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Multi-objective HVAC control using genetic programming for grid-
responsive commercial buildings
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Abstract. Commercial buildings are significant energy consumers, with their heating, ventilation, and air conditioning (HVAC) systems being major
contributors. Optimizing these systems is crucial for energy conservation, yet advanced artificial intelligence methods like Deep Reinforcement
Learning (DRL) often produce opaque black-box solutions. While post-hoc explanation methods can offer some insight, they are often inexact and
fail to render the core decision logic fully transparent, hindering trust and practical implementation. This paper presents a novel approach using
Genetic Programming (GP) to automatically design HVAC control strategies that are both highly effective and inherently understandable. The novelty
of our framework lies in its direct evolution of interpretable, multi-objective control policies that holistically co-optimize energy efficiency, occupant
thermal comfort, and integrated Demand Response (DR) for a complex multi-zone system a combination not extensively explored in prior GP-HVAC
research. We applied this framework to manage the central air handling unit of a simulated multi-zone office building, enabling it to dynamically
adjust key settings like air temperature and fan pressure. Rigorous testing in a validated EnergyPlus simulation environment showed that the GP-
designed control policies reduced annual HVAC energy use by 40.9% compared to standard ASHRAE A2006 guidelines, 28.4% against the advanced
ASHRAE G36 standard, and a notable 9.3% more than a state-of-the-art DRL controller. These substantial energy savings were achieved while
maintaining excellent occupant thermal comfort for 98.8% of occupied hours. Furthermore, the GP controller demonstrated robust performance
during Demand Response scenarios, achieving a 72.1% reduction in peak power draw. A key outcome is that these high-performing strategies are
expressed in a transparent format allowing direct inspection and understanding. This research establishes Genetic Programming as a compelling
method for creating intelligent HVAC controls that are not only efficient and grid-responsive but also transparent, fostering greater confidence in
advanced building automation.

Keywords: Genetic Programming; HVAC Control; Energy Efficiency; Transparent Control; Demand Reponses; Building Automation
m @ The author(s). Published by CBIORE. This is an open access article under the CC BY-SA license

Check for (http://creativecommons.org/licenses/by-sa/4.0/).
Lo toRAER Received: 20" May 2025; Revised: 7™ Sept 2025; Accepted: 4™ Oct 2025; Available online: 19" Oct 2025

1 INTRODUCTION systems learn from trial and error to balance energy savings
with comfort (Xie, Ajagekar, & You, 2023; Al Sayed et al., 2024).
Deep reinforcement learning (DRL) takes this further by
handling complex data, showing promising results in
simulations and even real buildings (Lu et al., 2022; Sanzana et
al, 2022). But the problem with many Al methods is they're
"black-box" models. You get great performance, but it's hard to

Commercial buildings use a lot of energy, and their heating,
ventilation, and air conditioning (HVAC) systems are often the
main reason, accounting for about 40-50% of total building
energy consumption in many cases (Ghaderian & Veysi, 2021;
Kaushik et al, 2022). With growing concerns about climate
change, rising energy costs, and the need for smarter power . > .
grids, making these systems more efficient is a big deal. understand why the system makes certain decisions. This lack

Traditional HVAC controls, like those based on fixed rules from of trgnsparency can make b.uildi.ng rr}gnagers hesitant to trust
standards such as ASHRAE 90.1, work fine but often miss and implement them, especially in critical setups where safety
and reliability matter (Pinto et al., 2022; Pinthurat, Surinkaew, &

Hredzak, 2024).

To address these limitations, advanced artificial intelligence
(AI) techniques have gained prominence. Deep Reinforcement
Learning (DRL) has emerged as a leading model-free approach,
demonstrating 15-30% energy savings over conventional
controls in simulated multi-zone buildings (Yu et al., 2021; Hou

(MPC) use math models to predict and adjust settings ahead of et al, 20,2,4)' Algorithms like. Deep Q-Networks (DQN), S,Oft
time, which can cut energy use by 20-30% in some studies Actor-Critic (SAC), and multi-agent variants enable adaptive

(Afroz et al, 2018; Bitar et al, 2024). Then there's artificial policies that learn from interactions with the environment,
optimizing actions such as SAT and DSP setpoints (Kumar et al.,

2025; Niazi et al., 2025; Sun et al., 2025). Recent studies have

opportunities to save energy because they don't adapt well to
changing conditions like weather, occupancy, or peak demand
times (Pérez-Lombard et al., 2008; Amer et al., 2024; Yoon et al.,
2024). This can lead to wasted energy, uncomfortable indoor
spaces, and higher bills.

Over the years, researchers have turned to advanced
methods to make HVAC smarter. Model predictive control

intelligence, especially reinforcement learning (RL), where
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extended DRL to incorporate DR, achieving 40-45% peak load
reductions by preemptively adjusting HVAC operations during
high-price signals (Kumar et al., 2025; Niazi et al., 2025; Cinar &
Abut, 2025). However, DRL's reliance on opaque neural
networks poses a major barrier: the "black-box" nature hinders
interpretability, trust, and deployment in safety-critical systems
(Kargar & Bahamin, 2025). Efforts to enhance transparency
through post-hoc Explainable AI (XAI) methods, such as SHAP
(SHapley Additive exPlanations) and LIME (Local Interpretable
Model-agnostic Explanations), have provided partial insights
into feature importance (Mariano-Hernéndez et al., 2021; Yao et
al., 2024). Yet, these approximations often fail to capture holistic
decision logic, leading to incomplete or unreliable explanations
(Yan et al., 2016).

Parallel advancements in model-based optimization,
particularly Model Predictive Control (MPC), offer structured
alternatives. MPC uses physics-based models to forecast and
optimize HVAC operations, reporting up to 25% energy savings
while integrating DR (Bouabdallaoui et al, 2021; Toméas,
Lammle, & Pfafferott, 2025). Hybrid approaches combining
MPC with machine learning further improve robustness to
uncertainties (Alimohammadisagvand, Jokisalo, & Sirén, 2018).
However, developing accurate models is resource-intensive,
and scalability remains a challenge for large buildings
(Chaturvedi, Rajasekar, & Natarajan, 2020; Bouabdallaoui et al.,
2021).

In the DR domain, rule-based strategies provide
transparency but often compromise comfort during load
shedding (Cheraghi & Jahangir, 2023; Cho, Lee, & Heo, 2023;
Choi et al., 2023). DRL-enhanced DR, while effective, inherits
interpretability issues (Ding, Cerpa, & Du, 2025). Emerging VPP
concepts aggregate buildings with renewables but require
interpretable controls for market participation (Pang et al,
2025).

