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Abstract. The pressing demand for renewable energy has made biomass a quintessential alternative to fossil fuels. This study aims to develop and 
compare predictive models for optimising bio-oil yield from the intermediate pyrolysis of Cocos nucifera, utilising response surface methodology with 
the central composite design and hybrid models (PSO-ANFIS and GA-ANFIS). It seeks to characterize the bio-oil yield to investigate its quality for 
use as a biofuel. An experimental run was performed by varying pyrolysis operating parameters, namely, temperature (300–700°C), heating rate (6–
30°C/min), residence time (5–25 minutes), particle size (0.5–4.5 mm), and nitrogen flow rate (10–50 mL/min).  Hybrid models (PSO-ANFIS and AN-
FIS-GA) were used to predict the bio-oil yield to identify the most robust model. An optimum bio-oil yield (52.17 wt.%) was attained at a temperature, 
heating rate, residence time, particle size, and nitrogen flow rate of 510.2°C, 10.5°C/min, 5.2 minutes, 0.3 mm, and 17.3 mL/min, respectively.  The 
study shows that its hybrid models are scalable and outperform traditional techniques (RSM) in terms of predictive accuracy and computational 
efficiency. The GC-MS analysis identified over 200 compounds in bio-oil, comprising mainly phenols, esters, and oleic acids, which confirmed its 
suitability for producing biofuels, lubricants, and pharmaceuticals. Also, FTIR analysis confirms functional groups of biodiesel, adhesives, and resins. 
The PSO-ANFIS and GA-ANFIS models accurately predict the bio-oil yield, with the PSO-ANFIS model outperforming the other models with an R² 
of 0.994 and RMSE of 0.449 during the test phase, representing a two- to three-fold improvement over traditional RSM. Unlike conventional empirical 
models, the hybrid approach improves predictive accuracy and reduces the number of required experiments and computational errors, enabling real-
time adjustments to the pyrolysis process, thereby advancing pyrolysis research and bio-oil optimization. This research is highly relevant for improving 
waste-to-energy production in regions where Cocos nucifera residues remain abundant, especially in emerging economies. 
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1. Introduction 

The increasing demand for renewable energy sources has 
placed biomass as one of the most relevant alternatives to fossil 
fuels (Onokwai et al., 2022). Biomass, generated from 
agricultural residues, forestry waste, or dedicated energy crops, 
can be converted directly into biofuels, heat, and electricity 
(Garg et al.,2024).  Among the different ways of conversion, 
pyrolysis is viewed as one of the most outstanding 
thermochemical procedures. Pyrolysis is a thermal 
decomposition (300–700°C) of organic material in an oxygen-
free environment, producing bio-oil, biochar, and non-
condensable gases (NCGs) (Yi et al., 2023). Slow pyrolysis, 
which is characterized by low temperature operation and long 
residence time, generates the most biochar that can be used for 
carbon storage and to improve soil fertility. Fast pyrolysis gives 
importance to rapid heating and short residence time, 
increasing the yield of bio-oil(Prasetiawan et al 2023) . Heating 
rates in flash pyrolysis are even faster, requiring advanced 
systems and processes strictly controlled (Huang et al., 2023). 
Intermediate pyrolysis is generally conducted at moderate 
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temperatures (350-550°C) with short vapour residence times 
(10-30 minutes), with balances of bio-oil yield and quality 
(Olayokun et al., 2024). The bio-oil yield, with less oxygenates, 
is more stable for fuel use and industrial applications, while 
biochar still retains high carbon content and porosity, making it 
suitable for agricultural and environmental uses (Xu et al., 2020).  

Coconut shell (Cocos nucifera) is considered an excellent 
biomass feedstock for intermediate pyrolysis in countries such 
as Nigeria (Tabal et al., 2023). These coconut wastes are 
underutilized or even disposed of with hazardous methods such 
as open burning, which could instead be converted to bio-oil 
and biochar using intermediate pyrolysis; thus, addressing the 
problem of their waste management, besides encouraging 
renewable energy production (Azeta et al., 2021). Therefore, it 
adds to sustainable development and the reduction of 
environmental pollution. Optimizing the operational parameters 
and conditions of the intermediate pyrolysis is vital for a high 
yield and to improve the quality of the products. The parameters 
are related to each other in a very complicated nonlinear way, 
including temperature, heating rate, residence time, particle 
size, and nitrogen flow rate (Mian et al., 2024). 
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Response surface methodology (RSM) optimises various 
processes by modelling and quantifying the relationships 
between operating parameters and response variables 
(Vellaiyan et al., 2024). RSM, with the help of experimental 
designs such as Central Composite Design (CCD), optimises 
efficiency by minimizing runs of experiments so that the results 
obtained are accurate yet resource-efficient (Kundu et al., 2024). 
Numerous empirical studies substantiate the optimality of RSM 
in the pyrolysis process. (Nawaz et al., 2024), applied RSM 
intending to optimise macadamia nutshell pyrolysis and showed 
better bio-oil yield as a result of the interaction of several 
parameters like temperature, heating rate, and nitrogen flow 
rate. Similarly, (Hasan et al., 2023) conducted RSM on the 
pyrolysis experiments of sugarcane bagasse and demonstrated 
its potential to yield a very good prediction with a minimum 
number of efforts to maximize yields. (Chen et al., 2024) utilized 
RSM through CCD to optimise bio-oil yield from PKS pyrolysis 
and reported an optimal condition that yielded 47.10 wt.% bio-
oil. These studies depict the use of RSM in improving the 
efficiency of pyrolysis and bio-oil production. In the pyrolysis 
experiment in an inert atmosphere, (Okokpujie et al., 2023) 
carried out RSM to optimise bio-oil yield. The study 
demonstrates that bio-oil production depends on reaction 
temperature, heating rates, and reaction time. This research 
produced bio-oil of 47.10 wt% at 520 °C, which exceeded 
existing fast pyrolysis yield records. FTIR and GC-MS analysis 
of the bio-oil composition indicates its applicability in diesel 
engines as well as marine equipment and industrial processes, 
which demonstrates PKS's potential as a viable alternative fuel. 
(Rahimi et al., 2023) applied the machine learning (ML) models 
to predict and optimise biofuel yields of biomass pyrolysis using 
walnut shells and seed cake as feedstocks. Seven ML models 
showed high predictive accuracy (R² = 0.95–0.99), and the best 
performance of the radial basis function. Genetic algorithms 
(GA) combined with Radial Basis Function (RBF) gave optimum 
yields of 36.04 wt.% for biochar, 45 wt.% for bio-oil, and 54.16 
wt.% for NCGs. The sensitivity analysis showed that the 
biomass species and pyrolysis conditions were the most 
important parameters. However, the reliance on certain 
biomass types and respective experimental datasets may limit 
generalization to other feedstocks and diverse pyrolysis systems 
without further validation. Nevertheless, ML techniques, 
particularly Adaptive Neuro-Fuzzy Inference Systems (ANFIS), 
handle nonlinearities and complexities of the pyrolysis 
processes (Tang et al., 2024). ANFIS allows the modelling of 
complex relations between operating parameters and pyrolysis 
outcomes by incorporating pattern recognition capabilities of 
artificial neural networks (ANNs) with interpretability provided 
by fuzzy logic (FL). Besides, the performance of the ANFIS 
models could be improved further by using metaheuristic 
algorithms such as Particle Swarm Optimization (PSO) and GA, 
as stated by Jabeen et al. (2023). 

PSO-ANFIS utilizes swarm intelligence to optimise fuzzy 
membership functions and model parameters. Particles 
iteratively explore the search space for efficient convergence 
toward optimal solutions and show superiority in predicting bio-
oil and biochar yields by capturing complex nonlinear 
interactions at play (Li et al., 2021; Salameh et al., 2022). In the 
case of GA-ANFIS, evolutionary strategies such as selection, 
crossover, and mutation prevent early convergence and help in 
optimizing the parameters for reliable results even in 
multimodal spaces (Chen et al., 2024; Tumuluru & Heikkila, 
2019). (Haq et al., 2022) incorporated ML with GA and PSO for 
biochar yield prediction and proposed the ELT-PSO model, 
which had a very high accuracy of R² = 0.99 and RMSE = 2.33. 
The software tool developed using ELT-PSO can predict the 

yields with an error margin of 2%, but it has its application is 
limited to biochar only. (Li et al., 2021) proposed an ANFIS 
model for bio-oil yield optimization, which was further 
optimised using GA and PSO, based on 244 historical data. PSO-
ANFIS outperformed GA-ANFIS with R² = 0.968 and RMSE = 
1.4443; however, the dependence on biomass type and specific 
pyrolysis conditions reduces versatility. (Azizi et al., 2024) 
utilised an ANFIS optimised with PSO to predict biochar yield 
from biomass pyrolysis. This approach overcomes limitations of 
least square support vector machines with respect to local 
optima and high time complexity. The key input parameters are 
heating rate, pyrolysis temperature, moisture content, holding 
time, and sample mass, while the outputs are biochar mass and 
yield. In addition, the ANFIS model outperformed the existing 
methods in terms of performance metrics: root mean square 
error (0.2673), coefficient of determination (0.9842), and 
average absolute percent relative error (3.4529). However, the 
model's reliance on accurate training data may limit its 
applicability to broader biomass types and conditions. 

Despite the use of metaheuristic optimization algorithms 
such as ANFIS, ANFIS with GA, and ANFIS with PSO for the 
intermediary pyrolysis process, the consideration of more than 
three operating parameters, such as temperature, heating rates, 
residence time, particle size, nitrogen flow rate, and pyrolysis 
conditions, has not been comprehensively reported. Many 
researchers have looked into the use of coconut shells as 
biomass feedstock for pyrolysis because of their high lignin 
content and the possibility of producing bio-oil from them 
(Ahmad et al., 2021; Azeta et al., 2021; Ratnasari et al., 2024). 
Different methods have been tried in the past, including RSM 
and ANN optimizations, to improve bio-oil yield, and the ANFIS 
bio-oil yield prediction model (Agu et al., 2024; Li et al., 2021; 
Mathur et al., 2023). However, numerous such studies have 
flaws that restrict their usefulness in real-world applications. 
One limitation includes multiple parameters optimisation, as 
most of the previous studies tend to optimize a few parameters, 
mostly temperature, heating rate, nitrogen flow rate, and ignore 
the more complex problems of multi-parameter interactions. 
Besides, conventional RSM models fail to accurately describe 
the nonlinearities relationships of many pyrolysis processes, 
which makes the predictions less reliable. Also, some studies 
use machine learning models in isolation without hybrid 
techniques, which reduces their robustness in process 
optimization. Also, most of the previous models are less 
applicable due to their inability to provide real-time control, 
which is critical for large-scale processes (Kaur et al., 2024; 
Ikpeseni et al., 2024; Nawaz et al., 2024; Huraira et al., 2023; 
Mathur et al., 2023; Chhikara et al., 2023;  Abatyough et al., 2022; 
Li et al., 2021; Chukwuneke et al., 2022; Laougé et al., 2020; Chan 
et al., 2017; Sareekam et al., 2016 ).  

