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Abstract. The thermal behavior of the single-axis tracked bifacial photovoltaic (PV) module is important for efficient energy extraction in large-scale 
power plants, especially in tropical regions under high irradiation and high ambient temperature. However, it is difficult to accurately predict their 
operating temperature due to the complex interaction between environmental variables and the characteristics of solar tracking. The available models, 
ranging from empirical correlations and computational fluid dynamics (CFD) simulations to machine learning methods, face chal lenges in terms of 
accuracy, interpretability, and computational load. This gap is addressed in this study, with the development of a modeling methodology based on 
symbolic regression (SR) utilizing genetic algorithms (GA) towards obtaining an explicit, interpretable Equation for the prediction of the PV module 
temperature in single-axis tracking systems. One year of data was collected at 5-minute intervals from a 19.9 MW PV plant located in San Marcos, 
Colombia, consisting of measurements for solar radiation, ambient temperature, wind speed, and module temperature. The constructed SR GA model 
achieved satisfactory prediction accuracy compared to classic models with the best root mean square error (RMSE = 4.14 °C) and R² (0.91) on the 
test data set. These results compare favorably with results from MLR (RMSE = 4.31 °C, R² = 0.90), the standard industry NOCT model (RMSE = 8.59 
°C, R² = 0.60), and the empirical Skoplaki I model (RMSE = 5.92 °C, R² = 0.81). The resulting symbolic equation directly characterizes the effects of 
nonlinear solar radiation, ambient temperature, and wind speed, providing greater physical insight into the thermal dynamics of the system. An 
important finding is that the maximum temperature of the bifacial module is reached around 14:00h, probably due to the accumulation of temperature 
caused by solar tracking, which contrasts with what occurs in fixed-tilt monofacial technology. This study demonstrates that the symbolic regression 
technique with a genetic algorithm kernel can produce accurate, interpretable, and computationally economical models for advanced photovoltaic 
systems. 

Keywords: PV temperature prediction, Bifacial Photovoltaics, Single‐axis trackers, Genetic algorithms, symbolic regression 

@ The author(s). Published by CBIORE. This is an open access article under the CC BY-SA license 
 (http://creativecommons.org/licenses/by-sa/4.0/). 

Received: 16th June 2025; Revised: 18th September 2025; Accepted: 30th Sept 2025; Available online: 5th Oct 2025   

1. Introduction 

Solar power is widely accepted as an indispensable part of the 
world's transforming energy systems (Obaideen et al., 2023). 
This is important as it is large, renewable, and clean, and 
therefore an alternative to fossil fuels (Ponnada et al., 2022). New 
PV module technologies have just made solar even more 
efficient, more economical, and more accessible (Fan et al., 
2017). This is a significant advancement for global energy 
solutions, environmental impact, and clean energy conversion  
(Masrur et al., 2021). Bifacial PV modules are a mature 
technology in PV plants around the world (Lara-Vargas et al., 
2025a). These modules can capture sunlight from both the front 
and rear sides of the module. Their energy yield is higher than 
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that of a conventional single-face module (Bera et al., 2024). 
Together with solar trackers, they provide significant benefits to 
gather appropriate solar irradiance in daylight hours (Burnham 
et al., 2019).  

     Compared to conventional PV modules, bifacial PV 
modules are designed to operate as double-sided collectors and 
are, therefore, primarily used with solar trackers, as the tracker 
orients both sides of the module so that the maximum direct 
sunlight is incident on the modules (Abe et al., 2023). The main 
high implication of this combination of bifacial modules with a 
solar tracking system is to ensure maximum solar capture, 
especially during cases of intermittence, solar radiance, and 
especially at different hours of the day (Ali et al., 2021). 
Comparatively, the thermal analysis of bifacial PV modules with 
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solar trackers is far more complicated because the thermal 
behavior of bifacial PV modules is dependent upon the 
relationship with three primary parameters: the intensity of solar 
radiation, the ambient temperature, and the wind speed (Patel et 
al., 2020). Such an analysis needs to be performed to optimize 
the design and deployment of bifacial PV systems in different 
environments  (Yakubu et al., 2022). Although the combination 
of bifacial PV modules with solar trackers offers considerable 
gain in energy, it also makes modeling and interpretation difficult 
(Becerra et al., 2024).  Solar tracking systems utilize bifacial PV 
modules, the temperature of which is difficult to predict due to 
the simultaneous influence of environmental and solar tracker 
parameters that have complex interactions  (Kaplani & Kaplanis, 
2014). These challenges result in considerable gaps between 
simulation and measured temperatures, negatively impacting 
the overall accuracy of energy performance predictions 
(Mannino et al., 2022). The thermal treatment of bifacial modules 
is poorly characterised by available models, which capture little 
of the interaction between module characteristics and 
environmental conditions  (Raina et al., 2023). Such an 
approximation gives rise to significant errors in the temperature 
prediction, especially under variable tropical climates (Raina et 
al., 2023). However, while in the case of static ground-mounted 
systems, the irradiation and thermal dynamics of the bifacial PV 
module are specific to a given orientation (including angle 
normal to the incident radiation), the dynamic operation of solar 
tracking systems adds an additional layer of complexity, as the 
orientation of the panels changes throughout the day (Tina et al., 
2020). 

