Table 1
Global generation of sewage sludge and various techniques employed by countries for its management.
Nations Generation of sewage Treatment strategies References
sludge (million
tonnes/year)

China 39.04 Soil amendment, incineration, sanitary landfill, (Li et al, 2024)
building materials, recycling and waste to energy

United State 17.80 Landfill, incineration, construction industry, (Han etal, 2021; Xiang et al., 2024)
recycling (fertilizer)

Japan 20.00 Incineration without energy recovery, landfill, (Gao etal, 2020; Horikoshi et al., 2024)
building material

India 75.00 Landfill, recycling, incineration (Aparna, 2022)

South Korea 1.48 Incineration, landfill, recycling (fuel, composting, (An et al, 2021)
construction material)

Mexico 0.64 Landfill, agricultural, recycling and waste to energy  (Garc et al., 2024; Luis et al., 2022)

Germany 20.00 Landfill, agricultural, thermal treatment (Gao et al.,, 2020; Schnell et al., 2020)

European Union 10.30 Agricultural, composting, landfill, incineration (Minh et al., 2022)

Indonesia 17.04 Landfill (Koko et al., 2022; Pang et al., 2023)

Singapore 0.16 Landfill, land disposal and incineration (Chan et al, 2016)

Malaysia 7.00 agricultural use, landfill, and incineration. (Hanum, F. et al, 2019)
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Fig. 1. PRISMA flowchart detailing the study selection methodology and the number of articles identified, reviewed, and included

in this systematic literature review.

strategy for the management of sewage sludge by enabling the
generation of biofuels (Cebi et al., 2022).

A number of authors have explored the potential of sewage
sludge as a source of valuable energy and materials to achieve
carbon neutrality (Gururani et al., 2022; Hu et al., 2022; Syed-
Hassan et al,, 2017). Despite the extensive studies and reviews
that have investigated the challenges and opportunities of
thermochemical conversion of sewage sludge, such as process
complexity and environmental concerns, there remains a
significant gap in the systematic synthesis of performance
outcomes across different conversion methods. To the best of
our knowledge, there has yet to be a thorough review that
consolidates and assesses the operational parameters and solid
fuel properties of biochar produced from sewage sludge using
pyrolysis, torrefaction, and hydrothermal carbonization. This
research seeks to address this gap by performing a systematic
review of the literature with the following primary objectives: (a)
to assess and compare the optimal conditions—such as
temperature, reaction time, and heating rate—across major
thermochemical conversion methods and (b) to analyze and
synthesize the resulting output parameters, including proximate
and ultimate composition, higher heating value (HHV), solid
yield, and energy yield of biochar, while considering a wide
range of geographic and feedstock variations.

This review consolidates these findings to present novel
insights into the thermochemical behavior of sewage sludge,

offering a valuable resource for future research and industrial
applications focused on the sustainable production of solid fuels.

2. Methods

2.1. Searching strategy

A comprehensive review of the existing literature was
undertaken utilizing the subsequent electronic databases:
Science Direct (SD), Scopus and Web of Science (WoS),
employing the search terms: (sewage sludge) AND ((solid-fuel)
OR (solid-biofuel)) AND ((carbonization) OR (pyrolysis) OR
(torrefaction)) NOT (adsorption). Database searches were
conducted from January 1, 2013, to November 30, 2023. For the
Science Direct database, the search option was ‘all fields.” The
Scopus search options were ‘title, abstract, and keywords’ and
‘all fields’ for WoS. The article selection process involved two
independent authors who evaluated each publication based on
the established eligibility criteria. Screening was conducted in
three stages: first, by examining titles, then abstracts, and finally
full-text articles. When disagreements arose regarding inclusion
or classification, the reviewers engaged in discussions to reach
mutual agreement.

2.2. Guidelines for inclusion and exclusion

We have added relevant scholarly articles exploring
thermochemical methods for producing highly efficient solid
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fuel products from sewage sludge. Our inclusion criteria focused
on full-text articles published in English that examined the
transformation of sewage sludge into solid fuels using
thermochemical processes. These articles were required to
provide well-supported data on proximate and ultimate
analyses, high heating values, and energy yields. Studies were
excluded if they were literature reviews, book chapters, books,
non-English, focused on economic analysis/life-cycle
assessment, or only reported heat or activation energy. Any
disagreements in the selection process were resolved through
collaborative discussion among the authors.

2.3. The process of data extraction and synthesis

Data analysis was conducted using Microsoft Excel and was
reviewed by each author. The analysis of the 46 papers yielded
results that allowed readers to understand the perspectives and
critical elements of each study included in this review. The
following ten data items were used: type of sewage sludge,
moisture content, carbonization method, reaction conditions,
proximate analysis, ultimate analysis, higher heating value
(HHV), solid yield, energy yield, and researchers.

3. Results and Discussion
3.1. Details of the article selection criteria

This study employed the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) (Rozehan et
al., 2024), as illustrated in Fig. 1. A total of 2715 articles were
initially sourced from Science Direct (n= 2327), Scopus (n= 99),
and Web of Science (n= 289) using a systematic search
approach. Subsequently, 2669 papers were excluded from the
screening process for a variety of reasons, categorized by titles
(n= 2457), abstracts (n= 133), and full texts (n= 9). This
systematic review included 46 important full-text articles that
predominantly explored the thermochemical conversion of
sewage sludge as a feedstock.

