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Abstract. Commercial buildings are significant energy consumers, with their heating, ventilation, and air conditioning (HVAC) systems being major 
contributors. Optimizing these systems is crucial for energy conservation, yet advanced artificial intelligence methods like Deep Reinforcement 
Learning (DRL) often produce opaque black-box solutions. While post-hoc explanation methods can offer some insight, they are often inexact and 
fail to render the core decision logic fully transparent, hindering trust and practical implementation. This paper presents a novel approach using 
Genetic Programming (GP) to automatically design HVAC control strategies that are both highly effective and inherently understandable. The novelty 
of our framework lies in its direct evolution of interpretable, multi-objective control policies that holistically co-optimize energy efficiency, occupant 
thermal comfort, and integrated Demand Response (DR) for a complex multi-zone system a combination not extensively explored in prior GP-HVAC 
research. We applied this framework to manage the central air handling unit of a simulated multi-zone office building, enabling it to dynamically 
adjust key settings like air temperature and fan pressure. Rigorous testing in a validated EnergyPlus simulation environment showed that the GP-
designed control policies reduced annual HVAC energy use by 40.9% compared to standard ASHRAE A2006 guidelines, 28.4% against the advanced 
ASHRAE G36 standard, and a notable 9.3% more than a state-of-the-art DRL controller. These substantial energy savings were achieved while 
maintaining excellent occupant thermal comfort for 98.8% of occupied hours. Furthermore, the GP controller demonstrated robust performance 
during Demand Response scenarios, achieving a 72.1% reduction in peak power draw. A key outcome is that these high-performing strategies are 
expressed in a transparent format allowing direct inspection and understanding. This research establishes Genetic Programming as a compelling 
method for creating intelligent HVAC controls that are not only efficient and grid-responsive but also transparent, fostering greater confidence in 
advanced building automation. 
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1 INTRODUCTION 

Commercial buildings use a lot of energy, and their heating, 
ventilation, and air conditioning (HVAC) systems are often the 
main reason, accounting for about 40-50% of total building 
energy consumption in many cases (Ghaderian & Veysi, 2021; 
Kaushik et al., 2022). With growing concerns about climate 
change, rising energy costs, and the need for smarter power 
grids, making these systems more efficient is a big deal. 
Traditional HVAC controls, like those based on fixed rules from 
standards such as ASHRAE 90.1, work fine but often miss 
opportunities to save energy because they don't adapt well to 
changing conditions like weather, occupancy, or peak demand 
times (Pérez-Lombard et al., 2008; Amer et al., 2024; Yoon et al., 
2024). This can lead to wasted energy, uncomfortable indoor 
spaces, and higher bills. 

Over the years, researchers have turned to advanced 
methods to make HVAC smarter. Model predictive control 
(MPC) use math models to predict and adjust settings ahead of 
time, which can cut energy use by 20-30% in some studies 
(Afroz et al., 2018; Bitar et al., 2024). Then there's artificial 
intelligence, especially reinforcement learning (RL), where 

 
* Corresponding author 

Email: sibtainwaheed@seu.edu.cn  (S. Waheed) 

systems learn from trial and error to balance energy savings 
with comfort (Xie, Ajagekar, & You, 2023; Al Sayed et al., 2024). 
Deep reinforcement learning (DRL) takes this further by 
handling complex data, showing promising results in 
simulations and even real buildings (Lu et al., 2022; Sanzana et 
al., 2022). But the problem with many AI methods is they're 
"black-box" models. You get great performance, but it's hard to 
understand why the system makes certain decisions. This lack 
of transparency can make building managers hesitant to trust 
and implement them, especially in critical setups where safety 
and reliability matter (Pinto et al., 2022; Pinthurat, Surinkaew, & 
Hredzak, 2024). 

To address these limitations, advanced artificial intelligence 
(AI) techniques have gained prominence. Deep Reinforcement 
Learning (DRL) has emerged as a leading model-free approach, 
demonstrating 15-30% energy savings over conventional 
controls in simulated multi-zone buildings (Yu et al., 2021; Hou 
et al., 2024). Algorithms like Deep Q-Networks (DQN), Soft 
Actor-Critic (SAC), and multi-agent variants enable adaptive 
policies that learn from interactions with the environment, 
optimizing actions such as SAT and DSP setpoints (Kumar et al., 
2025; Niazi et al., 2025; Sun et al., 2025). Recent studies have 
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extended DRL to incorporate DR, achieving 40-45% peak load 
reductions by preemptively adjusting HVAC operations during 
high-price signals (Kumar et al., 2025; Niazi et al., 2025; Çinar & 
Abut, 2025). However, DRL's reliance on opaque neural 
networks poses a major barrier: the "black-box" nature hinders 
interpretability, trust, and deployment in safety-critical systems 
(Kargar & Bahamin, 2025). Efforts to enhance transparency 
through post-hoc Explainable AI (XAI) methods, such as SHAP 
(SHapley Additive exPlanations) and LIME (Local Interpretable 
Model-agnostic Explanations), have provided partial insights 
into feature importance (Mariano-Hernández et al., 2021; Yao et 
al., 2024). Yet, these approximations often fail to capture holistic 
decision logic, leading to incomplete or unreliable explanations 
(Yan et al., 2016). 

Parallel advancements in model-based optimization, 
particularly Model Predictive Control (MPC), offer structured 
alternatives. MPC uses physics-based models to forecast and 
optimize HVAC operations, reporting up to 25% energy savings 
while integrating DR (Bouabdallaoui et al., 2021; Tomás, 
Lämmle, & Pfafferott, 2025). Hybrid approaches combining 
MPC with machine learning further improve robustness to 
uncertainties (Alimohammadisagvand, Jokisalo, & Sirén, 2018). 
However, developing accurate models is resource-intensive, 
and scalability remains a challenge for large buildings 
(Chaturvedi, Rajasekar, & Natarajan, 2020; Bouabdallaoui et al., 
2021). 

In the DR domain, rule-based strategies provide 
transparency but often compromise comfort during load 
shedding (Cheraghi & Jahangir, 2023; Cho, Lee, & Heo, 2023; 
Choi et al., 2023). DRL-enhanced DR, while effective, inherits 
interpretability issues (Ding, Cerpa, & Du, 2025). Emerging VPP 
concepts aggregate buildings with renewables but require 
interpretable controls for market participation (Pang et al., 
2025). 

Genetic Programming (GP), an evolutionary computation 
technique, addresses these gaps by evolving interpretable 
expression trees or decision rules directly from data (Cpalka, 
Łapa, & Przybył, 2018; Sipper & Moore, 2020). Prior GP 
applications in buildings include single-objective optimizations, 
such as chiller sequencing (yielding 10-20% savings) or thermal 
comfort in passive designs (Gao et al., 2020; Es-sakali et al., 
2024). Multi-objective GP using NSGA-II has optimized energy 
and comfort in residential settings (Pang et al., 2025). However, 
GP has not been extensively applied to integrated multi-zone 
HVAC control with DR, nor benchmarked against DRL in 
renewable-integrated grids. 

This study bridges these gaps by proposing a GP 
framework to evolve transparent, multi-objective policies for 
AHU control in grid-responsive buildings. Key contributions 
include: 

- Development of a comprehensive GP framework for 
evolving interpretable multi-objective HVAC control 
policies with integrated Demand Response 
capabilities. 

