

Contents list available at CBIORE journal website

III International Journal of Renewable Energy Development

Journal homepage: https://ijred.cbiore.id

Research Article

Enhancing bio-char calorific value through catalytic pyrolysis: The role of magnesium oxide-zeolite based catalysts

Alien Abi Bianasari^a, Saifullah Abu Bakar^a, Md Sarowar Khaled^b, Saepurahman^c, Dieni Mansur^c, Abul Kalam Azad^a

Abstract. The current research aims to improve the generation of bio-char with elevated higher heating values (HHVs) by utilizing magnesium oxide-zeolite-based catalysts across various temperature conditions. The exploration of biomass catalytic pyrolysis has intensified in the pursuit of sustainable energy solutions. Catalytic pyrolysis offers a technique to convert abundant and renewable biomass resources into valuable biofuels and bio-char, thereby improving energy security and reducing dependence on fossil fuels. The use of suitable catalysts in biomass catalytic pyrolysis is crucial for enhancing the yield of bio-char with higher calorific value. This investigation explores the impact of magnesium oxide-zeolite-based catalysts on the higher heating values of bio-char generated from coconut shells. The initial findings indicate a notable enhancement in the calorific value of bio-char. The HHV increased from 12.03 MJ/kg for untreated coconut shells to 20.06 MJ/kg with ZSM-5, ultimately reaching an impressive 38.11 MJ/kg with the MgO/ZSM-5 catalyst. The results demonstrate that the addition of magnesium oxide significantly improves the energy content of bio-char. Various combinations of magnesium oxide, such as MgO/ZSM-5, MgO/Y2O3/ZSM-5, and MgO/Mn3O4/ZSM-5, are evaluated for their effects on the pyrolysis process. The results demonstrate that the impregnation of metal oxides into zeolite catalysts enhances catalytic performance and facilitates the efficient conversion of coconut shells into high-energy bio-char. The findings highlight the promise of metal oxide-zeolite catalysts in improving bio-char quality and promoting the development of sustainable energy technologies.

Keywords: Catalytic Pyrolysis; Magnesium Oxide-Zeolite Catalysts; Bio-Char; Higher Heating Value (HHV); Sustainable Energy Conversion

@ The author(s). Published by CBIORE. This is an open-access article under the CC BY-SA license (http://creativecommons.org/licenses/by-sa/4.0/). Received: 19th March 2025; Revised: 16th Sept 2025; Accepted: 30th Oct 2025; Available online: 24th Nov 2025

1. Introduction

The increasing need for energy and the need to address environmental issues require the advancement of renewable energy sources. Biomass catalytic pyrolysis is a feasible method for transforming agricultural waste into useful bio-char, which may be utilized as a sustainable energy source. Bio-char, which is obtained from biomass through thermal combustion in an oxygen-limited setting, is a carbon-rich substance (Lehmann and Joseph, 2015; Mohanty et al., 2018). Bio-char possesses distinctive characteristics, including a substantial surface area, significant porosity, functional groups, high cation exchange capacity, and stability, which render it appropriate for diverse applications (Yaashikaa et al., 2020). The advantages of bio-char include its rapid and simple manufacture, environmentally friendly properties, reusability, and cost-effectiveness (Gayathri et al., 2021; Hemavathy et al., 2020). The physiochemical properties of bio-char exhibit significant variation depending on factors such as the type of feedstock and the conditions of pyrolysis, including temperature and catalyst (Elbasiouny et al., 2021). Generally, raising the temperature of pyrolysis has the effect of increasing the nutrient contents, specific surface area, and pH of bio-char, as well as the levels of ash and carbon.

However, it results in low values of cation exchange capacity (CEC) and volatile matter content (Elbasiouny *et al.*, 2021; Rashid *et al.*, 2020; Tomczyk *et al.*, 2020). The rise in pyrolysis temperature results in an augmented carbon content, which is attributed to a greater degree of polymerization (Domingues *et al.*, 2017). Consequently, the bio-char exhibits more compact carbon structure (Lehmann & Joseph, 2009).

Furthermore, in the absence of oxygen, pyrolysis is a thermal degradation process that breaks down biomass into three distinct product fractions: solid residue (bio-char), condensable vapours that yield a liquid product fraction (biooil), and non-condensable gaseous products (gas) (Bianasari et al., 2024). In order to achieve the desired result, it is essential to meticulously select the pyrolysis method, as each variant of pyrolysis yields various proportions of components (Gezae & Chandraratne, 2018). Catalytic pyrolysis is a pyrolysis technology that can be employed to optimize the composition and yield of the desired product. Several catalysts, such as alumina, Al-MCM-41, magnesium oxides, nickel oxides, and ZSM-5, have been found to positively impact the production of bio-char (Bianasari et al., 2024; Stefanidis et al., 2011). The biomass treated with ZSM-5 resulted in a higher bio-char production compared to the biomass treated with alumina oxide

^aFaculty of Integrated Technologies, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE, 1410, Brunei Darussalam

^bSchool of Business, Presidency University, House no. 11/A, Road no. 92, Gulshan 2, Dhaka-1212, Bangladesh

^cResearch Center for Chemistry, National Research and Innovation Agency (BRIN), Gd. 452 Kawasan Sains dan Teknologi (KST) B.J Habibie Serpong, South Tangerang, Banten, Indonesia

and sodium carbonate bio-char (Stefanidis *et al.*, 2011). Separately, according to prior research conducted by Pütün (2010), the addition of magnesium oxide in the raw material resulted in an enhancement of the oil's quality, as evidenced by an increase in its calorific value and H/C ratio (Pütün, 2010).

Nevertheless, numerous studies prioritize the utilization of pyrolysis as a means to generate bio-oil from biomass (Isahak et al., 2012; Lachos-Perez et al., 2023). Bio-oil, a liquid produced through pyrolysis, is considered to be one of the most promising biofuels, alongside bio-diesel and bio-ethanol. This is due to its carbon-neutral nature, making it very desirable for future use (Martínez et al., 2014). Bio-oil produces much lower levels of sulphur dioxide and nitrogen dioxide emissions compared to conventional fossil fuels (Terry et al., 2021). Additionally, it is important to explore the potential of bio-char, especially as a solid fuel with a high higher heating value that can function as a renewable and carbon-rich energy source. The production of bio-char via catalytic pyrolysis presents a cleaner and more sustainable option compared to fossil-derived solid fuels like coal, while also playing a crucial role in carbon sequestration (Afshar & Mofatteh, 2024; Zhou et al., 2022). This positions it as a valuable asset in strategies aimed at mitigating climate change. The solid state facilitates straightforward handling, transportation, and storage, presenting clear benefits for rural electrification and decentralized energy systems. Beyond its energy applications, bio-char is recognized for its diverse functionalities. This substance serves as a soil amendment, enhancing fertility, water retention, and promoting microbial activity (Waheed et al., 2025). The material demonstrates significant promise in the field of environmental remediation, attributed to its extensive surface area and impressive adsorption capacity (Beljin et al., 2025).

The transformation of bio-char is in harmony with circular economy principles, as it turns waste into valuable products. In this context, the choice of raw materials is of utmost importance. The plentiful and often overlooked lignocellulosic biomass resources, including coconut shells, offer a compelling feedstock option due to their elevated carbon content, minimal ash, and extensive availability in tropical and subtropical areas (Preeti et al., 2024; Umerah et al., 2020). Agricultural residues are frequently viewed as waste, resulting in their disposal or open burning, which contributes to environmental pollution and suboptimal resource utilization. The transformation of these materials into bio-char serves to minimize waste and emissions while simultaneously fostering economic prospects for local communities via the establishment of bio-based industries.

Enhancing the quality of bio-char, particularly regarding calorific value, carbon content, and stability, necessitates a comprehensive grasp of the pyrolysis process and the selection of appropriate catalysts. This involves investigating how metal oxide-zeolite catalysts affect reaction pathways, enhance carbon retention, and optimize the energetic characteristics of the resulting char. Ongoing investigation into catalyst development and biomass utilization is crucial to fully harness the energy potential of bio-char. Prior studies have demonstrated that the use of ZSM-5 and MgO has a positive impact on the yield of bio-char (Bu et al., 2021; Y. Zhang et al., 2023). Additionally, the addition of MgO has the potential to enhance the calorific value of bio-char (Bianasari et al., 2024; Pütün, 2010; Stefanidis et al., 2011). MgO, known for its thermal stability as a basic metal oxide, is essential for maintaining catalytic activity in high-temperature pyrolysis environments (Lee et al., 2025). The stability of this compound enables its persistence during the carbon generation process, facilitating deoxygenation reactions and reducing catalyst degradation.

This leads to improved carbon retention and the generation of bio-char that possesses better structural integrity and energy content. ZSM-5, a microporous zeolite characterized by its strong acidity, plays a crucial role in regulating the thermal decomposition of biomass and affects the distribution of products (Karim *et al.*, 2024; Socci *et al.*, 2022). The integration of MgO and ZSM-5 establishes a harmonious interplay between basic and acidic catalytic roles, facilitating reaction mechanisms that mitigate excessive volatilization while enhancing the production of stable, carbon-rich bio-char with an elevated calorific value.

Recent studies have investigated the possibility of integrating extra metal oxides into dual-catalyst systems to enhance catalytic performance during biomass pyrolysis. Transition metal oxides like Mn₃O₄ provide redox functionality that can aid in the cracking of heavier organic molecules and enhance the formation of desirable pyrolysis products through improved deoxygenation reactions (Hubble et al., 2023; W. Li et al., 2022). Separately, rare-earth oxides such as Y2O3 are recognized for their ability to enhance catalyst stability and create basic surface sites, which can affect reaction pathways and product selectivity (Narasimharao & Al-Sultan, 2020; K. Xu et al., 2022). The anticipated modifications aim to improve carbon retention and affect the physicochemical characteristics of the resulting bio-char. Thus, incorporating these metal oxides into MgO-zeolite catalyst shows potential for enhancing the energy density and higher heating value (HHV) of bio-char obtained from lignocellulosic biomass. Therefore, this research aims to investigate the advantages of utilizing appropriate catalysts, particularly MgO-zeolite based catalysts, to improve the higher heating values (HHVs) of bio-char derived from coconut shell biomass. The objective is to facilitate the advancement of sophisticated catalytic systems that can improve the energy potential of bio-char and encourage sustainable waste-to-energy technologies.

2. Material and methods

2.1. Biomass Preparation

The coconut shell biomass was obtained, dehydrated, and pulverized in a grinder to get finely granulated particles with a consistent size for the pyrolysis procedure. The coconut shell powder was sieved using conventional sieves to obtain a uniform particle size less than 1 mm. It will serve as a feedstock in the pyrolysis reactor.

2.2. Catalyst Preparation

Magnesium oxide-zeolite based catalysts were synthesized using a wetness impregnation method. A 5% (w/w) solution of Mg(NO₃)₂·6H₂O was combined with 5 g of ZSM-5 catalyst at room temperature for 24 h, leading to the formation of MgO/ZSM-5. In order to produce MgO/Mn₃O₄/ZSM-5, a mixture of 5 g of Mn(NO₃)₂·4H₂O and Mg(NO₃)₂·4H₂O is prepared by diluting them in a 1:1 ratio to obtain solution with a concentration of 5% (w/w). Following that, the combined solutions were blended with 5 g of ZSM-5 for 24 h, resulting in the production of MgO/Mn₃O₄/ZSM-5. Likewise, the same procedure is used to synthesize MgO/Y₂O₃/ZSM-5. Further, the solution underwent a 5-hour drying process at 110°C following wet impregnation approach. Subsequently, the calcination procedure was conducted at 550°C for 5 h.