The current study intends to fill this knowledge gap by 
integrating RSM with hybrid artificial intelligence-based models 
(PSO-ANFIS and GA-ANFIS),  adopting five parameters 
simultaneously to eliminate potential errors arising from a lack 
of consideration of pertinent factors and capturing both linear 
and complex nonlinear interactions of the parameters, thus an 
accurate and detailed understanding of how the parameters 
influence bio-oil yields, this approach not only refines the 
pyrolysis process for coconut shell but surpasses conventional 
techniques in predictive capability and process control. This 
research advances prior studies by utilising hybrid models, 
PSO-ANFIS, and GA-ANFIS to improve prediction accuracy 
and process efficiency. The combination of these machine 
learning methods with experiments guarantees better modelling 
of parameter relationships, resulting in fewer experimental 
errors and greater optimization of bio-oil yields. The application 
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of Cocos nucifera serves as a biomass feedstock, broadening the 
scope of this work, especially in areas where the residues of 
coconut are in surplus. The synergy of the RSM and hybrid 
ANFIS models underlines the use of advanced computation 
techniques that might play a significant role in overcoming 
biomass conversion challenges, offering scalable solutions for 
both sustainable energy production and waste management. 

 
2. Materials and Methods 

2.1 Biomass source  

The Cocos nucifera utilized for this research was sourced 
from Ota, a town in Ogun State, Nigeria, at a latitude of about 
6.6985° N and a longitude of 3.2342° E. The sample was cleaned 
with distilled water to remove dirt and other impurities, after 
which it was dried in air for two days. The dried sample was 
then crushed into different sizes using a ball mill. The samples 
after drying were then weighed and sieved into the desired size 
distributions. 

2.2 Biomass Characterization 

Prior to experimentation, this study characterized the 
Cocos nucifera through its proximate and ultimate compositions 
as well as its structural composition and heating value to 
determine its energy potential for the pyrolysis process. 
Knowing these factors is critical to obtaining optimal pyrolysis 
conditions to maximize bio-oil yield while minimizing negative 
environmental impacts from the conversion process. This study 
analyses the biomass capability to serve as a renewable fuel for 
efficient pyrolysis by evaluating the key parameters of volatile 
matter, fixed carbon and ash contents, moisture contents, 
elemental composition, and the biomass higher and lower 
heating values. 

The proximate analysis, such as moisture content, was 
determined by heating the biomass in a crucible furnace at 
105°C according to ASTM D3173-02 (ASTM International, 
2002), volatile matter at 900°C in an oxygen-free environment 
according to ASTM D3175-20 (ASTM International, 2020) and 
ash at 750°C using the standard test procedure outlined in 
ASTM D3174-02 (ASTM International, 2011). The Fixed Carbon 
(FC) denotes the solid combustible residue left behind after the 
volatile compounds are removed, while accounting for moisture 
(MC), volatile matter (VM), and ash content using Equation (1) 
(Akuwueke et al., 2024). A higher FC indicates a more energy-
rich solid residue, which is important for pyrolysis yields and 
combustion potential. Also, ultimate analysis was used to 
determine the constituents of carbon, hydrogen, and nitrogen 
following the guidelines of ASTM D5373-16 (ASTM 
International, 2016). The sulphur content was obtained using 
ASTM D4239-11 (ASTM International, 2011) and the oxygen 
content was determined using Equation (2), while taking into 
account direct measurement of all other elements (carbon, 
hydrogen, nitrogen, sulfur, and ash) as proposed by (Onochie et 
al., 2023; Onokwai at al., 2022). Excessively high oxygen 
content lowered heating value and reduced stability of bio-oil. 
The structural composition includes lignin, which was obtained 
following the procedure outlined in ASTM D1106-21 (ASTM 
International, 2021), as well as cellulose and hemicellulose 
according to ASTM E1758. The higher heating value (HHV) was 
determined experimentally using a bomb calorimeter according 
to  ASTM D5865-13 (ASTM International, 2013), while the lower 
heating value (LHV) was calculated from HHV as shown in 
Equation (3) by Oyebanji et al. (2023). This equation transforms 
the HHV into the LHV by factoring in the energy loss in 
vaporizing water formed when hydrogen burns. LHV is more 
useful in regard to practical purposes, such as biomass 

decomposition in the reactor. Gas chromatography-mass 
spectrometry (GC-MS) is used to identify compounds according 
to ASTM E1758-01(2020) (ASTM International, 2020), while 
Fourier-Transform Infrared Spectroscopy (FTIR) is used to 
determine the functional groups according to ASTM E1252-98 
(ASTM International, 2013).  

FC (wt.%) =100-(MC+VM+Ash content)  
      (1) 

O (wt.%) = 100 – (C + H + N + S + Ash)  
      (2) 

LHV (MJ/kg)=HHV(MJ/kg)- (M ×H2×∆H) 
      (3)  
Where, FC is fixed carbon,  MC moisture content, VM volatile 
matter, O, C, H, N, and S are oxygen, carbon, hydrogen, 
nitrogen, and sulphur contents, respectively; LHV is lower 
heating value; HHV is higher heating value; M is mass fraction 
of hydrogen in the biomass; H2 is Hydrogen – to - water 
conversion factor; and ∆H is latent heat of vaporisation of water  

 
2.3 Modelling and Optimization Process 

This study used RSM with CCD in experimental design as 
a statistical tool fit for optimization problems with multi-factor 
parameters when system behaviour could be described with a 
quadratic model. The matrix comprised operating parameters 
such as temperature (300-700°C), heating rate (6-30 ℃/min), 
residence time (5-25 min), particle size (0.5-4.5 mm), and flow 
rate of nitrogen(10-50mL/min) with corresponding responses 
such as bio-oil, biochar, and non-condensable gases (NCG). 
Each parameter was considered at levels 1, -1, 0, α, and – α. The 
values – α and + α depend on a number of operating parameters 
in the parametric part of the design and were determined using 
Equation (4), where k was the number of operating parameters. 
The analysis came up with a mathematical expression linking 
the response variable and independent factors as explained in 
Equation (5). 

∝=±[2^k ](1⁄4)     (4) 
 

y=f(x1,x2,x3,…………….xn )       (5) 
  

Where y is the response, f is the unknown response function, 
and x1, x2, x3,…………….xn are the independent factors, and n 
denotes their total number. These factors were assumed to be 
continuous and controllable within the experimental 
framework, ensuring minimal errors. Subsequently, the 
coefficients of a mathematical model were predicted using 
second-order or quadratic equations. This model was used for 
predicting, optimizing, identifying, and analysing the interaction 
influence of the independent parameters to determine their 
impact on the quality and quantity of bio-oil and biochar yields, 
as shown in Equation (6) 

 

y = β0 + ∑ βixi
k
i=1 + ∑ βiixi

2 +k
i=1 ∑ ∑ βijxixj + ϵk

j>1
k
i=1  (6) 

    
In Equation (5), xi and xj refer to the coded independent 

parameters, while y refers to the dependent variable or 
responses (bio-oil yield). The coefficients βo,βi,βii,and βij denote 
the constant term, linear effects, quadratic effects, and 
interaction effects, respectively. The term k indicates the 
number of independent factors, and ϵi accounts for random 
experimental errors.  

The experiments were designed and analysed using the 
Design-Expert version 7.0.3, Stat-Ease, which automatically 
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solved the quadratic model to identify parameter interactions 
and evaluated statistical significance through P-values and the 
coefficient of determination (R²). A high value of R² confirmed 
the model's reliability for the prediction of responses against the 
experimental conditions. In total, 50 experimental runs 
involving factorial, axial, and centre points for replication were 
carried out using CCD. The number of runs, N, was calculated 
using the formula for CCD given by Kumar et al. (2019) 
expressed in Equation (7). 

N=2k+2k+nc      (7) 

nc is the number of replicated experiments at the center; the 2k 
factorial design centered around the origin enables the 
derivation of a quadratic model with multiple independent 
factors. The design captured both linear and nonlinear 
interactions, allowing for a detailed assessment of each 
parameter's influence on bio-oil yield and process optimization. 

2.4 Experimental Procedure 

A pyrolysis plant comprising a fixed bed reactor, a PID 
temperature controller, a nitrogen gas cylinder, an ice bag 
condenser, a bio-oil collector, an NCG collector, and a 4kW 
electric heater is shown in Figure 1. The reactor system 
consisted of a tubular reactor made of 304 stainless steel in a 
vertical electric furnace that was fitted with a PID controller for 
good temperature control. A K-type thermocouple continuously 
measured the temperature and provided feedback to the 
controller, ensuring stable and precise temperature regulation. 
Biomass samples of Cocos nucifera (1.0–4.5 mm diameter, 100 
g each) were fed into the reactor via a 10 L hopper. The reactor 
was preheated to operation temperatures of 300–700°C, having 
heating rates of 6–30°C/min and a residence time of 5–25 
minutes. An inert nitrogen atmosphere is maintained with flow 
rates of 10–50 mL/min. Five runs for each experiment were 
conducted for consistency in the results obtained. The pyrolysis 
generated volatile gases, biochar, and bio-oil. The volatile gases 
passed through the condenser, which separated the bio-oil from 
water, while biochar was collected from the reactor. Yields were 
calculated by mass balance methods. 

2.5. Predictive Modelling Using PSO-ANFIS and GA-ANFIS Based 
on Experimental Data 

Hybrid machine learning models (PSO-ANFIS and GA-ANFIS) 
were utiised in this study to enhance the predictive capability 
and process optimization for bio-oil yield from Cocos nucifera 
pyrolysis due to their suitability in handling complex nonlinear 
relationships between process parameters and output yields 

(Cuevas et al., 2024). These models were developed using real 
experimental data and benchmarked against traditional 
response surface methodology (RSM). 