- Rigorous evaluation of the evolved GP controllers 
against both conventional rule-based approaches 
(ASHRAE 2006 and Guideline 36) and state-of-the-art 
DRL controllers in a validated EnergyPlus simulation 
environment. 

- Analysis of the evolved control strategies, revealing 
how GP discovers sophisticated yet transparent 
operational patterns that effectively balance energy 
efficiency, comfort, and grid responsiveness. 

- Validation of GP as a compelling approach for creating 
intelligent building controls that are not only efficient 

and grid-responsive but also transparent and 
trustworthy. 

The remainder of this paper is organized as follows: Section 2 
details the methodology, including the benchmark building 
scenario, simulation environment, GP Figure framework, and 
baseline controllers. Section 3 presents the results and 
discussion, analyzing the evolutionary process, comparative 
performance, and characteristics of the evolved policies., 
followed by concluding remarks in Section 4. 

2 Methodology 

This section demonstrates the comprehensive methodology 
developed and employed for the direct evolution, simulation, 
and rigorous evaluation of interpretable, multi-objective HVAC 
control policies using Genetic Programming (GP), with a specific 
focus on integrated Demand Response (DR) capabilities. The 
overall research process is visually summarized in Fig.1.  

We commence by detailing the benchmark building scenario 
and the high-fidelity simulation environment. Subsequently, the 
GP-based control strategy formulation is presented, 
encompassing its representation, multi-objective fitness 
evaluation, and evolutionary algorithm configuration. we 
describe the implementation of state-of-the-art Deep 
Reinforcement Learning (DRL) and established ASHRAE 
standard controllers, which serve as baselines for comparative 
analysis, along with the key performance indicators used for 
evaluation. 

2.1 Benchmark Scenario and Simulation Environment 

To ensure a realistic and challenging testbed for the control 
algorithms, a high-fidelity simulation environment was 
meticulously constructed. This environment leverages 
EnergyPlus (Version 9.6.0) for dynamic building thermal and 
HVAC system simulation. The control algorithms, including the 
novel GP framework and baseline controllers, were 
implemented in Python (Version 3.9), interfacing with 
EnergyPlus via the Functional Mock-up Interface (FMI) 
standard. 

2.1.1 Building Model 

The architectural testbed is a representative five-zone 
commercial office building, geometrically and 

 

Fig. 1 Methodological Framework 
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thermodynamically adapted from the U.S. Department of 
Energy (DOE) Commercial Reference Building specification for 
a Medium Office (New Construction, Post-1980, Climate Zone 
5A equivalent) (Yu et al., 2021). The model features a total 
conditioned floor area of approximately 550 m², distributed 
across one thermally distinct interior core zone and four 
perimeter zones (North, East, South, and West), each subject to 
varying solar exposures and envelope heat transfer 
characteristics. A schematic plan view illustrating the building 
layout and zonal configuration is presented in Fig.2. Detailed 
construction assemblies for walls, roof, floor, and fenestration, 
along with their respective thermal properties (U-values, R-
values, thermal mass characteristics), adhere to the reference 
building specifications designed to meet ASHRAE Standard 
90.1-2019. Air infiltration rates are modeled based on ASHRAE 
standards for air changes per hour (ACH). 

2.1.2 HVAC System Model 

The building model is equipped with a centralized Variable 
Air Volume (VAV) Air Handling Unit (AHU) that conditions and 
distributes air to the five thermal zones. A high-level overview 
illustrating the primary functional blocks of the HVAC system 

and the main interaction points with the Genetic Programming 
(GP) controller is provided in Fig.3. 

Delving into the specifics of the air-side system, the AHU, 
whose internal schematic and detailed GP control intervention 
points are depicted in Fig.4, comprises an outdoor air 
economizer section, a chilled water cooling coil, and a variable-
speed supply fan. The economizer operation is based on a dry-
bulb temperature comparison between outdoor and return air, 
with minimum outdoor air ventilation rates continuously 
maintained according to ASHRAE Standard 62.1-2019 during 
occupied periods. The cooling coil is supplied with chilled water 
from an electric water-cooled chiller plant. This plant includes 
the primary chiller unit, an open-loop cooling tower for heat 
rejection, and associated variable-speed primary and secondary 
chilled water pumps, as well as condenser water pumps. The 
operational logic and setpoints for this chiller plant, particularly 
the chiller supply water temperature, are influenced by the 
evolved GP policies as detailed in Section 2.2. Air distribution 
to the conditioned spaces is managed by five pressure-
independent VAV terminal units, one serving each thermal 
zone. For baseline operations and scenarios within this study, 
the VAV terminal units modulate their dampers to meet zone-
specific cooling demands based on standard ASHRAE 2006 
control sequences; The GP controller focuses on optimizing the 

 

Fig. 2 Building Schematic diagram 

 

 

Fig. 3 High-Level HVAC System Overview with GP Controller Interaction 
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central AHU and plant operation, while the VAV boxes react to 
the supplied air conditions and zone loads according to this 
established baseline logic.The performance characteristics fan 
curves, coil capacity curves, chiller COP curves) and nominal 
design parameters for all primary HVAC components are 
modeled using standard EnergyPlus objects and empirically-
derived performance curves representative of typical 
commercial equipment. Specific details regarding these 
component models are comprehensively tabulated in Appendix 
Table A1. 

2.1.3 Operational Conditions and Location 

All simulations were conducted for a continuous one-month 
period representative of a significant cooling season, specifically 
July. The meteorological conditions are based on a Typical 
Meteorological Year 3 (TMY3) weather file for Turin, Italy (EPW 
file: ITA_Torino-Caselle.160590_TMYx.epw), providing hourly 
data for temperature, humidity, solar radiation, and wind 
conditions. Standardized commercial office operational 
schedules were implemented for weekday (Monday-Friday) 
occupancy (08:00-19:00 peak, with scheduled ramp-up/down), 
lighting (based on ASHRAE 90.1-2019 Lighting Power Density 
allowances), and miscellaneous equipment loads (plug loads). 
Weekend operation assumes an unoccupied building state. The 
occupied period thermostat cooling setpoint for all zones is 
maintained at 24°C, with a heating setpoint of 21°C (though 
active heating demand is minimal during the simulated July 
period). The central HVAC system operates from 06:00 to 19:00 
on weekdays, allowing for a pre-cooling period before nominal 
occupancy begins. To evaluate DR capabilities, a simulated DR 
program was integrated. This program introduces a high 
electricity price signal, three times the baseload electricity price, 
during peak demand hours (14:00-17:00) on selected high-load 
weekdays within the simulation month. This DR signal serves as 
an explicit input to the intelligent controllers (GP and DRL), 
prompting them to modulate HVAC energy consumption. 

2.2 Genetic Programming (GP) Framework for HVAC Control 

This research proposes a GP framework to directly evolve 
interpretable, multi-objective control policies for the AHU. The 
GP aims to identify policies that holistically optimize energy 
efficiency, occupant thermal comfort, and effective participation 
in DR events. The iterative interaction of the GP algorithm with 

the EnergyPlus simulation environment during the evolutionary 
process is conceptually illustrated in Fig.5. 