Genetic Programming (GP), an evolutionary computation
technique, addresses these gaps by evolving interpretable
expression trees or decision rules directly from data (Cpalka,
Lapa, & Przybyl, 2018; Sipper & Moore, 2020). Prior GP
applications in buildings include single-objective optimizations,
such as chiller sequencing (yielding 10-20% savings) or thermal
comfort in passive designs (Gao et al, 2020; Es-sakali et al,
2024). Multi-objective GP using NSGA-II has optimized energy
and comfort in residential settings (Pang et al., 2025). However,
GP has not been extensively applied to integrated multi-zone
HVAC control with DR, nor benchmarked against DRL in
renewable-integrated grids.

This study bridges these gaps by proposing a GP
framework to evolve transparent, multi-objective policies for
AHU control in grid-responsive buildings. Key contributions
include:

- Development of a comprehensive GP framework for
evolving interpretable multi-objective HVAC control
policies with integrated Demand Response
capabilities.

- Rigorous evaluation of the evolved GP controllers
against both conventional rule-based approaches
(ASHRAE 2006 and Guideline 36) and state-of-the-art
DRL controllers in a validated EnergyPlus simulation
environment.

- Analysis of the evolved control strategies, revealing
how GP discovers sophisticated yet transparent
operational patterns that effectively balance energy
efficiency, comfort, and grid responsiveness.

- Validation of GP as a compelling approach for creating
intelligent building controls that are not only efficient
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and grid-responsive but also

trustworthy.
The remainder of this paper is organized as follows: Section 2
details the methodology, including the benchmark building
scenario, simulation environment, GP Figure framework, and
baseline controllers. Section 3 presents the results and
discussion, analyzing the evolutionary process, comparative
performance, and characteristics of the evolved policies.,
followed by concluding remarks in Section 4.

transparent and

2 Methodology

This section demonstrates the comprehensive methodology
developed and employed for the direct evolution, simulation,
and rigorous evaluation of interpretable, multi-objective HVAC
control policies using Genetic Programming (GP), with a specific
focus on integrated Demand Response (DR) capabilities. The
overall research process is visually summarized in Fig.1.

We commence by detailing the benchmark building scenario
and the high-fidelity simulation environment. Subsequently, the
GP-based control strategy formulation is presented,
encompassing its representation, multi-objective fitness
evaluation, and evolutionary algorithm configuration. we
describe the implementation of state-of-the-art Deep
Reinforcement Learning (DRL) and established ASHRAE
standard controllers, which serve as baselines for comparative
analysis, along with the key performance indicators used for
evaluation.

2.1 Benchmark Scenario and Simulation Environment

To ensure a realistic and challenging testbed for the control
algorithms, a high-fidelity simulation environment was
meticulously constructed. This environment leverages
EnergyPlus (Version 9.6.0) for dynamic building thermal and
HVAC system simulation. The control algorithms, including the
novel GP framework and baseline controllers, were
implemented in Python (Version 3.9), interfacing with
EnergyPlus via the Functional Mock-up Interface (FMI)
standard.

2.1.1 Building Model

The architectural testbed is a representative five-zone
commercial office building, geometrically and
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Fig. 1 Methodological Framework
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Fig. 2 Building Schematic diagram

thermodynamically adapted from the U.S. Department of
Energy (DOE) Commercial Reference Building specification for
a Medium Office (New Construction, Post-1980, Climate Zone
5A equivalent) (Yu et al, 2021). The model features a total
conditioned floor area of approximately 550 m? distributed
across one thermally distinct interior core zone and four
perimeter zones (North, East, South, and West), each subject to
varying solar exposures and envelope heat transfer
characteristics. A schematic plan view illustrating the building
layout and zonal configuration is presented in Fig.2. Detailed
construction assemblies for walls, roof, floor, and fenestration,
along with their respective thermal properties (U-values, R-
values, thermal mass characteristics), adhere to the reference
building specifications designed to meet ASHRAE Standard
90.1-2019. Air infiltration rates are modeled based on ASHRAE
standards for air changes per hour (ACH).

2.1.2 HVAC System Model

The building model is equipped with a centralized Variable
Air Volume (VAV) Air Handling Unit (AHU) that conditions and
distributes air to the five thermal zones. A high-level overview
illustrating the primary functional blocks of the HVAC system

and the main interaction points with the Genetic Programming
(GP) controller is provided in Fig.3.

Delving into the specifics of the air-side system, the AHU,
whose internal schematic and detailed GP control intervention
points are depicted in Fig.4, comprises an outdoor air
economizer section, a chilled water cooling coil, and a variable-
speed supply fan. The economizer operation is based on a dry-
bulb temperature comparison between outdoor and return air,
with minimum outdoor air ventilation rates continuously
maintained according to ASHRAE Standard 62.1-2019 during
occupied periods. The cooling coil is supplied with chilled water
from an electric water-cooled chiller plant. This plant includes
the primary chiller unit, an open-loop cooling tower for heat
rejection, and associated variable-speed primary and secondary
chilled water pumps, as well as condenser water pumps. The
operational logic and setpoints for this chiller plant, particularly
the chiller supply water temperature, are influenced by the
evolved GP policies as detailed in Section 2.2. Air distribution
to the conditioned spaces is managed by five pressure-
independent VAV terminal units, one serving each thermal
zone. For baseline operations and scenarios within this study,
the VAV terminal units modulate their dampers to meet zone-
specific cooling demands based on standard ASHRAE 2006
control sequences; The GP controller focuses on optimizing the

Chiller Plant

P
Plant Controller Set Point

Demand Response Signal

Aggerated Sensor data

©

AHU Controller Set Point

Genetic Programiming COntroler

Fig. 3 High-Level HVAC System Overview with GP Controller Interaction
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Fig. 5 Detailed AHU Schematic with GP Control Points

central AHU and plant operation, while the VAV boxes react to
the supplied air conditions and zone loads according to this
established baseline logic.The performance characteristics fan
curves, coil capacity curves, chiller COP curves) and nominal
design parameters for all primary HVAC components are
modeled using standard EnergyPlus objects and empirically-
derived performance curves representative of typical
commercial equipment. Specific details regarding these
component models are comprehensively tabulated in Appendix
Table Al.