2.3. Biomass Catalytic Pyrolysis

A stainless steel fixed bed reactor was utilized to carry out the in situ pyrolysis of coconut shell. The reactor was placed inside a horizontally oriented tube furnace. This study was conducted to investigate the influence of temperature and catalysts on biomass catalytic pyrolysis. The conversion of 20 g of coconut shells into products was conducted at temperatures of 400°C, 500°C, and 600°C. In addition, the catalyst used for each run, namely MgO/ZSM-5, MgO/Y2O3/ZSM-5, and MgO/Mn₃O₄/ZSM-5, was 10% of the weight of the sample. The reaction was carried out for 30 min at a heating rate of 10°C/min. Nitrogen gas was chosen as the carrier gas during the experiment to remove impurities from the system and establish a non-reactive atmosphere. The flow rate of nitrogen gas was consistently maintained at 30 mL/min. The catalytic pyrolysis process produces biogas, bio-char, and bio-oil as its outputs. Equation (1) explains the determination of product yield by integrating the exact quantity of the outcome (bio-oil, bio-char, or biogas) with the initial weight of biomass (Fogler, 2016).

$$Yield(\%wt) = \frac{m_{desired\ product}}{m_{biomass}} \times 100\%$$
 (1)

This equation measures the yield of a particular pyrolysis product (bio-oil, bio-char, or biogas) expressed as a percentage of the initial biomass input. The comparison involves the mass of the desired product to the initial mass ofthe biomass feedstock. This approach employs a fundamental mass-balance technique frequently utilized in biomass conversion investigations to evaluate the effectiveness of the pyrolysis process.

2.4. X-Ray Diffraction Analysis (XRD)

The X-ray diffraction (XRD) analysis was conducted using the Aeris fast XRD system manufactured by Malvern Panalytical Company. The system came with a Benchtop X-Ray Diffractometer. The system used Cu K α radiation with an energy of 40 kilovolts and a current of 15 milliamperes. The scanning angle range extended from 5° < 20 > 80°, with the measurement temperature fixed at 25°C. XRD data acquired will be examined with HighScore and OriginLab software.

2.5. Calorific Value Analysis

The biomass sample and bio-chars were analyzed to evaluate their higher heating values (HHVs) utilizing calorific value analysis using a bomb calorimeter, following the ASTM D 5468–02 technique (ASTM International, 2017). The sample's calorific value (Q) can be determined by applying Equation 4.

$$Qfuse (J/g) = mc \times qc$$
 (2)

$$Qign (J/g) = mw \times qw$$
 (3)

Calorific value,
$$Q(J/g) = \frac{(\varepsilon \Delta T) - (Qfuse + Qign)}{ms}$$
 (4)

Where, Qfuse is heat contributed from the cotton thread(J), Qign heat contributed from the nichrome ignition wire (J)., Q calorific value of the sample (J/g), qc calorific value of cotton fuse (J/g), qw calorific value of nichrome wire (J/g), mc mass of cotton (g), mw mass of nichrome wire (g), ms mass of sample (g), ε calorific value of benzoid acid (J/K), ΔT $T_2 - T_1 =$ final temperature – initial temperature (K).

This procedure assesses the calorific value by measuring the total heat released during the complete combustion of a known mass of sample in a pressurized oxygen environment. For each experiment, around 1 g of the dried sample was accurately weighed and positioned in a combustion crucible within the bomb calorimeter. A cotton thread served as the fuse, while a nichrome ignition wire was utilized to trigger combustion. The bomb was charged with pure oxygen at a pressure of 30 atm and submerged in a calorimetric vessel containing a known quantity of water. Following ignition, the recorded temperature increase (ΔT) was noted.

The calorific value was determined by considering the energy contributions from the cotton fuse and the nichrome wire. The total heat released was adjusted for these components and standardized to the mass of the sample. This method guarantees a precise assessment of the calorific value of biochar by focusing exclusively on the energy derived from the sample itself, while eliminating any influence from external ignition sources. The resulting HHV is an essential parameter in evaluating the energy potential of the bio-char as a solid biofuel.

3. Results and Discussion

3.1. X-Ray Diffraction Analysis (XRD) Results of Catalysts

Wetness impregnation was used to produce magnesium oxide-zeolite based catalysts. It is necessary to run an XRD analysis to determine whether wet impregnation causes changes to or damage to the zeolite's crystallinity and structure. The XRD patterns of the ZSM-5, MgO/ZSM-5, MgO/Y₂O₃/ZSM-5, and MgO/Mn₃O₄/ZSM-5 catalysts are shown in Figure 1. It is apparent that for $2\theta=7.9^{\circ},\,9.0^{\circ},\,23.0^{\circ},\,23.3^{\circ},\,23.9^{\circ},\,29.0^{\circ},\,$ and $30.0^{\circ},\,$ all catalysts show noticeable peaks. The fact that the maximum intensity of the distinct peaks occurs within the same peak range suggests that the structure and crystallinity of the ZSM-5 zeolite were not changed during the metal-oxide impregnation procedures.

The characteristic peaks of ZSM-5 are complemented by the confirmation of additional metal oxides. MgO/ZSM-5 exhibits a new diffraction peak at around $2\theta=43^\circ$, which aligns with the cubic phase of MgO (JCPDS No. 45-0946), thereby confirming the successful integration of MgO onto the ZSM-5 surface (Pei et al., 2010; Serhal et al., 2018). The XRD pattern for the MgO/Y₂O₃/ZSM-5 catalyst reveals additional peaks at $2\theta=29^\circ$, 48°, and 57°, corresponding to the characteristic diffraction pattern of Y₂O₃ (JCPDS No. 41-1105) (Hyun et al., 2021; Krsmanović Whiffen et al., 2012). The observed peaks demonstrate the effective incorporation of yttrium oxide while maintaining the integrity of the ZSM-5 framework, as evidenced by the clarity and prominence of the primary ZSM-5 peaks.

In a similar manner, MgO/Mn $_3$ O $_4$ /ZSM-5 catalyst exhibits multiple new peaks at approximately $2\theta=32^\circ$, 36° , and 72° , which are associated with the Mn $_3$ O $_4$ spinel phase (JCPDS No. 24-0734) (Chen et al., 2019). This indicates the existence of manganese oxide, and its incorporation seems to preserve the structural integrity of the zeolite.

The XRD analysis clearly indicates that the loading of metal oxides through wetness impregnation leads to the effective deposition of metal oxides (MgO, Y_2O_3 and Mn_3O_4) onto the ZSM-5 support, while preserving the crystalline structure of the zeolite intact. The consistent presence of characteristic ZSM-5 peaks in all catalysts reinforces the notion that the framework is preserved following the impregnation process. Futhermore, the crystallinity of XRD diffraction patterns from 5° to 80° was assessed using OriginLab and presented in Table 1. Substituting

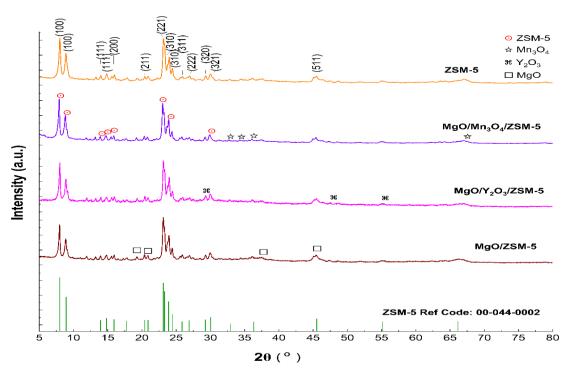


Fig 1. XRD patterns of magnesium oxide-zeolite based catalysts used in the coconut shell catalytic pyrolysis

MgO/ZSM-5, $MgO/Y_2O_3/ZSM-5$, ZSM-5 with MgO/Mn₃O₄/ZSM-5 during pyrolysis revealed enhancement in the catalyst's crystallinity. Crystallinity denotes t he degree to which a material displays a systematic, periodic organization of atoms or molecules within a crystalline structure (Rawat et al., 2023). Materials exhibiting high crystallinity showcase well-defined structures, often leading to notable physical properties like precise melting points, uniform shapes, and improved mechanical strength (Kohutiar et al., 2025; Murmu et al., 2022). Meanwhile, amorphous materials do not possess this long-range order and display a greater variability in properties, such as reduced mechanical strength and undefined thermal transitions (Rawat et al., 2023; Vranic, 2004).

The addition of MgO to ZSM-5 with an appropriate amount through wet impregnation followed by calcination led to a 30.02% enhancement in relative crystallinity, rising from 35.72% to 46.44%. The improvement observed can be linked to the interaction between Mg²+ ions and the zeolite framework, which may help stabilise the structure under high-temperature conditions and inhibit framework degradation (Qu et al., 2020; Shahed et al., 2024; Yuan et al., 2019). Additionally, the modification of ZSM-5 with dual-metal oxides, specifically MgO and Y_2O_3 , resulted in an increase in crystallinity to 41.31%, reflecting a 15.65% improvement. Y_2O_3 , recognised for its robust Lewis acidity and structural enhancement, has the potential to work in conjunction with MgO to maintain the

stability of the zeolite lattice throughout the calcination process (Hata et al., 2021; Lin et al., 2013). Separately, a significant enhancement in crystallinity (56.35%) was noted for MgO/Mn₃O₄/ZSM-5, with relative crystallinity increasing from 35.72% to 55.85%. The significant enhancement indicates that the addition of Mn₃O₄ strengthens the crystalline structure, likely due to its redox characteristics and its interaction with the zeolite framework (Kaczmarczyk et al., 2016; Kim et al., 2012). This interaction may contribute to preserving lattice alignment and preventing collapse during thermal treatment.

3.2. Product Distribution

The pyrolysis process for obtaining bio-char is influenced by several factors, including the type of feedstock, temperature, and catalysts (Elbasiouny et al., 2021; Fernández et al., 2014). Bio-chars derived from animal litter and solid waste feedstocks demonstrate reduced surface areas, carbon content, volatile matter, and elevated cation exchange capacity (CEC) in comparison to bio-chars derived from crop residue and wood biomass, even when subjected to greater pyrolysis temperatures (Tomczyk et al., 2020). The cause for this disparity is significant variance in lignin and cellulose content, as well as moisture content of biomass. Furthermore, biomass can be categorized into two different types: woody and non-woody.