3.2. Trends in yearly literature

Fig. 2 shows the yearly distribution of the analyzed studies. The
number of publications fluctuated throughout the review period
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(2013-2023). In 2020, there was a surge in the number of
publications, with a total of eleven studies being published. The
observed increase in the first five years (2013-2017) can be
attributed to increased global awareness of sewage sludge
issues. This has drawn attention to the possibility of using
biochar extracted from sewage sludge as a sustainable energy
resource, emphasizing its critical role in energy recovery. In
contrast to the period from 2018 to 2023, an increase in the
number of publications has been recorded. This highlights the
significance of elements such as reaction temperature, reaction
time, solid-to-liquid ratio, and additional parameters during the
thermochemical process that affect the quality, composition,
and energy attributes of the resultant biochar as a solid fuel. The
keywords or thematic areas relevant to the publication trends
from January 2013 to November 2023 were also analyzed using
VOS viewer (Fig. 3). An analysis of the data reveals a significant
increase in publications that include the terms “sewage sludge,”
“hydrothermal carbonization,” and “hydrochar,” which have
emerged as the primary keywords.
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Table 2
Basic composition of sewage sludge
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Type of material Description

Volatile solids
Protein

9 wt%) (Xu et al., 2018)
Polysaccharides

represents the quantity of organic materials that are available for biodegradation (Luis et al., 2022)
Protein is a key organic element in sewage sludge, resulting in a significantly higher nitrogen concentration (2.5-

polymers derived from monosaccharides such as glucose, mannose, and fructose are predominantly found in

sewage sludge in the forms of cellulose, hemicellulose, and starch (L. Wang et al., 2019)

Lipids

Typically constituted of triglycerides, which are formed by the esterification of three fatty acid molecules to a

glycerol scaffold. These lipids are derived from the direct adsorption processes occurring in wastewater,
phospholipids sourced from cellular membranes, as well as metabolic by-products resulting from microbial
activity and cellular lysis (L. Wang et al., 2019)

Humic substances

Formed by microbial degradation of organic matter produces a diverse range of compounds, including humic

acids, fulvic acids, and humins. These compounds are characterized by aromatic nuclei and contain phenolic
and carboxylic groups (L. Wang et al., 2019)

100
90 - Average Chemical Composition of Sewage Sludge
80
70
e
5
s 50
3
e 40
[
o 3
20
10
0 Volatile solids Proteins Polysaccharides Lipids Humic substances
m Primary sludge 70.00 22.00 11.50 39.00 11.00
m Digested sludge 48.50 17.50 11.50 12.50 15.00
m Activated sludge 69.00 30.00 7.50 8.50 13.00
m Dewatered sludge 60.00 33.40 13.00 6.60 20.00

Fig. 4. Average sewage sludge composition. Source: (L. Wang et al., 2019; Yokoyama, 1996)

3.3. The composition of sewage sludge

Sewage sludge represents a category of waste that possesses
the potential for energy conversion and encompasses various
classifications, such as primary, digested, activated, and
dewatered sludge. Primary sludge is derived following
mechanical treatment processes (including screening, grit
removal, and sedimentation) and contains 93-99.5% water,
whereas digested sludge is produced through anaerobic
digestion. Activated sludge is produced by biological treatment
processes and exhibits a significant concentration of microbial
biomass, with a total solid content varying between 0.80 and

mechanically dewatered sludge, is generated via mechanical
and physical methods to reduce its moisture content, resulting
in a moisture content range of 73-84% (Syed-Hassan et al,
2017). However, the composition of each sludge type varied
according to the nature of sewage and the technical processes
utilized in the wastewater treatment facility, as illustrated in Fig.
4. It is commonly recognized that sewage sludge contains a
significant amount of organic components, including proteins,
polysaccharides, lipids, humic substances, and nucleic acids (L.
Wang et al., 2019). The properties of the sludge generated by
the same wastewater treatment facility can vary from day to
day. A detailed analysis of the constituents of the sewage

1.20%. Dewatered sludge, alternatively referred to as
Table 3
The physicochemical composition of sewage sludge, biomass and lignite
Sample Elemental composition Proximate analysis HHV References
(wt.% daf) (wt.% db) (MJ/kg)
C H N 0? S Ash VM FC
Sewage 48.10 - 664 - 790 - 31.94- 0.80- 13.70- 73.50- 2.01- 17.60- (Ahn et al, 2020;
sludge 51.20 7.90 8.85 36.30 1.37 18.51 78.49 12.70 19.22 Villamil et al., 2020;
Zhao et al., 2014)
Biomass 47.27- 5.71- 0.40- 39.20- 0.00- 1.30 - 71.54 - 16.91- 18.21- (Abdoli et al., 2024;
49.22 8.09 3.82 45.32 0.40 4.43 81.16 24.03 20.31 Babatabar et al,
2024; Wu et al,
2024)
Lignite 60.31- 5.00- 0.88- 21.58- 0.54- 7.57- 40.72- 41.52- 24.39- (Lu et al, 2022;
64.03 5.26 1.07 26.76 0.76 11.26 52.23 51.71 25.45 Zhan et al., 2022)

VM: Volatile matter; FC: fixed carbon; ? by difference; daf: dry ash free; db: dry basis
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sludge, including their composition and key substances, is
presented in Table 2.