2.1.3 Operational Conditions and Location

All simulations were conducted for a continuous one-month
period representative of a significant cooling season, specifically
July. The meteorological conditions are based on a Typical
Meteorological Year 3 (TMY 3) weather file for Turin, Italy (EPW
file: ITA_Torino-Caselle.160590_TMYx.epw), providing hourly
data for temperature, humidity, solar radiation, and wind
conditions. Standardized commercial office operational
schedules were implemented for weekday (Monday-Friday)
occupancy (08:00-19:00 peak, with scheduled ramp-up/down),
lighting (based on ASHRAE 90.1-2019 Lighting Power Density
allowances), and miscellaneous equipment loads (plug loads).
Weekend operation assumes an unoccupied building state. The
occupied period thermostat cooling setpoint for all zones is
maintained at 24°C, with a heating setpoint of 21°C (though
active heating demand is minimal during the simulated July
period). The central HVAC system operates from 06:00 to 19:00
on weekdays, allowing for a pre-cooling period before nominal
occupancy begins. To evaluate DR capabilities, a simulated DR
program was integrated. This program introduces a high
electricity price signal, three times the baseload electricity price,
during peak demand hours (14:00-17:00) on selected high-load
weekdays within the simulation month. This DR signal serves as
an explicit input to the intelligent controllers (GP and DRL),
prompting them to modulate HVAC energy consumption.

2.2 Genetic Programming (GP) Framework for HVAC Control

This research proposes a GP framework to directly evolve
interpretable, multi-objective control policies for the AHU. The
GP aims to identify policies that holistically optimize energy
efficiency, occupant thermal comfort, and effective participation
in DR events. The iterative interaction of the GP algorithm with
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Fig. 4 GP Interaction with Simulation Environment

the EnergyPlus simulation environment during the evolutionary
process is conceptually illustrated in Fig.5.

2.2.1 Problem Formulation for GP
The GP-evolved policies are responsible for determining the

following primary AHU control outputs at each discrete control
timestep, At (set to 15 minutes):
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Fig. 6 Evolved GP Policy Tree

- AHU Supply Air Temperature Setpoint Ts4r s, (t),: The
target temperature for air leaving the AHU cooling
coil.

- AHU Duct Static Pressure Setpoint Pppgp(t): The
target static pressure to be maintained in the main
supply duct by the variable-speed fan.

- Chiller Supply Water Temperature Setpoint
Tswr,sp(t): The target temperature for water leaving
the chiller.

- Economizer Control Parameter ugcono(t) : A
parameter guiding economizer operation, such as a
maximum allowable mixed air temperature or a direct
outdoor air fraction command, depending on the
chosen GP representation.

The set of input variables available to the GP for constructing
these control policies encompasses real-time and predicted
environmental conditions, building thermal states, and
operational signals. A comprehensive list of all input terminals
and control outputs, along with their descriptions and units, is
provided in Appendix Table B.1. and include current outdoor
air temperature Ty,7, predicted outdoor air temperatures for
the next [1, 2, and 4] hours (Tparpred+1n, €tC.), average and
maximum zone air temperatures ( Tyoneavg Tzonemax )

maximum  deviation from zone cooling setpoint
(ATz0ne,max_dev )» current supply air temperature ( Tsar,qget )
return air temperature (Tge¢), an indicator of maximum VAV box
damper position across zones (VAVggmp,crit), current time of
day, day of the week, and the active Demand Response signal
(Spr(D))-

2.2.2 GP Representation

The GP representation uses a tree-based structure where each
control output is determined by a separate expression tree as
shown in Fig.6. These trees combine input variables (terminals)
through mathematical operations (addition, subtraction,
multiplication, division), comparison operators (greater than,
less than, equal to), and conditional logic (if-then-else). This
representation allows for the evolution of complex, non-linear
control strategies while maintaining human interpretability.

2.2.3 Fitness Evaluation and Multi-Objective Optimization

The fitness of each GP individual evolved policy is evaluated
based on its performance over the simulation period one
representative week in July including DR events, or the full
month. The operational interaction between a candidate GP
policy and the simulated EnergyPlus environment over a typical
24-hour cycle is depicted in Fig.7, the Environment light green
bar represents the continuous building simulation. During Fixed
Action Periods (hours 00:00-06:00 for night setback and 19:00-
23:00 for system off), pre-defined control actions are applied.
During the GP Control Active period (light blue bar, 06:00-19:00,
indicated by green vertical lines on the timeline), the evolved
GP policy is engaged. At each control timestep within this active
period, the GP policy receives Observations (Env. to GP) (brown
downward arrows) from the EnergyPlus environment and,
based on its evolved logic, issues Actions (GP to Env.) (blue
upward arrows) back to the simulation to control the AHU. The
performance (energy, comfort, DR KPIs) resulting from these
actions over the evaluation period T,,; is then used to calculate
the objective function values: Jgnergy, Jcomsort @nd Jpg.

- Integrated HVAC Energy Consumption (Jgnergy): This
objective from equation (1) reflects the total electrical energy
consumed by the chiller plant (chiller, cooling tower fans,
pumps), the AHU supply fan, and any auxiliary HVAC
components over the evaluation period Ty ;-

JEnB/‘&V = J‘ZI (})c‘/zllk’l;lexl (t’ Ugp (t)’ x([)) + Pﬂm (t’ Up (t)’ x(t))) dt ( 1)

Here, Pepjiter prant (£) and Prqy, () are the instantaneous power
demands (kW) of the chiller plant and AHU fan, respectively.
These are functions of the GP-dictated control actions Ugp(t)
and the overall system state x(t) . The integral is numerically
approximated from the discrete-time simulation outputs.

- Aggregated Thermal Discomfort ( Jcomgore ): This
objective from equation (2) quantifies occupant dissatisfaction
due to deviations from the defined thermal comfort band. It is
formulated as the sum of Time-Integrated Absolute Error
(TIAE) or Integrated Squared Error (ISE) of zone temperatures
from the comfort band limits (T;;; = Tsetpoint,i — 6 Tcomfort and

ISSN: 2252-4940/© 2025. The Author(s). Published by CBIORE
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GP Controller Interaction Timeline with Simulated Environment
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Fig. 7 GP Interaction with Simulation Environment

TUL,L' = Isetpoint,i + 6Tcomfort for zone i, with Tsetpoint,i =24°C
and 6T¢omgore = 1°C during occupied hours Occ, (7) -

N, (Tovar
J conport = Zi:'l _[ , Occ():
{maX(O’ T‘zone,i (ta ugp (t), x(f)) — TUL,i)

(2)
Jd; ©C-hr)

+ max(O, TL - T;une,i (t’ uGP (t), x(t)))

L,i

The evolutionary search for optimal control policies is guided
by a multi-objective fitness function, designed to concurrently
satisfy performance criteria related to energy consumption,
thermal comfort, and DR participation. Each candidate GP
policy is evaluated by deploying it in the Energy Plus simulation
for a representative period T,,q; (carefully selected week in July
encompassing diverse load conditions and DR events). The
performance is quantified by the following three objective
functions, all of which are to be minimized:

- Demand Response Performance Deficit ( Jpr ): This
objective penalizes the failure to meet DR targets or maximizes
the benefit from DR participation in equation (3) and (4). One
formulation is to minimize the average HVAC power
consumption during DR event periods, Tpg, relative to a
baseline power consumption, Ppgserinepr(t), Or to penalize
exceeding a DR power cap Peqp,pr:

1
| Tl
Ipr = J.ZETDR max(0, Povac sota (tugp (1), (1)) — Pcap.DR )dt

J

DR

[ P tuc @ x@e)d kw) ()

(4)

To address these multiple, often conflicting, objectives, the Non-
dominated Sorting Genetic Algorithm II (NSGA-II) (Ghaderian
& Veysi, 2021) is employed as the evolutionary search
mechanism. NSGA-II identifies a set of Pareto-optimal
solutions, representing the best achievable trade-offs between
JEnergys Jcomforts and Jpg. From this final Pareto front, a single
representative GP policy was selected for the detailed
comparative analysis against the baseline controllers. This
selection was based on a balanced performance criterion,
specifically targeting the solution that minimized the Euclidean
distance to the utopia point (0, 0, 0) in the normalized three-
objective space. This approach was chosen to identify the policy
offering the most compelling compromise across all three

objectives, rather than a policy that might excel in one objective
at the significant expense of others.

Furthermore, to address the potential for overfitting, it is
important to note that for this study, both the evolution and final
evaluation of the GP policies were conducted on the
representative month of July. This approach was deliberately
chosen to create a controlled and reproducible ‘level playing
field' for directly comparing the learning capabilities of GP
against the DRL agent, ensuring both were optimized under
identical conditions. The critical question of generalization to
unseen weather data is a primary focus for future work, as
discussed in Section 4.

2.24 Evolutionary Algorithm Configuration

The GP system was implemented using the DEAP (Distributed
Evolutionary Algorithms in Python) library, Version 1.3.1. Key
evolutionary parameters were set as follows: population size of
200, number of generations set to 100, tournament selection
with tournament size of 3. The entire evolution process,
conducted on an Intel Core i9-12900K CPU and 32GB RAM,
took approximately 30 hours to complete. Genetic operators
included one-point subtree crossover with probability 0.7 and
subtree mutation with probability 0.2. Additionally, point
mutation for ephemeral random constants was applied with a
probability of 0.1. The initial population was generated using the
ramped half-and-half method with tree depths ranging from 2 to
6, and a maximum tree depth of 12 was enforced to prevent
excessive bloating. Elitism, preserving the top 2% non-
dominated solutions, was incorporated to ensure convergence
towards high-quality solutions. These parameters were chosen
based on a combination of established practices in GP literature
for complex control problems (Cpalka, Lapa & Przybyl, 2018)
and a series of preliminary tuning experiments. The population
size and number of generations were selected to provide a
sufficient search diversity and convergence time, while
remaining within feasible computational limits for the high-
fidelity simulation environment. The crossover and mutation
rates were set to standard values that encourage a balance
between exploration of new solutions and exploitation of high-
performing genetic material.

2.3 Baseline Controller Implementations

For a comprehensive performance benchmark, the evolved GP
policies were compared against three distinct baseline
controllers, simulated under identical environmental and
operational conditions.

ISSN: 2252-4940/© 2025. The Author(s). Published by CBIORE
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Table 1
Comprehensive Performance Comparison of Control Strategies

Performance Indicator Unit Evolved GP DRL (SAC) ASHRAE G36 ASHRAE A2006

Policy Baseline Baseline Baseline

Energy Efficiency

Total HVAC Energy Consumption kWh 6,800 7,500 9,500 11,500

Chiller Plant Energy Consumption kWh 4,080 4,500 5,800 7,000

AHU Fan Energy Consumption kWh 1,840 2,025 2,470 3,000

% Savings vs. A2006 (Total) % 40.9% 34.8% 17.4% —

% Savings vs. G36 (Total) % 28.4% 21.1% — -21.1% (Worse)

Thermal Comfort

ZAT Violation Degree-Hours °C-hr 75 80 150 280

Occupied Hours in Comfort Band % 98.8% 98.5% 96.5% 93.0%

Demand Response Effectiveness

Average Peak Load Reduction kW 13.7 13.2 1.0* 0.2*

% Peak Load Reduction % 72.1% 69.5% ~5%%* ~1%*

Total Energy Saved/Shifted kWh 40.5 38.8 2.5% 0.5*%

2.3.1 Deep Reinforcement Learning (DRL) Baseline

A DRL agent based on the Soft Actor-Critic (SAC) algorithm was
developed as a state-of-the-art learning-based benchmark.

- State and Action Spaces: The DRL agent utilized the same
state observation space as the GP terminals (Appendix
Table B.1). Its continuous action space corresponded to
the four AHU control outputs
(Tsat,sp» Pop,sps Tswr,sp» Uecono), Normalized to [-1, 1] and
subsequently scaled to physical operational limits.

- Reward Function: The instantaneous reward R, as
shown in equation (5) was formulated to align with the
GP's multi-objective nature, typically as a negatively
weighted sum of penalties reflecting energy
consumption (Pyyac,), thermal discomfort (Deomfort,t),
and DR non-compliance (Dppg ¢):

Wg 'PHVAC,z

R == +WC : ZZZ]OCCI‘ (t) : Dcomfort,i,t+l (5)

4

tWpp SI)R (t) : Dl)R,t

The terms comfort I ,t+1 and Dppg.are analogous to the
integrands in Jcomgors@nd Jpg respectively, evaluated at
time t or t+1. The weights (wg, w¢, wpg) were determined
through an iterative tuning process. A grid search over a
range of plausible weight ratios was conducted in short,
preliminary training runs (100k timesteps each). The set of
weights that demonstrated the most stable learning curve
and resulted in agents achieving a balanced performance
across energy, comfort, and DR objectives during these
initial runs was selected for the full, long-duration training.

- Network Architecture and Training: Both actor and critic
networks in SAC were implemented as fully connected
multi-layer perceptions (MLPs) with two hidden layers of
256 neurons each, employing ReLU activation functions,
and appropriate output activations (Tanh for bounded
actions)]. The agent was trained for [ 2x10° simulation
timesteps] using an experience replay buffer of size [10°].
This training process took approximately 48 hours on the

same computational hardware. Further details on DRL
hyperparameters (learning rates, discount factor vy, target
smoothing T, entropy coefficient «) are provided in
Appendix C.1 (DRL Agent Hyperparameters).