 Table 1

 XRD crystallinity assessment of the catalysts used in this study

Calcination on ZSM-5	35.72%
	33.12/0
Wet impregnation, calcination	46.44%
Wet impregnation, calcination	41.31%
Wet impregnation, calcination	55.85%
	Wet impregnation, calcination

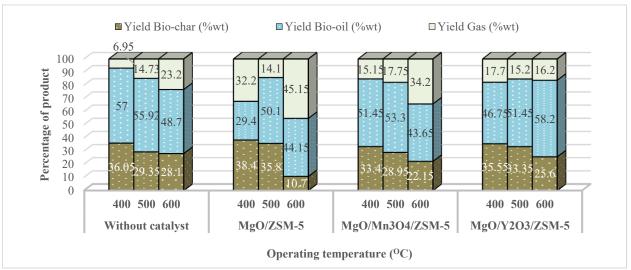


Fig 2. Comparison of bio-char formation with and without magnesium oxide-zeolite based catalysts at various pyrolysis temperatures

According to Jafri et al. (2018), woody biomass, primarily sourced from forestry and trees, exhibits characteristics such as low moisture content, low ash content, high calorific value, and high bulk density (Jafri et al., 2018). Non-woody biomass, such as agricultural products, animal waste, and urban and industrial solid waste, contains a significant amount of moisture, ash content, a lower calorific value, low bulk density, and a higher voidage (Jafri et al., 2018). The moisture content of the material affects the production of bio-char. It increases the amount of energy needed for pyrolysis and hinders the formation of (Kloss et al., 2012; Tripathi et al., 2016). Coconut shell, a woody biomass, was selected for this study. The coconut shell utilized in this experiment exhibits a relatively low moisture content, approximately 11.63%. The coconut shell's low moisture content makes it suitable for use as a fuel in combustion applications, which could potentially enhance productivity (Preeti et al., 2024).

Moreover, the results of pyrolysis include an oil (a mixture of hydrocarbons), synthetic gas (a combination of hydrocarbon gases), and bio-char (Verheijen et al., 2010). Two key variables that can impact the content and synthesis of bio-char are temperature and catalyst activity. Previous studies indicate that higher pyrolysis temperatures result in a decrease in the yield of bio-char formation (Devi, 2014; Mujtaba et al., 2023; Wystalska & Kwarciak-Kozłowska, 2021). In addition, the utilization of various catalysts at different temperatures for the production of bio-char can serve as a fascinating subject for research discovery. The present work employed numerous catalysts, specifically MgO/ZSM-5, $MgO/Y_2O_3/ZSM-5$, MgO/Mn₃O₄/ZSM-5, at different temperatures of 400°C, 500°C, and 600°C. The objective was to investigate the impact of magnesium oxide-zeolite based catalysts on the production of bio-char, as depicted in Figure 2.

In general, Figure 2 demonstrates a negative correlation between temperature and bio-char production. This phenomenon arises from the breakdown of heteroatoms at low temperatures, leading to the formation of a dense tars composition (Guedes et al., 2018; Reza et al., 2023). Conversely, the significant breakdown of biomass species at elevated temperatures results in considerable molecular disorder and the formation of a wide range of chemicals (Akhtar & Saidina Amin, 2012; Guedes et al., 2018). At high temperatures (>500°C), both the primary and secondary pyrolysis processes modify the product composition. Enhancing the production of bio-oil and

biogas can be achieved by increasing the reaction temperatures to optimize the conversion of char and secondary decomposition (Bianasari et al., 2024). Thus, bio-char is typically produced by biomass pyrolysis, with the maximum production being achieved at low operating temperatures (<500°C).

3.3. Impact of MgO/ZSM-5 Catalyst on Bio-Char Production

The data shown in Figure 2 demonstrates that the utilization of the MgO/ZSM-5 catalyst results in a greater production of bio-char when compared to pyrolysis without a catalyst, even at relatively low operating temperatures of 400°C and 500°C. It is the acidic nature of MgO and ZSM-5, together with the working temperature, that influences the transformation of biomass into end products. As shown in Figure 3, temperature and catalyst characteristics are potential determinants of bio-char generation.

Previous research findings indicate that acid and basic alterations of biomass led to a higher formation of bio-char (Yadav et al., 2019). Moreover, a previous study carried out by Smets et al. (Smets et al., 2013) showed a comparable pattern, where biomass conversion carried out using the ZSM-5 catalyst resulted in a higher production of bio-char. The inherent acidity of this zeolite catalyst determines its character, while the unique pore structure imparts certain attributes. Furthermore, research published by Chellappan et al. (2018) (Chellappan et al., 2018) has shown that an increase in temperature leads to an increase in pH level, which in turn causes a reduction in the quantity of bio-char. Magnesium oxide (MgO) maintains its acidic properties when used as a basic catalyst, as shown in the study conducted by Hata et al. (2021) (Hata et al., 2021). When MgO is mixed with ZSM-5, its acidic nature can cause the combined catalyst to exhibit an acidic character. This acidic condition is advantageous for the production of bio-char, as shown in Figure 3. Hence, the utilization of the MgO/ZSM-5 catalyst at low temperatures can enhance the impact of low temperatures, characterized by a reduced pH, in conjunction with the acidity of MgO and ZSM-5, resulting in a greater production of bio-char compared to pyrolysis without the catalyst.

Nevertheless, the conversion of biomass and bio-char into bio-oil persists as the temperature increases from 400°C to 500°C. Ultimately, the MgO/ZSM-5 catalyst achieves the greatest gas output at a temperature of 600°C. This is due to the

Fig 3. Factors affecting bio-char production in catalytic pyrolysis of biomass: temperature and charateristic of the catalyst

fact that the ZSM-5 catalyst's performance is improved by the addition of MgO, making it capable of effectively completing secondary reactions that transform biomass and bio-char into bio-oil and gas. The presence of metal in MgO has the potential to enhance secondary cracking and decomposition processes (Huang et al., 2015; Ji et al., 2017; Vichaphund et al., 2014). At higher temperatures, the product composition is modified by both the primary and secondary pyrolysis processes, resulting in the production of a greater amount of bio-oil and gas rather than bio-char. In contrast, temperatures exceeding 540°C are significantly elevated and quickly reduce the production of liquid fuel (Zheng et al., 2006). The occurrence is attributed to the phenomena of secondary breakdown of the volatiles at very high temperatures, resulting in an augmented gas generation (Guedes et al., 2018). The study undertaken by Ji et al. also demonstrated a comparable trend. The findings of the catalytic characterization suggested that the inclusion of MgO has a positive effect on the dispersion of NiO in the ZSM-5 (Ji et al., 2017). The observed phenomenon can be attributed to the catalyst's ability to augment secondary cracking and breakdown processes, namely decarbonylation and decarboxylation, of pyrolytic vapors (Huang et al., 2015; Vichaphund et al., 2014). By comparison to the treatment without catalyst, the bio-oil production decreased while the water production increased in the catalytic pyrolysis treatments, as depicted in Figure 2. This phenomenon occurs due to the deoxygenation capability of ZSM-5 zeolites and metal-modified ZSM-5 catalysts, which transfers oxygen into CO₂, CO, and H₂O (K. Wang et al., 2015; H. Zhang et al., 2011). Thus, the catalytic pyrolysis process demonstrated that MgO/ZSM-5 catalysts can improve secondary cracking and decomposition reaction, leading to an increase in the gas product although a drop in the liquid product yield, particularly at elevated temperatures.

3.4. Evaluating the Influence of Catalyst Combinations on Bio-char Production

The objective of this study was to investigate the impact of combining MgO/ZSM-5 with other metal oxides on the generation of bio-char. Figure 2 demonstrates that the utilization of MgO/Mn $_3$ O $_4$ /ZSM-5 results in a considerably lower production of bio-char in comparison to pyrolysis without a catalyst and MgO/Y $_2$ O $_3$ /ZSM-5. This phenomenon is

depicted in Figure 3, where the properties of the catalyst, particularly its acidity, might impact the generation of bio-char. MgO/Mn₃O₄/ZSM-5 catalyst is formed by combining magnesium oxide (MgO), manganese oxide (Mn₃O₄), and ZSM-5 zeolite. This combination is specifically engineered to leverage the unique characteristics of each component in order to provide a synergistic impact, therefore augmenting the total catalytic performance. As previously described, the intrinsic properties of ZSM-5 and MgO cause the catalyst to function as an acid catalyst, resulting in the production of bio-char rather than bio-oil and gas at relatively low temperatures. Furthermore, zeolite ZSM-5 is renowned for its well-established acidic characteristics, mostly attributed to the inclusion of silicaalumina groups in its composition (Ghazimoradi et al., 2023; Shi et al., 2023). These groups encompass substantial Brønsted and Lewis acid sites, which have great utility in catalytic processes such as hydrocarbon cracking (Yi et al., 2022). However, the inclusion of Mn₃O₄ will enhance the properties of the catalyst mixture, resulting in a reduced formation of bio-char at low temperatures. The amphoteric behavior of manganese oxide in the form of Mn₃O₄ results in its ability to function as either an acid or a base, contingent upon the reaction conditions (Singh et al., 2020; Zhao et al., 2017). In addition, Mn₃O₄ exhibits redox characteristics, therefore enabling its involvement in oxidationreduction processes (Gagrani et al., 2019; Kaczmarczyk et al., 2016; Pike et al., 2007). Mn₃O₄ is recognized for its high redox activity, which can accelerate the decomposition of biomass during pyrolysis, resulting in more effective transformation of organic matter into volatile compounds (bio-oil and gases) and, as a result, reduced residual bio-char concentration (de Boer et al., 2024; Gagrani et al., 2019; X. Li et al., 2009; Xiong et al., 2017). The redox properties of Mn₃O₄ enable oxidationreduction processes that can enhance the breakdown of lignocellulosic organic matter into smaller molecules. Furthermore, manganese oxides with abundant redox chemistry have been extensively employed in (electro)catalysis for energy and environmental applications (Risch et al., 2017).

Separately, Y_2O_3 has weaker redox characteristics than Mn_3O_4 , although it can still engage in redox reactions to some extent. This could potentially enhance the decomposition of biomass and its transformation into volatile compounds, hence decreasing the quantity of leftover bio-char. Nonetheless, the

redox activity of this product is typically less significant compared to manganese oxides, which implies that it may not facilitate as thorough biomass breakdown as Mn₃O₄. Furthermore, Y₂O₃ possesses unique properties intrinsic to its acidity. Y2O3 had higher Lewis acid strength than Ni when the catalyst was synthesized by the combination of Ni-NiOx-Y2O3 (K. Xu et al., 2022). Supplementary investigations have further confirmed that Y₂O₃ exhibits robust Lewis acid characteristics (Bhagat et al., 2017; Dong et al., 2022; Hussein & Gates, 1998; Lin et al., 2013). By operating the $Y_2O_3/ZSM-5$ catalyst at low temperatures, the impact of low temperatures, characterized by a reduced pH, can be combined with the acidity of MgO/Y₂O₃/ZSM-5 to produce a greater quantity of bio-char. Therefore, the bio-char yield achieved with MgO/Mn₃O₄/ZSM-5 catalysts is lower than that with MgO/ZSM-5 and $MgO/Y_2O_3/ZSM-5$ catalysts.