Table 3 presents a comprehensive summary of the
physicochemical properties of sewage sludge, biomass, and
lignite, emphasizing their potential for energy production and
environmental effects. Sewage sludge exhibits a significant
carbon content (60.31-64.03%), which favors energy generation;
however, its high ash content (13.70-18.51%) poses challenges
in combustion systems due to slagging and fouling (Ahn et al.,
2020; Villamil et al., 2020; Zhao et al., 2014). Biomass, with a
carbon content of 47.27-49.22% and a very low ash content of
1.30-4.43%, is advantageous for clean energy applications,
offering high volatile matter (71.54-81.16%), which suggests an
excellent energy release potential (Abdoli et al., 2024; Babatabar
et al., 2024; Wu et al., 2024). Conversely, lignite possesses the
highest carbon content at 60.31- 64.03%, indicating strong
energy production capability, but its high sulfur content (0.54-
0.76%) could lead to significant SOx emissions, necessitating
emission control measures (Lu et al., 2022; Zhan et al., 2022).

The HHV of these materials further support their potential
as energy sources. Lignite exhibits a higher HHV of 24.39-25.45
MJ/kg, indicating its significant energy content. Biomass
demonstrates moderate HHV of (18.21-20.31 MJ/kg), making it
a renewable energy option with moderate energy density.
Sewage sludge, although slightly lower with an HHV of 17.60-
19.22 MJ/kg, remains a competitive energy source, particularly
in comparison to other low-rank fuels such as lignite and the
majority of biomass varieties. Each analyzed sample offers
distinct advantages and challenges. Biomass is the most
environmentally favorable option owing to its minimal ash
composition and elevated volatile matter content, which
facilitates clean combustion and effective energy release (Zaini
et al., 2023). In contrast, Lignite, which offers a high energy
potential, requires careful handling to mitigate its environmental
impact, particularly with regard to sulfur emissions. Although
sewage sludge is less efficient than biomass in terms of energy
release, it still provides considerable energy potential and can
be a viable alternative, especially when properly managed to
address its high ash content and other combustion challenges.

3.4. Thermochemical process of sewage sludge

Our comprehensive review encompassed scholarly articles
published within the last decade that examined the utilization of
sewage sludge as a solid fuel as well as the various factors
influencing the characteristics of solid fuel derived from distinct
carbonization techniques and operational conditions.
Conventional thermochemical conversion methods such as
torrefaction, pyrolysis, and HTC are frequently used to extract
energy and materials from sewage sludge (Table 4). Fig. 5 shows
the proportion of articles found for different carbonization
methods. HTC (33 articles), torrefaction (8 articles), and
pyrolysis (5 articles) were the most popular processes used in
solid fuel research, accounting for 71.7%, 17.4%, and 10.9%,
respectively. The effectiveness of thermochemical processes
and the characteristics of their outputs are influenced by various
internal and external factors, including physical and chemical
properties as well as operational conditions. This thermal
decomposition method yields a range of products in solid,
liquid, and gas forms, depending on the specific operational
parameters employed.

Sewage sludge undergoes a series of treatments, such as
drying, grinding and densification to enhance its suitability for
thermochemical processes. Initially, sewage sludge is collected
from wastewater treatment facilities and typically undergoes
thickening, anaerobic digestion, and dewatering to reduce its
moisture content to as high as 79.5% (Kolosionis et al., 2021).
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The sludge was then stored at low temperatures (e.g., 4 °C or -
20°C) to preserve its characteristics (Huezo et al., 2021; Volpe et
al., 2020). Prior to undergoing the thermochemical process,
sewage sludge must undergo drying at 105°C and be ground to
achieve a particle size smaller than 0.5 mm (Kolosionis et al.,
2021; X. Zheng et al., 2020). Additionally, adjusting the pH of the
sludge can optimize the thermochemical process, as a lower pH
is preferred to avoid unfavorable reactions (Huezo et al., 2021).
These preparatory steps are essential to improve the
effectiveness of energy recovery and nutrient management
from sewage sludge (Shan et al., 2023).

34.1. Torrefaction

To mitigate the drawbacks of the poor HHV of sewage sludge,
it can be improved via a thermochemical conversion process
known as torrefaction. During this process, sewage sludge is
thermally destroyed in an inert or nitrogen atmosphere at
atmospheric pressure and temperatures between 200 and
300°C, employing gradual heating rates for several minutes to
hours (Atienza-Martinez et al., 2015). Torrefaction is often
characterized as a gentler version of pyrolysis, occurring at
temperatures much lower than those typical of traditional
pyrolysis. This process may also be referred to as roasting or
high temperature drying. Sewage sludge undergoes
transformation into  charred-like  substances through
torrefaction. This process is typically conducted inside a
torrefaction reactor, which can be a rotary, fixed-bed, or
fluidized bed (Atienza-Martinez et al., 2015; Karki et al., 2018). It
enhances several characteristics, including hydrophobicity and
water resistance, energy density, grindability and reactivity,
sludge brittleness, reduced atomic O/C and H/C ratios, and
uniformity, rendering it appropriate for direct application as a
fuel (Lee et al,, 2019). This transformation is attributable to the
emissions of water, CO2, CO, and lightweight organic
compounds (Karki et al., 2018). Additionally, torrefaction can
reduce the expenses associated with the transportation,
management, processing, and storage of sewage sludge (Lee et
al., 2019).