2.3.2 ASHRAE Guideline 36 Baseline

The advanced rule-based control sequences specified
in ASHRAE Guideline 36-2021 (Yoon et al, 2024) were
implemented as a high-performance conventional baseline. This
encompassed:

- Dynamic supply air temperature (SAT) reset using the
Trim & Respond algorithm, responsive to aggregate zone
cooling demand and outdoor air temperature.

- Dynamic duct static pressure (DP) reset using Trim &
Respond logic based on VAV terminal damper positions,
thereby minimizing fan energy while ensuring terminal
authority.

- Economizer control based on differential dry-bulb or
enthalpy comparison, with enforcement of minimum
ventilation requirements.

- Chiller plant sequencing and chilled water temperature
reset consistent with standard Guideline 36 specifications.

As illustrated in Fig.8a, the SAT and DP reset logic ensures
supervisory-level efficiency by adjusting setpoints dynamically
in response to load conditions and zone demands. A more
conventional rule-based controller consistent with ASHRAE
2006 sequences was also considered as a fundamental baseline.
This configuration features a simpler SAT linear reset tied
directly to outdoor air temperature, potentially fixed or less
adaptive DP setpoints, and standard economizer control. The
VAV terminal unit control logic (shown in Fig.8b) was applied
consistently across all baseline scenarios, including those
served by the GP-controlled AHU. Each pressure-independent
VAV box modulated damper position to maintain the local zone
temperature setpoint, subject to minimum ventilation
requirements.

24 Performance Evaluation Metrics

The comparative performance of the evolved Genetic
Programming (GP) policies and the baseline controllers was
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quantitatively assessed using a suite of Key Performance
Indicators (KPIs), aggregated over the entire simulation period
(July). These indicators were selected to provide a holistic
evaluation across energy efficiency, occupant thermal comfort,
Demand Response (DR) effectiveness, and controller
characteristics.

- Total HVAC Energy Consumption (Eyyac,totar): This
primary energy KPI from equation (6) represents the sum of all
electrical energy (in kWh) consumed by the HVAC system
components, including the chiller plant (chiller, cooling tower
fans, pumps) and the Air Handling Unit (AHU) fan, over the
simulation period T, :

sim

(6)

Toim
EHVAC,IDmI = IO (Pchillﬁrjlant (t) + Pﬂm (t) + R}xlx)umps (t))dt

where Pchiller_plant(t) s Pfan(t) and Paux_pumps (t) are the
instantaneous power demands of the respective components.

- Thermal Comfort - ZAT Violation Degree-Hours

(VDHz4r): This metric quantifies the integrated magnitude
and duration of thermal discomfort in equation (7). It is
calculated as the sum of absolute temperature deviations
outside the defined comfort band (23°C - 25°C) during occupied

hours (Occ;(t) = 1) for all N, zones:

max(0,7,,,,(6) =Ty ;) a
R 0))

- Thermal Comfort - Percentage of Occupied Hours
within Comfort Band (%Tcomsore): This provides an intuitive
measure of comfort, representing the percentage of total
occupied hours during which all monitored zone temperatures
were maintained within the [23°C - 25°C] comfort band.

- Demand Response - Average Peak Load Reduction
(4PpR pear): This KPI (in kW) measures the average reduction in
total HVAC power consumption during active DR event periods
compared to a defined baseline power consumption level that
would have occurred without DR intervention (average power
during similar non-DR peak hours or a simulated "no-DR"
scenario).

- Demand Response - Total Energy Saved/Shifted
(APprpeax )): This metric (in kWh) quantifies the total net
reduction or shifting of energy consumption achieved
specifically during all DR event periods throughout the
simulation month, calculated by comparing the actual energy

N, (Toin
VDH ,,, = Z[:IJO Occ,(1) .[‘F max(0,7,, ;

consumed during DR events with the energy that would have
been consumed under a non-DR operational baseline.

- GP Policy Complexity: AEpr To assess the
interpretability and conciseness of the evolved solutions, the
complexity of the final selected GP policy is quantified by the
total number of nodes (functions and terminals) in its
constituent expression tree(s).

3 Results and discussion

This section presents the empirical findings from the application
of the proposed Genetic Programming (GP) framework and its
comprehensive comparative evaluation against established
baseline controllers. The analysis begins with an examination of
the GP evolutionary process and the characteristics of the
resultant policies, followed by a detailed benchmarking of
performance across key metrics including energy efficiency,
thermal comfort, and Demand Response (DR) effectiveness, and
concludes with a statistical validation of the observed
performance differentials.

3.1 GP Evolutionary Process and Characteristics of Evolved

Policies

The foundation of the GP framework's success rests on the
efficacy of its learning process. Before analyzing the final
controller's performance, it is crucial to validate that the
evolutionary algorithm effectively navigated the vast search
space to discover and refine superior control policies. This
ensures the final result is the product of a robust optimization
process, not a random outcome.

Fig.9 provides the visual evidence of this successful learning
journey over 100 generations. A detailed analysis of Fig.9a
tracks the convergence of the three primary objective
components for the best-performing individual in each
generation, and All objectives, which are formulated for
minimization, exhibit a clear and significant improvement. The
initial, randomly generated policies perform poorly, as shown
by the high penalty scores at generation 0. However, substantial
reductions in both the (green line) and (orange line) penalties
are observed within the initial 50 generations. This signifies that
the best individuals progressively learned to achieve better
thermal comfort and more effective Demand Response
performance. Notably, the (crimson line) penalty stabilizes at a
minimized value relatively early in the process. This suggests
the GP algorithm quickly identified a baseline for energy-
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Fig. 9 Programming Evolutionary Process and Convergence: (a) Convergence of the individual fitness objective components for the best
individual; (b) Convergence of the overall fitness score for both the best individual and the population average.

efficient operation and then dedicated the majority of its
subsequent evolutionary effort to fine-tuning the more complex
and dynamic trade-offs between occupant comfort and grid
responsiveness.

Further illustrating the overall optimization progress, Fig.9b
shows the performance of both the elite individuals and the
population as a whole. A consistent downward trajectory is
observed for both the best and average overall fitness scores,
particularly within the initial 40-60 generations. This confirms
successful population-wide learning and optimization towards
better aggregate solutions. The narrowing gap between the two
lines is particularly important, as it indicates that beneficial
genetic material was being successfully distributed throughout
the population, raising the quality of the entire gene pool. This
robust, dual-level convergence at both the individual objective
level and the aggregate population level validates the GP
framework as a potent and reliable methodology for discovering
holistically optimized solutions.