2.2.1 Problem Formulation for GP 

The GP-evolved policies are responsible for determining the 
following primary AHU control outputs at each discrete control 
timestep, ∆𝒕 (set to 15 minutes): 

 

Fig. 5 Detailed AHU Schematic with GP Control Points 

 

 

Fig. 4 GP Interaction with Simulation Environment 
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- AHU Supply Air Temperature Setpoint 𝑇𝑆𝐴𝑇,𝑠𝑝(𝑡),: The 

target temperature for air leaving the AHU cooling 
coil. 

- AHU Duct Static Pressure Setpoint 𝑃𝐷𝑃,𝑠𝑝(𝑡) : The 

target static pressure to be maintained in the main 
supply duct by the variable-speed fan. 

- Chiller Supply Water Temperature Setpoint 
𝑇𝑆𝑊𝑇,𝑠𝑝(𝑡): The target temperature for water leaving 

the chiller. 
- Economizer Control Parameter 𝑢𝑒𝑐𝑜𝑛𝑜(𝑡) : A 

parameter guiding economizer operation, such as a 
maximum allowable mixed air temperature or a direct 
outdoor air fraction command, depending on the 
chosen GP representation. 

 
The set of input variables available to the GP for constructing 
these control policies encompasses real-time and predicted 
environmental conditions, building thermal states, and 
operational signals. A comprehensive list of all input terminals 
and control outputs, along with their descriptions and units, is 
provided in Appendix Table B.1.  and include current outdoor 
air temperature 𝑇𝑂𝐴𝑇 , predicted outdoor air temperatures for 
the next [1, 2, and 4] hours (𝑇𝑂𝐴𝑇,𝑝𝑟𝑒𝑑+1ℎ , etc.), average and 

maximum zone air temperatures ( 𝑇𝑧𝑜𝑛𝑒,𝑎𝑣𝑔,
𝑇𝑧𝑜𝑛𝑒,𝑚𝑎𝑥 ), 

maximum deviation from zone cooling setpoint 
( 𝛥𝑇𝑧𝑜𝑛𝑒,𝑚𝑎𝑥_𝑑𝑒𝑣 ), current supply air temperature ( 𝑇𝑆𝐴𝑇,𝑎𝑐𝑡 ), 

return air temperature (𝑇𝑅𝑒𝑡), an indicator of maximum VAV box 
damper position across zones (𝑉𝐴𝑉𝑑𝑎𝑚𝑝,𝑐𝑟𝑖𝑡), current time of 

day, day of the week, and the active Demand Response signal 
(𝑆𝐷𝑅(𝑡)). 

2.2.2 GP Representation 

The GP representation uses a tree-based structure where each 
control output is determined by a separate expression tree as 
shown in Fig.6. These trees combine input variables (terminals) 
through mathematical operations (addition, subtraction, 
multiplication, division), comparison operators (greater than, 
less than, equal to), and conditional logic (if-then-else). This 
representation allows for the evolution of complex, non-linear 
control strategies while maintaining human interpretability. 

2.2.3 Fitness Evaluation and Multi-Objective Optimization 

The fitness of each GP individual evolved policy is evaluated 
based on its performance over the simulation period one 
representative week in July including DR events, or the full 
month. The operational interaction between a candidate GP 
policy and the simulated EnergyPlus environment over a typical 
24-hour cycle is depicted in Fig.7, the Environment light green 
bar represents the continuous building simulation. During Fixed 
Action Periods (hours 00:00-06:00 for night setback and 19:00-
23:00 for system off), pre-defined control actions are applied. 
During the GP Control Active period (light blue bar, 06:00-19:00, 
indicated by green vertical lines on the timeline), the evolved 
GP policy is engaged. At each control timestep within this active 
period, the GP policy receives Observations (Env. to GP) (brown 
downward arrows) from the EnergyPlus environment and, 
based on its evolved logic, issues Actions (GP to Env.) (blue 
upward arrows) back to the simulation to control the AHU. The 
performance (energy, comfort, DR KPIs) resulting from these 
actions over the evaluation period 𝑇𝑒𝑣𝑎𝑙 is then used to calculate 
the objective function values: 𝐽𝐸𝑛𝑒𝑟𝑔𝑦, 𝐽𝐶𝑜𝑚𝑓𝑜𝑟𝑡 and 𝐽𝐷𝑅.    

- Integrated HVAC Energy Consumption (𝐽𝐸𝑛𝑒𝑟𝑔𝑦 ): This 

objective from equation (1) reflects the total electrical energy 
consumed by the chiller plant (chiller, cooling tower fans, 
pumps), the AHU supply fan, and any auxiliary HVAC 
components over the evaluation period 𝑇𝑒𝑣𝑎𝑙. 

( )_
0

( , ( ), ( )) ( , ( ), ( ))
eval
T

Energy chiller plant GP fan GP
J P t u t x t P t u t x t dt= +     (1) 

Here, 𝑃𝑐ℎ𝑖𝑙𝑙𝑒𝑟_𝑝𝑙𝑎𝑛𝑡(𝑡) and 𝑃𝑓𝑎𝑛(𝑡) are the instantaneous power 

demands (kW) of the chiller plant and AHU fan, respectively. 
These are functions of the GP-dictated control actions 𝑈𝐺𝑃(𝑡) 
and the overall system state 𝑥(𝑡) . The integral is numerically 
approximated from the discrete-time simulation outputs. 

- Aggregated Thermal Discomfort ( 𝐽𝐶𝑜𝑚𝑓𝑜𝑟𝑡 ): This 

objective from equation (2) quantifies occupant dissatisfaction 
due to deviations from the defined thermal comfort band. It is 
formulated as the sum of Time-Integrated Absolute Error 
(TIAE) or Integrated Squared Error (ISE) of zone temperatures 
from the comfort band limits (𝑇𝐿𝐿,𝑖 = 𝑇𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡,𝑖 − 𝛿𝑇𝑐𝑜𝑚𝑓𝑜𝑟𝑡 and 

 

Fig. 6 Evolved GP Policy Tree 
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𝑇𝑈𝐿,𝑖 = 𝑇𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡,𝑖 + 𝛿𝑇𝑐𝑜𝑚𝑓𝑜𝑟𝑡 for zone i, with 𝑇𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡,𝑖 = 24∘𝐶 

and 𝛿𝑇𝑐𝑜𝑚𝑓𝑜𝑟𝑡 = 1∘𝐶 during occupied hours ( )iOcc t .   