On the other hand, most of the models for temperature 
prediction were originally developed on the basis of monofacial 
modules and extrapolated to the case of bifacial ones, not paying 
adequate attention to their peculiarities (Mannino et al., 2022). 
Many methods are currently in use, ranging from empirical 
models to energy balance approaches to machine learning (ML) 
methods, each of which has benefits and disadvantages. For 
instance, Meflah et al., (2023) developed empirical models that 
provide a coefficient of determination (R²) over 0.90 and root 
mean square error (RMSE) under clear sky conditions of over 3.8 
°C (Meflah et al., 2023). Nonetheless, in their structure, these 
models suffer from a linear assumption of radiation and ambient 
temperature to module temperature, resulting in an 
underestimation of their capability to represent a complex non-
linear interaction. A few studies adopted the normal operating 
cell temperature (NOCT) model provided by the producer of the 
PV module (Mattei et al., 2006).  Kaplani & Kaplanis developed 
an energy balance algorithm taking into account PV system 
arrangement and heat transfer by natural and forced convection 
(Kaplani & Kaplanis, 2020). Although the forecasted temperature 
patterns are in close agreement with the observed data, showing 
annual temperature variations mostly within ± 5 °C, the testing 
duration is limited to just six days. Zaimi et al.,(2019) provided 
analytical expressions for electrical parameter variations of the 
module as a function of temperature and irradiance (Zaimi et al., 
2019). However, their model intercomparison was confined to a 
single day and may not account for interannual variability in 
environmental conditions. Haeberle et al.,(2022) proposed an 
energy balance-based approach to achieve a mean absolute 
error (MAE) of less than 8.5% under NOCT (Nominal Operating 
Cell Temperature) conditions, even while accounting for 
conduction, convection, and radiation processes including 
conduction, convection, and radiation effects (Haeberle et al., 
2022). However, these models are computationally intensive due 
to the numerical iterations involved and the high number of 
variables, and may limit their applications in real-time and 

dynamic scenarios. One more study employed a Computational 
Fluid Dynamics (CFD) model, obtaining an RMSE of 4.2 ºC 
sample ranges of 10 minutes using data from the simulation day. 
The simulation only takes into account the effect of a single 
module, without including considerations of configurations 
closer to the real ones, as well as the computational costs 
associated with highly detailed models (Johansson et al., 2022). 
The multiple linear regression model has also been employed to 
predict the temperature of PV modules, achieving RMSE results 
of 0.4. However, it was developed exclusively for one month, on 
sunny days, and only for measurements exceeding 850 W/m² 
(Tripathi et al., 2021).  Furthermore, Kayri & Aydin, (2022) 
applied artificial neural networks (ANN) to simulate module 
temperature with excellent metrics (MAE = 1.45°C, RMSE = 
2.07°C, MAPE = 6.37%, correlation = 98.87%) (Kayri & Aydin, 
2022). Furthermore, the average RMSE of 1.67 °C and R² of 0.95 
are excellent error metrics, but the "black box" nature of ANNs 
makes it difficult to physically understand how much each 
individual environmental variable affects the module 
temperature. Finally, Sanchìs-Gómez et al., (2025) conducted a 
performance comparison of 22 mathematical models for 
forecasting the temperature of bifacial PV modules (Sanchís-
Gómez et al., 2025). The best model was the Skoplaki I with a 
value of 0.25 ºC (Skoplaki et al., 2008). But these measurements 
were not continuous across the year, but sampled within each 
climatic season. 

In this paper, we propose a symbolic regression (SR) 
approach based on genetic algorithms (GA) for deriving 
mathematical expressions for the temperature calculation of 
bifacial PV modules with trackers. The main benefits of this 
method are listed in : 

 
• Modeling complex relationships: Symbolic regression 

facilitates the identification of  nonlinear relationships 
among environmental variables without requiring a 
predetermined functional form (Kaushik et al.,2023) quiring 
a, thus addressing the constraints of empirical and linear 
models (He & Zhang, 2021). 

• Interpretability: The equations obtained are interpretable 
and help us understand how each parameter, such as solar 
irradiation, influences the temperature of bifacial PV 
modules in comparison to ANNs and other machine 
learning models (Shmuel et al., 2023). 

• Symbolic regression has shown a successful capability to 
capture nonlinear dynamics in energy systems, like the 
characterization of wind speed in wind power applications 
(Radwan et al., 2024). However, its possible utilization for 
thermal characterization of bifacial PV panels is still 
unexplored. 
 