2.5.1     Data Collection and Preprocessing  

The bio-oil yield was measured using input-output data from 
fifty (50) experimental pyrolysis runs whose process parameters 
had been varied systematically based on the experimental 
design matrix obtained using CCD. The corresponding output 
was bio-oil yield (wt.%), measured for each experiment. The 
dataset was divided into a training (70%) and a testing subset 
(30%) to develop and validate the predictive models. The input 
parameters (x) are temperature, heating rate, residence time, 
particle size, and nitrogen flow rate, while the output (y) is the 
bio-oil yield (wt.%). ANFIS, initialized with fuzzy rules and 
Gaussian membership functions (Titov, 2024), maps input-
output relationships through the use of fuzzy logic and neural 
network learning. To enhance its sensitivity to parameters, 
optimization techniques PSO and GA were integrated for an 
improvement in predictive accuracy (Cuevas et al., 2024).   

2.5.2 ANFIS Structure and Initialization 

The Adaptive Neuro-Fuzzy Inference System (ANFIS) model 
combines fuzzy logic reasoning with neural network learning. 
Initial fuzzy rules were generated from the training data, using 
Gaussian membership functions for each input variable. The 
model captured nonlinear interrelationships through a five-layer 
architecture that maps inputs to predicted outputs (bio-oil 
yields). 

2.5.3 PSO-ANFIS Framework 

ANFIS and PSO are adopted to optimise the bio-oil yield. The 
PSO was integrated with ANFIS to optimize the parameters 
(temperature, heating rate, residence time, particle size, and 
nitrogen flow rate) of the membership function with great 
efficiency. The ANFIS defines the fuzzy rules while a swarm of 
particles (potential solutions) is initialized, each encoding a set 
of ANFIS parameters.  ANFIS predicts yields based on training 
data, and each particle calculates fitness, e.g., Mean Squared 
Error (MSE) and Coefficient of Determination (R²)  between 
predicted and actual values (Şener et al., 2024). Particles 
iteratively update positions based on local and global best 
solutions until a stopping criterion, such as minimal error or 
maximum iterations, is met. This iterative feedback refines 
ANFIS parameters, enabling accurate and robust predictions as 
shown in Figure 2. 

2.5.4 GA-ANFIS Framework 

The GA-ANFIS framework (Figure 2) integrates ANFIS with GA 
to optimise bio-oil yield predictions. The GA-ANFIS model used 
a genetic algorithm to evolve the ANFIS parameters. 
Chromosomes represented fuzzy parameters and were evolved 
via selection, crossover, and mutation to iteratively refine a 
population of candidate solutions. The GA population encodes 
ANFIS parameters, including fuzzy rules and membership 
function shapes (Othman et al., 2022). ANFIS predicts yields 
based on initial parameters, and the fitness of each chromosome 
was evaluated using the same MSE-based function. After 
several generations, the fittest chromosome provided the 
optimal ANFIS model configuration. This iterative process 
refines ANFIS parameters and enhances the capability of 
nonlinear relationship capture and predictive accuracy (Kumar 
& Bansal, 2023). 

 
Fig 1. Experimental setup 
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2.5.5 Model Evaluation Using Statistical Performance Metrics  

The predicted bio-oil yield of the hybrid model was compared 
with the RSM model predictions, as the experimental values 
serve as a benchmark for the comparison. Although RSM 
efficiently models polynomial relationships, nonlinear, multi-
modal interactions with biomass pyrolysis cannot be captured. 
This limitation is handled by the global optimization of PSO-
ANFIS and GA-ANFIS, enhancing predictive accuracy and 
robustness (Abonyi et al., 2023; Onokwai et al., 2025). Various 
statistical metrics were computed using both training and 
testing datasets. These metrics collectively provide a 
comprehensive evaluation of the models in terms of accuracy, 
consistency, reliability, and bias, detailed as follows: 

• Coefficient of Determination (R²)  

The coefficient of determination was employed to quantify the 
goodness of fit of the predicted values to the true experimental 
results, as shown in Equation 8 (Berggren, 2023). It represents 
the proportion of variance in the dependent variable that can be 
accounted for by the independent variables. The greater the 
value of R² and the closer to 1, the better the model fit to the 
data. 

R2 = 1 −
∑ (yi − yî)

2n
i=1

∑ (yi − y̅)2n
i=1

                                                               (8) 

 

Fig 2. Computational Prediction of Bio-oil Yield Using PSO-ANFIS and GA-ANFIS Models 
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Where yi is the experimental target values, yî  is the predicted 
value, y̅  is the mean of experimental values, and n is the number 
of data points. 

• Mean Relative Error Percentage (MRE%) 

The Mean Relative Error Percentage (MRE%) is used to express 
the average relative deviation between predicted and 
experimental bio-oil yield as shown in Equation 9. The measure 
offered a normalized error, which provides a measure of the 
predictive capability of the model on a percentage scale (Özbay 
and Kokten, 2019). 

MRE% =
1

n
∑ |

yi − yî

yi
|

n

i=1

× 100                                         (9) 

• Mean Squared Error (MSE) 

Mean Squared Error (MSE) is used to calculate the squared 
deviation of actual and predicted outputs as expressed in 
Equation 10. It measures of average squared error of prediction 
and is sensitive to large deviations (Djandja et al., 2023). 

MSE =
1

n
∑(yi − yî)

2                                                 (10)

n

i=1

 

• Root Mean Square Error (RMSE) 

The square root of MSE, known as the Root Mean Square Error 
(RMSE), has the same unit as the output variable (Equation 11). 
RMSE was utilised to interpret the predictive errors in the same 
units as the bio-oil yield (Mathur et al., 2022) 

RMSE =  √
1

n
∑(yi − yî)

2

n

i=1

                                                            (11) 

• Standard Deviation (STD) 

The Standard Deviation of Errors (STD) indicates the spread or 
dispersion of the errors of prediction from the mean (Equation 

12). It provides information on the consistency and volatility of 
the performance of the model (Abbasi and Diwekar, 2014). 

STD =  √
1

n
∑ ((yi − yî) −

1

n
∑(yi − yî)

n

i=1

)

2
n

i=1

            (12) 

• Mean Absolute Error (MAE) 

The Mean Absolute Error (MAE) was used to calculate the 
average of the absolute difference between actual and predicted 
values, disregarding the direction of the error (Equation 13). 
This metric offers a simple-to-understand value for the size of 
the average error (Zhao et al., 2024). 

MAE =  
1

n
∑|yi − yî|

n

i=1

                                              (13) 

• Mean Bias Deviation (MBD) 

The Mean Bias Deviation (MBD) was used to identify systematic 
overprediction or underprediction by the model (Equation 14). 
A positive or negative MBD indicates a tendency to overpredict 
or underpredict the target variable (Ahmed et al., 2024). 

MBD =  
1

n
∑((yi − yî))

n

i=1

                                  (14) 

3. Results and Discussion 

3.1. Characterization of Cocos nucifera 

Table 1 outlines the characterization of Cocos nucifera biomass 
suitable for intermediate pyrolysis analysis. The proximate 
analysis comprises low moisture content (5.92 wt.%) to 
decrease energy loss and increase the yield of bio-oil, and high 
volatile matter (68.98 wt.%) and fixed carbon (23.20 wt.%) 
responsible for the production of bio-oil. The small ash content 
in the sample (1.90 wt.%) improves the biochar purity with a 

Table 1 
Biomass Characterization 

Analysis  wt.% 

Proximate analysis (wt.%)  

MC 5.92 + 0.001 

VM 68.98 + 1.02 

FC 23.20 + 0.13 

Ash 1.90+ 0.01 
Ultimate analysis (wt.%)  

C 49.93 + 0.12 
H 6.92 + 0.04 
N 0.91 + 0.01 

O 42.04 + 0.13 
S 0.20 + 0.001 

Structural composition analysis (wt.%)  

Ce 33.25 + 0.04 

He 28.31 + 0.10 
Li 38.44 + 0.03 
Heating value analysis (MJ/kg)  

HHV 22.96 + 0.01 

LHV 20.17 + 0.02 
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reduction of reactor fouling. Ultimate analysis shows high 
carbon (49.93 wt.%) and moderate hydrogen (6.92 wt.%) 
content, indicating potential for energy-rich bio-oil. Oxygen 
content (42.04 wt.%) may affect stability and calorific value, 
while low sulphur (0.20 wt.%) reduces harmful emissions, 
supporting an environmentally friendly process (Abatyough et 
al., 2022). Pyrolysis was dependent on the structural 
composition of the biomass, cellulose, and hemicellulose, 
recorded at 33.25 wt.% and 28.31 wt.%, respectively, and 
decomposed at 300–500°C, which were the major contributors 
to bio-oil yield. Also, the degradation of lignin, 38.44 wt.%, at 
higher temperatures supports biochar yield. This shows that 

Cocos nucifera is a suitable pyrolysis feedstock. Moreover, the 
HHV, 22.96 MJ/kg, and the LHV, 20.17 MJ/kg, highlight 
potential energy sources (Ikpeseni et al., 2024; M. Kumar et al., 
2019). 