-   

1 0

, ,

, ,

( )

max(0, ( , ( ), ( )) )
(° )

max(0, ( , ( ), ( )))

evalz
TN

Comfort ii

zone i GP UL i

LL i zone i GP

J Occ t

T t u t x t T
dt C hr

T T t u t x t

=
= 

− 
  + − 

 
(2) 

                
The evolutionary search for optimal control policies is guided 
by a multi-objective fitness function, designed to concurrently 
satisfy performance criteria related to energy consumption, 
thermal comfort, and DR participation. Each candidate GP 
policy is evaluated by deploying it in the Energy Plus simulation 
for a representative period 𝑇𝑒𝑣𝑎𝑙  (carefully selected week in July 
encompassing diverse load conditions and DR events). The 
performance is quantified by the following three objective 
functions, all of which are to be minimized: 

- Demand Response Performance Deficit ( 𝐽𝐷𝑅 ): This 

objective penalizes the failure to meet DR targets or maximizes 

the benefit from DR participation in equation (3) and (4). One 

formulation is to minimize the average HVAC power 

consumption during DR event periods, 𝑇𝐷𝑅 , relative to a 

baseline power consumption, 𝑃𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒,𝐷𝑅(𝑡) , or to penalize 

exceeding a DR power cap 𝑃𝑐𝑎𝑝,𝐷𝑅: 

 
,

1
( , ( ), ( )) (kW)

DR
DR HVAC total GP

t T
DR

J P t u t x t dt
T 

= ∣ ∣
    (3)   

, ,max(0, ( , ( ), ( )) )
DR

DR HVAC total GP cap DR
t T

J P t u t x t P dt


= −       (4) 

To address these multiple, often conflicting, objectives, the Non-

dominated Sorting Genetic Algorithm II (NSGA-II) (Ghaderian 
& Veysi, 2021) is employed as the evolutionary search 
mechanism. NSGA-II identifies a set of Pareto-optimal 
solutions, representing the best achievable trade-offs between 
𝐽𝐸𝑛𝑒𝑟𝑔𝑦, 𝐽𝐶𝑜𝑚𝑓𝑜𝑟𝑡, and 𝐽𝐷𝑅. From this final Pareto front, a single 

representative GP policy was selected for the detailed 
comparative analysis against the baseline controllers. This 
selection was based on a balanced performance criterion, 
specifically targeting the solution that minimized the Euclidean 
distance to the utopia point (0, 0, 0) in the normalized three-
objective space. This approach was chosen to identify the policy 
offering the most compelling compromise across all three 

objectives, rather than a policy that might excel in one objective 
at the significant expense of others. 

Furthermore, to address the potential for overfitting, it is 
important to note that for this study, both the evolution and final 
evaluation of the GP policies were conducted on the 
representative month of July. This approach was deliberately 
chosen to create a controlled and reproducible 'level playing 
field' for directly comparing the learning capabilities of GP 
against the DRL agent, ensuring both were optimized under 
identical conditions. The critical question of generalization to 
unseen weather data is a primary focus for future work, as 
discussed in Section 4. 
 
2.2.4 Evolutionary Algorithm Configuration 

The GP system was implemented using the DEAP (Distributed 
Evolutionary Algorithms in Python) library, Version 1.3.1. Key 
evolutionary parameters were set as follows: population size of 
200, number of generations set to 100, tournament selection 
with tournament size of 3. The entire evolution process, 
conducted on an Intel Core i9-12900K CPU and 32GB RAM, 
took approximately 30 hours to complete. Genetic operators 
included one-point subtree crossover with probability 0.7 and 
subtree mutation with probability 0.2. Additionally, point 
mutation for ephemeral random constants was applied with a 
probability of 0.1. The initial population was generated using the 
ramped half-and-half method with tree depths ranging from 2 to 
6, and a maximum tree depth of 12 was enforced to prevent 
excessive bloating. Elitism, preserving the top 2% non-
dominated solutions, was incorporated to ensure convergence 
towards high-quality solutions. These parameters were chosen 
based on a combination of established practices in GP literature 
for complex control problems (Cpalka, Łapa & Przybył, 2018) 
and a series of preliminary tuning experiments. The population 
size and number of generations were selected to provide a 
sufficient search diversity and convergence time, while 
remaining within feasible computational limits for the high-
fidelity simulation environment. The crossover and mutation 
rates were set to standard values that encourage a balance 
between exploration of new solutions and exploitation of high-
performing genetic material. 

2.3 Baseline Controller Implementations 

For a comprehensive performance benchmark, the evolved GP 
policies were compared against three distinct baseline 
controllers, simulated under identical environmental and 
operational conditions. 

 

Fig. 7 GP Interaction with Simulation Environment 
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2.3.1 Deep Reinforcement Learning (DRL) Baseline 

A DRL agent based on the Soft Actor-Critic (SAC) algorithm was 
developed as a state-of-the-art learning-based benchmark. 

- State and Action Spaces: The DRL agent utilized the same 
state observation space as the GP terminals (Appendix 
Table B.1). Its continuous action space corresponded to 
the four AHU control outputs 
(𝑇𝑆𝐴𝑇,𝑠𝑝, 𝑃𝐷𝑃,𝑠𝑝, 𝑇𝑆𝑊𝑇,𝑠𝑝, 𝑢𝑒𝑐𝑜𝑛𝑜), normalized to [-1, 1] and 

subsequently scaled to physical operational limits. 

- Reward Function: The instantaneous reward 𝑅𝑡   as 
shown in equation (5) was formulated to align with the 
GP's multi-objective nature, typically as a negatively 
weighted sum of penalties reflecting energy 
consumption (𝑃𝐻𝑉𝐴𝐶,𝑡), thermal discomfort (𝐷𝑐𝑜𝑚𝑓𝑜𝑟𝑡,𝑡), 

and DR non-compliance (𝐷𝐷𝑅,𝑡): 

,

, , 11

,

( )

( )

z

E HVAC t

N

t C i comfort i ti

DR DR DR t

w P

R w Occ t D

w S t D

+=

 
 

= − +   
 
+    


           (5) 

The terms comfort I ,t+1 and 𝑫𝑫𝑹,𝒕are analogous to the 

integrands in 𝑱𝑪𝒐𝒎𝒇𝒐𝒓𝒕and 𝑱𝑫𝑹  respectively, evaluated at 

time t or t+1. The weights (𝒘𝑬, 𝒘𝑪, 𝒘𝑫𝑹) were determined 
through an iterative tuning process. A grid search over a 
range of plausible weight ratios was conducted in short, 
preliminary training runs (100k timesteps each). The set of 
weights that demonstrated the most stable learning curve 
and resulted in agents achieving a balanced performance 
across energy, comfort, and DR objectives during these 
initial runs was selected for the full, long-duration training. 

- Network Architecture and Training: Both actor and critic 
networks in SAC were implemented as fully connected 
multi-layer perceptions (MLPs) with two hidden layers of 
256 neurons each, employing ReLU activation functions, 
and appropriate output activations (Tanh for bounded 

actions)]. The agent was trained for [ 62 10  simulation 

timesteps] using an experience replay buffer of size [ 510 ]. 

This training process took approximately 48 hours on the 

same computational hardware. Further details on DRL 
hyperparameters (learning rates, discount factor γ, target 
smoothing τ, entropy coefficient α) are provided in 
Appendix C.1 (DRL Agent Hyperparameters). 

2.3.2 ASHRAE Guideline 36 Baseline 

The advanced rule-based control sequences specified 
in ASHRAE Guideline 36-2021 (Yoon et al., 2024) were 
implemented as a high-performance conventional baseline. This 
encompassed: 

- Dynamic supply air temperature (SAT) reset using the 
Trim & Respond algorithm, responsive to aggregate zone 
cooling demand and outdoor air temperature. 

- Dynamic duct static pressure (DP) reset using Trim & 
Respond logic based on VAV terminal damper positions, 
thereby minimizing fan energy while ensuring terminal 
authority. 

- Economizer control based on differential dry-bulb or 
enthalpy comparison, with enforcement of minimum 
ventilation requirements. 