3.2 Comparative Performance of Energy, Comfort, and Grid-
Responsiveness

Having established the robust convergence of the
evolutionary process in the preceding section, the analysis now

Table 2

shifts to the performance of the final, representative GP policy
selected from the Pareto front. This controller was rigorously
benchmarked against the state-of-the-art DRL agent and the
ASHRAE standards under identical operational conditions for
the entire simulated month of July. Table 1 provides a
comprehensive summary of the key performance indicators
(KPIs) across all three primary objectives energy efficiency,
thermal comfort, and Demand Response effectiveness.

A primary benchmark for evaluation is energy
performance, where a distinct hierarchy between the controllers
is immediately apparent from the data in Table 1. The GP
policy’s total consumption of 6,800 kWh represents a substantial
40.9% reduction over the A2006 baseline and a 28.4% saving
over the G36 standard. Most critically, the 9.3% energy saving
relative to the state-of-the-art DRL (SAC) baseline highlights its
superior energy optimization capabilities. Fig.10a provides a
clear, month-long visualization of this hierarchy, showing the GP
controller's cumulative energy use consistently tracking below
all others. The hourly operational dynamics depicted in the
Fig.10b heatmaps offer further insights into how these savings
were achieved. Both the GP and DRL controllers effectively
curtailed energy use during shoulder periods (06:00-09:00 and
16:00-18:00), as indicated by the predominantly darker, lower-
energy regions. This suggests a more adept part-load operation

Statistical Significance of Key Performance Indicator (KPI) Differences Between Controllers (p-values)

Controller Pair 1 Controller Pair 2 Statistical Test Usedt p-value Significance Level}
Total HVAC Energy Consumption (kWh)

Evolved GP Policy ASHRAE A2006 Paired t-test <0.001 *xk

Evolved GP Policy ASHRAE G36 Paired t-test 0.002 *x

Evolved GP Policy DRL (SAC) Paired t-test 0.045 *
DRL (SAC) ASHRAE G36 Paired t-test 0.005 i

ZAT Violation Degree-Hours (°C-hr)

Evolved GP Policy ASHRAE A2006 Paired t-test <0.001 *xk

Evolved GP Policy ASHRAE G36 Paired t-test 0.008 *x

Evolved GP Policy DRL (SAC) Paired t-test 0.350 NS
DRL (SAC) ASHRAE G36 Paired t-test 0.012 *

DR Peak Load Reduction (kW)

Evolved GP Policy ASHRAE G36* Independent t-test <0.001 *xx

Evolved GP Policy DRL (SAC) Paired t-test 0.650 NS
DRL (SAC) ASHRAE G36* Independent t-test <0.001 *xx
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Fig. 10 Comparative Performance of Control Strategies: (a) Cumulative monthly HVAC energy consumption; (b) Hourly energy consumption
patterns; (c) Zone air temperature control on representative days; (d) System dynamic response during a peak Demand Response event.

and aggressive utilization of energy-saving measures. In stark
contrast, the ASHRAE A2006 panel shows consistently high
energy consumption across the entire occupied daytime block,
indicative of its less adaptive, more rigid control logic.
Crucially, these substantial energy savings were achieved
without compromising occupant comfort. As the data in Table
1 confirms, the Evolved GP Policy achieved a notably low ZAT
Violation Degree-Hour value of 75 °C-hr and maintained zone
temperatures within the desired [23°C-25°C] comfort band for
98.8% of all occupied hours. This high level of thermal comfort
was statistically comparable to the DRL baseline (80 °C-hr,
98.5%) and significantly better than the ASHRAE G36 (150
°C-hr) and A2006 (280 °C-hr) approaches. The dynamic thermal
performance is further elucidated in Fig.10c, which presents
indoor air temperature profiles for representative summer days.
It is visually evident that the GP and DRL policies consistently
regulate zone temperatures more tightly within the comfort
band, exhibiting smoother profiles with minimal overshoot or
undershoot. In contrast, the ASHRAE baselines display more
pronounced temperature fluctuations and larger deviations
outside the designated comfort band. This visual evidence
strongly suggests that the learning-based approaches achieve

superior comfort stability due to their ability to learn more
nuanced and anticipatory responses to varying load conditions.

Finally, the GP policy's capacity to actively participate in
Demand Response (DR) events was exceptional. As
summarized in Table 1, the controller achieved an average peak
load reduction of 13.7 kW (72.1%), a performance comparable
to the DRL baseline while the standard ASHRAE baselines
showed negligible active participation. The dynamic response
to a representative DR event is visualized in Fig.10d, providing
a clear, step-by-step illustration of the learned strategy. Upon
activation of the DR signal, both intelligent controllers
aggressively increased their Supply Air Temperature (SAT)
setpoints from approximately 12.5°C to 15.5°C. As a direct
result, total HVAC power consumption decreased dramatically
from a peak of ~17-19 kW to a minimal ~3-4 kW for the duration
of the event. During this period, the average zone temperatures
experienced a controlled, slow drift, peaking around 25.5-
25.8°C before being brought back down. This clearly illustrates
the GP framework's ability to evolve effective, explicit strategies
for demand-side management, successfully completing the
trifecta of holistic, multi-objective optimization.

ISSN: 2252-4940/© 2025. The Author(s). Published by CBIORE



S.Waheed and S.Li

3.3 Analysis of Evolved GP Operational Strategies, Policy

Complexity, and Interpretability

The superior performance documented in the previous
section is not a mystery. A unique and powerful advantage of
the Genetic Programming approach is the inherent
transparency of its resulting policies. While the DRL agent's
logic remains an opaque "black-box," the fundamental structure
of the evolved GP policies, represented as expression trees,
allows for direct inspection, analysis, and human understanding.
This section deconstructs the evolved strategies to reveal the
drivers of its success and discuss the critical importance of
interpretability.

First, it is important to address the complexity of the
evolved solution. The complete multi-output GP policy,
comprising distinct expression trees for each of the four AHU
control variables, aggregates to a total of 185 nodes. This
moderate complexity represents a successful balance: the policy
is sophisticated enough to execute nuanced, high-performance

Int. J. Renew. Energy Dev 2025, 14(6), 1221-1234
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indicates that the GP evolved functionally effective policies
without an unmanageable degree of structural complexity,
thereby preserving interpretability.