3.2 Experimental Design Matrix and Corresponding Response 

Table 2 depicts the experimental design matrix and the 
corresponding responses (bio-oil, biochar, and NCGs) obtained 
from Fifty (50) experimental intermediate pyrolysis runs, while 

Table 2  
Experimental design matrix and the corresponding response 

Run 

Real level factors Responses (wt.%) 

      A: 
Temperatures (oC) 

B: Heating 
rates 

(oC/min) 

C: Residence 
times (min) 

D: Particle 
sizes 
(mm) 

E: Nitrogen 
flow rates 
(mL/min) 

 Bio-oil  Biochar NCG 

1 500 18 10 2.5 30 52.17 21.28 26.91 
2 500 18 15 2.5 30 49.51 22.31 28.18 
3 500 18 5 2.5 30 49.73 24.41 25.86 
4 700 30 25 0.5 50 44.21 21.08 34.71 
5 300 6 5 4.5 10 41.11 47.21 11.68 
6 500 18 15 2.5 30 49.33 22.35 28.32 
7 500 12 15 2.5 30 48.64 22.47 28.89 
8 700 6 5 4.5 10 45.93 42.91 11.16 
9 700 30 5 4.5 10 46.21 33.11 20.68 
10 300 30 25 4.5 10 38.12 36.61 25.27 
11 300 30 25 0.5 10 45.56 30.63 23.81 
12 400 18 15 2.5 30 48.43 23.91 27.66 
13 500 18 15 2.5 30 49.58 22.38 28.04 
14 300 6 5 0.5 10 46.83 45.18 7.99 
15 300 6 25 0.5 10 43.21 40.09 16.7 
16 500 18 15 2.5 20 50.76 21.94 27.3 
17 700 30 25 4.5 50 35.21 23.15 41.64 
18 700 6 25 0.5 50 43.21 24.76 32.03 
19 300 30 5 0.5 10 47.53 37.81 14.66 
20 300 30 25 4.5 50 32.19 31.76 36.05 
21 500 18 15 2.5 30 49.47 22.36 28.17 
22 300 30 5 4.5 10 45.67 43.67 10.66 
23 700 30 5 4.5 50 44.27 25.84 29.89 
24 300 6 25 4.5 10 36.16 44.36 19.48 
25 500 18 15 1.5 30 51.43 23.12 25.45 
26 700 30 5 0.5 50 41.1 22.09 36.81 
27 300 6 5 4.5 50 40.21 46.22 13.57 
28 500 18 15 2.5 30 49.43 22.4 28.17 

29 500 24 15 3.5 40 48.21 21.94 29.85 

30 700 30 5 0.5 10 47.78 25.23 26.99 

31 700 6 25 4.5 10 39.31 34.13 26.56 

32 500 18 15 2.5 30 49.56 22.34 28.1 
33 300 6 5 0.5 50 46.41 41.16 12.43 
34 500 18 15 2.5 10 49.2 24.54 26.26 
35 700 30 25 0.5 10 46.24 23.55 30.21 
36 300 6 25 0.5 50 40.25 32.61 27.14 
37 600 18 15 2.5 30 48.18 22.81 29.01 
38 700 6 25 0.5 10 45.91 26.58 27.51 
39 500 18 15 2.5 30 49.53 22.41 28.06 
40 700 6 5 0.5 50 47.16 27.61 25.23 
41 500 18 15 2.5 50 49.01 23.71 27.28 
42 700 6 5 0.5 10 47.53 35.12 17.35 
43 300 30 5 0.5 50 47.36 37.81 14.83 
44 300 30 5 4.5 50 42.48 38.12 19.4 
45 300 6 25 4.5 50 30.01 39.29 30.7 

46 700 6 25 4.5 50 33.54 28.13 38.33 

47 700 6 20 4.5 50 34.27 29.54 36.19 

48 700 30 25 4.5 10 37.12 24.01 38.87 

49 500 18 15 2.5 30 49.63 22.38 27.99 

50 300 30 25 0.5 50 44.21 24.04 31.75 
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Table 3 shows the correlation between real and coded values. 
The factors influenced the pyrolysis products, with temperature 
being the most influential. The highest bio-oil yield, for Run 1 at 
a temperature of 500°C, was 52.17 wt.%, since this temperature 
was adequate to provide the necessary thermal energy for 
volatile compound formation with reduced secondary cracking. 
At lower temperatures, such as 300°C, in Run 20, the yield 
decreased to 32.19 wt.% owing to incomplete pyrolysis and 
restricted volatile formation (Afrah et al., 2024).  

At high temperatures, 700°C, secondary cracking of bio-
oil vapours into NCGs occurs, which reduces bio-oil yields, as 
seen in Run 17 (35.21 wt.%). In contrast, low temperatures 
favour biochar production due to limited devolatilization, in Run 
5 at 300°C, yielding 47.21 wt.%. As temperature increases, 
volatile matter evolution rises, lowering biochar yields while 
boosting NCG production, exemplified in Run 17, where NCG 
yield reached 41.64 wt.%. The heating rate significantly impacts 
pyrolysis outcomes. Moderate rates (18°C/min) optimise bio-oil 
yields (50 wt.%, Runs 1, 16, 32) by balancing decomposition and 
minimizing secondary reactions. High rates (30°C/min) 
enhance thermal cracking, increasing NCG yields (41.64 wt.%, 
Run 17) at the expense of bio-oil and biochar. Conversely, low 
rates (6°C/min) favour biochar yields (47.21 wt.%, Run 5) due 
to slower volatilization. Residence time affects primary pyrolysis 

and secondary reactions. Shorter residence times, such as 5 
minutes, favour higher bio-oil yields, 46.21 wt.% for Run 9, by 
reducing secondary decomposition. Longer residence times, 
such as 25 minutes, increase NCG yields, 41.64 wt.% for Run 17, 
due to increased thermal cracking, repolymerisation, and 
recondensation, which decrease bio-oil and biochar yields. 
Particle size affects heat transfer and product distribution 
(Hasan et al., 2023). Smaller sizes (<0.5 mm) improve bio-oil and 
NCG yields, as seen in Run 30 (36.81 wt.% NCG at 700°C), while 
larger sizes (4.5 mm) limit heat penetration, increasing biochar 
yields (47.21 wt.% in Run 5, 44.36 wt.% in Run 24). The nitrogen 
flow rate maintains the reaction environment. A higher flow rate 
(50 mL/min) reduces the concentrations of reactive vapour and 
secondary cracking, hence improving the bio-oil yield to 46.41 
wt.% at 300°C for Run 33. Lower flow rates, such as 10 mL/min, 
promote secondary reactions and increase NCG yield to 36.05 
wt.% for Run 20.  

3.3 Statistical Model Development for bio-oil yield via intermediate 
pyrolysis process 
 
Table 4 and Equation (4) present the effects of pyrolysis 
parameters, such as temperature (A), heating rate (B), residence 
time (C), particle size (D), and nitrogen flow rate (E), on bio-oil 

Table 3 
 Correlation between real and coded levels of operating parameters of the intermediate pyrolysis process 

 Level 

Operating parameter Axial (-α)  Low  Center  High  Axial (+α)  

 -2 -1 0 1 2 

Temperature (°C) 300 400 500 600 700 

Heating rate (°C/min)  6 12 18 24 30 

Residence time (min) 5 10 15 20 25 

Particle size (mm) 0.5 1.5 2.5 3.5 4.5 

Nitrogen flow rate (mL/min) 10 20 30 40 50 

 

Table 4  
ANOVA for Reduced Quadratic model for Bio-oil Yields (BO) 

Source Sum of Squares df Mean Square F-value p-value Remark 

Model 1396.52 10 139.40 76.76 < 0.0001 significant 

A-Temperatures 66.11 1 66.11 36.40 < 0.0001 significant 

B-Heating rates 9.92 1 9.92 5.46 0.0246 significant 

C-Residence times 230.40 1 230.40 126.86 < 0.0001 significant 

D-Particle sizes 287.56 1 287.56 158.33 < 0.0001 significant 

E-Nitrogen flow rates 10.60 1 10.60 5.84 0.0205 significant 

AB 13.31 1 13.31 7.33 0.0100 significant 

AD 9.66 1 9.66 5.34 0.0281 significant 

CD 75.82 1 75.82 41.75 < 0.0001 significant 

CE 6.04 1 6.04 3.32 0.0759 Not significant 

A² 562.25 1 562.25 309.59 < 0.0001 significant 

Residual 5.67 39 1.82    

Lack of Fit 8.61 32 3.88 2.69 0.1090 Not significant 

Pure Error 0.0624 7 0.0089    

Cor Total 1405.19 49     

R2 =98.16 wt.%; Adjusted R2 =93.92 wt.%; Predicted R2 = 90.89 wt.%; CV = 3.01 wt.%; Adeq Precision = 33.5481 
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yield. The complicated relationships were well described by the 
quadratic models, reflected in the statistical parameters R², 
Adeq Precision, values of lack-of-fit, and CV. The model for bio-
oil yield was highly significant with an F-value of 76.76 and p < 
0.0001. Obtained Adeq Precision of 33.55, showing a high 
signal-to-noise ratio, and the non-significant lack-of-fit (p = 
0.1090), confirming the reliability of the model. Low CV (3.01 
wt.%) and high R² (98.16 wt.%) validated the model, and 
adjusted R² (93.92 wt.%) and predicted R² (90.89 wt.%) 
confirmed predictive accuracy. With an F-value of 36.40 and p 
< 0.0001, the temperature had a significant influence on bio-oil 
yield. Also, other variables such as residence time and particle 
size show good influence; longer residence time favours volatile 
matter release, and smaller particle size enhances heat transfer. 
Interaction effects, such as AB (temperature and heating rate, p 
= 0.0100) and CD (residence time and particle size, p < 0.0001), 
synergistically enhance bio-oil recovery. The quadratic 
temperature term (F-value = 309.59) highlights a nonlinear 
relationship, with bio-oil yield increasing before leveling off or 
declining at higher temperatures (Ikpeseni et al., 2024). The 
statistical parameters confirm the reliability and precision of the 
model, such as Adeq Precision (33.55), lack-of-fit values, and 
CV. High Adeq Precision and non-significant lack-of-fit prove 
the accuracy of the model for predictions, while low CV 
establishes the suitability for optimization of pyrolysis. With high 
R² values, the model effectively enhances yields through 
synergistic effects with minimum antagonist influences for 
specific applications. 

 
YBO = 7.3079 + 0.1842A + 0.1811B − 0.00615C − 0.9068D −
0.0362E − 0.0003AB +  0.0012AD −   0.0786CD −
0.00222CE − 0.000179A2        (15) 
 
Where; YBO is bio-oil (in wt.%) yield, A, B, C, D, and E, represents 
temperature (℃), heating rate (℃/min), residence time (min), 
particle sizes (mm), and nitrogen flow rate (mL/min), 
respectively. 
 

3.4  Influence of Individual Parameters on the Bio-Oil Yield 

Figure 4a shows that the influence of temperature on bio-oil 
yield increases with temperature, peaking at 45 wt.% around 
500°C due to the decomposition of hemicellulose and cellulose 
and secondary degradation of biochar. However, above 500°C, 
yields begin to drop, which can be attributed to secondary 
cracking, where the liquid intermediates at higher temperatures 
further crack into lighter NCGs.  Figure 3b shows the influence 
of heating rates, where bio-oil yields increase with higher rates, 
reaching 48 wt.% at 30°C/min. Faster heating enhances 
devolatilization while reducing residence time for secondary 
cracking. In contrast, lower heating rates (6°C/min) yield about 
30 wt.% bio-oil but favour char production, demonstrating the 
importance of heating rates in pyrolysis (Jalalifar, 2020). Figure 
3c depicts the effect of residence time. At shorter times (5 
minutes), bio-oil yield is highest at 45 wt.%, while longer times 
(25 minutes) reduce yields to 30 wt.% due to increased 
secondary cracking. Short residence times thus favour bio-oil 
production. Figure 3d highlights the impact of particle size, with 
smaller particles (0.5 mm) yielding up to 51 wt.% bio-oil due to 
better heat transfer and mass diffusion. Larger particles (4.5 
mm) produce less bio-oil (42.1 wt.%) and more char due to 
slower heat penetration and incomplete pyrolysis. Figure 3e 
explores the effects of nitrogen flow rate. Bio-oil yield increases 
with flow rates up to 30 mL/min, reaching 45 wt.% due to 
improved volatile removal and reduced secondary cracking 
(Laougé et al., 2020). Beyond 30 mL/min, yields decline to 40 
wt.% at 50 mL/min, likely due to vapour dilution and reduced 
condensation efficiency. 