Empirical or linear approaches simplify the relationship 
between solar radiation, ambient temperature, and thermal 
response, leading to errors by failing to capture the specific 
dynamics of bifacial modules in tracking systems. On the other 
hand, although accurate, models based on energy balance or 
computational fluid dynamics require many variables and high 
computational costs. While ANN-based models are more 
accurate than the previous ones, their black-box nature does not 
allow for model interpretability. This gap reflects the need for 
interpretable, accurate models specifically tailored to bifacial 
modules with solar trackers under tropical climates, where 
operating conditions are severe due to high irradiance and 
elevated ambient temperatures. Within this framework arises the 
research question: Can genetic algorithm-based symbolic 
regression be used to generate interpretable and efficient 
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equations that predict the temperature of bifacial photovoltaic 
modules with solar trackers in tropical climates more accurately 
than traditional and statistical models?  

To fill the existing gap, this paper introduces the idea of 
constructing the temperature forecasting model with symbolic 
regression, achieving good accuracy levels as well as algorithmic 
outreach simplicity. The symbolic regression model based on GA 
established in this study attempts to fill these gaps by explicitly 
linking module temperature to solar radiation (W/m²), ambient 
temperature (ºC), and wind speed (m/s) in 5-minute intervals for 
one year. These are highly relevant parameters to catch thermal 
behavior under practical use conditions. Statistical models based 
on multiple linear regression and the NOCT and Skoplaki I 
models are compared with the SR GA model. RMSE and R² 
(coefficient of determination) are used as metrics for the 
comparison. The outline of the paper is as follows: the data 
collection method and the design of the symbolic regression 
algorithm based on GA are introduced in Section II. The results 
of this work are presented in Section III. Section IV includes the 
discussion. Section IV concludes the paper with the conclusions. 
 
2. Materials and Methods 

The approach for generating a model through SR using GA is 
shown in this section. Fig. 2 outlines the big picture (data 
collection, model proposal, and comparison with other existing 
models). This starts with the analysis of the features of a bifacial 
PV plant with solar trackers and the operating parameters that 
influence energy production. This subsection describes the data 
processing techniques applied to this research: data filtering, 
normality check, and the correlation technique established. 
Later, the setup of the symbolic regression algorithm was 
verified. Finally, this is the evaluation, interpreting how we could 
measure the accuracy and performance of the models using 
metrics like RMSE and R². Finally, a sensitivity analysis was 
conducted to test the robustness of the SR GA model. 

 
2.1 Specifications of the PV system 

Data for training and objective prediction were collected from 
measurements taken at a facility in San Marcos, Colombia, 
located at the coordinates: 8° 34′ 32.5″ N, 74° 51′ 27.7″ W.  San 
Marcos in Sucre has a tropical climate with lots of sunshine and 
warm temperatures all year round. The sunniest months get 
between 5.5 and 6 kWh/m² of sunlight per day, with an annual 

average of about 5 kWh/m² per day. The temperature typically 
varies between 28–32 °C, in the dry season it can exceed 38 °C, 
whereas in the rainy season it is somewhat cooler, between 26–
28 °C, and humidity is generally between 70 and 80%, but it can 
exceed 80% in case of significant rain (República de Colombia,  
2005). The system comprises a bifacial PV plant with trackers 
designed to generate electricity for the Colombian electrical grid. 
This installation boasts a capacity of 19.9 MW and is equipped 
with bifacial modules; the azimuth of the PV plant is 0º, see Fig. 
1. The specifications and technical characteristics of the PV 
bifacial modules are described in Table 1. 

2.2 Data processing  

The equipment used in the experiment is described in Table 2. 

The solar tracker operates on a single axis and can move 
within a range of ±50°, with the 0° position corresponding to 
midday. Each degree of movement represents 4 minutes, see 
Fig. 3. 

The temperature sensor is located on the rear side of the 
bifacial PV module, with no solar radiation allowed on it. The 
solar radiation sensor, on the other hand, is placed vertically 
mounted on a weather station and is also perpendicular to the 
ground. It is important to note that the radiation used for analysis 
is solar radiation that is incident on a horizontal surface at the 
site, rather than on the module, as the module travels along its 
path. Simultaneously, the sensor sits in the weather station. Data 
collection occurred from January 1, 2023, to December 31, 2023, 
at five-minute intervals, including solar radiation (W/m²), 
ambient temperature (ºC), wind speed (m/s), and bifacial PV 
module temperature in (ºC).  The dataset was analysed through 
filtering and correlation analysis, among others, in order to 
accurately predict. For the sake of better performance of the 
algorithm, the data were filtered out due to nonexistent PV 
power generation, scheduled maintenance of the generation 

 
Fig. 2. Summary of methodology for temperature prediction model 

 

 
Fig. 1. Power generation plants with bifacial solar panels and 

trackers (Atlantica Colombia, 2023) 