34.2. Hydrothermal carbonization

HTC, also referred to as wet torrefaction, is an emerging
thermochemical process that has become increasingly popular
as an alternative approach for managing sewage sludge. The
exothermic reaction involves the transformation of sewage
sludge into hydrochar, a carbon-rich byproduct, through a
process that takes place in a closed vessel. This conversion
occurs at temperatures ranging from 150 to 300°C under high-
pressure conditions for multiple hours (Silva et al, 2020).
Additionally, the process yields a liquid phase, commonly
termed liquor, along with a gaseous phase predominantly
comprising carbon dioxide and methane (Huezo et al, 2021).
Within the framework of the HTC process, water functions as
both a pivotal solvent and reactant. This treatment is
particularly beneficial for wet sewage sludge with a moisture
level of 70-80%, thereby promoting hydrochar formation
(Zaharah et al., 2024). The HTC process is primarily governed
by dehydration, decarboxylation, and aromatization (Jjagwe et
al., 2021). The efficacy of this process is influenced by various
parameters, including the reaction duration, temperature, and
ratio of sewage sludge to the aqueous phase, making it a
spontaneous and exothermic reaction that involves mixing
sewage sludge with water and introducing it into a sealed
reactor. In conclusion, HTC offers a promising approach for
converting waste biomass into valuable energy resources,
thereby promoting the principles of a circular economy and
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absence of oxygen. The experiment utilized a pyrolysis reactor
or kilns, including rotary kilns, fixed-bed reactors, and fluidized-
bed reactors, in a controlled environment. As a conversion

method, pyrolysis shows significant promise for the production
of gas, liquid bio-oil, and biochar. This process operates as a
crucial element within the larger frameworks of gasification,

ISSN: 2252-4940/© 2025. The Author(s). Published by CBIORE

Pyrolysis
Pyrolysis refers to the thermochemical breakdown of

alleviating the environmental impacts associated with waste
biomass at elevated temperatures (generally 300—800°C) in the

management (Hejna, Malgorzata et al., 2023).
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elements, revealing a notable ash content (ranging—50-80%)
(Kolosionis et al., 2021). Nevertheless, pyrolysis leads to a higher
concentration of heavy metals in biochar, especially non-volatile

combustion, or HTC (Sobek et al., 2020). The essential product
is char, which is characterized by a heterogeneous constitution

of thermally decomposed (carbonized) organic and inorganic
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3.5. Effect of operating conditions

elements. The elevated levels of heavy metals in biochar

derived from sewage sludge pose a considerable obstacle to

their potential application in the future.

Thermochemical methods such as torrefaction, HTC, and

pyrolysis promote the production of biochar from sewage
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variables affect the yield of solid fuel and quality of products
during thermochemical conversion processes. These factors

sludge. This section elucidates the influence of diverse

operational parameters on the characteristics of the solid fuels
obtained from sewage sludge. As shown in Table 4, several key

include temperature, pressure, reaction duration, atmospheric
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The characteristics of the solid fuel produced from sewage
sludge are greatly influenced by the temperature of the

conditions, flow rate, solid-to-water ratio, heating speed, and
stirring intensity. Optimizing these parameters is crucial for

achieving the desired outcomes.

thermochemical process, primarily through its impact on the
chemical reactions and physical properties of the resulting

In HTC,

hydrochar or biochar (Q. Zheng et al, 2022).

Temperature

3.5.1.
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enhancement in the fixed carbon content and a reduction in the

temperatures typically range from 150 to 300°C (Roslan et al.,

volatile matter within the char, ultimately improving its carbon
content and increasing its HHV (Ibitoye et al., 2023; Silva et al.,

2023). Higher temperatures generally promote dehydration,
decarboxylation, and carbonization reactions. This leads to an
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focusing on a temperature range of 200-350 °C. The findings
indicated that as the temperature increased, the weight
percentage of carbon increased, whereas the H/C and O/C
molar ratios decreased, indicating an enhancement in the solid

fuel properties.
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2020). Forinstance, chars produced at 300°C exhibit lower O/C
and H/C atomic ratios, suggesting considerable dehydration
and decarboxylation, which are imperative for enhancing fuel
quality (Peng et al., 2016). Another study conducted by Karki et
al., (2018) examined the effects of torrefaction temperature on
the physical and chemical attributes of torrefied products,
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observed at higher temperatures can be attributed to

Roslan et al., (2023) found that the producing sewage sludge
biochar at 150°C resulted in a higher solid yield (73.93%)

compared to production at 300°C (48.46%). The lower yield

decarboxylation, which is supported by the reduced O/C ratio
and formation of water-soluble organic materials (Hejna,
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Malgorzata et al., 2023). Moreover, higher temperatures may
contribute to lower solid yields as sewage sludge transforms
into gaseous and liquid components. Research by Chen et al,,
(2021) revealed that pyrolysis at temperatures under 400 °C
converted 50-60% of raw sludge energy into biochar,
emphasizing the crucial role of temperature in energy recovery
efficiency. X. Zheng et al., (2020) explored the influence of HTC
temperature on hydrochar ash content. Their results showed a
substantial increase from 55.12% at 180 °C to 62.14% at 280 °C,
suggesting that elevated temperatures contributed to the higher
ash content of the produced hydrochars. Thermochemical
processes performed at higher temperatures can enhance the
dewaterability of sewage sludge, which is beneficial for the
subsequent handling and transportation of solid fuel (R. Wang
etal, 2019).