3.5. Comparative Analysis of Several Magnesium Oxide-Zeolite Based Catalysts Effect on HHV

The high heating value (HHV) is a crucial properties for biochars used as biofuels (Mujtaba et al., 2023). In order to guarantee significant and sustainable changes in the future supply of green clean energy, bio-chars demonstrate good fuel properties and potential (Abdullah et al., 2010; Kwapinski et al., 2010). The HHV of a fuel is the heat produced on complete combustion of a unit quantity of fuel, which includes the latent heat of vaporization of water vapor produced during combustion. High HHV fuel yields greater energy output (L. Xu & Yuan, 2015). The HHV of the fuel can be determined by experimental measurement using an adiabatic oxygen bomb calorimeter. The underlying concept is to precisely compute the difference between the reactant and the product before and after the reaction (Mujtaba et al., 2023). The impact of catalyst formulations on the calorific value of bio-char derived from coconut shell, along with data from literature-reported biomass, is detailed in Table 2.

The data shown in Table 2 clearly indicates that the caloric values of bio-char generated by catalytic pyrolysis were greater than those of coconut shells without any additional processing. Additionally, bio-char often possesses numerous characteristics that render it appropriate as a fuel source. A higher calorific value is a consequence of its higher carbon and hydrogen contents, and lower oxygen levels compared to the initial feedstock (Lee et al., 2013). Moreover, the carbon composition of bio-char can impact the current calorific value. During

burning in biomass, carbon and hydrogen serve as the primary energy sources. Due to the high oxygen content in the biomass, its heating value is reduced since oxygen facilitates the full burning of the biomass, which acts as fuel (Y. Zhang et al., 2023). During biomass pyrolysis, combustion occurs, resulting in a rise in carbon content and a decrease in nitrogen, hydrogen, and oxygen contents of the bio-char structure (Sieradzka et al., 2022).

On the other hand, the calorific value of bio-char can be affected by several factors including its composition, processing conditions, and the catalysts employed in its production (Anand et al., 2023). The contribution of catalysts in enhancing the HHV of bio-char is illustrated in Figure 4. When mixed directly with bio-char, the catalyst may have no direct effect on its HHV. After the pyrolysis process, a catalyst added to the bio-char will usually not directly change the bio-char's calorific value. Yet, catalysts can exert an impact on the bio-char synthesis process during the pyrolysis stage. The primary factors influencing the HHV of bio-char are its chemical composition, including carbon, hydrogen, and oxygen content, as well as the structural features formed during pyrolysis (Hu & Wei, 2023; Mujtaba et al., 2023; Zhou et al., 2022). Although direct mixing may modify certain surface characteristics or chemical reactivity, it does not fundamentally affect the inherent energy content of the biochar. The addition of catalysts during bio-char production process can alter the ash content and fixed carbon content of bio-char (Oladosu et al., 2022).

In this study, raw coconut shell demonstrated the HHV of 12.03 MJ/Kg, which is comparatively lower than other biomass types like dried cassava peel (18.30 MJ/Kg), cassava rhizomes (23.70 MJ/Kg), and palm fiber (16.60 MJ/Kg). Nonetheless, the application of catalytic formulations, specifically MgO/Y₂O₃/ZSM-5 and MgO/ZSM-5, led to significant improvements in the calorific value of the produced bio-chars. In particular, pyrolysis conducted at 500 °C utilizing MgO/Y₂O₃/ZSM-5 resulted in bio-char with a higher heating value of 29.08 MJ/Kg, whereas the combination of MgO/ZSM-5 produced a value of 28.08 MJ/Kg. The increases observed are 17.05 MJ/Kg and 16.05 MJ/Kg, respectively, when compared to the raw coconut shell. Comparable trends were noted in additional research. Egboisuba (2022) documented a rise from 18.30 to 23.77 MJ/Kg with the application of NiNPs in the pyrolysis of dried cassava peel, whereas Selvarajoo and Ooocith (2020) noted an increase from 16.60 to 26.60 MJ/Kg in palm fiber during thermal pyrolysis (Egbosiuba, 2022; Y. Zhang et al., 2023). In contrast, the non-catalytic pyrolysis of cassava

Table 2Higher heating values (HHVs) of various biomass and bio-char obtained through catalytic pyrolysis with various catalysts at 500°C

Sample	Catalyst	HHV (MJ/Kg)	ΔHHV (MJ/Kg)	ΔΗΗV (%)	Temperature (°C)	Reference	
Coconut shell	-	12.03			-	Present study	
Bio-char of coconut shell pyrolysis	ZSM-5	20.06	+8.03	+66.7%	500		
Bio-char of coconut shell pyrolysis	MgO/ZSM-5	28.08	+16.05	+133.4%	500		
Bio-char of coconut shell pyrolysis	MgO/Y ₂ O ₃ /ZSM-5	29.08	+17.05	+141.7%	500		
Bio-char of coconut shell pyrolysis	MgO/Mn ₃ O ₄ /ZSM-5	26.08	+14.05	+116.8%	500		
Dried cassava peel (DCP)	=	18.30			-		
Bio-char of DCP pyrolysis	NiNPs	23.77	+5.47	+29.9%	500	(Egbosiuba, 2022)	
Cassava rhizomes	-	23.7			-	(Rueangsan <i>et al.</i> ,	
Bio-char of cassava rhizomes pyrolysis	-	24.60	+0.90	+3.8%	500	2021)	
Bio-char of cassava rhizomes pyrolysis	Super dolomite	20.2	-3.50	-14.8%	500	2021)	
Palm fibre	-	16.6			-	(Selvarajoo and	
Bio-char of palm fibre pyrolysis	-	26.60	+10.00	+60.2%	500	Oochit, 2020)	

Fig 4. Effect of catalytic interventions on calorific value enhancement during bio-char production

rhizomes produced a modest HHV of 24.60 MJ/Kg bio-char, which is merely 0.90 MJ/Kg above its raw value. Furthermore, the use of Super Dolomite in the pyrolysis of cassava rhizomes led to a reduction in HHV to 20.20 MJ/Kg, suggesting a negative effect on the carbon retention and energy density of the resulting solid residue (Rueangsan et al., 2021).

Moreover, according to Table 2, the bio-char produced by the catalytic pyrolysis procedure utilizing MgO/Y₂O₃/ZSM-5 had the maximum calorific. The occurrence happens due to the direct impact of the individual characteristics of metal oxides and zeolites on the characteristics of the catalyst when combined. In a previous experiment carried out by Pütün (Pütün, 2010), it was shown that the inclusion of MgO significantly improved the calorific value. The addition of magnesium oxide to the raw material increased the oil's quality by increasing the calorific value and H/C ratio. Furthermore, MgO effectively reduced the oxygen content of the bio-oil (Stefanidis et al., 2016). The presence of oxygenates in biofuels, especially solid fuel, negatively impacts their heating value by reducing the capacity for oxidation (Demirbas, 2007; Gupta, 2018; Merckel et al., 2019; Pham, 2014; Rahim et al., 2023). Further, the MgO catalysts exhibited performance that was either equivalent to or better than that of the ZSM-5 catalyst often employed in industrial applications. Hence, the MgO/ZSM-5 catalyst can generate bio-char with reduced oxygen content and increased carbon content compared to the ZSM-5 catalyst. This leads to a higher calorific value of 28.08 MJ/Kg in comparison to bio-char produced by pyrolysis using ZSM-5 (20.06 MJ/Kg).

The data in Table 2 indicates that bio-char produced by catalytic pyrolysis with MgO/Mn₃O₄/ZSM-5 has lower HHV values compared to MgO/ZSM-5 and MgO/Y₂O₃/ZSM-5. This is due to the utilization of a 1:1:2 ratio of metal oxide 1: metal oxide 2: zeolite in this work. Concurrently, the metal oxide/zeolite ratio of MgO/ZSM-5 is 1:1. MgO concentration in MgO/ZSM-5 is higher compared to MgO/Mn₃O₄/ZSM-5. Mn₃O₄ exhibits enhanced redox capacity, resulting in increased bio-char production and reduced volatile matter. Nevertheless, MgO has a tendency to enhance the carbon content of bio-char by promoting deoxygenation and establishing a structurally more robust aromatic framework. As depicted in Figure 4, this

can enhance the calorific value. The compounds MgO and Y2O3 have the capacity to improve decomposition and reforming in addition to their capacity to increase carbon content and reduce oxygenated compounds (J. F. Li et al., 2014; Narasimharao & Al-Sultan, 2020; Pawelczyk et al., 2022; Pelucchi et al., 2021; Santamaria et al., 2020; Y. Wang et al., 2014). Certain metal oxide catalysts can accelerate the breakdown of biomass and facilitate secondary reactions such as cracking and reforming of volatiles. Consequently, this can lead to the production of biochar characterized by a more aromatic composition, which generally exhibits more energy content. Furthermore, the capacity to decrease the amount of volatile matter and enhance the concentration of fixed carbon leads to an elevated energy content in the bio-char (Hendrix et al., 2024; Tomczyk et al., 2020). Moreover, Y2O3 demonstrates outstanding thermal stability, strong chemical resistance, and remarkable mechanical strength, particularly when employed as a reinforcing material in composites, thereby augmenting the stability of the metal oxide surface (Guo et al., 2022; K. Xu et al., 2022). Moreover, according to a prior investigation, the presence of Y₂O₃ on the surface of 0.2Au-La₂O₃ is the primary determinant for the improvement in the performance of oxidative cracking mechanism (Narasimharao & Al-Sultan, 2020). Hence, the inclusion of Y2O3 in MgO/Y2O3/ZSM-5 results in the generation of the greatest high-hate value (HHV) in bio-char produced by catalytic pyrolysis at moderate temperatures (500°C) when compared to alternative catalysts.

In general, the findings indicate that catalytic pyrolysis, especially utilizing MgO/Y $_2$ O $_3$ /ZSM-5 and MgO/ZSM-5, presents a viable method for transforming low-calorific biomass like coconut shell into high-energy-density solid biofuels. This catalytic approach presents an opportunity to enhance the utility of agricultural residues while promoting sustainable energy generation.

3.6. Effects of Temperature and Magnesium Oxide-Zeolite Catalysts on Calorific Value Enhancement

An analysis of the relationship between the employment of magnesium oxide-zeolite combination catalysts and the production of bio-char in biomass pyrolysis at various temperatures might provide valuable information on their

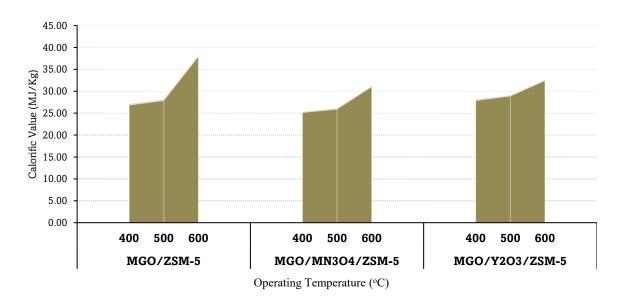


Fig 5. Effects of temperature and catalyst interaction on calorific value of bio-char

appropriateness and enhancement of the process. This investigation is carried out at temperatures of 400°C, 500°C, and 600°C. Figure 5 present the higher heating values (HHVs) or calorific values of bio-char obtained by catalytic pyrolysis using magnesium oxide-zeolite catalysts at different temperatures.