3.5 Influence of the Two Most Significant Factors on Bio-oil Yield 

Figures 5(a-b) to 6(a-b) present a 3D response surface and 2D 
contour plots on the interrelationship among key parameters 
involved in the bio-oil yield. Figure 4a illustrates the interaction 
of temperature and heating rates on the yield of bio-oil, while 
Figure 4b presents its 2D contour plot for optimization. The 
maximum bio-oil yield of 51 wt.% was observed at 500°C and 

 

Fig 4. Influence of (a) temperature, (b) heating rate, (c) residence time, (d) particle sizes, (e) nitrogen flow rate on the bio-oil yield 
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30°C/min. These are conditions that maximize the thermal 
decomposition of biomass components into volatiles. These 
conditions, combined with residence time, particle size, and 
nitrogen flow rate of 15 minutes, 2.5 mm, and 30 mL/min, 
respectively, minimize external influences on bio-oil production. 
Above 500°C, bio-oil yield decreases because of the secondary 
cracking of volatiles into smaller gaseous molecules. But below 
500°C, fewer volatiles are produced due to the low activation 
energy to have complete decomposition. The heating rates also 
have a strong impact on bio-oil production. At 30°C/min, there 
is an optimum balance between primary pyrolysis and a minimal 
amount of secondary reactions, leading to the highest yield of 
51.2 wt.%. Above this rate, increased secondary cracking 
reduces the yields, while below this rate, longer thermal 
exposure causes excessive charring and volatile loss. The 
results emphasize the need to balance temperature and heating 
rates for maximum bio-oil yield. Optimal conditions (500°C, 
30°C/min) provide efficient energy input and controlled 
reaction dynamics, minimizing secondary reactions while 
maximizing biomass conversion into bio-oil. This highlights the 
importance of precise parameter optimization for efficient and 
sustainable pyrolysis processes. 

Figure 6 shows the relationship between temperature vs. 
particle size for the optimization of bio-oil yield in both 3D and 
2D plots. Indeed, the maximum bio-oil yield of 49.5 wt.% was 
obtained at 500°C with a particle size of 0.5 mm, which will allow 
the effective thermal decomposition of biomass into volatile 
products with a reduced amount of secondary reactions. Other 

parameters, like the heating rate of 18°C/min, residence time of 
15 minutes, and nitrogen flow of 30 mL/min, were kept constant 
to isolate these effects. Temperature is another critical 
parameter that influences the production of bio-oil. At 500°C, 
enough energy depolymerizes cellulose, hemicellulose, and 
lignin into volatiles without favouring secondary reactions. 
Above 500°C, the yields declined owing to increased secondary 
cracking, while below 500°C, incomplete decomposition is 
limiting volatile production. For instance, lower yields at 400°C 
are a result of restricted volatilization. Particle size significantly 
influences bio-oil yield. A size of 0.5 mm ensures rapid and 
uniform heat transfer for efficient decomposition, while larger 
sizes (>1.5 mm) limit heat penetration, reducing yields. Smaller 
sizes (<0.5 mm) cause excessive charring, also lowering yields. 
The optimal combination of 500°C and 0.5 mm particle size 
highlights the importance of precise parameter optimization for 
improving pyrolysis efficiency and maximizing bio-oil yield (Di 
Lauro et al., 2024). 

Figure 7 illustrates the interaction between residence time 
and particle size in influencing bio-oil yields during pyrolysis. A 
3D surface plot (Figure 6a) and a 2D contour plot (Figure 6b) 
highlight that the highest bio-oil yield (50.5 wt.%) was achieved 
at a residence time of 15 minutes with a particle size of 0.5 mm. 
The specified conditions led to efficient thermal decomposition 
through which volatiles condensed into bio-oil while secondary 
reactions remained minimal. Constant control conditions 
consisting of a temperature (500°C), heating rates (18°C/min), 
and nitrogen flow rates (30 mL/min), provided a stable pyrolysis 

 

 
 

a      b 
Fig 5  (a) 3D surface plot of bio-oil (wt.%) against temperature (℃) and heating rates (℃/min(b) 2D contour plot of bio-oil ( wt.%) against 

temperature (℃) and heating rates (℃/min). 

 

 

 

 

a                   b 
Fig 6  (a) 3D surface plot of bio-oil ( wt.%) against temperature (℃) and particle sizes (mm) (b) 2D contour plot of bio-oil ( wt.%) against 

temperature (℃) and particle sizes (mm). 
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environment to investigate the influence of residence time and 
particle size. Bio-oil production showed a strong dependency on 
residence time. The biomass stayed within the reactor. During 
the 15-minute thermal exposure, the biomass particles received 
adequate thermal energy, leading to complete vapourisation 
without generating excessive secondary reactions. Time 
prolongation caused secondary chemical reactions that 
decreased product yields, while shorter times resulted in 
incomplete volatile decomposition. Bio-oil production exhibited 
a strong dependence on particle sizes. A particle size of 0.5 mm 
ensured uniform heat transfer for efficient decomposition, while 
larger particles (>1.5 mm) suffered from poor heat penetration, 
and smaller particles (<0.5 mm) caused excess charring, both 
reducing yields. The interplay between residence time and 
particle size was crucial for maximizing bio-oil production. The 
optimal combination of 15 minutes and 0.5 mm enabled efficient 
decomposition with minimal secondary reactions, yielding 50.5 
wt.% of bio-oil. These findings underscore the importance of 
parameter optimization for achieving efficient and sustainable 
pyrolysis under controlled conditions. 

 
3.6 Accuracy and Reliability of RSM model using Residual, Leverage, 
Cook’s distance, and Fitted Value DFFITS 

Figure 8a shows the scatterplot of actual vs. predicted bio-
oil yields using RSM, demonstrating a high correlation between 

experimental results and model predictions. Data points are 
tightly clustered around the diagonal line, indicating strong 
model performance with minor deviations due to experimental 
variability or model constraints. Variations in scatter suggest 
that refining model parameters could improve accuracy, as 
supported by (Chantarangsi et al., 2015; Jalalinejad et al., 2024). 
Figure 7b presents the normal probability plot of residuals for 
bio-oil, used to assess the adequacy of the predictive model. 
Residuals align closely with the diagonal line, confirming their 
approximate normal distribution, a key regression assumption 
(Kozak & Piepho, 2018; Nawaz et al., 2024). The slight non-
normality detected at the extremes does not affect the model's 
reliability. The external studentized residual plot reveals that 
most points follow the diagonal line with no data points 
exceeding the ±2 or ±3 typical outlier thresholds. The results 
indicate there are no significant influencing data points affecting 
the regression coefficient values. The model demonstrates 
robustness based on the combined analysis of residuals and 
external studentized residuals. The model exhibits predictive 
power because residuals show normal distribution, along with 
no detectable outliers. Furthermore, the model exhibits strong 
predictive capabilities for bio-oil yield assessment through 
comprehensive statistical analysis that reveals minor errors 
related to nonlinear effects. The model demonstrates 
robustness in predicting bio-oil yield through its tested results, 

 

  
(a) 

 
(b) 

Fig 7 (a) 3D surface plot of bio-oil (wt.%) against residence time (min) and particle sizes (mm) (b) 2D contour plot of bio-oil (wt.%) against 
residence time (min) and particle sizes (mm). 

 

 
Fig 8 (a) Actual vs Predicted (b) Normal probability plot of residuals 
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but research continues to develop methods for improving 
accuracy by incorporating nonlinear effects. 

3.7 Comparison Analysis between Experimental, RSM, and ANFIS 
Models Predicted Bio-oil Yields 

The actual and predicted bio-oil yields from intermediate 
Cocos nucifera pyrolysis using GA-ANFIS, PSO-ANFIS, and RSM 
methods are compared in Table 5. The analysis evaluates model 
performance across various experimental conditions, including 
temperature, heating rate, residence time, particle size, and 
nitrogen flow rate. The actual bio-oil yield stands as the 

benchmark for evaluating the accuracy of prediction models. 
The prediction technique PSO-ANFIS possesses the most 
accurate numerical outcomes compared to experimental values, 
demonstrating excellent prediction accuracy. The predicted 
bio-oil yield in Run 1 from PSO-ANFIS was 51.59 wt.% and 
proved more accurate than both RSM's prediction of 50.83 wt.% 
and GA-ANFIS's result of 52.17 wt.%. The bio-oil yield 
prediction in Run 16 reaches 51.01 wt.% using PSO ANFIS 
analysis while maintaining superior accuracy compared to other 
prediction models. GA-ANFIS exhibits strong prediction 
abilities, but its predictive deviations remain slightly higher than 

Table 5 
Comparison of Actual Bio-oil Yields with RSM, PSO-ANFIS, and GA-ANFIS Predictions 

  Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Actual RSM 
GA-

ANFIS 
PSO-

ANFIS 

Std Run 
A: 

Temperature
s  

B: Heating 
rates 

C: Residence 
times 

D: Particle 
sizes 

E: Nitrogen 
flow rates 

Bio-oil Bio-oil Bio-oil Bio-oil 

  oC oC/min minutes Mm mL/min  wt.%  wt.%  wt.%  wt.% 

36 1 500 18 10 2.5 30 52.17 50.83 52.17 51.59 
48 2 500 18 15 2.5 30 49.51 49.48 49.59 49.68 
35 3 500 18 5 2.5 30 49.73 52.18 49.81 49.89 
16 4 700 30 25 0.5 50 44.21 42.34 44.20 44.30 
17 5 300 6 5 4.5 10 41.11 42.28 41.19 41.31 
47 6 500 18 15 2.5 30 49.33 49.48 49.40 49.49 
37 7 500 12 15 2.5 30 48.64 49.21 48.71 48.82 
18 8 700 6 5 4.5 10 45.93 45.67 46.01 46.11 
22 9 700 30 5 4.5 10 46.21 45.48 46.19 46.37 
23 10 300 30 25 4.5 10 38.12 37.04 38.18 38.30 
7 11 300 30 25 0.5 10 45.56 47.10 45.68 45.81 