3.5.2. Reaction time

Reaction time is recognized as a significant variable in
thermochemical processes; however, it is not as critical as the
temperature. The reaction time refers to the exposure of the raw
materials to a specific temperature. The reaction time critically
influences the hydrochar yield, with prolonged exposure
typically resulting in a reduction in both the yield and HHV (Guo
et al., 2022; Huezo et al., 2021). According to Gao et al. (2019),
the solid yield decreased from 71.24 to 66.04% when the
reaction time increased from 30 to 120 min, demonstrating a
negative relationship between the reaction time and yield. An
increase in the reaction time leads to more extensive
devolatilization and breakdown of organic compounds, leading
to a lower solid yield (Roslan et al., 2023). However, beyond 90
min, the improvement in dewaterability was marginal,
indicating that hydrothermal temperature exerted a more
pronounced influence than reaction time on the moisture
content of the sewage sludge (Gao et al., 2019). If the reaction
time is excessively prolonged, it may not considerably impact
the carbon enrichment of the hydrochar, as the carbonization
process may have reached completion. Research by Huezo,
Vasco-Correa, & Shah, (2021) observed that HTC yielded the
highest carbon content (28%) in 22 min. Extended HTC
durations decreased the carbon and hydrogen levels in the
hydrochar, thereby diminishing its quality as a solid fuel
Similarly, Merzari et al, (2020) reported that hydrochar
produced from concentrated sludge under comparable HTC
conditions (220°C, 30 min) exhibited the highest HHV and a
moderate ash content, indicating better fuel properties. In a
separate study, Silva et al, (2020) determined that HTC
performed at 150°C for 30 minutes generates hydrochar with
the maximum HHV of 16.17 MJ/kg, suggesting superior fuel
quality compared to other durations. In contrast, Karki et al,,
(2018) reported that the ideal reaction time for achieving
desirable solid fuel characteristics during torrefaction was
approximately 50 min at 250°C. For microwave pyrolysis, Y. F.
Huang et al., (2015) found that a 20-minute processing time is
sufficient to achieves the desired thermal treatment effects.
The reaction time during torrefaction plays a significant role
in determining the energy yield of sewage sludge (Atienza-
Martinez et al., 2015). Extended reaction periods can result in
more thorough decomposition of sludge, subsequently
diminishing the energy yield. Nevertheless, at temperatures of
220 and 270°C, the energy yield remained above 90%,
irrespective of the reaction duration (Atienza-Martinez et al.,
2015). To effectively promote hydrolysis and polymerization
processes, it is crucial to regulate the extent of sewage sludge
breakdown within a given timeframe (Djandja et al, 2021).
Research has shown that the HTC process for sewage sludge
can range from 30 min (Roslan et al., 2024) to 24 h (He et al,,
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2014), which is substantially shorter than the natural
coalification process (Kolosionis et al., 2021). Consequently, the
likelihood of achieving comparable outcomes is minimal and
can only be achieved at high temperatures by adjusting the
reaction time.

3.5.3. Other parameters

Other factors influencing the thermochemical process and
product yield and their properties include heating rate, stirring
rate, solid-to-water ratio, pressure, and moisture content. A
lower heating rate is generally preferred for torrefaction
processes because it leads to superior char output and energy
yield, although the energy density might be lower than that at
higher heating rates (Lee et al., 2019). A modest heating rate of
3°C/min facilitated the generation of hydrochar exhibiting a
higher HHV along with lower oxygen-to-carbon (O/C) and
hydrogen-to-carbon (H/C) ratios, in contrast to the rapid
heating rate of 50°C/min (Villamil et al., 2020). This is because
a slower heating rate allows for more complete reactions,
consequently improving the quality of solid fuel. The stirring
rate affected the mixing of sewage sludge in the reactor, and
ranged from 60 to 500 rpm (H. J. Huang et al., 2014; Prajitno et
al, 2017). The heating and stirring rate characteristics
significantly affected the heat and mass transfer (L. Wang et al.,
2019). During the HTC process, the temperature mainly varied
under autogenous pressure, reaching 89 bar (Hejna, Maltgorzata
et al., 2023). The solid-to-water ratio is particularly relevant in
HTC, where a fixed solid loading, such as 10% or 30%, can
significantly affect the solid yield and HHV of the resultant
hydrochar (Roslan et al., 2023). Moreover, the moisture content
of the sewage sludge before pyrolysis can affect the efficiency
of the thermochemical process (Y. F. Huang et al,, 2015). For
instance, during pyrolysis, a lower moisture content improves
heat transfer and reduces the energy required for drying, which
can enhance the overall energy efficiency of the process
(Ghodke et al,, 2021). In contrast, in HTC, the process can utilize
the inherent moisture as a reaction medium, eliminating the
need for drying pretreatment and making it particularly suitable
for biomass with a high water content (Gai et al., 2016; Z. Wang
et al., 2020). In summary, the management of moisture content
is vital for optimizing both the efficiency and quality of products
in thermochemical processes, as it affects both the chemical
reactions and energy dynamics of the system.