According to Figure 5, bio-chars from catalytic pyrolysis in every catalyst generate an increase in HHVs as the temperature rises. This happens as a result of bio-char's calorific value showing an upward correlation with rising temperatures. Further, the pH, fixed carbon, and specific surface area of biochar all exhibited an upward trend with increasing temperature (Irfan et al., 2016; Qurat-ul-Ain et al., 2021; H. Zhang et al., 2017). Additionally, higher temperatures lead to the breakdown of cellulose and hemicellulose, as a consequence of which there is a higher concentration of pure carbon in the final product ((Majedi et al., 2016; Wardani et al., 2018). Nevertheless, the MgO/Y2O3/ZSM-5 catalyst can generate bio-char with a somewhat greater HHV value compared to alternative catalysts, particularly at temperatures of 400°C and 500°C. The stability of the complex catalyst can be attributed to the presence of Y₂O₃ (Cho et al., 2019; De Luca et al., 2021). In addition to that, Y2O3 can coordinate with MgO to enhance carbon concentrations and decrease oxygen concentrations in bio-char by promoting deoxygenation (Chueaphetr et al., 2023; Elangovan et al., 2017, 2018; Narasimharao & Al-Sultan, 2020; Stefanidis et al., 2016; Y. Zhang et al., 2023). At a relatively high temperature of 600°C, bio-char produced by catalytic pyrolysis with the MgO/ZSM-5 catalyst exhibits the highest HHV value, surpassing that achieved with MgO/Y2O3/ZSM-5. The prior section elucidated that the proportion of MgO in MgO/ZSM-5 exceeds that of MgO in MgO/Y₂O₃/ZSM-5 in this investigation. Therefore, the MgO character is more prominent in MgO/ZSM-5 compared to MgO/Y₂O₃/ZSM-5. MgO exhibits superior specific heat capacity and thermal conductivity in comparison to Y2O3 (Harris et al., 2013). By virtue of its superior specific heat, MgO demonstrates superior resistance to combustion on the catalyst and retains stability at high temperatures when compared to Y₂O₃. Furthermore, thermal conductivity plays a vital role in thermal interface materials as they must efficiently enable the transfer of heat between two surfaces (Chung, 2022). This study indicates that MgO/ZSM-5 exhibits greater heat transfer

capacity to the feedstock and bio-char generated in comparison to $Y_2O_3/ZSM\text{-}5$ during the process of pyrolysis. Thus, the higher calorific value of bio-char produced using MgO/ZSM-5 compared to bio-char obtained using MgO/Y $_2O_3/ZSM\text{-}5$ and MgO/Mn $_3O_4/ZSM\text{-}5$ can be attributed to the superior thermal stability and temperature transmission capabilities of MgO/ZSM-5 in reducing oxygen content and producing a larger quantity of carbon.

4. Conclusion

This study demonstrates the significant benefits of using MgO-zeolite based catalysts in biomass catalytic pyrolysis for producing high-calorific-value bio-char. The combination of MgO with ZSM-5, Y2O3/ZSM-5, and Mn3O4/ZSM-5 shows promise in further enhancing the energy content of bio-char. Multiple findings are presented in this investigation. Employing magnesium oxide-zeolite-based catalysts (MgO/ZSM-5, MgO/Y₂O₃/ZSM-5, and MgO/Mn₃O₄/ZSM-5) at different temperatures reveals that the choice of catalyst can influence both the quantity and quality of bio-char. Typically, conducting pyrolysis at temperatures under 500°C appears to yield higher amounts of bio-char, while elevated temperatures tend to enhance the production of bio-oil and biogas. Furthermore, the bio-char production of MgO/Mn3O4/ZSM-5 is relatively lower when compared to the MgO/ZSM-5 and MgO/Y2O3/ZSM-5 catalysts, as well as in pyrolysis without any catalyst. The specific characteristics of the metal oxides and their interactions with ZSM-5 zeolite have a substantial impact on the catalytic performance. In addition, the utilization of MgO/Mn₃O₄/ZSM-5 led to a reduced HHV in comparison to MgO/ZSM-5 and MgO/Y₂O₃/ZSM-5. This is due to the robust redox characteristics of Mn₃O₄, which enhance the synthesis of biochar but decrease its volatile content and, as a result, its calorific value. The combination of MgO and Y2O3 simultaneously improves the breakdown and reformation mechanisms, therefore facilitating the production of bio-char with increased energy content. Furthermore, both MgO/Y2O3/ZSM-5 and MgO/ZSM-5 catalysts are efficient in increasing the HHV of bio-char. The selection between them should take into account the desired operating temperature. MgO/Y₂O₃/ZSM-5 combined-catalyst is better suited for mild temperatures, but

MgO/ZSM-5 catalyst performs superiorly at higher temperatures because of its improved thermal characteristics and heat transfer capabilities. This study emphasizes the possibility of using tailored catalyst formulations to enhance biomass conversion processes for the purpose of sustainable energy generation.

Acknowledgments

The author A.A.B. is grateful to the Universiti Brunei Darussalam for giving her PhD scholarship.

References

- Abdullah, H., Mediaswanti, K. A., & Wu, H. (2010). Biochar as a fuel: 2. Significant differences in fuel quality and ash properties of biochars from various biomass components of mallee trees. *Energy and Fuels*, 24(3), 1972–1979. https://doi.org/10.1021/ef901435f
- Afshar, M., & Mofatteh, S. (2024). Biochar for a sustainable future: Environmentally friendly production and diverse applications. Results in Engineering, 23, 102433. https://doi.org/10.1016/j.rineng.2024.102433
- Akhtar, J., & Saidina Amin, N. (2012). A review on operating parameters for optimum liquid oil yield in biomass pyrolysis. *Renewable and Sustainable Energy Reviews*, 16(7), 5101–5109. https://doi.org/10.1016/j.rser.2012.05.033
- Anand, A., Gautam, S., & Ram, L. C. (2023). Feedstock and pyrolysis conditions affect suitability of biochar for various sustainable energy and environmental applications. *Journal of Analytical and Applied Pyrolysis*, 170, 105881. https://doi.org/10.1016/j.jaap.2023.105881
- ASTM International. (2017). Standard Test Method for Gross Calorific and Ash Value of Waste Materials. 11.04, 1–8. https://doi.org/10.1520/D5468-02
- Beljin, J., Đukanović, N., Anojčić, J., Simetić, T., Apostolović, T., Mutić, S., & Maletić, S. (2025). Biochar in the Remediation of Organic Pollutants in Water: A Review of Polycyclic Aromatic Hydrocarbon and Pesticide Removal. *Nanomaterials*, 15(1), Article 1. https://doi.org/10.3390/nano15010026
- Bhagat, D., More, Y., [b, M., Ingle, R., Bembalkar, S., & Pawar, R. (2017). Yttrium oxide (Y2O3): Efficient and green catalysis for the synthesis of chromeno[2,3-b]quinolinedione. Journal of Medicinal Chemistry and Drug Discovery. 3(2), 646-653. https://gifsa.ac.in/2017/12/17/yttrium-oxide-y2o3-efficient-and-green-catalysis-for-the-synthesis-of-chromeno-23-bquinolinedione/
- Bianasari, A. A., Khaled, M. S., Hoang, T.-D., Reza, M. S., Bakar, M. S. A., & Azad, A. K. (2024). Influence of combined catalysts on the catalytic pyrolysis process of biomass: A systematic literature review. *Energy Conversion and Management*, 309, 118437. https://doi.org/10.1016/j.enconman.2024.118437
- Bu, Q., Cao, M., Wang, M., Zhang, X., & Mao, H. (2021). The effect of torrefaction and ZSM-5 catalyst for hydrocarbon rich bio-oil production from co-pyrolysis of cellulose and low density polyethylene via microwave-assisted heating. Science of The Total Environment, 754, 142174. https://doi.org/10.1016/j.scitotenv.2020.142174
- Chellappan, S., Nair, V., V., S., & K., A. (2018). Synthesis, optimization and characterization of biochar based catalyst from sawdust for simultaneous esterification and transesterification. *Chinese Journal of Chemical Engineering*, 26(12), 2654–2663. https://doi.org/10.1016/j.cjche.2018.02.034
- Chen, N., Hu, D., Wang, Y., Tan, L., Zhang, F., & Feng, H. (2019). One-pot synthesis of P-toluidine-reduced graphene oxide/Mn3O4 composite and its electrochemical performance. *Journal of Solid State Electrochemistry*, 23. https://doi.org/10.1007/s10008-019-04206-8
- Cho, G. Y., Lee, Y. H., Yu, W., An, J., & Cha, S. W. (2019). Optimization of Y2O3 dopant concentration of yttria stabilized zirconia thin film electrolyte prepared by plasma enhanced atomic layer deposition for high performance thin film solid oxide fuel cells. *Energy*, *173*, 436–442. https://doi.org/10.1016/j.energy.2019.01.124
- Chueaphetr, R., Suwannaruang, T., Khunphonoi, R., Khemthong, P., & Wantala, K. (2023). Enhancing deoxygenation of waste cooking