34 12 400 18 15 2.5 30 48.43 47.40 48.51 48.57 
43 13 500 18 15 2.5 30 49.58 49.48 49.61 49.70 
1 14 300 6 5 0.5 10 46.83 46.05 46.90 47.11 
3 15 300 6 25 0.5 10 43.21 44.70 43.31 43.41 

39 16 500 18 15 2.5 20 50.76 50.18 50.87 51.01 
32 17 700 30 25 4.5 50 35.21 34.17 35.40 35.48 
12 18 700 6 25 0.5 50 43.21 42.53 43.31 43.41 
5 19 300 30 5 0.5 10 47.53 48.46 47.71 47.81 

31 20 300 30 25 4.5 50 32.19 33.37 32.42 32.49 
44 21 500 18 15 2.5 30 49.47 49.48 49.49 49.61 
21 22 300 30 5 4.5 10 45.67 44.68 45.79 45.91 
30 23 700 30 5 4.5 50 44.27 43.59 44.38 44.52 
19 24 300 6 25 4.5 10 36.16 34.63 36.30 36.40 
42 25 500 18 15 1.5 30 51.43 50.98 51.61 51.70 
14 26 700 30 5 0.5 50 41.1 45.47 41.20 41.30 
25 27 300 6 5 4.5 50 40.21 40.39 40.39 40.48 
41 28 500 18 15 2.5 30 49.43 49.48 49.49 49.61 
38 29 500 24 15 3.5 40 48.21 47.57 48.31 48.42 
6 30 700 30 5 0.5 10 47.78 47.36 47.87 48.01 

20 31 700 6 25 4.5 10 39.31 38.03 39.50 39.61 
46 32 500 18 15 2.5 30 49.56 49.48 49.58 49.72 
9 33 300 6 5 0.5 50 46.41 44.16 46.50 46.60 

50 34 500 18 15 2.5 10 49.2 50.87 49.31 49.40 
8 35 700 30 25 0.5 10 46.24 46.01 46.40 46.51 

11 36 300 6 25 0.5 50 40.25 41.03 40.41 40.49 
33 37 600 18 15 2.5 30 48.18 47.97 48.31 48.37 
4 38 700 6 25 0.5 10 45.91 46.19 46.03 46.11 

49 39 500 18 15 2.5 30 49.53 49.48 49.61 49.71 
10 40 700 6 5 0.5 50 47.16 45.65 47.19 47.41 
40 41 500 18 15 2.5 50 49.01 48.09 49.18 49.31 
2 42 700 6 5 0.5 10 47.53 47.54 47.69 47.78 

13 43 300 30 5 0.5 50 47.36 46.57 47.49 47.57 
29 44 300 30 5 4.5 50 42.48 42.79 42.61 42.70 
27 45 300 6 25 4.5 50 30.01 30.97 30.11 30.21 
28 46 700 6 25 4.5 50 33.54 34.36 33.71 33.78 
26 47 700 6 20 4.5 50 34.27 36.71 34.40 34.50 
24 48 700 30 25 4.5 10 37.12 37.84 37.31 37.41 
45 49 500 18 15 2.5 30 49.63 49.48 49.61 49.70 
15 50 300 30 25 0.5 50 44.21 43.44 44.30 44.41 
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PSO-ANFIS. The actual bio-oil yield of 49.33 wt.% in Run 6 
closely aligns with GA-ANFIS predictions of 49.40 wt.% and 
PSO-ANFIS predictions of 49.49 wt.%. The consistent accuracy 
of PSO-ANFIS surpasses GA-ANFIS across multiple runs. RSM, 
as a statistical approach, demonstrates the greatest deviation 
from actual values among the other models. The RSM model 
predicts a bio-oil yield of 34.17 wt.% in Run 17 against the actual 
value of 35.21 wt.%, while PSO-ANFIS and GA-ANFIS 
demonstrated smaller deviations. RSM's prediction for bio-oil 
yield at 38.03 wt.% in Run 31 further shows evidence of its 
reduced predictive capability when compared to the actual 
value of 39.31 wt.%. Hence, RSM demonstrates a limited ability 
to detect non-linear relationships between operating parameter 
interactions and bio-oil yield(Mbah et al., 2024). 

Table 6 presents comprehensive performance metrics of 
bio-oil prediction models consisting of PSO-ANFIS, GA-ANFIS, 
and RSM. This study evaluated the performance of bio-oil 
prediction models using coefficient of determination (R²), mean 
relative error (MRE%), mean squared error (MSE), root mean 
squared error (RMSE), standard deviation (STD), mean absolute 
error (MAE), and mean bias deviation (MBD), that were 
evaluated on both training and testing phases. PSO- ANFIS 
proves to be the most accurate among the prediction models 
with a training R² of 0.998 and testing R² of 0.994, establishing 
strong relationships between predicted and actual bio-oil yields. 
During both the training and testing phases, the PSO-ANSIS 
maintained the minimum errors, with a training and testing 
MRE% of 0.641% and 0.981%, respectively. Likewise, the MSE 
and RMSE values demonstrate superior performance to other 
models, thus affirming the efficiency of the reduction of 
prediction error. The prediction bias from the PSO-ANFIS 
model appears minimal due to the low MBD values. The training 
and testing R² from GA-ANFIS were 0.996 and 0.991, 
respectively. PSO-ANFIS demonstrates superior error metrics 
than GA-ANFIS due to its training MRE% of 0.821% and testing 

MRE% of 1.152%. The GA-ANFIS model demonstrates strong 
prediction abilities, based on training RMSE of 0.382 and testing 
RMSE of 0.551, though its predictions show slightly more 
deviation from actual values than PSO ANFIS. Among all the 
models, RSM shows the lowest performance. The predictive 
power of RSM stands below PSO-ANFIS and GA-ANFIS as it 
possesses a training R² of 0.981 and a testing R² of 0.974. The 
model demonstrates significant error rates, such that it exhibits 
a training MRE% of 2.451% and a testing MRE% of 3.024%. The 
prediction models show higher deviation from bio-oil values due 
to their training RMSE of 1.171 and testing RMSE of 1.376. RSM 
demonstrates higher predictive bias than PSO-ANFIS and PSO-
ANFIS due to its high MBD metric values. The experimental 
results function as a benchmark that shows flawless results 
across every metric. This affirms the reliability of the bio-oil 
yields and aids in model validation.   

This study analyses hybrid models designed to optimize 
biomass pyrolysis, illustrating their wider application across 
different feedstocks. The novelty of this study is grounded on 
the superior prediction accuracy of the PSO-ANFIS model (R² = 
0.998, RMSE = 0.305) during training, which is more robust than 
RSM and traditional machine learning methods by a wide 
margin, while GA-ANFIS was also accurate, but with slightly 
lower precision.   With these models, operators can estimate the 
quantity of bio-oil yield, optimize critical parameters like 
temperature, heating rates, residence time, nitrogen flow rate, 
and particle size, and minimize the number of experimental 
trials needed. The use of these hybrid models improves the 
prediction and optimization of bio-oil yield, which enhances the 
process uncertainties and efficiency improvements in biomass 
conversion. These features allow for dynamic changes to be 
made during the process, improving bio-oil quality and process 
efficiency. Also, the bio-oil produced under those conditions has 
lower oxygen content and higher energy density, making it 
more applicable for industrial usage. The study reinforces the 

Table 6 
Performance Metrics of Different Statistical Parameters for Bio-oil Prediction Models 

Model Phase R2 MRE% MSE RMSE STD MAE MBD 

PSO-ANFIS Train 0.998 0.641 0.093 0.305 0.367 0.202 0.058 

 
Test 0.994 0.981 0.202 0.449 0.492 0.319 0.127 

GA-ANFIS Train 0.996 0.821 0.146 0.382 0.414 0.297 0.099 

 
Test 0.991 1.152 0.304 0.551 0.591 0.418 0.185 

RSM Train 0.981 2.451 1.372 1.171 1.226 0.875 0.531 

 
Test 0.974 3.024 1.893 1.376 1.471 1.097 0.734 

Experimental Train 1 0 0 0 0 0 0 

 
Test 1 0 0 0 0 0 0 

 

 
Table 7 
ANOVA: Two-Factor With Replication 

        

Source of Variation SS df MS F P-value F crit  

Sample 0.189254 1 0.189254 1.787341 0.218018 5.317655  

Columns 0.03318 1 0.03318 0.313357 0.590952 5.317655  

Interaction 0.00118 1 0.00118 0.011145 0.918523 5.317655  

Within 0.847087 8 0.105886     

 

Total 1.070701 11          
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claim of the economic and environmental efficiency of 
computational modelling in reducing waste and optimizing 
resource utilization for large-scale bio-oil production.  

Results obtained from the ANOVA (Table 7) show that no 
significant differences exist statistically amongst the models 
tested. The effect sample with an F-value of 1.7873 and a P-
value of 0.2180 does not exceed the critical value of 5.3177, 
implying that the variation across samples is not significant. 
Likewise, the column effect with an F value of 0.3134 and a P 
value of 0.5909 is also non-significant, meaning that differences 
between columns do not significantly alter the outcome metrics. 
In addition, the interaction effect between the factors with an F-
value of 0.0111 and a P-value of 0.9185 is insignificant, further 
confirming that these factors do not affect the results. These 
findings suggest that any changes observed in the performance 
metrics computed for RSM with GA-ANFIS and PSO-ANFIS are 
random variations, rather than any systematic deviations. 
Hence, while some models may exhibit marginally lower error 
results, they do not pass the significance threshold as verified 
by the ANOVA test 

The hybrid models GA-ANFIS and PSO-ANFIS showed 
clear improvement when compared to the traditional model 
(RSM) in the test phase (Table 8). The R2 value, reflecting the fit 
between predicted and actual bio-oil yields, increased by 1.76% 
for GA-ANFIS and 2.06% for PSO-ANFIS. Although modest, 
these gains are significant in modelling complex, nonlinear 
systems like biomass pyrolysis. The hybrids also demonstrated 
lower mean relative error (MRE) than the traditional model, with 
GA-ANFIS reducing it by 1.86% and PSO-ANFIS by 2.03%, 
proving their accuracy and consistency. Improvements, further 
extended to absolute error metrics, where MSE was reduced by 
1.57 and 1.68 units, and RMSE by 0.81 and 0.91 units for GA-
ANFIS and PSO-ANFIS, respectively.  The MAE decreased by 
0.65 and 0.76, while MBD went down by 0.53 and 0.60, from 
both models, confirming the hybrid models’ ability to reduce 
systematic prediction errors. Among the models, PSO-ANFIS 
consistently outperformed others. The results of this analysis 
underscored the superior predictive accuracy, robustness, 
reliability, and generalization of hybrid intelligent models, 
especially PSO-ANFIS, when it comes to optimizing bio-oil yield 
under complex pyrolysis conditions. 