3.6. Effect of carbonization conditions on solid fuels characteristics
3.6.1. Proximate and ultimate analysis

The results of the proximate and ultimate analyses of various
types of sewage sludge are presented in Table 4. Understanding
hydrochar properties is crucial for its effectiveness as a fuel. The
proximate analysis of the synthesized hydrochar incorporated
the analysis of moisture levels, ash content, and volatile matter.
The moisture content was evaluated by placing the char sample
in a drying apparatus set at 105°C for one hour, followed by ash
content determination using a muffle furnace according to the
ASTM D3174-02 standards. The volatile matter content was
assessed by burning a sieved solid fuel sample at 950 °C in a
closed crucible, according to ASTM D3175-07 standards (Silva
etal., 2020). The fixed carbon content was determined using the
difference method (He et al., 2015). The ash composition within
the hydrochar increased from 33.14% to 46.65% as a result of
HTC, indicating the considerable presence of inorganic
materials (J. hong Zhang et al., 2014). Research has revealed a
positive relationship between the thermal conditions of the HTC
procedure and ash composition of the fuel. These findings
suggest that higher temperatures lead to increased ash content,
with the ash content rising from 26.06% to 29.57% when the
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Fig. 5. Percentage of relevant literature related to
different types of carbonization techniques

temperature reached 220°C, which is potentially attributable to
excessive depletion of volatile matter through hydrothermal
processes (Kim et al, 2014). Similarly, proximate analysis of
biochar produced from pyrolysis indicated a reduction in
volatile matter and an increase in fixed carbon with increasing
pyrolysis temperature. For instance, at 500°C, the volatile
matter content was 24.36%, while the fixed carbon content was
13.12%. The decrease in volatile matter results from chemical
processes, including dehydration and decarboxylation (Shan et
al., 2023). Thermochemical processes can produce biochar with
improved fuel characteristics such as increased fixed carbon
levels and reduced volatile matter, which are advantageous for
applications involving solid fuels (He et al., 2015).

In addition to these findings on composition, further analysis
can determine the ultimate analysis of solid fuels, which refers
to the elemental contents of carbon, hydrogen, nitrogen, oxygen
and sulfur within a sample using an elemental analyzer (Lin et
al., 2022). The level of oxygen was determined by subtracting
the amounts of the other four elements from 100% of the sample
(Lin et al, 2022). Understanding these elements, such as the
combustion efficiency and emission profiles, is essential for
various aspects of fuel utilization. Studies have shown that
biochar derived from sewage sludge samples contains
promising amounts of carbon (18.28 to 67.96%) and hydrogen
(1.76 to 12.2%) (Shan et al, 2023; Zhao et al., 2014). This
enhancement of carbon levels, along with the decline in oxygen
levels, is a key parameter that enhances the combustion
properties of the hydrochar. These findings indicate that the
HTC process effectively enhances the carbon content and
heating value of biofuel, thereby making it comparable to lignite
or sub-bituminous coal, subject to specific reaction conditions
(Zhao et al., 2014). However, oxygen, nitrogen and sulfur can be
disadvantageous when sewage sludge is used as solid fuel.
These constituents can diminish the HHV of the fuel and emit
harmful pollutants, such as SOx and NOx during combustion
(Pulka et al., 2016).

3.6.2. Higher heating value and energy yield

The HHV and energy yield of sewage sludge are critical
parameters for evaluating its potential as biofuel. HHV is a
crucial characteristic of fuels that quantifies the energy density
of charred materials such as hydrochars. It represents the total
amount of energy released upon the complete combustion of a
fuel, with the resultant products being cooled to a standard
temperature, encompassing the latent heat associated with the
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vaporization of water. The HHV of the hydrochar can be
determined using a bomb calorimeter in accordance with
standard methods (Roslan et al., 2023). The HHV can also be
calculated based on the elemental composition of the fuel,
typically expressed in terms of carbon (C), hydrogen (H),
nitrogen (N), sulfur (S), as given by the formula developed by
Perry and Chilton, which is derived from the Dulong formula
(Peng et al., 2016; Z. Wang et al., 2020):

HHV = 0.339C + 1.443(H - 0.1250) + 0.0224(9H) + 0.0093S
+0.001464N (1)