- palm oil over CaO-MgO catalyst modified by K2O for green biofuel. *Fuel*, *354*, 129350. https://doi.org/10.1016/j.fuel.2023.129350
- Chung, D. d. l. (2022). Performance of Thermal Interface Materials. Small, 18(16), 2200693. https://doi.org/10.1002/smll.202200693
- de Boer, R. M., van Huis, M. A., & Mendes, R. G. (2024). Reversible MnO to Mn3O4 Oxidation in Manganese Oxide Nanoparticles. *Small*, 20(9), 2304925. https://doi.org/10.1002/smll.202304925
- De Luca, A., Kenel, C., Pado, J., Joglekar, S. S., Dunand, D. C., & Leinenbach, C. (2021). Thermal stability and influence of Y2O3 dispersoids on the heat treatment response of an additively manufactured ODS Ni-Cr-Al-Ti γ/γ' superalloy. *Journal of Materials Research and Technology*, 15, 2883–2898. https://doi.org/10.1016/j.jmrt.2021.09.076
- Demirbas, A. (2007). Effects of Moisture and Hydrogen Content on the Heating Value of Fuels. *Energy Sources, Part A: Recovery, Utilization, and Environmental Effects.* https://doi.org/10.1080/009083190957801
- Devi, P. (2014). Optimization of Pyrolysis Conditions to Synthesize Adsorbent from Paper Mill Sludge. *Journal of Clean Energy Technologies*, 2, 2014. https://doi.org/10.7763/JOCET.2014.V2.118
- Domingues, R. R., Trugilho, P. F., Silva, C. A., Melo, I. C. N. A. de, Melo, L. C. A., Magriotis, Z. M., & Sánchez-Monedero, M. A. (2017). Properties of biochar derived from wood and high-nutrient biomasses with the aim of agronomic and environmental benefits. *PloS One*, *12*(5), e0176884. https://doi.org/10.1371/journal.pone.0176884
- Dong, W., Ou, M., Qu, D., Shi, X., Guo, M., Liu, G., Wang, S., Wang, F., & Chen, Y. (2022). Rare-Earth Metal Yttrium-Modified Composite Metal Oxide Catalysts for High Selectivity Synthesis of Biomass-Derived Lactic Acid from Cellulose. *ChemCatChem*, 14(12), e202200265. https://doi.org/10.1002/cctc.202200265
- Egbosiuba, T. C. (2022). Biochar and bio-oil fuel properties from nickel nanoparticles assisted pyrolysis of cassava peel. *Heliyon*, 8(8), e10114. https://doi.org/10.1016/j.heliyon.2022.e10114
- Elangovan, S., Elliott, D. C., Santosa, D., Spatari, S., & Karanjikar, M. (2018). Novel Electro-Deoxygenation Process for Bio-oil Upgrading (No. DOE-OxEon-6288). OxEon Energy, LLC, Clearfield, UT (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); National Renewable Energy Lab. (NREL), Golden, CO (United States). https://doi.org/10.2172/1458768
- Elangovan, S., Larsen, D., Bay, I., Mitchell, E., Hartvigsen, J., Millett, B., Elwell, J., Santosa, D., & Elliott, D. C. (2017). Electrochemical Upgrading of Bio-Oil. *ECS Transactions*, 78(1), 3149. https://doi.org/10.1149/07801.3149ecst
- Elbasiouny, H., Elbehiry, F., El-Ramady, H., & Hasanuzzaman, M. (2021). Contradictory Results of Soil Greenhouse Gas Emissions as Affected by Biochar Application: Special Focus on Alkaline Soils. International Journal of Environmental Research, 15, 903–920. https://doi.org/10.1007/s41742-021-00358-6
- Fernández, J. M., Nieto, M. A., López-de-Sá, E. G., Gascó, G., Méndez, A., & Plaza, C. (2014). Carbon dioxide emissions from semi-arid soils amended with biochar alone or combined with mineral and organic fertilizers. Science of The Total Environment, 482–483, 1–7. https://doi.org/10.1016/j.scitotenv.2014.02.103
- Fogler, H. S. (2016). *Elements of chemical reaction engineering* (Fifth edition). Prentice Hall.
- Gagrani, A., Ding, B., Wang, Y., & Tsuzuki, T. (2019). pH dependent catalytic redox properties of Mn3O4 nanoparticles. *Materials Chemistry and Physics*, 231, 41–47. https://doi.org/10.1016/j.matchemphys.2019.04.017
- Gayathri, R., Gopinath, K. P., & Kumar, P. S. (2021). Adsorptive separation of toxic metals from aquatic environment using agro waste biochar: Application in electroplating industrial wastewater. *Chemosphere*, 262. Scopus. https://doi.org/10.1016/j.chemosphere.2020.128031
- Gezae, A., & Chandraratne, M. (2018). Biochar Production From Biomass Waste-Derived Material. https://doi.org/10.1016/B978-0-12-803581-8.11249-4
- Ghazimoradi, M., Soltanali, S., Karami, H., Ghassabzadeh, H., & Bakhtiari, J. (2023). A facile strategy to prepare ZSM-5-based composites with enhanced light olefin selectivity and stability in the

- HTO process. *RSC Advances*, *13*(29), 20058–20067. https://doi.org/10.1039/D3RA03680D
- Guedes, R. E., Luna, A. S., & Torres, A. R. (2018). Operating parameters for bio-oil production in biomass pyrolysis: A review. *Journal of Analytical and Applied Pyrolysis*, 129, 134–149. https://doi.org/10.1016/j.jaap.2017.11.019
- Guo, Z., Sun, T., Cao, J., Liu, X., Xue, J., Li, X., Liang, Y., & Lin, J. (2022). Microstructure and mechanical properties of Al matrix composite reinforced with micro/nano-sized yttrium oxyfluoride. *Materials Science and Engineering: A, 854*, 143820. https://doi.org/10.1016/j.msea.2022.143820
- Gupta, O. P. (2018). *Elements of Fuel & Combustion Technology*. Khanna Publishing House.
- Harris, D. C., Cambrea, L. R., Johnson, L. F., Seaver, R. T., Baronowski,
 M., Gentilman, R., Scott Nordahl, C., Gattuso, T., Silberstein, S.,
 Rogan, P., Hartnett, T., Zelinski, B., Sunne, W., Fest, E., Howard
 Poisl, W., Willingham, C. B., Turri, G., Warren, C., Bass, M., ...
 Goodrich, S. M. (2013). Properties of an Infrared-Transparent
 MgO:Y2O3 Nanocomposite. *Journal of the American Ceramic Society*,
 96(12), 3828–3835. https://doi.org/10.1111/jace.12589
- Hata, D., Aihara, T., Miura, H., & Shishido, T. (2021). Lactic Acid Production from Glucose over Y2O3-based Catalysts under Basefree Conditions. *Journal of the Japan Petroleum Institute*, 64(5), 280– 292. https://doi.org/10.1627/jpi.64.280
- Hemavathy, R. V., Kumar, P. S., Kanmani, K., & Jahnavi, N. (2020). Adsorptive separation of Cu(II) ions from aqueous medium using thermally/chemically treated Cassia fistula based biochar. *Journal of Cleaner Production*, 249. Scopus. https://doi.org/10.1016/j.jclepro.2019.119390
- Hendrix, Y. S., Nimas, M. S. S., & Yusron, S. (2024). Characterisation of biochar from various carbon sources. *BIO Web of Conferences*.
- Hu, Z., & Wei, L. (2023). Review on Characterization of Biochar Derived from Biomass Pyrolysis via Reactive Molecular Dynamics Simulations. *Journal of Composites Science*, 7(9), Article 9. https://doi.org/10.3390/jcs7090354
- Huang, Y., Wei, L., Crandall, Z., Julson, J., & Gu, Z. (2015). Combining Mo-Cu/HZSM-5 with a two-stage catalytic pyrolysis system for pine sawdust thermal conversion. *Fuel*, *150*, 656–663. https://doi.org/10.1016/j.fuel.2015.02.071
- Hubble, A., Childs, B., Pecchi, M., Sudibyo, H., Tester, J., & Goldfarb, J. (2023). Role of in situ (in contact with biomass) and ex situ (in contact with pyrolysis vapors) transition metal catalysts on pyrolysis of cherry pits. *Fuel*, 352, 129062. https://doi.org/10.1016/j.fuel.2023.129062
- Hussein, G. A. M., & Gates, B. C. (1998). Surface and Catalytic Properties of Yttrium Oxide: Evidence from Infrared Spectroscopy. *Journal of Catalysis*, 176(2), 395–404. https://doi.org/10.1006/jcat.1998.2067
- Hyun, J.-Y., Kim, K.-H., Kim, J.-P., Im, W.-B., Linganna, K., & Choi, J.-H. (2021). Enhancement of Luminescence Efficiency of Y2O3 Nanophosphor via Core/Shell Structure. *Nanomaterials*, 11(6), 1563. https://doi.org/10.3390/nano11061563
- Irfan, M., Chen, Q., Yue, Y., Pang, R., Lin, Q., Zhao, X., & Chen, H. (2016). Co-production of biochar, bio-oil and syngas from halophyte grass (Achnatherum splendens L.) under three different pyrolysis temperatures. *Bioresource Technology*, 211, 457–463. https://doi.org/10.1016/j.biortech.2016.03.077
- Isahak, W. N. R. W., Hisham, M. W. M., Yarmo, M. A., & Yun Hin, T. (2012). A review on bio-oil production from biomass by using pyrolysis method. *Renewable and Sustainable Energy Reviews*, 16(8), 5910–5923. https://doi.org/10.1016/j.rser.2012.05.039
- Jafri, N., Wong, W. Y., Doshi, V., Yoon, L. W., & Cheah, K. H. (2018). A review on production and characterization of biochars for application in direct carbon fuel cells. *Process Safety and Environmental Protection*, 118, 152–166. https://doi.org/10.1016/j.psep.2018.06.036
- Ji, X., Liu, B., Ma, W., Chen, G., Yan, B., & Cheng, Z. (2017). Effect of MgO promoter on Ni-Mg/ZSM-5 catalysts for catalytic pyrolysis of lipid-extracted residue of Tribonema minus. *Journal of Analytical* and Applied Pyrolysis, 123, 278–283. https://doi.org/10.1016/j.jaap.2016.10.032
- Kaczmarczyk, J., Zasada, F., Janas, J., Indyka, P., Piskorz, W., Kotarba, A., & Sojka, Z. (2016). Thermodynamic Stability, Redox Properties, and Reactivity of Mn3O4, Fe3O4, and Co3O4 Model Catalysts for

- N2O Decomposition: Resolving the Origins of Steady Turnover. *ACS Catalysis*, *6*(2), 1235–1246. https://doi.org/10.1021/acscatal.5b02642
- Karim, T. M., Toyoda, H., Sawada, M., Zhao, L., Wang, Y., Xiao, P., Wang, L., Huang, J., & Yokoi, T. (2024). Aluminum Distribution on the Microporous and Hierarchical ZSM-5 Intracrystalline and Its Impact on the Catalytic Performance. *Chem & Bio Engineering*, 1(9), 805–816. https://doi.org/10.1021/cbe.4c00117
- Kim, K. J., Park, M.-S., Kim, J.-H., Hwang, U., Lee, N. J., Jeong, G., & Kim, Y.-J. (2012). Novel catalytic effects of Mn3O4 for all vanadium redox flow batteries. *Chemical Communications*, 48(44), 5455–5457. https://doi.org/10.1039/C2CC31433A
- Kloss, S., Zehetner, F., Dellantonio, A., Hamid, R., Ottner, F., Liedtke, V., Schwanninger, M., Gerzabek, M. H., & Soja, G. (2012). Characterization of Slow Pyrolysis Biochars: Effects of Feedstocks and Pyrolysis Temperature on Biochar Properties. *Journal of Environmental Quality*, 41(4), 990–1000. https://doi.org/10.2134/jeq2011.0070
- Kohutiar, M., Kakošová, L., Krbata, M., Janík, R., Fekiač, J. J., Breznická, A., Eckert, M., Mikuš, P., & Timárová, Ľ. (2025). Comprehensive Review: Technological Approaches, Properties, and Applications of Pure and Reinforced Polyamide 6 (PA6) and Polyamide 12 (PA12) Composite Materials. *Polymers*, 17(4), Article 4. https://doi.org/10.3390/polym17040442
- Krsmanović Whiffen, R., Anti'c, Bartova, B., Brik, M., & Dramicanin, M. (2012). Fabrication of polycrystalline (Y< sub> 0.7 Gd< sub> 0.3)< sub> 2 O< sub> 3: Eu< sup> 3+ ceramics: The influence of initial pressure and sintering temperature on its morphology and photoluminescence activity. *Ceramics International*, *38*, 1303–1313.
- Kwapinski, W., Byrne, C. M. P., Kryachko, E., Wolfram, P., Adley, C., Leahy, J. J., Novotny, E. H., & Hayes, M. H. B. (2010). Biochar from biomass and waste. *Waste and Biomass Valorization*, 1(2), 177–189. Scopus. https://doi.org/10.1007/s12649-010-9024-8
- Lachos-Perez, D., Martins-Vieira, J. C., Missau, J., Anshu, K., Siakpebru,
 O. K., Thengane, S. K., Morais, A. R. C., Tanabe, E. H., & Bertuol, D.
 A. (2023). Review on Biomass Pyrolysis with a Focus on Bio-Oil
 Upgrading Techniques. *Analytica*, 4(2), Article 2.
 https://doi.org/10.3390/analytica4020015
- Lee, Y., Park, J., Ryu, C., Gang, K. S., Yang, W., Park, Y.-K., Jung, J., & Hyun, S. (2013). Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500 °C. *Bioresource Technology*, 148, 196–201. https://doi.org/10.1016/j.biortech.2013.08.135
- Lee, Y., Ryu, J., Han, J.-H., & Jung, I.-C. (2025). New thermally conductive MgO particles prepared using MgTiO3-La2O3-V2O5 additives and fabrication of gap filler with the particles. *Ceramics International*, 51(11), 14268–14277. https://doi.org/10.1016/j.ceramint.2025.01.263
- Lehmann, J., & Joseph, S. (2009). Biochar for environmental management: An introduction. Biochar for environmental management. Science and technology. *Earthscan Publishers Ltd.*
- Lehmann, J., & Joseph, S. (2015). Biochar for environmental management: An introduction. In *Biochar for Environmental Management* (2nd ed.). Routledge.
- Li, J. F., Xia, C., Au, C. T., & Liu, B. S. (2014). Y2O3-promoted NiO/SBA-15 catalysts highly active for CO2/CH4 reforming. *International Journal of Hydrogen Energy*, 39(21), 10927–10940. https://doi.org/10.1016/j.ijhydene.2014.05.021
- Li, W., Xu, A., Zhang, Y., Yu, Y., Liu, Z., & Qin, Y. (2022). Metal-organic framework-derived Mn3O4 nanostructure on reduced graphene oxide as high-performance supercapacitor electrodes. *Journal of Alloys and Compounds*, 897, 162640. https://doi.org/10.1016/j.jallcom.2021.162640
- Li, X., Zhou, L., Gao, J., Miao, H., Zhang, H., & Xu, J. (2009). Synthesis of Mn3O4 nanoparticles and their catalytic applications in hydrocarbon oxidation. *Powder Technology*, *190*(3), 324–326. https://doi.org/10.1016/j.powtec.2008.08.010
- Lin, Y.-F., Chen, J.-H., Hsu, S.-H., & Chung, T.-W. (2013). Hydrothermal synthesis of Lewis acid Y2O3 cubes and flowers for the removal of phospholipids from soybean oil. *CrystEngComm*, *15*(33), 6506–6510. https://doi.org/10.1039/C3CE40791H
- Majedi, F., Wijayanti, W., & Hamidi, N. (2016). PERUBAHAN MASSA DAN NILAI KALOR CHAR DENGAN VARIASI HEATING RATE