 
 
Table 1 
Technical characteristics of bifacial panels used in PV plant 

                          Item                                           Number of data   

Power rating  400 Wp 
Open circuit voltage (Voc) 48.9 V 
Short circuit current (Isc) 10.70 A 

Maximum power point voltage (Vmp) 40.50 V 
Maximum power point current (Imp) 9.97 A 

Efficiency (%) 19.5% 
Temperature coefficient for Voc -0.28%/ºC 
Temperature coefficient for Isc 0.05%/ºC 

Normal Operating Cell Temperature 25 ºC 

   Source: Authors 

 



F.A.L.Vargas et al  Int. J. Renew. Energy Dev 2025, 14(6), 1160-1170 

| 1163 

 

ISSN: 2252-4940/© 2025. The Author(s). Published by CBIORE 

plant, and empty data sets. Also, the data were constrained to 
the 6:00 and 18:00 hours, because no power was generated for 
the grid after this period. Out of the dataset, which consisted of 
420,480 records, 10,260 (2.44%) of the entries were found 
incomplete because of bad weather/state pick-up, or system 
interruptions. All these records were filtered out in the data 
preparation process before analysis to ensure the correctness of 
the analysis. The exclusion process was conducted 
systematically as follows: 

• Outliers: To identify outliers, the highest and lowest 
values of each variable were scrutinized to find and 
remove any irregularities, thereby maintaining 
uniformity in the dataset. 

• No Imputation: To avoid spurious distortion, missing 
values were not imputed. Such a perspective is in 
consonance with previous recommendations  (Singha 
Roy et al., 2020), which emphasizes preserving data 
integrity over imputation, particularly for high-
precision modeling applications (Storlie et al., 2020). 

• Focus on normal operations: Data from maintenance-

related time periods or from times when the system 

was not functioning properly were eliminated so that 

records represent only stable operating periods. Thus, 

the selected filtering improved the dataset with respect 

to the relevance and accuracy of the modeling. 

Analyzing the correlation among variables requires 
examining the interconnections between these. The 
corresponding statistical analysis through the correlation 
coefficient (like Spearman’s) tells about the nature and the 
strength of the relationships between these variables, which form 
the basis of the symbolic regression model (Sheta et al., 2023). 
Finding strong correlations between the variables indicates how 
each is interacting with others to alter the heating of the bifacial 
PV module. The dataset for training and testing the models was 

created using 75% for training and 25% for testing data, as 
suggested by other studies (Kinaneva et al., 2021). To enhance 
prediction accuracy, it is essential to conduct preliminary data 
filtering and eliminate singular data points that could lead to 
prediction errors.  The results of the Anderson-Darling normality 
test play a significant role in deciding which correlation method 
should be used (Aslam & Algarni, 2020). The correlation between 
variables was assessed to be adequate and unaffected by the 
data's non-normality. Selecting an appropriate correlation 
method allowed for an accurate evaluation of the relationships 
among the study's variables.  Pearson's correlation method is 
suitable for evaluating linear relationships when the data follows 
a normal distribution. On the other hand, Spearman's rank 
correlation method is used when the data does not adhere to 
normality. The Spearman correlation coefficient, symbolized by 
ρ, spans from -1 to +1, with values nearer to -1 or +1 signifying 
a stronger monotonic (Ballina & li, 2025). The computational 
experiments were carried out on a personal computer. Table 3 
describes the libraries used.   

 
2.3 Proposed Algorithm  

Symbolic regression is an approach for modeling complex 
nonlinear relationships between variables, allowing for the 
identification of the best-fitting (Obaideen et al., 2023). Its 
importance is highlighted by its . This method relies on the use 
of genetic algorithms that mimic evolutionary processes to refine 
mathematical solutions (Angelis et al., 2023). To construct the 
model employing symbolic regression, the following steps were 
undertaken, see Table 4. 
• Data upload: Upload the file with the data in Excel for the 

analysis development. 
• Initial population generation: The initial population size 

affects how thoroughly the search space is explored: a 
larger population enables a more comprehensive 
exploration but also demands more computational 
resources. The population can range from 1000 to 10000, 
so a middle-ground population of 1000 is selected. 

• Assessment: The effectiveness of each Equation was 
evaluated by how well it matched the experimental data. 
RMSE was used as the primary measure to determine the 
accuracy of each proposed solution. 

• Optimal solution and validation: When the convergence 
criterion is satisfied, the best solution is chosen as the 
equation that offers the most accurate fit. 

The execution of the algorithm described in Section 2.3 
evolved into an explicit and interpretable equation to predict the 
temperature of a bifacial PV module with a solar tracker. The 
expression is described in Equation 1. 