3.7 Optimum Conditions of Operating Parameters  

Figure 9 presents optimization plots for bio-oil yield 
during the pyrolysis of Cocos nucifera biomass, illustrating the 
influence of key parameters: temperature, heating rate, 
residence time, particle size, and nitrogen flow rate. The results 
indicate an extensive improvement in predicting and optimizing 
bio-oil yield. The optimal bio-oil yield (52.2 wt.%) was attained 
at a temperature of 510.2°C, heating rates of 10.5°C/min, 
residence time of 5.2 min, a particle size of 0.3, and nitrogen 
flow rate of 17.3 mL/min. Beyond 510°C, excessive cracking 
reduces bio-oil yield and increases NCG production. Continuous 
increase in heating rates ensures uniform thermal degradation, 
avoiding the reduced yields associated with both higher and 
lower rates. The optimal residence time range is between 5 and 
10 minutes helps maximize bio-oil yield and extend times in the 

Table 8 
Numerical Model Improvement Over RSM (Test Phase) 

Metric 
PSO-ANFIS vs 
RSM 

GA-ANFIS vs 
RSM 

R2 ↑ by 1.76% ↑ by 2.06% 

MRE (%) ↑ by 1.86% ↑ by 2.03% 

MSE ↑ by 1.57% ↑ by 1.68% 

RMSE ↑ by 0.81% ↑ by 0.91% 

MAE ↑ by 0.65% ↑ by 0.76% 

MBD ↑ by 0.53% ↑ by 0.60% 

 

 

 
Fig 9. Optimization plot for bio-oil 
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conversion of primary reactants to NCG. Particle sizes between 
0.3 – 0.5 mm produce efficient heat transfer along with uniform 
decomposition reactions, and the nitrogen flow rates between 
10 to 20 mL/min support an inert environment that enhances 
bio-oil yield through minimized secondary cracking processes. 
Bio-oil obtained during these specific operating conditions is 
well-suited for renewable fuel production along with 
biochemical feedstock applications due to its stable 
performance and high energy content, alongside minimal 
oxygen compounds (Wulandari et al., 2020). Figure 9 presents 
an optimization approach that systematically integrates these 
parameters, that minimises empirical methods,  time, costs, and 
resource usage. This research differs from traditional single-
product approaches to achieve optimal bio-oil yields for diverse 
applications. The utilisation of particle size and nitrogen flow 
rate as critical factors enhances the novelty and practicality of 
biomass pyrolysis processes by addressing scalable industrial 
applications. 

An additional intermediate pyrolysis experiment was 
performed to validate the optimum conditions from simulations 
using the optimal parameters predicted by the PSO-ANFIS 
model of temperature, heating rate, residence time, particle size, 
and nitrogen flow rate of 510.2 °C, 10.5 °C/min, 5.2 min, 0.3 
mm, and 17.3 mL/min, respectively. The bio-oil yield under 
these conditions was 51.54 wt.%, close to the predicted yield of 
52.17 wt.%. The small deviation of 1.2% attests to the high 
predictive accuracy and reliability in predicting bio-oil yield with 
the PSO-ANFIS model. This experimental validation further 
reinforces the robustness of the hybrid optimization strategy for 
predicting and enhancing bio-oil yields in intermediate pyrolysis 
of Cocos nucifera. 

3.8. Physicochemical Properties of the Bio-oil Sample 

The physicochemical properties of bio-oil from Cocos nucifera 
pyrolysis show a pale brown colour, which suggests low 
carbonization, suitable for energy systems compared to darker 
oils requiring more treatment (Table 9). The bio-oil’s acidic 
nature (pH 3.52) is close to that of fossil fuel, ranging from 4 to 
6 in water-extraction fractions. Also, a high water content (21.7 
wt.%) minimises the combustion performance in comparison to 
fossil fuels. Moreover, the bio-oil heating value (20.24 MJ/kg) is 

lower than that of diesel (42–45 MJ/kg) but lies in the range of 
some biomass fuels such as raw pyrolysis oils (16–24 MJ/kg), 
though the bio-oil retains a reasonable heating value of 20.24 
MJ/kg, making it a feasible biofuel with potential upgrades 
needed for optimal performance. The density (1.13 g/cm³) 
indicates good energy content per unit volume. The iodine 
value (49.4 mgKOH/g) shows moderate unsaturation, 
impacting oxidation stability. High viscosity (30.1 CST at 40°C) 
poses challenges for atomization and combustion, necessitating 
heating or blending with lighter oils. The bio-oil's elemental 
composition includes fair carbon (56.8 wt.%) and hydrogen 
(7.98 wt.%) content, enhancing energy density. Low nitrogen 
(0.21 wt.%) and sulfur (0.02 wt.%) levels reduce NOx emissions 
and corrosion risks. The bio-oil's flash point (88°C) indicates 
flammability at relatively low temperatures, posing a fire hazard 
during storage and transport. Conversely, the pour point  (-
10°C) ensures fluidity in cold environments, facilitating easier 
handling. Its low cetane index (20) reflects poor ignition quality 
compared to diesel (typically above 40), requiring modifications 
or blending for use in diesel engines. The Conradson carbon 
residue (10 wt.%) suggests a moderate level of combustion 
residue, indicating potential fouling in systems, though 
manageable with routine maintenance (Yuan et al., 2022).  

Compared to fossil fuels, petroleum-derived fuels mainly 
comprise oxygen-free compounds, hydrocarbons like alkanes, 
cycloalkanes, and aromatics, with traces of oxygenated 
compounds. These fuels have a high proportion of 
hydrocarbons with little to no oxygen, making them more 
energy-dense and stable, unlike bio-oil, which is significantly 
different from conventional fossil fuels as its phenolics and fatty 
acids are oxygen-rich. The quality of the bio-oil yield could be 
improved by utilising several upgrading techniques. Catalytic 
upgrading via hydrodeoxygenation and zeolite cracking 
minimizes oxygen and boosts heating value, stability, and fuel 
compatibility with conventional fuel systems. Emulsification, 
formed by blending surfactants between diesel fuel and bio-oil, 
improves fuel combustion efficiency and stability in storage. 
Esterification and transesterification deacidify the bio-oil and 
reduce its corrosiveness to make the bio-oil more useful for 
engine applications. Fractional distillation also cleanses the 
biofuel by eliminating light and heavy fractions, improving its 

Table 9 
Characterisation of Bio-oil Yields at Optimum Operating Condition 

Properties Cocos nucifera 

Appearance Pale brown 

pH 3.52 

Water content (wt.%) 21.7 

Density (g/cm3) 1.13 

Iodine value (mgKOH/mg) 49.4 

Viscosity @ 400C (CST) 30.1 

Carbon (wt.%) 56.8 

Hydrogen (wt.%) 7.98 

Nitrogen (wt.%) 0.21 

Sulphur (wt.%) 0.02 

Oxygen (wt.%) 26.23 

HHV (MJ/kg) 20.24 

Flash point 88 

Pour point -10 

Cetane index 20 

Conradson carbon residue ( wt.%) 10.0 
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properties, and removing unwanted constituents. Also, solvent 
addition, such as mixing with ethanol or methanol, lowers 
viscosity, improves fluidity, and improves ignition quality, 
thereby making bio-oil a superior alternative fuel. 

   

3.9. GC-MS analysis for Bio-oil 

The chemical composition of bio-oil from Cocos nucifera 
pyrolysis was analyzed using GC-MS analysis. The spectrum, 
shown in Figure 10 and Table 10, identified over 200 
compounds, with major components highlighted for peak areas 
above 0.5 wt.%. Key compounds include phenol (23.82 wt.%), 
oleic acid (32.22 wt.%), 9,17-octadecadienoyl (25.72 wt.%), and 

9,12-octadecadienoyl chloride (7.09 wt.%). These compounds 
have significant industrial applications, such as phenol for 
Bisphenol-A, resins, and adhesives, while oleic acid is used for 
bio-lubricants, dyes, and therapeutics.  The compounds 
Bisphenol-A, resins, adhesives, and oleic acid have vital 
economic value within different industries. Bisphenol-A is 
mainly utilised in polycarbonate plastics and epoxy resins, 
contributing about $8 billion to the market due to its use in the 
automobile, construction, and electronic industries. Resins and 
Adhesives are widely used in the industry for coatings, 
packaging, and industrial adhesives, contributing about $60 
billion to industrial sectors. Likewise, Oleic acid is essential in 
the bio-lubricants, dye, and therapeutics industry for bio-
enhancing, improving dye and pharmaceutical excipients, as it 

 
Fig 10. GC-MS of bio-oil compound 

 

 
Table 10 
Chemical composition of bio-oil yield using GC-MS analysis 

S/N Retention time 
(min) 