- DAN TEMPERATUR PADA PIROLISIS SERBUK KAYU MAHONI (SWITENIA MACROPHYLLA). ROTOR, 9(2), 59–64.
- Martínez, J. D., Veses, A., Mastral, A. M., Murillo, R., Navarro, M. V., Puy, N., Artigues, A., Bartrolí, J., & García, T. (2014). Co-pyrolysis of biomass with waste tyres: Upgrading of liquid bio-fuel. *Fuel Processing Technology*, 119, 263–271. Scopus. https://doi.org/10.1016/j.fuproc.2013.11.015
- Merckel, R. D., Labuschagne, F. J. W. J., & Heydenrych, M. D. (2019).
 Oxygen consumption as the definitive factor in predicting heat of combustion. *Applied Energy*, 235, 1041–1047. https://doi.org/10.1016/j.apenergy.2018.10.111
- Mohanty, S. K., Valenca, R., Berger, A. W., Yu, I. K. M., Xiong, X., Saunders, T. M., & Tsang, D. C. W. (2018). Plenty of room for carbon on the ground: Potential applications of biochar for stormwater treatment. *Science of the Total Environment*, 625, 1644–1658. Scopus. https://doi.org/10.1016/j.scitotenv.2018.01.037
- Mujtaba, M., Fernandes Fraceto, L., Fazeli, M., Mukherjee, S., Savassa, S. M., Araujo de Medeiros, G., do Espírito Santo Pereira, A., Mancini, S. D., Lipponen, J., & Vilaplana, F. (2023). Lignocellulosic biomass from agricultural waste to the circular economy: A review with focus on biofuels, biocomposites and bioplastics. *Journal of Cleaner Production*, 402, 136815. https://doi.org/10.1016/j.jclepro.2023.136815
- Murmu, U. K., Adhikari, J., Naskar, A., Dey, D., Roy, A., Ghosh, A., & Ghosh, M. (2022). Mechanical Properties of Crystalline and Semicrystalline Polymer Systems. In M. S. J. Hashmi (Ed.), Encyclopedia of Materials: Plastics and Polymers (pp. 917–927). Elsevier. https://doi.org/10.1016/B978-0-12-820352-1.00248-0
- Narasimharao, K., & Al-Sultan, F. S. (2020). Y2O3 modified Au-La2O3 nanorod catalysts for oxidative cracking of *n*-propane. *Fuel, 280*, 118599. https://doi.org/10.1016/j.fuel.2020.118599
- Oladosu, K., Olawore, A., Alade, A., & Kolawole, M. (2022).
 Optimization of hhv and energy yield from torrefaction of Albizia zygia wood- calcium hydrogen phosphate catalyst blends using optimal combined design. *Acta Periodica Technologica*, 2022, 109–122. https://doi.org/10.2298/APT2253109O
- Pawelczyk, E., Wysocka, I., & Gębicki, J. (2022). Pyrolysis Combined with the Dry Reforming of Waste Plastics as a Potential Method for Resource Recovery—A Review of Process Parameters and Catalysts. *Catalysts*, 12(4), Article 4. https://doi.org/10.3390/catal12040362
- Pei, L.-Z., Yin, W.-Y., Wang, J.-F., Chen, J., Fan, C.-G., & Zhang, Q.-F. (2010). Low temperature synthesis of magnesium oxide and spinel powders by a sol-gel process. *Materials Research*, *13*, 339–343. https://doi.org/10.1590/S1516-14392010000300010
- Pelucchi, M., Arunthanayothin, S., Song, Y., Herbinet, O., Stagni, A., Carstensen, H.-H., Faravelli, T., & Battin-Leclerc, F. (2021). Pyrolysis and Combustion Chemistry of Pyrrole, a Reference Component for Bio-oil Surrogates: Jet-Stirred Reactor Experiments and Kinetic Modeling. *Energy & Fuels*, 35(9), Article 9. https://doi.org/10.1021/acs.energyfuels.0c03874
- Pham, X. P. (2014). Influences of molecular profiles of biodiesels on atomization, combustion and emission characteristics. PhD Thesis, Sydney University, http://hdl.handle.net/2123/12812
- Pike, J., Hanson, J., Zhang, L., & Chan, S.-W. (2007). Synthesis and Redox Behavior of Nanocrystalline Hausmannite (Mn3O4). Chemistry of Materials, 19(23), 5609–5616. https://doi.org/10.1021/cm071704b
- Preeti, Ag, M., Yp, K., Kg, D., & Pa, S. (2024). Physico-chemical characterization of coconut shell (Cocos nucifera). *International Journal of Advanced Biochemistry Research*, *8*(3S), 118–122. https://doi.org/10.33545/26174693.2024.v8.i3Sb.703
- Pütün, E. (2010). Catalytic pyrolysis of biomass: Effects of pyrolysis temperature, sweeping gas flow rate and MgO catalyst. *Energy*, 35(7), 2761–2766. https://doi.org/10.1016/j.energy.2010.02.024
- Qu, S., Chen, C., Guo, M., Lu, J., Yi, W., Ding, J., & Miao, Z. (2020). Synthesis of MgO/ZSM-5 catalyst and optimization of process parameters for clean production of biodiesel from *Spirulina platensis*. *Journal of Cleaner Production*, 276, 123382. https://doi.org/10.1016/j.jclepro.2020.123382
- Qurat-ul-Ain, Shafiq, M., Capareda, S. C., & Firdaus-e-Bareen. (2021). Effect of different temperatures on the properties of pyrolysis

- products of *Parthenium hysterophorus*. *Journal of Saudi Chemical Society*, 25(3), 101197. https://doi.org/10.1016/j.jscs.2021.101197
- Rahim, M., Trisasongko, A., Ab-Wahid, M., Mohd Jaafar, M. N., Othman, N., Said, M., & Sarif, M. (2023). UTILIZATION OF SYNTHESIS GAS GENERATED FROM AGRICULTURAL WASTE AS CLEAN SUSTAINABLE FUEL. *ASEAN Engineering Journal*, *13*, 159–164. https://doi.org/10.11113/aej.v13.19218
- Rashid, M., Hussain, Q., Khan, K. S., Al-Wabel, M. I., Afeng, Z., Akmal, M., Ijaz, S. S., Aziz, R., Shah, G. A., Mehdi, S. M., Alvi, S., & Qayyum, M. F. (2020). Prospects of Biochar in Alkaline Soils to Mitigate Climate Change. In S. Fahad, M. Hasanuzzaman, M. Alam, H. Ullah, M. Saeed, I. Ali Khan, & M. Adnan (Eds.), Environment, Climate, Plant and Vegetation Growth (pp. 133–149). Springer International Publishing. https://doi.org/10.1007/978-3-030-49732-3_7
- Rawat, N., Junkar, I., Iglič, A., Kralj-Iglič, V., Kulkarni-Sambhare, M., Gongadze, E., & Benčina, M. (2023). Interaction of cells with different types of TiO2 nanostructured surfaces. In A. Iglič, M. Rappolt, & P. Losada Perez (Eds.), Advances in Biomembranes and Lipid Self-Assembly (Vol. 37, pp. 29–59). Academic Press. https://doi.org/10.1016/bs.abl.2023.05.002
- Reza, M. S., Taweekun, J., Afroze, S., Siddique, S. A., Islam, Md. S., Wang, C., & Azad, A. K. (2023). Investigation of Thermochemical Properties and Pyrolysis of Barley Waste as a Source for Renewable Energy. Sustainability, 15(2). https://doi.org/10.3390/su15021643
- Risch, M., Stoerzinger, K. A., Han, B., Regier, T. Z., Peak, D., Sayed, S. Y., Wei, C., Xu, Z., & Shao-Horn, Y. (2017). Redox Processes of Manganese Oxide in Catalyzing Oxygen Evolution and Reduction: An in Situ Soft X-ray Absorption Spectroscopy Study. *The Journal of Physical Chemistry C*, 121(33), 17682–17692. https://doi.org/10.1021/acs.jpcc.7b05592
- Rueangsan, K., Kraisoda, P., Heman, A., Tasarod, H., Wangkulangkool, M., Trisupakitti, S., & Morris, J. (2021). Bio-oil and char obtained from cassava rhizomes with soil conditioners by fast pyrolysis. Heliyon, 7(11), e08291. https://doi.org/10.1016/j.heliyon.2021.e08291
- Santamaria, L., Artetxe, M., Lopez, G., Cortazar, M., Amutio, M., Bilbao, J., & Olazar, M. (2020). Effect of CeO2 and MgO promoters on the performance of a Ni/Al2O3 catalyst in the steam reforming of biomass pyrolysis volatiles. *Fuel Processing Technology*, *198*, 106223. https://doi.org/10.1016/j.fuproc.2019.106223
- Serhal, C. A., Mallard, I., Poupin, C., Labaki, M., Siffert, S., & Cousin, R. (2018). Ultraquick synthesis of hydrotalcite-like compounds as efficient catalysts for the oxidation of volatile organic compounds. Comptes Rendus. Chimie, 21(11), 993–1000. https://doi.org/10.1016/j.crci.2018.09.012
- Shahed, K. S., Fainor, M., Gullbrand, S. E., Hast, M. W., & Manogharan, G. (2024). Hybrid additive manufacturing for Zn-Mg casting for biomedical application. *In Vitro Models*, 3(4), 157–168. https://doi.org/10.1007/s44164-024-00077-0
- Shi, D., Fu, G., Omran, A., Haw, K.-G., Zhu, L., Ding, R., Lang, Q., Wang, S., Fang, Q., Qiu, S., Yang, X., & Valtchev, V. (2023). Acidic properties of Al-rich ZSM-5 crystallized in strongly acidic fluoride medium. *Microporous and Mesoporous Materials*, 358, 112332. https://doi.org/10.1016/j.micromeso.2022.112332
- Sieradzka, M., Kirczuk, C., Kalemba-Rec, I., Mlonka-Mędrala, A., & Magdziarz, A. (2022). Pyrolysis of Biomass Wastes into Carbon Materials. *Energies*, 15(5), Article 5. https://doi.org/10.3390/en15051941
- Singh, M., Dey, E. S., & Dicko, C. (2020). Manganese oxide functionalized silk fibers for enzyme mimic application. *Reactive and Functional Polymers*, 151, 104565. https://doi.org/10.1016/j.reactfunctpolym.2020.104565
- Smets, K., Roukaerts, A., Czech, J., Reggers, G., Schreurs, S., Carleer, R., & Yperman, J. (2013). Slow catalytic pyrolysis of rapeseed cake: Product yield and characterization of the pyrolysis liquid. *Biomass and Bioenergy*, 57, 180–190. https://doi.org/10.1016/j.biombioe.2013.07.001
- Socci, J., Saraeian, A., Stefanidis, S. D., Banks, S. W., Shanks, B. H., & Bridgwater, T. (2022). The role of catalyst acidity and shape selectivity on products from the catalytic fast pyrolysis of beech wood. *Journal of Analytical and Applied Pyrolysis*, 162, 104710. https://doi.org/10.1016/j.jaap.2019.104710