- Chiller plant sequencing and chilled water temperature 
reset consistent with standard Guideline 36 specifications. 

 
As illustrated in Fig.8a, the SAT and DP reset logic ensures 
supervisory-level efficiency by adjusting setpoints dynamically 
in response to load conditions and zone demands. A more 
conventional rule-based controller consistent with ASHRAE 
2006 sequences was also considered as a fundamental baseline. 
This configuration features a simpler SAT linear reset tied 
directly to outdoor air temperature, potentially fixed or less 
adaptive DP setpoints, and standard economizer control. The 
VAV terminal unit control logic (shown in Fig.8b) was applied 
consistently across all baseline scenarios, including those 
served by the GP-controlled AHU. Each pressure-independent 
VAV box modulated damper position to maintain the local zone 
temperature setpoint, subject to minimum ventilation 
requirements. 

2.4 Performance Evaluation Metrics 

The comparative performance of the evolved Genetic 
Programming (GP) policies and the baseline controllers was 

Table 1  
Comprehensive Performance Comparison of Control Strategies 

Performance Indicator Unit Evolved GP 
Policy 

DRL (SAC) 
Baseline 

ASHRAE G36 
Baseline 

ASHRAE A2006 
Baseline 

Energy Efficiency 
     

Total HVAC Energy Consumption kWh 6,800 7,500 9,500 11,500 

Chiller Plant Energy Consumption kWh 4,080 4,500 5,800 7,000 

AHU Fan Energy Consumption kWh 1,840 2,025 2,470 3,000 

% Savings vs. A2006 (Total) % 40.9% 34.8% 17.4% — 

% Savings vs. G36 (Total) % 28.4% 21.1% — -21.1% (Worse) 

Thermal Comfort 
     

ZAT Violation Degree-Hours °C·hr 75 80 150 280 

Occupied Hours in Comfort Band % 98.8% 98.5% 96.5% 93.0% 

Demand Response Effectiveness 
     

Average Peak Load Reduction kW 13.7 13.2 1.0* 0.2* 

% Peak Load Reduction % 72.1% 69.5% ~5%* ~1%* 

Total Energy Saved/Shifted kWh 40.5 38.8 2.5* 0.5* 
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quantitatively assessed using a suite of Key Performance 
Indicators (KPIs), aggregated over the entire simulation period 
(July). These indicators were selected to provide a holistic 
evaluation across energy efficiency, occupant thermal comfort, 
Demand Response (DR) effectiveness, and controller 
characteristics. 

- Total HVAC Energy Consumption (𝐸𝐻𝑉𝐴𝐶,𝑡𝑜𝑡𝑎𝑙): This 

primary energy KPI from equation (6) represents the sum of all 
electrical energy (in kWh) consumed by the HVAC system 
components, including the chiller plant (chiller, cooling tower 
fans, pumps) and the Air Handling Unit (AHU) fan, over the 

simulation period 
simT : 

( ), _ _
0

( ) ( ) ( )
simT

HVAC total chiller plant fan aux pumpsE P t P t P t dt= + +      (6) 

where 𝑃𝑐ℎ𝑖𝑙𝑙𝑒𝑟_𝑝𝑙𝑎𝑛𝑡(𝑡) , 𝑃𝑓𝑎𝑛(𝑡)  and 𝑃𝑎𝑢𝑥_𝑝𝑢𝑚𝑝𝑠(𝑡)  are the     

instantaneous power demands of the respective components. 

- Thermal Comfort - ZAT Violation Degree-Hours 

(𝑉𝐷𝐻𝑍𝐴𝑇 ): This metric quantifies the integrated magnitude 
and duration of thermal discomfort in equation (7). It is 
calculated as the sum of absolute temperature deviations 
outside the defined comfort band (23°C - 25°C) during occupied 

hours (𝑂𝑐𝑐𝑖(𝑡) = 1) for all 𝑁𝑧  zones:   

, ,

1 0
, ,
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simz
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T t T
VDH Occ t dt
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    (7) 

- Thermal Comfort - Percentage of Occupied Hours 
within Comfort Band (%𝑇𝑐𝑜𝑚𝑓𝑜𝑟𝑡 ): This provides an intuitive 

measure of comfort, representing the percentage of total 
occupied hours during which all monitored zone temperatures 
were maintained within the [23°C - 25°C] comfort band. 
- Demand Response - Average Peak Load Reduction 

(𝛥𝑃𝐷𝑅,𝑝𝑒𝑎𝑘): This KPI (in kW) measures the average reduction in 

total HVAC power consumption during active DR event periods 
compared to a defined baseline power consumption level that 
would have occurred without DR intervention (average power 
during similar non-DR peak hours or a simulated "no-DR" 
scenario). 
- Demand Response - Total Energy Saved/Shifted 
( 𝛥𝑃𝐷𝑅,𝑝𝑒𝑎𝑘 )): This metric (in kWh) quantifies the total net 

reduction or shifting of energy consumption achieved 
specifically during all DR event periods throughout the 
simulation month, calculated by comparing the actual energy 

consumed during DR events with the energy that would have 
been consumed under a non-DR operational baseline. 

- GP Policy Complexity: 𝛥𝐸𝐷𝑅  To assess the 
interpretability and conciseness of the evolved solutions, the 
complexity of the final selected GP policy is quantified by the 
total number of nodes (functions and terminals) in its 
constituent expression tree(s). 

 

3 Results and discussion  

This section presents the empirical findings from the application 
of the proposed Genetic Programming (GP) framework and its 
comprehensive comparative evaluation against established 
baseline controllers. The analysis begins with an examination of 
the GP evolutionary process and the characteristics of the 
resultant policies, followed by a detailed benchmarking of 
performance across key metrics including energy efficiency, 
thermal comfort, and Demand Response (DR) effectiveness, and 
concludes with a statistical validation of the observed 
performance differentials. 

3.1 GP Evolutionary Process and Characteristics of Evolved 
Policies 

The foundation of the GP framework's success rests on the 
efficacy of its learning process. Before analyzing the final 
controller's performance, it is crucial to validate that the 
evolutionary algorithm effectively navigated the vast search 
space to discover and refine superior control policies. This 
ensures the final result is the product of a robust optimization 
process, not a random outcome. 

Fig.9 provides the visual evidence of this successful learning 
journey over 100 generations. A detailed analysis of Fig.9a 
tracks the convergence of the three primary objective 
components for the best-performing individual in each 
generation, and All objectives, which are formulated for 
minimization, exhibit a clear and significant improvement. The 
initial, randomly generated policies perform poorly, as shown 
by the high penalty scores at generation 0. However, substantial 
reductions in both the (green line) and (orange line) penalties 
are observed within the initial 50 generations. This signifies that 
the best individuals progressively learned to achieve better 
thermal comfort and more effective Demand Response 
performance. Notably, the (crimson line) penalty stabilizes at a 
minimized value relatively early in the process. This suggests 
the GP algorithm quickly identified a baseline for energy-

 

Fig. 8 ASHRAE Guideline 36 SAT and VAV Box Control Logic 
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efficient operation and then dedicated the majority of its 
subsequent evolutionary effort to fine-tuning the more complex 
and dynamic trade-offs between occupant comfort and grid 
responsiveness. 