Compound Name Formula Molecular 
Weight 

Area  wt.% 

1 6.060 Phenol C6H6O 94.0 1.65 
2 16.788 9,12-octadecadienal C18H32O  246.4 0.04 
3 29.643 1,1-dimethyl-2-(2-propenyl) cyclopropane C8H14 94.0 0.03 
4 30.046 11-(2-Cyclopenten-1-yl) undecanoic acid C16H28O2  252.39 0.32 
5 30.140 Oleic acid C18H34O2 264.0 0.62` 
8 30.690 Oleic acid C18H34O2 264.0 2.76 
9 32.748 Oleic acid C18H34O2 264.0 0.65 
10 32.965 Oleic acid C18H34O2 264.0 1.14 
11 33.042 9-Octadecenal C18H34O 248.0 1.49 
12 33.156 Cyclopentaneundecanoic acid C16H30O2 211.0 3.22 
13 33.217 Oleic acid C18H34O2 264.0 2.66 
14 33.251 Oleic acid C18H34O2 264.0 0.91 
15 33.270 Oleic acid C18H34O2 264.0 1.46 
16 33.317 Oleic acid C18H34O2 264.0 6.05 
17 34.334 9,12-octadecadienoyl chloride C18H31ClO 264.0 0.63 
18 34.408 Oleic acid C18H34O2 264.0 0.61 
19 34.560 Oleic acid C18H34O2 264.0 1.77 
20 34.789 Oleic acid C18H34O2 264.0 6.01 
21 34.957 9-oxabicyclo (6,1,0) nonane C8H14O 126.0 28.84 
22 35.185 9,12-octadecadienoyl chloride C18H31ClO 264.0 2.02 
23 35.655 9,12-octadecadienoyl chloride C18H31ClO 264.0 27.46 
24 36.374 9-oxabicyclo[6.1.0] nonane C8H14O 126.19 0.04 
25 36.548 9,17-octadecadienal C18H32O2 216.16 0.01 
26 36.672 Oleic acid C18H34O2 264.0 0.07 
27 36.712 Oleic acid C18H34O2 264.0 0.15 
28 36.799 Oleic acid C18H34O2 264.0` 0.01 
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contributes over $3 billion. Also, the fatty acids are helpful in 
treatment as anti-inflammatories and cholesterol-lowering 
agents. The industries’ innovation and shift to biobased 
alternatives greatly depend on these compounds (Pang et al., 
2008). Methyl esters, known for their eco-friendly properties, 
find use in textiles and graphic arts. Ketones have broad 
applications in the medical, textiles, plastics, and cosmetics 
industries (Simonsen et al., 2024). The presence of 
hydrocarbons, fatty acids, alcohols, esters, phenolics, and 
ketones indicates the bio-oil's potential as a renewable energy 
source, suitable for turbines, diesel engines, marine equipment, 
and industrial machinery. Additionally, phenol and methyl 
esters derived from lignin decomposition offer sustainable 
sources for adhesives, resins, and industrial products (Ma & 
Chen, 2024). The bio-oil's composition supports applications in 
energy, automotive, and pharmaceutical industries, 
underscoring its versatility and utility as a renewable resource 
(Jitpinit et al., 2024). The versatility of bio-oil goes far beyond 
simply being used for fuel due to the presence of oxygenated 
compounds like phenolics and fatty acids. These compounds 
rich in oxygen increase bio-oil's usefulness in other industries 
like that as bio-lubricants, and even in pharmaceuticals as 
excipients. While petroleum fuels are mostly hydrocarbons, bio-
oil provides a different chemical composition that is 
fundamental to sustainable energy and green chemistry. 
However, further refinement and catalytic upgrading processes 
are needed to enhance its stability and energy efficiency for use 
as a replacement drop-in fuel. 

FTIR analysis of bio-oil from Cocos nucifera pyrolysis 
(500–4000 cm⁻¹) identified functional groups linked to its 
chemical composition (Table 11). Figure 11 shows the spectra, 
and Table 11 provides details on wavenumber ranges, observed 
peaks, corresponding molecular motions, and relative 
transmittance intensities to explain the bio-oil's chemical 
makeup. The dominant functional group identified is the 
hydroxyl group (O–H stretch) at 3389.2 cm⁻¹, indicating the 
presence of alcohols and phenols, which are typically 
byproducts of cellulose and hemicellulose breakdown in 
lignocellulosic biomass. The broad, strong appearance of this 
band confirms the prevalence of hydroxyl groups in bio-oils, as 
supported by previous studies (Rasheed et al., 2023; Salim et al., 
2021; Kim et al., 2020). The decarboxylation products released 
during pyrolysis are also suggested by the sharp absorption 
peak at 2400.4 cm⁻¹, which indicates carbon dioxide (O=C=O) 
stretching. Additionally, a notable peak at 2079.9 cm⁻¹ 
corresponds to isothiocyanate (N=C=S stretching) groups, 
which may originate from proteinaceous compounds or 
nitrogen-containing materials within the biomass feedstock 
(Zou et al., 2023). The C-H bending peak of aromatic 
hydrocarbons appears at 1766.8 cm⁻¹, contributing to the 
thermal stability and energy density of the bio-oil. Moreover, the 
presence of amines (N-H bending) at 1638.8 cm⁻¹ signifies 
nitrogen functionalities likely formed through the thermal 
breakdown of nitrogenous organic matter. Phenolic groups are 
identified at 1349.3 cm⁻¹ due to O-H bending vibrations, which 
are vital for the bio-oil’s adhesive and resin properties. The 

 

 

 
Fig 11. FT-IR spectrum of bio-oil yield 

 
 
 
Table 11 
Functional group composition of bio-oil yield 

Functional Group Wavenumber (cm-1) Molecular Motion  wt.% Transmittance Appearance 

Range Actual 
Alcohol 2900-3700 3389.2 O-H stretching 59.385 Strong broad 

Carbon dioxide 2350-2450 2400.4 O=C=O stretching 98.482 Strong broad 
Isothiocyanate 2050-2150 2079.9 N=C=S stretching 98.224 Strong broad 

Aromatic compound 1750-1790 1766.8 C-H bending 93.866 Weak broad 
Amine 1550-1750 1638.8 N-H bending 73.091 Medium broad 
Phenol 1150-1570 1349.3 O-H bending 44.939 Medium broad 

Secondary Alcohol 1080-1150 1107.0 C-O stretching 83.839 Strong broad 
Alkene 950-1060 961.7 C=C bending 59.289 Strong broad 
Alkene 900-950 931.8 C=C bending 60.597 Strong broad 

Halo compound 800-850 831.2 C-Cl stretching 58.739 Strong broad 
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secondary alcohol C-O stretching peak at 1107.0 cm⁻¹ further 
confirms oxygenated compounds in the bio-oil. Alkene 
presence is indicated by C=C bonds at 961.7 and 931.8 cm⁻¹, 
suggesting unsaturated hydrocarbon chains that could enhance 
the oil’s fuel potential. The C-Cl stretching peak at 831.2 cm⁻¹ 
points to halogenated compounds, which, although present in 
smaller amounts, should be monitored due to environmental 
concerns when burned. Overall, the FTIR spectrum shows that 
the bio-oil contains rich oxygenated, nitrogenated, and 
hydrocarbon compounds derived from the thermochemical 
conversion of coconut biomass. These results support its 
potential use in energy production, pharmaceuticals, adhesives, 
and specialized chemical industries (Karacor & Özcanlı, 2024; 
Roy et al., 2023) 

The bio-oil yield from coconut shell (52.17 wt.%) is mid-
to-high in comparison with other biomass sources, as 
demonstrated in Table 12. This value exceeds rice husk yields  
(38.13 wt.% and 47 wt.%), sugarcane bagasse (46.7 wt.%), and 
is similar to the bio-oil yields from baobab wood (52.70 wt.%) 
and Napier grass (50.57 wt.%). However, it is less than the 
optimum yields attained for Swietenia macrophylla (69.5 wt%) 
and co-pyrolysis of palm kernel shell and medical bottle (65.93 
wt%). The presence of over 200 compounds, such as phenolic, 
ester, and oleic acid, makes the bio-oil yield from coconut shell 
more suitable for biofuels, lubricants, and pharmaceuticals. Its 
effective chemical composition and favourable functional 
groups, as evidenced by GC-MS and FTIR analyses, depict the 
bio-oil utilisation for advanced industrial applications, resin, and 
adhesive. 

The bio-oil yield in this study is significantly better than 
fossil fuels. Studies showed that coconut biomass can contribute 
to an energy system that is more sustainable due to its being a 
renewable resource (Agrizzi et al., 2024; Azeta et al., 2021).  In 
this study, agricultural residue was transformed into liquid fuel 
through intermediate pyrolysis under optimised conditions to 
improve the bio-oil yield, potentially mitigating environmental 
concerns connected to coconut waste. Results obtained from 
the physicochemical, FTIR, and GC-MS analysis of the bio-oil 
showed a substantial decrease in greenhouse gas emissions 
compared to fossil fuels. The carbon emitted during bio-oil 
combustion is captured as carbon dioxide by coconut trees 
during their growth, leading to a near-neutral carbon cycle. 
Also, bio-oil combustion generally results in low emissions of 
dangerous pollutants like sulphur dioxide and particulate matter 
as compared to fossil fuels. 
 

4. Conclusions 

The present study on intermediate pyrolysis of Cocos nucifera 
presents an improvement in biomass conversion technology by 
precisely optimizing operational parameters to achieve 
maximum yield of bio-oil using RSM. Performance metrics of 
different statistical parameters for bio-oil prediction models 
were carried out using RSM and hybrid models such as PSO-
ANFIS and GA-ANFIS. Optimum conditions for the maximum 
bio-oil yield (52.17 wt.%) were found at a temperature of 501°C, 
a heating rate of 30°C/min, a residence time of 20 minutes, a 
particle size of 0.5 mm, and a nitrogen flow rate of 30 mL/min. 
These findings underscore the study’s novel approach of 
balancing yield and product quality. The bio-oil produced is rich 
in valuable compounds such as phenols and oleic acids, which 
are suitable for biofuels, lubricants, and pharmaceuticals. This 
study advances prior research by integrating five pyrolysis 
operating parameters, such as temperature, heating rate, 
residence time, particle size, and nitrogen flow rate, into a 

comprehensive modelling framework, unlike previous studies, 
which only considered a few parameters. It utilises a new 
machine-learning hybrid model that integrates RSM with PSO-
ANFIS and GA-ANFIS, significantly enhancing predictive 
accuracy and enabling real-time process control. The PSO-
ANFIS and GA-ANFIS models accurately predict the bio-oil 
yield, with the PSO-ANFIS model outperforming the other 
models with an R² of 0.994 and RMSE of 0.449 during the test 
phase, representing a two- to three-fold improvement over 
traditional RSM. Moreover, the advanced hybrid models reduce 
time and cost by decreasing the number of experimental runs 
required while offering scalable applicability to diverse biomass 
feedstocks, especially in emerging economies. The results show 
that machine learning models combined with experimental data 
outperform RSM, which fails to capture complex nonlinear 
relationships. This makes the approach more suitable for large-
scale biofuel production and industrial applications. This study 
is highly relevant for improving waste-to-energy production in 
regions where Cocos nucifera residues remain abundant, such as 
Nigeria. Further research should integrate this bio-oil into 
industrial applications as well as their long-term environmental 
impacts. Expanding to other biomass sources and including life-
cycle assessment and catalytic pyrolysis will further validate 
such models and optimise the quality of the bio-oil yields for 
industrial applications. This work, therefore, provides the basis 
for the sustainable use of biomass, with reduced dependence on 
fossil fuels, toward the solution of global energy-environmental 
problems. 
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