   𝑻𝒎 =  𝑻𝒂 + √|𝐬𝐢𝐧(𝟏𝟎𝑮𝒔) − |𝑮𝑺 ∗ 𝐜𝐨𝐬(𝑻𝒂 ∗ 𝟎. 𝟑)|| − 𝑬𝒘     (𝟏) 

Table 2 
Technical characteristics of equipment 

           Equipment                       Range      Accuracy 

CR 300 data -41 to +69 °C  ±1 min per 
month 

Pyranometer MS-80 0 - 3000 W/m2 10 µV/W/m² 
 110PV CS Scientific (-45 to 130 °C) ±0.025 °C 

Hygro VUE50 -45 to +72 °C ±0.5 °C 
Anemometer CS-1 0 to 170 km/h ±0.5 m/s 

         Source: Authors 

 

 

 
Fig. 3. Measuring equipment and solar tracker 

 

Table 3 
Technical characteristics of equipment 

         Libraries                             Characteristics   

SymPy v1.1 Symbolic expression  
Scikit-learn v1.2  Metric calculations  
NumPy v1.24- 
Pandas v2.0 

 Management and processing 

Matplotlib v3.5 Visualization  
Multiprocessing Parallelization of fitness  

   Source: Authors 
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 𝑻𝒎, is the bifacial PV module temperature in (ºC), 𝑮𝑺 is the 
solar radiation in (W/m²), the variable 𝑻𝒂 represents the ambient 
temperature in (ºC), while 𝑬𝒘 denotes the wind speed measured 
in meters per second (m/s). The term that is contained in the 
square root is called a nonlinear term.The measurement related 
to trigonometric functions is in degrees. 

 
2.4 Model evaluation   

The RMSE and R² metrics are used to evaluate the model. RMSE: 
This parameter evaluates those absolute error values in the 
differences between the predicted values Vpredicted and the 
actual values Vtarget. This corresponds to developing a sum of 
the squares of the differences of these values divided by the 
sample number N, and then taking the root of the result of that 
operation. The lower the RMSE, the more accurate the model. 
Equation 1 illustrates the computation method (Hodson, 2022): 
 

                  𝑅𝑀𝑆𝐸 = √∑ ( 𝑉𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑−𝑉𝑡𝑎𝑟𝑔𝑒𝑡)2𝑁
𝑛=1

𝑁
                           (2) 

 
R² (Coefficient of determination): This metric expresses the 

percentage of the variance of the measured values that can be 
predicted from the independent variables in the model; it is 
computed as 1 minus the ratio of the sum-of-squares differences 
between the actual measured values yi,actual and the predicted 
values yi,predicted and the sum-of-squares of the difference 
between the actual measured values and the average of these 
values ȳ,actual. N is the number of samples of the calibration set 
or of the validation set. Considering the same concentration 
range, the closer R is to 1, the higher the degree of fit of the 
regression or prediction result (Hodson, 2022). The R² was 
calculated using Equation 2.  
 

         R² = 1 −
∑ (𝑦𝑖, 𝑎𝑐𝑡𝑢𝑎𝑙 −  𝑦𝑖, 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)2𝑁

𝑖=1

∑ (𝑦𝑖, 𝑎𝑐𝑡𝑢𝑎𝑙 −  ȳ, 𝑎𝑐𝑡𝑢𝑎𝑙)2𝑁
𝑖=1

                (3) 

The RMSE and R² were assessed by comparing the derived 
equation from the symbolic regression algorithm with the actual 
data measured in the PV module. The set of data used for the 
comparison was a group of test data. Using these metrics to 
measure and compare the performance of the symbolic 
regression model with the other allows for a critical evaluation of 
the model's ability to predict temperature behavior. The choice 
of the following models for comparison with the symbolic 
regression model is justified by the need to evaluate the new 
method in a wide range of approaches, from the most basic and 
generalized to the most specific. This validates the accuracy and 
usefulness of the proposed model in different contexts and 
demonstrates its innovative potential and ability to improve the 
prediction and understanding of the behavior of PV modules 
with solar trackers.  The SR model was compared to a multiple 
linear regression (MLR) model using the same training dataset. 
MLR is a statistical method that examines the connection 
between a dependent variable and multiple independent 
variables (Sunday et al., 2017). The objective is to identify the line 
that best fits and minimizes the sum of squared differences 
between the observed and predicted values of the dependent 
variable (Jiang, 2022). In addition, a multiple linear regression 
model was developed using training data and evaluated with a 
test data set. The analysis will reveal the corresponding 
coefficients in Equation 4. 