- Stefanidis, S. D., Kalogiannis, K. G., Iliopoulou, E. F., Lappas, A. A., & Pilavachi, P. A. (2011). In-situ upgrading of biomass pyrolysis vapors: Catalyst screening on a fixed bed reactor. *Bioresource Technology*, 102(17), 8261–8267. https://doi.org/10.1016/j.biortech.2011.06.032
- Stefanidis, S. D., Karakoulia, S. A., Kalogiannis, K. G., Iliopoulou, E. F., Delimitis, A., Yiannoulakis, H., Zampetakis, T., Lappas, A. A., & Triantafyllidis, K. S. (2016). Natural magnesium oxide (MgO) catalysts: A cost-effective sustainable alternative to acid zeolites for the in situ upgrading of biomass fast pyrolysis oil. *Applied Catalysis B: Environmental*, 196, 155–173. https://doi.org/10.1016/j.apcatb.2016.05.031
- Terry, L. M., Li, C., Chew, J. J., Aqsha, A., How, B. S., Loy, A. C. M., Chin, B. L. F., Khaerudini, D. S., Hameed, N., Guan, G., & Sunarso, J. (2021). Bio-oil production from pyrolysis of oil palm biomass and the upgrading technologies: A review. *Carbon Resources Conversion*, 4, 239–250. https://doi.org/10.1016/j.crcon.2021.10.002
- Tomczyk, A., Sokołowska, Z., & Boguta, P. (2020). Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects. *Reviews in Environmental Science and Bio/Technology*, 19(1), 191–215. https://doi.org/10.1007/s11157-020-09523-3
- Tripathi, M., Sahu, J. N., & Ganesan, P. (2016). Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. *Renewable and Sustainable Energy Reviews*, 55, 467–481. https://doi.org/10.1016/j.rser.2015.10.122
- Umerah, C. O., Kodali, D., Head, S., Jeelani, S., & Rangari, V. K. (2020). Synthesis of carbon from waste coconutshell and their application as filler in bioplast polymer filaments for 3D printing. *Composites Part B: Engineering*, 202, 108428. https://doi.org/10.1016/j.compositesb.2020.108428
- Verheijen, F., Jeffery, S., Bastos, A., Velde, M., & Diafas, I. (2010). Biochar Application to Soils A Critical Scientific Review of Effects on Soil Properties, Processes and Functions. In *Biochar Application to Soils: A Critical Scientific Review of Effects on Soil Properties, Processes and Functions*. https://dx.doi.org/10.2788/472
- Vichaphund, S., Aht-ong, D., Sricharoenchaikul, V., & Atong, D. (2014). Catalytic upgrading pyrolysis vapors of Jatropha waste using metal promoted ZSM-5 catalysts: An analytical PY-GC/MS. *Renewable Energy*, 65, 70–77. https://doi.org/10.1016/j.renene.2013.07.016
- Vranic, E. (2004). AMORPHOUS PHARMACEUTICAL SOLIDS. Bosnian Journal of Basic Medical Sciences, 4(3), 35–39. https://doi.org/10.17305/bjbms.2004.3383
- Waheed, A., Xu, H., Qiao, X., Aili, A., Yiremaikebayi, Y., Haitao, D., & Muhammad, M. (2025). Biochar in sustainable agriculture and Climate Mitigation: Mechanisms, challenges, and applications in the circular bioeconomy. *Biomass and Bioenergy*, 193, 107531. https://doi.org/10.1016/j.biombioe.2024.107531
- Wang, K., Zhang, J., Shanks, B. H., & Brown, R. C. (2015). Catalytic conversion of carbohydrate-derived oxygenates over HZSM-5 in a tandem micro-reactor system. *Green Chemistry*, 17(1), 557–564. Scopus. https://doi.org/10.1039/c4gc01784f
- Wang, Y., Wang, L., Gan, N., Lim, Z.-Y., Wu, C., Peng, J., & Wang, W. G. (2014). Evaluation of Ni/Y2O3/Al2O3 catalysts for hydrogen production by autothermal reforming of methane. *International Journal of Hydrogen Energy*, 39(21), 10971–10979. https://doi.org/10.1016/j.ijhydene.2014.05.074
- Wardani, S., Pranoto, & Himawanto, D. A. (2018). Kinetic parameters and calorific value of biochar from mahogany (Swietenia macrophylla King) wood pyrolysis with heating rate and final temperature variations. *AIP Conference Proceedings*, 2049(1), 20034. https://doi.org/10.1063/1.5082439

- Wystalska, K., & Kwarciak-Kozłowska, A. (2021). The Effect of Biodegradable Waste Pyrolysis Temperatures on Selected Biochar Properties. *Materials*, *14*(7), 1644. https://doi.org/10.3390/ma14071644
- Xiong, T., Lee, W. S. V., Huang, X., & Xue, J. (2017). Mn3O4/Reduced graphene oxide based supercapacitor with ultra-long cyclic performance. *J. Mater. Chem. A*, 5. https://doi.org/10.1039/C7TA03319B
- Xu, K., Ma, C., Yan, H., Gu, H., Wang, W.-W., Li, S.-Q., Meng, Q.-L., Shao, W.-P., Ding, G.-H., Wang, F. R., & Jia, C.-J. (2022). Catalytically efficient Ni-NiOx-Y2O3 interface for medium temperature water-gas shift reaction. *Nature Communications*, 13(1), 2443. https://doi.org/10.1038/s41467-022-30138-5
- Xu, L., & Yuan, J. (2015). Online identification of the lower heating value of the coal entering the furnace based on the boiler-side whole process models. *Fuel*, 161, 68–77. https://doi.org/10.1016/j.fuel.2015.08.009
- Yaashikaa, P. R., Kumar, P. S., Varjani, S., & Saravanan, A. (2020). A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy.

 *Biotechnology** Reports, 28, e00570. https://doi.org/10.1016/j.btre.2020.e00570
- Yadav, K., Jagadevan, S., Yadav, K., & Jagadevan, S. (2019). Influence of Process Parameters on Synthesis of Biochar by Pyrolysis of Biomass: An Alternative Source of Energy. In *Recent Advances in Pyrolysis*. IntechOpen.
- Yi, F., Xu, D., Tao, Z., Hu, C., Bai, Y., Zhao, G., Chen, H., Cao, J.-P., & Yang, Y. (2022). Correlation of Brønsted acid sites and Al distribution in ZSM-5 zeolites and their effects on butenes conversion. *Fuel*, 320, 123729. https://doi.org/10.1016/j.fuel.2022.123729
- Yuan, D., Sang, Y., Xing, A., Wang, C., Miao, P., & Sun, Q. (2019). Tuning of Magnesium Distribution in ZSM-5 via Different Impregnation Methods and Its Effect on Methanol to Propene Reaction. *Industrial* & Engineering Chemistry Research, 58(13), 5112–5120. https://doi.org/10.1021/acs.iecr.8b04434
- Zhang, H., Chen, C., Gray, E. M., & Boyd, S. E. (2017). Effect of feedstock and pyrolysis temperature on properties of biochar governing end use efficacy. *Biomass and Bioenergy*, 105, 136–146. https://doi.org/10.1016/j.biombioe.2017.06.024
- Zhang, H., Cheng, Y.-T., Vispute, T. P., Xiao, R., & Huber, G. W. (2011). Catalytic conversion of biomass-derived feedstocks into olefins and aromatics with ZSM-5: The hydrogen to carbon effective ratio. *Energy and Environmental Science*, 4(6), 2297–2307. Scopus. https://doi.org/10.1039/c1ee01230d
- Zhang, Y., Fu, P., Yi, W., Li, Z., Tian, C., Li, Z., Li, Y., & Wang, N. (2023). Transport hydrodynamics of catalytic particles in gradient cyclonic flow field and reaction characteristics to produce bio-oil. *Advanced Powder Technology*, 34(4), Article 4. Scopus. https://doi.org/10.1016/j.apt.2023.103980
- Zhao, Z., Zhao, J., & Yang, C. (2017). Efficient removal of ciprofloxacin by peroxymonosulfate/Mn3O4-MnO2 catalytic oxidation system. *Chemical Engineering Journal*, 327, 481-489. https://doi.org/10.1016/j.cej.2017.06.064
- Zheng, J., Zhu, X., Guo, Q., & Zhu, Q. (2006). Thermal conversion of rice husks and sawdust to liquid fuel. *Waste Management*, 26(12), 1430–1435. https://doi.org/10.1016/j.wasman.2005.10.011
- Zhou, H., Lin, W., Chen, C., Liu, C., Wu, J., Wang, J., & Fu, J. (2022). Anchoring Effect of Organosilanes on Hierarchical ZSM-5 Zeolite for Catalytic Fast Pyrolysis of Cellulose to Aromatics. ACS Omega, 7(18), Article 18. https://doi.org/10.1021/acsomega.2c00983

© 2026. The Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-ShareAlike 4.0 (CC BY-SA) International License (http://creativecommons.org/licenses/by-sa/4.0/)