Fig.11 offers a multi-faceted visualization of the
controller's evolved "intelligence," revealing the specific,
learned strategies that led to its superior performance. Fig.11a
visualizes the multi-dimensional control strategy for the AHU
SAT setpoint. The surface reveals a distinctly non-linear and
adaptive strategy. When zones are at or below their setpoint
(zero or negative error), the GP maintains a higher, energy-
saving SAT (approximately 15-16.5°C). However, as zones
become warmer, the GP policy enacts a sharp reduction in the
SAT, driving it towards its lower operational limit of
approximately 11°C when the error reaches +2.0°C. This
aggressive cooling response demonstrates a learned
prioritization, a sophisticated, threshold-influenced behavior
that would be challenging to hand-craft. Further insights into
emergent operational behavior are provided in Fig.11b and 11c
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aggressive, low Chiller SWT (7-9°C, reddish hues), indicating
active cooling under high demand. A sparser cluster at higher
SATs (~15-16°C) corresponds to a higher, more efficient Chiller
SWT (10-12°C, bluish hues), representing an energy-saving
mode during lower loads. This demonstrates a learned
coordination between the AHU and chiller plant. A high outdoor
air fraction (60-100%) is predominantly utilized when the
outdoor air is cool (15-20°C). As the outdoor temperature
surpasses ~22°C, the GP decisively minimizes the outdoor air
fraction to avoid introducing excessive thermal loads. Finally, to
understand the temporal dynamics, Fig.11d presents a heatmap
illustrating which specific "GP Rule/Regime for SWT" is active
at each timestep. The color coding clearly distinguishes these
regimes. For example, on high-load days like 2023-07-04, a
clear shift from inactive (regime '0') to active cooling (regimes
'4','5', '6', indicated by yellow/orange/green) is evident during
the morning ramp-up and peak afternoon hours. Conversely,
during milder periods or weekends, lower-numbered regimes
('0', '1', '2', white/pink), indicating reduced cooling, are
predominantly active. This visualization highlights the GP's
ability to dynamically switch between operational modes based
on the time of day and prevailing conditions, providing a
granular view of its adaptive behavior beyond static setpoint
schedules.

This ability to deconstruct and verify the control logic is
the paramount contribution of this work. It directly addresses
the primary barrier to the adoption of advanced Al in critical
building systems: a lack of trust and verifiability (Yu et al., 2021).
While a "black-box" model may perform well, its opacity creates
significant implementation hurdles. The GP controller's "white-
box" nature provides the transparency necessary for vetting,
trust, and practical implementation by facility managers,
offering a viable pathway to deploy truly intelligent and
trustworthy building automation.

34 Statistical Significance of Performance Differences

To ascertain the statistical robustness of the observed
performance advantages, a comprehensive analysis was
conducted using 10 independent simulation runs for each
controller, with the results summarized in Table 2. This analysis
formally validates that the superior performance of the evolved
GP policy is not an artifact of a single simulation but a consistent
and statistically significant outcome. In the critical domain of
energy efficiency, the analysis reveals a clear hierarchy. The GP
controller was found to be significantly superior to all other
methods, consuming less energy than the ASHRAE A2006 (p <
0.001) and G36 (p = 0.002) baselines. Most consequentially, the
9.3% energy saving achieved by the GP policy over the state-of-
the-art DRL agent was also confirmed to be a statistically
significant advantage (p = 0.045). This finding is pivotal, as it
provides strong empirical evidence that, for this complex
control problem, the GP's evolutionary search discovered a
more globally optimal policy than the DRL's gradient-based
learning. While achieving this superior efficiency, the GP
policy’s performance in maintaining thermal comfort and
executing demand response was statistically indistinguishable
from the DRL agent, with p-values of 0.350 and 0.650,
respectively. This demonstrates that the GP’s energy advantage
was not a simple trade-off but a genuine optimization gain,
achieved without any statistically significant sacrifice in other
key performance areas.

These statistical findings are highly significant because
they paint a clear, empirically-backed picture of a holistically
superior and more intelligent controller. The GP model did not
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simply find a good solution; it found a better way to balance the
system's competing objectives. The fact that its energy savings
are statistically significant while its comfort and DR
performance remain on par with the DRL agent suggests that
the GP learned to successfully decouple energy efficiency from
comfort provision in a way the DRL agent could not. The true
importance of our model, however, is realized when coupling
this statistically validated performance with its inherent
interpretability, as discussed in the previous section. This
combination directly addresses the primary barrier to the
adoption of advanced Al in critical building systems: the black-
box problem, which creates a fundamental lack of trust and
verifiability (Cpalka, Lapa & Przybyt, 2018). By providing a
solution that is not only statistically proven to be more efficient
but is also fully transparent and auditable, our GP model
represents a viable and highly advantageous pathway toward
intelligent HVAC control that is not just effective, but also
trustworthy and practically deployable in real-world
applications.

HVAC control.

3.5 Limitations and Future work

While this study robustly demonstrates the significant
potential of the GP-evolved controllers, several considerations
for practical application and future research warrant discussion.
The findings, derived from a high-fidelity simulation
environment, provide a strong performance benchmark, but on-
site validation is the logical next step to confirm performance
against real-world dynamics. A key methodological limitation is
the lack of a separate validation dataset, which raises the
potential for overfitting. Future work must therefore validate the
evolved policies against different weather years and seasons to
rigorously assess their generalization performance and
robustness.

Translating this research into industry practice requires
addressing two primary barriers: the integration with
proprietary  Building Automation Systems (BAS) via
standardized APIs, and the upfront computational and expertise
requirements for policy evolution. However, the inherent
transparency of GP offers a clear advantage over opaque Al,
significantly lowering these adoption hurdles. A practical
pathway could involve a Control-as-a-Service model, where
foundational policies are evolved for building archetypes and
then presented to facility managers for verification. This white-
box nature enables a phased, trust-building deployment like
shadow mode with human oversight, contrasting sharply with
the all-or-nothing trust demanded by black-box DRL agents.

Looking ahead, future work should explore hybrid models
that combine the strengths of GP and Deep Reinforcement
Learning. A promising approach involves using GP to evolve an
interpretable, high-level strategic framework—defining the
operational modes and primary logic while a DRL agent is
tasked with fine-tuning the continuous control parameters
within that GP-defined logic in real-time. Such a hybrid system
could offer the best of both worlds: the robust, transparent, and
verifiable strategic intelligence of GP, coupled with the adaptive,
fine-grained optimization of DRL.