Further illustrating the overall optimization progress, Fig.9b 
shows the performance of both the elite individuals and the 
population as a whole. A consistent downward trajectory is 
observed for both the best and average overall fitness scores, 
particularly within the initial 40-60 generations. This confirms 
successful population-wide learning and optimization towards 
better aggregate solutions. The narrowing gap between the two 
lines is particularly important, as it indicates that beneficial 
genetic material was being successfully distributed throughout 
the population, raising the quality of the entire gene pool. This 
robust, dual-level convergence at both the individual objective 
level and the aggregate population level validates the GP 
framework as a potent and reliable methodology for discovering 
holistically optimized solutions. 

3.2 Comparative Performance of Energy, Comfort, and Grid-
Responsiveness 

 
Having established the robust convergence of the 

evolutionary process in the preceding section, the analysis now 

shifts to the performance of the final, representative GP policy 
selected from the Pareto front. This controller was rigorously 
benchmarked against the state-of-the-art DRL agent and the 
ASHRAE standards under identical operational conditions for 
the entire simulated month of July. Table 1 provides a 
comprehensive summary of the key performance indicators 
(KPIs) across all three primary objectives energy efficiency, 
thermal comfort, and Demand Response effectiveness.   

A primary benchmark for evaluation is energy 
performance, where a distinct hierarchy between the controllers 
is immediately apparent from the data in Table 1. The GP 
policy’s total consumption of 6,800 kWh represents a substantial 
40.9% reduction over the A2006 baseline and a 28.4% saving 
over the G36 standard. Most critically, the 9.3% energy saving 
relative to the state-of-the-art DRL (SAC) baseline highlights its 
superior energy optimization capabilities. Fig.10a provides a 
clear, month-long visualization of this hierarchy, showing the GP 
controller's cumulative energy use consistently tracking below 
all others. The hourly operational dynamics depicted in the 
Fig.10b heatmaps offer further insights into how these savings 
were achieved. Both the GP and DRL controllers effectively 
curtailed energy use during shoulder periods (06:00-09:00 and 
16:00-18:00), as indicated by the predominantly darker, lower-
energy regions. This suggests a more adept part-load operation 

 

Fig. 9 Programming Evolutionary Process and Convergence: (a) Convergence of the individual fitness objective components for the best 
individual; (b) Convergence of the overall fitness score for both the best individual and the population average. 

 

Table 2  
Statistical Significance of Key Performance Indicator (KPI) Differences Between Controllers (p-values) 

Controller Pair 1 Controller Pair 2 Statistical Test Used† p-value Significance Level‡ 

Total HVAC Energy Consumption (kWh) 

Evolved GP Policy ASHRAE A2006 Paired t-test < 0.001 *** 

Evolved GP Policy ASHRAE G36 Paired t-test 0.002 ** 

Evolved GP Policy DRL (SAC) Paired t-test 0.045 * 

DRL (SAC) ASHRAE G36 Paired t-test 0.005 ** 

ZAT Violation Degree-Hours (°C·hr) 

Evolved GP Policy ASHRAE A2006 Paired t-test < 0.001 *** 

Evolved GP Policy ASHRAE G36 Paired t-test 0.008 ** 

Evolved GP Policy DRL (SAC) Paired t-test 0.350 NS 

DRL (SAC) ASHRAE G36 Paired t-test 0.012 * 

DR Peak Load Reduction (kW) 

Evolved GP Policy ASHRAE G36* Independent t-test < 0.001 *** 

Evolved GP Policy DRL (SAC) Paired t-test 0.650 NS 

DRL (SAC) ASHRAE G36* Independent t-test < 0.001 *** 
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and aggressive utilization of energy-saving measures. In stark 
contrast, the ASHRAE A2006 panel shows consistently high 
energy consumption across the entire occupied daytime block, 
indicative of its less adaptive, more rigid control logic. 

Crucially, these substantial energy savings were achieved 
without compromising occupant comfort. As the data in Table 
1 confirms, the Evolved GP Policy achieved a notably low ZAT 
Violation Degree-Hour value of 75 °C·hr and maintained zone 
temperatures within the desired [23°C-25°C] comfort band for 
98.8% of all occupied hours. This high level of thermal comfort 
was statistically comparable to the DRL baseline (80 °C·hr, 
98.5%) and significantly better than the ASHRAE G36 (150 
°C·hr) and A2006 (280 °C·hr) approaches. The dynamic thermal 
performance is further elucidated in Fig.10c, which presents 
indoor air temperature profiles for representative summer days. 
It is visually evident that the GP and DRL policies consistently 
regulate zone temperatures more tightly within the comfort 
band, exhibiting smoother profiles with minimal overshoot or 
undershoot. In contrast, the ASHRAE baselines display more 
pronounced temperature fluctuations and larger deviations 
outside the designated comfort band. This visual evidence 
strongly suggests that the learning-based approaches achieve 

superior comfort stability due to their ability to learn more 
nuanced and anticipatory responses to varying load conditions. 

Finally, the GP policy's capacity to actively participate in 
Demand Response (DR) events was exceptional. As 
summarized in Table 1, the controller achieved an average peak 
load reduction of 13.7 kW (72.1%), a performance comparable 
to the DRL baseline while the standard ASHRAE baselines 
showed negligible active participation. The dynamic response 
to a representative DR event is visualized in Fig.10d, providing 
a clear, step-by-step illustration of the learned strategy. Upon 
activation of the DR signal, both intelligent controllers 
aggressively increased their Supply Air Temperature (SAT) 
setpoints from approximately 12.5°C to 15.5°C. As a direct 
result, total HVAC power consumption decreased dramatically 
from a peak of ~17-19 kW to a minimal ~3-4 kW for the duration 
of the event. During this period, the average zone temperatures 
experienced a controlled, slow drift, peaking around 25.5-
25.8°C before being brought back down. This clearly illustrates 
the GP framework's ability to evolve effective, explicit strategies 
for demand-side management, successfully completing the 
trifecta of holistic, multi-objective optimization. 

 

Fig. 10 Comparative Performance of Control Strategies: (a) Cumulative monthly HVAC energy consumption; (b) Hourly energy consumption 
patterns; (c) Zone air temperature control on representative days; (d) System dynamic response during a peak Demand Response event. 

 



S.Waheed and S.Li  Int. J. Renew. Energy Dev 2025, 14(6), 1221-1234 

| 1231 

 

ISSN: 2252-4940/© 2025. The Author(s). Published by CBIORE 

3.3 Analysis of Evolved GP Operational Strategies, Policy 
Complexity, and Interpretability 

The superior performance documented in the previous 
section is not a mystery. A unique and powerful advantage of 
the Genetic Programming approach is the inherent 
transparency of its resulting policies. While the DRL agent's 
logic remains an opaque "black-box," the fundamental structure 
of the evolved GP policies, represented as expression trees, 
allows for direct inspection, analysis, and human understanding. 
This section deconstructs the evolved strategies to reveal the 
drivers of its success and discuss the critical importance of 
interpretability. 

First, it is important to address the complexity of the 
evolved solution. The complete multi-output GP policy, 
comprising distinct expression trees for each of the four AHU 
control variables, aggregates to a total of 185 nodes. This 
moderate complexity represents a successful balance: the policy 
is sophisticated enough to execute nuanced, high-performance 
control, yet it remains entirely human-inspectable. This 

indicates that the GP evolved functionally effective policies 
without an unmanageable degree of structural complexity, 
thereby preserving interpretability. 