 

        MLR = 9.35 +  0.35 ∗ 𝐺𝑆 + 0,7 ∗ 𝑇𝑎 + 0.28 ∗ 𝐸𝑤      (4) 
 
Furthermore, the model was evaluated against the NOCT 

model. The cell temperature, Tc (°C), is generally calculated 
using the NOCT specified by the PV module manufacturer 
(Nolay, 1987). The connection between Tc and the surrounding 
temperature Ta (°C), as well as solar radiation G (W/m²), as 
explained in (Bharti et al., 2009), is expressed as follows in 
Equation 5: 

Table 4 
Pseudocode for the RS GA algorithm 

Symbolic Regression with Genetic Algorithms Algorithm 
 
1. Load the regression dataset and select the independent variables (X, Y) and the dependent variable (Z). 
2. Generate an initial population with N randomly constructed equations within the search space. 
3. Define termination criteria (maximum iterations OR RMSE = 0 OR user stop). 
4. Initialize iteration counter, BestFit = INFINITY, BestCandidate = NULL, BestEquation = NULL. 
5. FOR each iteration t = 1 to maxIter DO: 
   5.1. Select two random Equations (eq1, eq2) from the population. 
   5.2. Evaluate eq1 and eq2 with the real data using RMSE (error1, error2). 
   5.3. IF error1 < error2 THEN: 
        5.3.1. BestCandidate = eq1 
        5.3.2. ErrorBestCandidate = error1 
        ELSE: 
        5.3.3. BestCandidate = eq2   
        5.3.4. ErrorBestCandidate = error2 
   5.4. Generate a copy of BestCandidate (mutated_copy). 
   5.5. Apply random mutation to mutated_copy (modify operators, constants, or Equation structure). 
   5.6. Replace the worst-fit equation with mutated_copy. 
   5.7. IF ErrorBestCandidate < BestFit THEN: 
        5.7.1. BestFit = ErrorBestCandidate 
        5.7.2. BestEquation = BestCandidate 
        5.7.3. Show BestEquation and BestFit 
   5.8. Increment iteration counter. 
6. END FOR 
7. Return the best Equation, best fitness value, and convergence information. 
 

    Source: Authors 
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                           Tc = Ta +
G

800
(NOCT −  20 °C)                        (5) 

 
The Skoplaki I model relates the environmental variables 
through Equation 6 (Skoplaki et al., 2008). 

 

                                Tc = T𝑎 +
0.32𝐺

(8.91+2E)
                                      (6) 

 
T𝑎 is the ambient temperature (ºC), G is solar radiation 

(W/m²), and E is the wind speed in (m/s). The comparison 
criteria were the RMSE and R². A comparison of the results of 
the symbolic regression model with those of other models is 
essential to confirm the efficiency and accuracy of our proposed 
model. This comparison facilitated the identification of the 
advantages and disadvantages of the symbolic regression 
method across various datasets and contexts.  Because of the 
volume of data acquired, the day with the highest irradiance 
(November 4, 2023) of the test data was chosen to plot the 
graphical difference between the symbolic regression model, the 
actual temperature of the solar PV module, and the other 

models. In addition, a violin plot, box plot, and bagplot were 
used to represent the performance of the models with the test 
data group and the temperature measured in the bifacial module. 
In addition, a sensitivity analysis was developed to confirm 
whether the SR GA model was consistent in its predictions. 
Sensitivity analysis is a fundamental tool for evaluating the 
robustness of model results, as it examines how variations in 
input parameters affect the results (Tarantola et al., 2024). The 
one-at-a-time (OAT) sensitivity analysis is a simple method 
where one input parameter is altered while all other parameters 
remain unchanged, enabling the examination of the effects on 
the output (Zand et al., 2023). 

 
3. Results and Discussions 

This section outlines the primary findings of this research. It is 
organized into two parts: an analysis of variable correlations and 
an assessment of the model. 
 
3.1 Correlation of analysis variables 

The statistical analysis of the data obtained from the measuring 
equipment described in Table 2 forms the basis for 
understanding the physical interrelations that govern the 
temperature of a bifacial module with a solar tracker. Table 5 
describes the data distribution, where out of a total of 420,480 
annual records, 574 were identified as blank or erroneous, and 
4,582 records had no values because the equipment was under 
maintenance. These practices are in line with previous studies 
(Storlie et al., 2020). More than 98% of the available data was 
obtained for the development of the study. For the specific 
analysis, 207,662 records corresponding to the PV plant’s 
daytime operating periods were selected (06:00 a 18:00 h). From 
this latest dataset, 75% that is, 155,747 records, were used to 
train the model, while the remaining 25%, or 51,915 records, 
were set aside for independent model validation. This is a 
standard practice that ensures an unbiased assessment of 
predictive performance (Kinaneva et al., 2021).  The nature of the 
interactions between the environmental variables and the 
temperature of the bifacial module with solar tracker was 
analyzed through a correlation analysis. Prior to this, since the 
Anderson-Darling normality test indicated that the data were not 
normally distributed according to the p-value ˂ 0.05, the 
Spearman correlation method was chosen for the analysis, a 
robust and non-parametric methodology suitable for cases 

where the data do not meet the assumption of normality (Aslam 
& Algarni, 2020).  