The HHV of the sewage showed notable variability
depending on the treatment process applied. For instance,
untreated sewage sludge has an initial HHV of approximately
9.82 MJ/kg on a dry basis (Gao et al., 2019). However, the HHV
can be enhanced through processes such as HTC. HTC-treated
hydrochar from sewage sludge can achieve HHV ranging from
10.4 to 11.57 MJ/kg. This enhancement is associated with an
elevation in carbon concentration and a decrease in oxygen
levels, which is a consequence of deoxygenation occurring
throughout the process (Gao et al, 2019). In a comparative
study, the HHV of hydrochar produced from sewage sludge was
comparable to that of sub-bituminous coal, with values of
approximately 13 MJ/kg under optimized HTC
conditions (Malhotra et al, 2023). This enhancement is
attributed to the decarboxylation and dehydration reactions
that occur during HTC, resulting in a higher concentration of
fixed carbon and lower moisture content (Malhotra et al., 2023).
Additionally, the energy content of sewage sludge was
significantly affected by the pyrolysis process conducted at
varying microwave power intensities. For example, the HHV of
pyrolyzed sewage sludge, subjected to a microwave power level
of 200 W in the absence of any additives, is quantified at 17.46
MJ/kg, accompanied by an energy yield of 83.90% (Y. F. Huang
etal, 2015).

The energy yield denotes the quantity of energy generated
from a specific amount of feedstock during a thermochemical
process, such as pyrolysis (Kolosionis et al., 2021). It is often
expressed as a percentage or ratio (Hejna, Malgorzata et al.,
2023). The energy yield varied according to the treatment
method and conditions. For example, the energy output derived
from pyrolyzed sewage sludge can range between 22.49% and
83.90% depending on the microwave power level and the
presence of rice straw (Y. F. Huang et al., 2015). Furthermore,
the energy content of sewage sludge can be compared to lignite
due to its higher HHYV, although its utilization is often hindered
by high moisture levels and the presence of contaminants such
as heavy metals and pathogenic microbes (He et al., 2014).
Despite these challenges, sewage sludge is considered a viable
alternative fuel, especially when pretreated through processes
such as HTC, which not only enhances its HHV, but also
addresses issues related to moisture and contaminants (Park et
al.,, 2020). Overall, the treatment of sewage sludge through
various thermochemical processes significantly improved its
HHV and energy yield, confirming its potential as a sustainable
approach for energy recovery and waste management.

4. Environmental impacts associated with
thermochemical methods for converting sewage
sludge into solid fuel

The application of sewage sludge for the production of solid fuel
via thermochemical conversion has both positive and negative
implications for environmental sustainability and resource
recovery. It is crucial to comprehend these impacts to optimize
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conversion processes, reduce environmental pollution, and
improve resource efficiency.

One of the primary environmental concerns associated
with thermochemical conversion is the emission of pollutants
during the conversion processes. For instance, pyrolysis and
torrefaction can release volatile organic compounds (VOCs),
particulate matter, and other harmful air pollutants if not
controlled adequately  (Swiechowski et al, 2020).
Thermochemical processes can also produce harmful
emissions, such as NOx and SOx, owing to the presence of
elements such as nitrogen and sulfur (Ahn et al, 2020).
Moreover, the presence of heavy metals in sewage sludge
presents a potential hazard during thermal treatment because
they can be released into the environment (Merzari et al., 2020).
The HTC procedure has the potential to promote heavy metal
immobilization and reduce environmental risks (He et al., 2015).
Torrefaction also results in lower levels of hazardous heavy
metals, including Cd, Cr, Hg, Pb, and Ni, making the resulting
biochar suitable for combustion without significant
environmental contamination risks (Lin et al., 2022). Therefore,
it is essential to implement stringent emission control measures,
such as acid washing, to minimize the release of these pollutants
and produce cleaner fuels (Kolosionis et al., 2021).

Another significant environmental impact is that the ash
generated from thermochemical conversion processes such as
HTC and pyrolysis has significant environmental implications
because of its composition and behavior during combustion.
The ash content tends to increase with higher reaction
temperatures, resulting from the preservation of inorganic
minerals and the transformation of organic substances into
gaseous and liquid phases (Kolosionis et al., 2021). This increase
in ash content can lead to operational challenges, including the
buildup of sticky ash deposits on reactor surfaces, which are
exacerbated by the presence of alkaline earth metals, such as
potassium and sodium, which form low-temperature melting
compounds during combustion. An elevated presence of
alkaline earth metals, including calcium and magnesium, can
also lead to the formation of precipitates that can affect soil and
water quality if not properly managed (R. Wang et al., 2019).
Thus, understanding and mitigating the environmental impacts
of ash are crucial for the sustainable application of
thermochemical conversion technologies.

Furthermore, thermochemical conversion processes, such
as HTC, can significantly alter the combustion behavior of
sewage sludge, thereby enhancing its viability in energy
recovery applications. These processes involve stages such as
drying, decomposition, and burning, which facilitate the
efficient conversion of organic materials into energy,
consequently diminishing dependence on fossil fuels and
alleviating greenhouse gas emissions (Kolosionis et al., 2021). By
converting waste materials into energy-rich products,
thermochemical conversion represents a promising strategy for
mitigating methane emissions from landfills and reducing the
carbon footprints associated with waste disposal. This process
serves not only as a sustainable energy solution but also
enhances waste management, thereby playing a dual role in
environmental conservation and energy production. The
application of thermochemical conversion technologies in waste
management frameworks can be a pivotal step towards
achieving climate-change mitigation goals through the
reduction of greenhouse gas emissions and promotion of
renewable energy alternatives.