Fig.11 offers a multi-faceted visualization of the 
controller's evolved "intelligence," revealing the specific, 
learned strategies that led to its superior performance. Fig.11a 
visualizes the multi-dimensional control strategy for the AHU 
SAT setpoint. The surface reveals a distinctly non-linear and 
adaptive strategy. When zones are at or below their setpoint 
(zero or negative error), the GP maintains a higher, energy-
saving SAT (approximately 15-16.5°C). However, as zones 
become warmer, the GP policy enacts a sharp reduction in the 
SAT, driving it towards its lower operational limit of 
approximately 11°C when the error reaches +2.0°C. This 
aggressive cooling response demonstrates a learned 
prioritization, a sophisticated, threshold-influenced behavior 
that would be challenging to hand-craft. Further insights into 
emergent operational behavior are provided in Fig.11b and 11c 
clearly delineates distinct operational modes: a dense cluster of 
points shows operation with a low SAT (11.5°C-12.5°C) and an 

 

Fig. 11 Analysis of Evolved GP Operational Strategies: (a) Control surface for the AHU SAT setpoint; (b) Emergent coordination of AHU and 
chiller plant operation; (c) Intelligent economizer free cooling logic; (d) Daily activation patterns of Supply Water Temperature (SWT) 
management regimes. 
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aggressive, low Chiller SWT (7-9°C, reddish hues), indicating 
active cooling under high demand. A sparser cluster at higher 
SATs (~15-16°C) corresponds to a higher, more efficient Chiller 
SWT (10-12°C, bluish hues), representing an energy-saving 
mode during lower loads. This demonstrates a learned 
coordination between the AHU and chiller plant. A high outdoor 
air fraction (60-100%) is predominantly utilized when the 
outdoor air is cool (15-20°C). As the outdoor temperature 
surpasses ~22°C, the GP decisively minimizes the outdoor air 
fraction to avoid introducing excessive thermal loads. Finally, to 
understand the temporal dynamics, Fig.11d presents a heatmap 
illustrating which specific "GP Rule/Regime for SWT" is active 
at each timestep. The color coding clearly distinguishes these 
regimes. For example, on high-load days like 2023-07-04, a 
clear shift from inactive (regime '0') to active cooling (regimes 
'4', '5', '6', indicated by yellow/orange/green) is evident during 
the morning ramp-up and peak afternoon hours. Conversely, 
during milder periods or weekends, lower-numbered regimes 
('0', '1', '2', white/pink), indicating reduced cooling, are 
predominantly active. This visualization highlights the GP's 
ability to dynamically switch between operational modes based 
on the time of day and prevailing conditions, providing a 
granular view of its adaptive behavior beyond static setpoint 
schedules. 

This ability to deconstruct and verify the control logic is 
the paramount contribution of this work. It directly addresses 
the primary barrier to the adoption of advanced AI in critical 
building systems: a lack of trust and verifiability (Yu et al., 2021). 
While a "black-box" model may perform well, its opacity creates 
significant implementation hurdles. The GP controller's "white-
box" nature provides the transparency necessary for vetting, 
trust, and practical implementation by facility managers, 
offering a viable pathway to deploy truly intelligent and 
trustworthy building automation. 
 

3.4 Statistical Significance of Performance Differences 

To ascertain the statistical robustness of the observed 
performance advantages, a comprehensive analysis was 
conducted using 10 independent simulation runs for each 
controller, with the results summarized in Table 2. This analysis 
formally validates that the superior performance of the evolved 
GP policy is not an artifact of a single simulation but a consistent 
and statistically significant outcome. In the critical domain of 
energy efficiency, the analysis reveals a clear hierarchy. The GP 
controller was found to be significantly superior to all other 
methods, consuming less energy than the ASHRAE A2006 (p < 
0.001) and G36 (p = 0.002) baselines. Most consequentially, the 
9.3% energy saving achieved by the GP policy over the state-of-
the-art DRL agent was also confirmed to be a statistically 
significant advantage (p = 0.045). This finding is pivotal, as it 
provides strong empirical evidence that, for this complex 
control problem, the GP's evolutionary search discovered a 
more globally optimal policy than the DRL's gradient-based 
learning. While achieving this superior efficiency, the GP 
policy’s performance in maintaining thermal comfort and 
executing demand response was statistically indistinguishable 
from the DRL agent, with p-values of 0.350 and 0.650, 
respectively. This demonstrates that the GP’s energy advantage 
was not a simple trade-off but a genuine optimization gain, 
achieved without any statistically significant sacrifice in other 
key performance areas. 

These statistical findings are highly significant because 
they paint a clear, empirically-backed picture of a holistically 
superior and more intelligent controller. The GP model did not 

simply find a good solution; it found a better way to balance the 
system's competing objectives. The fact that its energy savings 
are statistically significant while its comfort and DR 
performance remain on par with the DRL agent suggests that 
the GP learned to successfully decouple energy efficiency from 
comfort provision in a way the DRL agent could not. The true 
importance of our model, however, is realized when coupling 
this statistically validated performance with its inherent 
interpretability, as discussed in the previous section. This 
combination directly addresses the primary barrier to the 
adoption of advanced AI in critical building systems: the black-
box problem, which creates a fundamental lack of trust and 
verifiability (Cpalka, Łapa & Przybył, 2018). By providing a 
solution that is not only statistically proven to be more efficient 
but is also fully transparent and auditable, our GP model 
represents a viable and highly advantageous pathway toward 
intelligent HVAC control that is not just effective, but also 
trustworthy and practically deployable in real-world 
applications. 
HVAC control. 

3.5 Limitations and Future work 

While this study robustly demonstrates the significant 
potential of the GP-evolved controllers, several considerations 
for practical application and future research warrant discussion. 
The findings, derived from a high-fidelity simulation 
environment, provide a strong performance benchmark, but on-
site validation is the logical next step to confirm performance 
against real-world dynamics. A key methodological limitation is 
the lack of a separate validation dataset, which raises the 
potential for overfitting. Future work must therefore validate the 
evolved policies against different weather years and seasons to 
rigorously assess their generalization performance and 
robustness. 

Translating this research into industry practice requires 
addressing two primary barriers: the integration with 
proprietary Building Automation Systems (BAS) via 
standardized APIs, and the upfront computational and expertise 
requirements for policy evolution. However, the inherent 
transparency of GP offers a clear advantage over opaque AI, 
significantly lowering these adoption hurdles. A practical 
pathway could involve a Control-as-a-Service model, where 
foundational policies are evolved for building archetypes and 
then presented to facility managers for verification. This white-
box nature enables a phased, trust-building deployment like 
shadow mode with human oversight, contrasting sharply with 
the all-or-nothing trust demanded by black-box DRL agents. 

Looking ahead, future work should explore hybrid models 
that combine the strengths of GP and Deep Reinforcement 
Learning. A promising approach involves using GP to evolve an 
interpretable, high-level strategic framework—defining the 
operational modes and primary logic while a DRL agent is 
tasked with fine-tuning the continuous control parameters 
within that GP-defined logic in real-time. Such a hybrid system 
could offer the best of both worlds: the robust, transparent, and 
verifiable strategic intelligence of GP, coupled with the adaptive, 
fine-grained optimization of DRL. 