The results shown in Table 6 indicate highly significant 
correlations. Correlation provides information about some of the 
factors that determine the behavior of the bifacial PV module. 
The extremely strong and monotonic correlation between the 
module temperature and solar radiation, at ρ = 0.88, is, to a 
certain degree, normal, since the incident irradiance is the main 
source of energy absorption and, therefore, of the heating of 
bifacial PV modules. However, the strength of the correlation is 
significantly higher than that obtained by Díaz-Bello et al., (2024) 
in their studies with a different climate (Spain), with ρ = 0.48 
(Díaz-Bello et al., 2024). It could be assumed that the discrepancy 
is due, at least in part, to the intense and constant radiative 
forcing relevant to the tropical location. Subsequently, this 
forcing is intensified by the dynamic footprint of the axis 
follower, which is constantly adjusting to track the sources of 
irradiance, changing its position throughout the day. The 
secondary correlation, although extremely strong, with ambient 
temperature at ρ = 0.83, establishes this parameter as the 
thermal baseline. On the other hand, wind speed exhibits a 
moderate correlation with ρ = -0.39, confirming its role as a 
convective cooling mechanism. However, it proves to be 
significantly less influential, representing one of the crucial 
operational challenges for photovoltaics in tropical climates. Fig. 
4 shows a three-dimensional scatter plot, in which the highest 
values of solar radiation are found in regions above 1200 W/m² 
and the highest ambient temperature is close to 37.5ºC. On the 
other hand, wind speed is mostly below 3 m/s.  

Fig. 5 shows the average hourly evolution of solar radiation, 
module temperature, tracker angle, and solar time. An 
interesting finding is that the maximum temperature of the 
bifacial module with a tracker does not occur at solar noon, but 
rather around 14:00 h, that is, there is a delay or thermal lag of 
approximately two hours with respect to the irradiance peak. 
These results differ from those obtained when measuring the 
temperature in a monofacial solar module without a solar tracker 
at 8º tilt and 0º azimuth at latitudes very similar to that of the 

Table 5 
Acquired data distribution statistics. 

                          Item                                           Number of data   

Total data calculated for the year 420,480 
Overall data for the study 420,480 

Blank data 574 
No data for maintenance activity 4,582 

Filtered data for the study 415,324 
Total data from 6:00 to 18:00 207.662 

Training data 51,915 
Test data 25,973 

Source: Authors 
 

Table 6  
Solar hour, Solar radiation, PV module temperature correlation 
coefficients 

  
Wind 
speed 

Ambient 
temperature 

Solar 
radiation 

PV module 
temperature 

Wind  
speed 1 

 
  

Ambient 
temperature 0.30 

 
1   

Solar 
radiation 0.34 

 
0.59 1  

PV module 
temperature -0.39 

 
0.83 0.88 1 

Source: Authors 
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plant under study, where the maximum temperature is reached 
at midday  (Lara Vargas et al., 2025b). This phenomenon could 
be attributed to the combination of three main factors: a) the 
thermal inertia of the module materials and their mounting 
structure, which delays the response to the irradiation peak, b) 
the continuous contribution of reflected radiation on the rear 
side, which is maximized by the tracker’s orientation even after 
midday, c) and the high ambient temperatures characteristic of 
the tropical climate, which reduce the efficiency of thermal 
dissipation, as well as the high humidity at the plant site, which 
ranges between 70 and 80%, as studied in section 2.1. This delay 
coincides with the observations of Wang et al.,(2022) who noted 
that trackers can prolong the period of energy capture and, 
consequently, heat accumulation (Wang et al., 2022). This result 
highlights the need to develop specific models, such as the one 

proposed in this work, that take into account the particular 
dynamics generated by the use of solar tracking. 
 
2.2 Model evaluation 

The symbolic regression algorithm with genetic algorithms (SR 
GA) is configured with the parameters detailed in Table 7. The 
algorithm evolved until it found Equation 1 presented in Section 
2.3. The total processing time of the algorithm was 20 minutes 
and 10 seconds. A computationally reasonable time for the 
volume of training data, and given the complexity of the 
relationships between the variables, especially when the 
resulting model is a simple algebraic expression with instant 
evaluation, as opposed to the costly numerical models of 
computational fluid dynamics that require more than the three 
variables used by the RS GA model  (Haeberle et al., 2022).  

The predictive performance of the model was evaluated 
using the test data and compared with three reference models, 
as shown in Table 8. The proposed model achieved the best 
performance with an RMSE of 4.14 ºC and an R² of 0.91. These 
results indicate that the RA GA model explains 91% of the 
variance in the temperature of the bifacial module with a solar 
tracker. The next best model is the MLR, with an RMSE of 4.31 
ºC and an R² of 0.90, outperforming the empirical NOCT models 
with an RMSE of 8.59 ºC and an R² of 0.60, and the Skoplaki I 
model with an RMSE of 5.91 ºC and an R² of 0.81. The superior 
performance of the RA GA model lies in its ability to capture 
nonlinearities and interactions among the variables analyzed, 
aspects that the reference models do not consider, as they 
overlook the dynamics introduced by the type of PV module 
used and by the solar tracker (Mannino et al., 2022 ; Tina et al., 
2020). Table 8 summarizes the various data obtained from the 
models used about the actual temperature of the PV module. 