The thermochemical transformation of sewage sludge into
solid fuel presents both opportunities and challenges in terms of
its environmental impact. Although the potential for energy
recovery and resource valorization is significant, careful
consideration of emissions, by-products, and process efficiency
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is crucial for minimizing the negative environmental effects.
Ongoing research and technological advancements are
essential for optimizing these processes and enhancing their
sustainability.

5. Challenge in treating and transforming sewage
sludge into a solid fuel

Despite significant attempts to transform sewage sludge into
solid fuel through thermochemical methods, numerous
obstacles persist along with opportunities for further research
and advancement in the domain of sewage sludge. These
obstacles are principally attributable to the physicochemical
qualities of sewage sludge, complexity of thermochemical
conversion processes, and presence of pollutants. Recent
research on the transformation of sewage sludge utilizing
thermochemical approaches has discovered several critical
overarching obstacles and restrictions, including the following:

i. Feedstock Heterogeneity: The composition of sewage
sludge is inherently heterogeneous and governed by a
range of factors, including the origin of the wastewater,
the treatment methods implemented, and seasonal
variations. Generally, sewage sludge is composed of a
heterogeneous blend of organic and inorganic elements,
including microbial biomass, nutrients (notably, nitrogen
and phosphorus), heavy metals, and pathogens. This
variability poses challenges in achieving consistent and
uniform thermochemical processes.

ii. High moisture content: The moisture content of sewage
sludge exceeds 80%, which can complicate its handling
and reduce its calorific value when used as fuel source.
This high moisture content is primarily due to the water
retention capacity of sludge, which is influenced by its
flocculation structure and the existence of various forms
of water, including free, interstitial, surface, and bound
water.

iii. High ash content: The ash content of sewage sludge is a
significant factor that influences its management,
utilization, and environmental impact. The variability in
ash content, combined with the detection of heavy
metals and diverse pollutants, necessitates careful
consideration of the methods used for ash management
and their potential applications.

iv. Process optimization: The performance of the
thermochemical process may be improved through the
calibration of operational parameters, including pod
dimensions, processing duration, and thermal
conditions. Moreover, the synthesis of multiple
thermochemical technologies can improve the
sustainability and efficiency of the procedure. By
addressing these challenges, it is possible to enhance the
efficiency and sustainability of sewage sludge as an
important energy source.

V. Economic viability: The generation and application of
sewage sludge as a solid fuel necessitate considerable
financial resources for apparatus and infrastructural
development, which may pose a substantial obstacle to
the implementation of large-scale systems.

6. Conclusion

This review has shown that despite the inherent challenges
posed by the high moisture content, ash, and heavy metal levels
in sewage sludge, thermochemical conversion methods—
particularly hydrothermal carbonization(HTC) present a highly
promising, energy-efficient, and environmentally friendly
approach for sustainable sludge management and energy
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recovery. A key finding of this study is the significant impact of
operational parameters such as temperature, reaction time, and
heating rate on the quality and yield of the resulting biochar or
hydrochar. Elevated temperatures (300-1000°C) tend to
enhance the energy content of the final product while reducing
solid yield due to the formation of gaseous byproducts,
highlighting the strong fuel potential of treated sludge as a
substitute for fossil fuels.

However, most available data come from laboratory-scale
experiments, and a major challenge lies in scaling up these
technologies for commercial implementation. The high capital
and operational costs, influenced by factors such as
infrastructure requirements, energy demands, and labor, remain
a barrier to broader adoption. Moreover, the analysis in this
review is limited by the heterogeneity in reported studies—
differences in experimental conditions, sludge characteristics,
and measurement methodologies can reduce the comparability
and generalizability of findings.

To address these challenges, future research should
prioritize experimental validation of optimal process parameters
under pilot and industrial-scale conditions. This includes
developing cost-effective pretreatment and dewatering
strategies, exploring integrated systems that merge sludge
pretreatment and thermochemical conversion in a single
facility, and standardizing analytical methods and reporting
practices. Additionally, interdisciplinary research combining
engineering, environmental science, and economics is essential
to produce holistic evaluations through techno-economic
assessments and life cycle analyses, which are critical to
understanding the full potential and limitations of
thermochemical technologies.

The findings of this review also hold important implications
for policy and sustainable waste management strategies. Given
the increasing volume of sewage sludge generated globally,
there is a pressing need for supportive regulatory frameworks
that promote thermochemical conversion as a viable waste-to-
energy solution. Governments can play a pivotal role by
providing incentives such as subsidies, tax relief, and carbon
credits for facilities that utilize pyrolysis, torrefaction, or HTC
for sludge treatment and energy recovery.

Furthermore, establishing clear and consistent guidelines
for the classification, handling, and safe application of biochar
and hydrochar—particularly in agriculture and industry—will
be essential for market adoption. Investment in research and
pilot-scale demonstration projects will help validate the
commercial and environmental feasibility of these technologies
in real-world settings. By aligning policy efforts with circular
economy principles and climate goals, sewage sludge can be
effectively transformed from an environmental burden into a
valuable resource, contributing to national energy security,
emissions reduction, and sustainable development.
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