4 Conclusion

This research successfully pioneered and rigorously validated a
Genetic Programming (GP) framework for the direct evolution
of interpretable, multi-objective HVAC control policies,
addressing the critical black-box limitations of contemporary Al
controllers while integrating sophisticated Demand Response
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capabilities. Comprehensive simulations within a validated
multi-zone office building model demonstrated that the GP-
evolved policies achieved superior energy efficiency, reducing
total HVAC consumption by a significant 40.9% against
ASHRAE A2006, 28.4% over ASHRAE G36, and a
notable 9.3% compared to a  state-of-the-art = Deep
Reinforcement Learning agent, all while maintaining excellent
thermal comfort for 98.8% of occupied hours—a level
comparable to DRL and markedly better than standard
baselines. Furthermore, the GP policies exhibited robust DR
effectiveness, delivering a 72.1% peak load reduction through
learned strategies like pre-cooling and dynamic setpoint
modulation, performing on par with DRL. The paramount
contribution of this work is the attainment of this high
operational performance through policies that are inherently
transparent 185 total nodes for the complete AHU strategy,
allowing for direct human inspection, verification, and trust.
This contrasts sharply with opaque DRL models and obviates
the need for potentially inexact post-hoc explanations. By
directly evolving understandable, high-performing solutions, GP
is substantiated as a potent and practical methodology for
advancing intelligent building automation towards more
efficient, grid-responsive, and trustworthy systems. Future
investigations should prioritize real-world deployment,
enhancing GP scalability for larger systems, and evolving
adaptive policies with greater resilience to operational
uncertainties and faults.
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Appendix A

Building and HVAC System Model Parameters

Table Al

HVAC System Component Model Parameters (Based on DOE Medium Office Reference Building, Climate Zone 5A)

Int. J. Renew. Energy Dev 2025, 14(6), 1221-1234

| A1

Component Category Component Parameter Value Units
Chiller Plant Water-Cooled Chiller Nominal Capacity 211 kW
Rated COP (Coefficient of Performance) 6.2 -
Chilled Water Supply Temp. Range 6.7-12.0 °C
Cooling Tower Design Approach Temperature 4.0 °C
Design Range Temperature 5.5 °C
Fan Power at Design Airflow 7.5 kW
Chilled Water Pump Rated Flow Rate 9.1 L/s
(Primary, Variable Speed) Rated Head 180 kPa
Motor Efficiency 0.90 -
Condenser Water Pump Rated Flow Rate 114 L/s
(Constant Speed) Rated Head 150 kPa
Motor Efficiency 0.90 -
Air Handling Unit AHU Supply Fan Design Airflow Rate 7.55 m?/s
(Variable Speed) Design Static Pressure 1120 Pa
Total Fan Efficiency 0.65 -
Motor Efficiency 0.92 -
Chilled Water Cooling Coil Design Capacity (Sensible) 155 kW
Design Inlet Air Temperature (Dry-Bulb) 26.0 °C
Design Inlet Water Temperature 6.7 °C
Zonal Equipment VAV Terminal Units (x5) Maximum Airflow Rate (Perimeter) 1.2 m?/s
Maximum Airflow Rate (Core) 1.55 m?/s
Minimum Airflow Fraction 0.30 -
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| A2
Table B1
Controller Input (State/Terminals) and Output (Action) Variables
Type Variable Name Symbol Description Unit
Input Outdoor Air Temperature TO AT Current measured dry-bulb temperature of outside air. °C
Input Outdoor Air Temp. Forecast +1h T OAT , pred+1h Predicted outdoor air temperature for the next hour. °C
Input Outdoor Air Temp. Forecast +2h OAT , pred+2h Predicted outdoor air temperature for two hours ahead. °C
Input Outdoor Air Temp. Forecast +4h OAT , pred-+4h Predicted outdoor air temperature for four hours ahead. °C
Input Average Zone Air Temperature zone,avg Mean air temperature across all 5 conditioned zones. °C
Input Maximum Zone Air Temperature Zone.max Air temperature of the warmest conditioned zone. °C
Maximum positive deviation from the cooling setpoint in an Kor
Input Max Zone Temp. Deviation ATZ one.max dev P £ selp Y o
»max_ zone. C
Input Current Supply Air Temperature T. SAT .act Current measured temperature of the air leaving the AHU. °C
Input Return Air Temperature T Ret Temperature of air returning to the AHU from the zones. °C
Input Max VAV Damper Position V AV, damp,crit Position of the most-open VAV box damper. %
Input Time of Day t day Current hour of the day (e.g., 0-23). hour
Input Day of the Week d week Current day of the week (e.g., 1=Mon, 7=Sun). -
Input Demand Response Signal S DR (t ) Binary signal indicating an active DR event (0=No, 1=Yes). -
Output AHU Supply Air Temp. Setpoint Ts AT,sp Target temperature for air leaving the AHU cooling coil. °C
Output  AHU Duct Static Pressure Setpoint PDp o Target static pressure to be maintained in the main supply duct. Pa
Chiller Supply Water Temp. . .
Output T Target t ture for water | the chiller. °C
pu Setpoint SWT.sp arget temperature for water leaving the chiller
Output Economizer Control Parameter u Control parameter for economizer (e.g., outdoor air fraction). -

econo
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Table C.1
DRL Agent (Soft Actor-Critic) Hyperparameters
Category Parameter Value Description
Algorithm Algorithm Soft Actor-Critic ~ State-of-the-art off-policy algorithm for continuous control, balancing
Hyperparameters (SAC) exploration and exploitation via entropy maximization.
Learnlzgcljiti:)(Actor 3e-4 The step size for updating the neural network weights during training.
i Determines the importance of future rewards. A value of 0.99
Discount Factor (y) 0.99 Lo
prioritizes long-term performance.
Target Smoothing 0.005 Controls the update speed of the target networks, promoting stable
Coefficient (1) learning.
Entropy Coefficient Auto-tuned Automatically adjusted during training to balance reward
() maximization (exploitation) and entropy (exploration).
Neural Network Actor/Critic Hidden 9 The number of layers between the input and output layers for both
Architecture Layers networks.
Neurons per Hidden 256 The number of nodes in each hidden layer, defining the network's
Layer capacity.
Activation Function ReLU Rectified Linear Unit, a standard non-linear activation for hidden
(Hidden) layers.
Activation Function Tanh Hyperbolic Tangent, used to bound the continuous actions to the [-1,
(Output) 1] range.
Training Parameters Total Timesteps 2,000,000 The total number of environmc:;gl:E ;r;teractions used for training the
Replay Buffer Size 100,000 The number of past experiences (stat.e,. action, reward, next_state)
stored for training.
Batch Size 256 The number of experiences s.ar.npled from the replay buffer for each
training update.
Optimizer Adam An adaptive learning rate optimization algorithm used for training the

networks.
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