4 Conclusion  

This research successfully pioneered and rigorously validated a 
Genetic Programming (GP) framework for the direct evolution 
of interpretable, multi-objective HVAC control policies, 
addressing the critical black-box limitations of contemporary AI 
controllers while integrating sophisticated Demand Response 
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capabilities. Comprehensive simulations within a validated 
multi-zone office building model demonstrated that the GP-
evolved policies achieved superior energy efficiency, reducing 
total HVAC consumption by a significant 40.9% against 
ASHRAE A2006, 28.4% over ASHRAE G36, and a 
notable 9.3% compared to a state-of-the-art Deep 
Reinforcement Learning agent, all while maintaining excellent 
thermal comfort for 98.8% of occupied hours—a level 
comparable to DRL and markedly better than standard 
baselines. Furthermore, the GP policies exhibited robust DR 
effectiveness, delivering a 72.1% peak load reduction through 
learned strategies like pre-cooling and dynamic setpoint 
modulation, performing on par with DRL. The paramount 
contribution of this work is the attainment of this high 
operational performance through policies that are inherently 
transparent 185 total nodes for the complete AHU strategy, 
allowing for direct human inspection, verification, and trust. 
This contrasts sharply with opaque DRL models and obviates 
the need for potentially inexact post-hoc explanations. By 
directly evolving understandable, high-performing solutions, GP 
is substantiated as a potent and practical methodology for 
advancing intelligent building automation towards more 
efficient, grid-responsive, and trustworthy systems. Future 
investigations should prioritize real-world deployment, 
enhancing GP scalability for larger systems, and evolving 
adaptive policies with greater resilience to operational 
uncertainties and faults. 
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Appendix A 

Building and HVAC System Model Parameters 

Table A1 

 HVAC System Component Model Parameters (Based on DOE Medium Office Reference Building, Climate Zone 5A) 

Component Category Component Parameter Value Units 

Chiller Plant Water-Cooled Chiller Nominal Capacity 211 kW 

  Rated COP (Coefficient of Performance) 6.2 - 

  Chilled Water Supply Temp. Range 6.7 - 12.0 °C 

 Cooling Tower Design Approach Temperature 4.0 °C 

  Design Range Temperature 5.5 °C 

  Fan Power at Design Airflow 7.5 kW 

 Chilled Water Pump Rated Flow Rate 9.1 L/s 

 (Primary, Variable Speed) Rated Head 180 kPa 

  Motor Efficiency 0.90 - 

 Condenser Water Pump Rated Flow Rate 11.4 L/s 

 (Constant Speed) Rated Head 150 kPa 

  Motor Efficiency 0.90 - 

Air Handling Unit AHU Supply Fan Design Airflow Rate 7.55 m³/s 

 (Variable Speed) Design Static Pressure 1120 Pa 

  Total Fan Efficiency 0.65 - 

  Motor Efficiency 0.92 - 

 Chilled Water Cooling Coil Design Capacity (Sensible) 155 kW 

  Design Inlet Air Temperature (Dry-Bulb) 26.0 °C 

  Design Inlet Water Temperature 6.7 °C 

Zonal Equipment VAV Terminal Units (x5) Maximum Airflow Rate (Perimeter) 1.2 m³/s 

  Maximum Airflow Rate (Core) 1.55 m³/s 

  Minimum Airflow Fraction 0.30 - 
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Table B1 

Controller Input (State/Terminals) and Output (Action) Variables 

Type Variable Name Symbol Description Unit 

Input Outdoor Air Temperature 
OATT  Current measured dry-bulb temperature of outside air. °C 

Input Outdoor Air Temp. Forecast +1h , 1OAT pred hT +  Predicted outdoor air temperature for the next hour. °C 

Input Outdoor Air Temp. Forecast +2h , 2OAT pred hT +  Predicted outdoor air temperature for two hours ahead. °C 

Input Outdoor Air Temp. Forecast +4h , 4OAT pred hT +  Predicted outdoor air temperature for four hours ahead. °C 

Input Average Zone Air Temperature ,zone avgT  Mean air temperature across all 5 conditioned zones. °C 

Input Maximum Zone Air Temperature ,maxzoneT  Air temperature of the warmest conditioned zone. °C 

Input Max Zone Temp. Deviation , _
Δ

zone max dev
T  

Maximum positive deviation from the cooling setpoint in any 

zone. 

K or 

°C 

Input Current Supply Air Temperature ,SAT actT  Current measured temperature of the air leaving the AHU. °C 

Input Return Air Temperature 
RetT  Temperature of air returning to the AHU from the zones. °C 

Input Max VAV Damper Position ,damp,critAVV  Position of the most-open VAV box damper. % 

Input Time of Day dayt  Current hour of the day (e.g., 0-23). hour 

Input Day of the Week 
weekd  Current day of the week (e.g., 1=Mon, 7=Sun). - 

Input Demand Response Signal ( )DRS t  Binary signal indicating an active DR event (0=No, 1=Yes). - 

Output AHU Supply Air Temp. Setpoint SAT,spT  Target temperature for air leaving the AHU cooling coil. °C 

Output AHU Duct Static Pressure Setpoint DP,spP  Target static pressure to be maintained in the main supply duct. Pa 

Output 
Chiller Supply Water Temp. 

Setpoint SWT,spT  Target temperature for water leaving the chiller. °C 

Output Economizer Control Parameter 
econou  Control parameter for economizer (e.g., outdoor air fraction). - 
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Table C.1 

DRL Agent (Soft Actor-Critic) Hyperparameters 

Category Parameter Value Description 

Algorithm 

Hyperparameters 
Algorithm 

Soft Actor-Critic 

(SAC) 

State-of-the-art off-policy algorithm for continuous control, balancing 

exploration and exploitation via entropy maximization. 

 Learning Rate (Actor 

& Critic) 
3e-4 The step size for updating the neural network weights during training. 

 Discount Factor (γ) 0.99 
Determines the importance of future rewards. A value of 0.99 

prioritizes long-term performance. 

 Target Smoothing 

Coefficient (τ) 
0.005 

Controls the update speed of the target networks, promoting stable 

learning. 

 Entropy Coefficient 

(α) 
Auto-tuned 

Automatically adjusted during training to balance reward 

maximization (exploitation) and entropy (exploration). 

Neural Network 

Architecture 

Actor/Critic Hidden 

Layers 
2 

The number of layers between the input and output layers for both 

networks. 

 Neurons per Hidden 

Layer 
256 

The number of nodes in each hidden layer, defining the network's 

capacity. 

 Activation Function 

(Hidden) 
ReLU 

Rectified Linear Unit, a standard non-linear activation for hidden 

layers. 

 Activation Function 

(Output) 
Tanh 

Hyperbolic Tangent, used to bound the continuous actions to the [-1, 

1] range. 

Training Parameters Total Timesteps 2,000,000 
The total number of environment interactions used for training the 

agent. 

 Replay Buffer Size 100,000 
The number of past experiences (state, action, reward, next_state) 

stored for training. 

 Batch Size 256 
The number of experiences sampled from the replay buffer for each 

training update. 

 Optimizer Adam 
An adaptive learning rate optimization algorithm used for training the 

networks. 

 
 