Figure 6a allows us to visualize the individual contribution of 
each component to the measured module temperature (Tm), 
taking into account Equation (1). It can be seen that the ambient 
temperature (Ta) provides a thermal baseline for the RS GA 
model. The nonlinear term (the expression inside the square 
root) adds the heating caused by solar radiation (Gs), which 
displays a nonlinear response modulated by ambient 
temperature through the sine function. Likewise, the effect of 
wind speed is presented as a cooling effect of constant 
magnitude that is subtracted linearly from the result. This 
decomposition offers insight into the importance of each variable 
in the heating of the bifacial solar module with a solar tracker, 
which aligns with the explanatory capacity of the models derived 
from symbolic regression (shmuel et al. 2023; Angelis et al. 2023). 
Figure 6b, which represents the day with the highest radiation 
recorded during the testing period, illustrates that the measured 
temperature of the module and the temperature predicted by the 
Model SR GA exhibit a similar pattern. This pattern is 
characterized by a gradual increase from the early hours, 
reaching a peak around midday, followed by a decline in the 
afternoon. The convergence of both curves suggests a generally 
strong correlation, although minor discrepancies are noted 
during periods of maximum radiation, where the model 
occasionally diverges from the observed values. This visual 

 
Fig. 4 Scatter plot of solar radiation versus ambient temperature 

and wind speed 
 
 

 
Fig. 5 Radiation and module temperature as a function of solar time 

and tracking angle 
 

 

Table 7 
Algorithm input parameters 

                          Item                                           Number of data   

Individual set   1000 
Evolutions steps  50 

Baseline mutation 0.5 
Selection ratio 0.5 
Hybridization Subexpression  

Source: Authors 

 

Table 8 
Comparison of models 

Model RMSE R² 

SR GA 4.14 0.91 
MLR   4.31 0.90 

 NOCT 8.59 0.60 
Skoplaki I 5.92 0.81 

Source: Authors 
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analysis suggests that the SR GA model effectively reproduces 
the thermal behavior of the module on a day of maximum 
irradiation, despite slight deviations in the peaks. A comparative 
analysis is presented in Figure 7, where the performance of the 
RS GA model is contrasted with the reference models on the day 
with the highest radiation during the test period. The advantage 
of the symbolic regression approach is evident. While the NOCT 
and Skoplaki I models consistently underestimate the 
temperature of the bifacial OPV module with a solar tracker 
throughout the day, the NOCT model in particular overestimates 
it during the hours of highest solar radiation. In contrast, the RS 
GA model aligns much more closely with the actual temperature 
of the module, demonstrating its superior ability to generalize 
under extreme conditions. This behavior confirms that the linear 
assumption inherent to MLR is insufficient for this nonlinear 
system and that, while empirical models are useful for 
preliminary estimates, they lack the accuracy needed for 
modeling bifacial PV systems with solar trackers.  

Fig 8 delves deeper into the analysis of the test data, the RS 
GA model, and the reference models by means of box plot and 
violin plot distributions. It is observed that the RS GA and RLM 
models show narrower distributions centered around the 
measured temperature values, indicating a better fit in terms of 
accuracy and dispersion. In contrast, the NOCT model shows a 
greater deviation from the measured temperature, with a more 
distant and wider distribution, confirming its lower ability to 
represent real conditions under a tropical climate and using a 
solar tracker. The Skoplaki I model offers intermediate 
performance, better than NOCT but with greater dispersion than 
RS GA and RLM. These results are consistent with previous 

studies that pointed out the limitation of the NOCT model in 
capturing thermal interactions in bifacial modules in tropical 
climates (Mannino et al., 2022). Finally, the one-at-a-time (OAT) 
sensitivity analysis, performed on Equation (1) in Figure 9, 
provides a physical validation of the model and confirms its 
robustness: The nonlinear relationship between the bifacial 
module temperature (𝑇𝑚) and solar irradiance (Gs) (a) is 
consistent with the physical phenomenon known as thermal 
saturation, where at very high irradiance levels, heat dissipation 
efficiency decreases, leading to less than proportional increases 
in module temperature (Kaplani & Kaplanis, 2020). The non-
monotonic response of the ambient temperature (Ta) in part (b), 
with slight variations in the slope, is the most interesting result 
due to the use of a trigonometric term inside the square root of 
Equation (1). This behavior suggests that the model captures a 
complex interaction where the ambient temperature modulates 
the effectiveness of irradiance in heating the bifacial module, 
likely related to changes in the thermal conductivity of air or to 
radiative losses in different temperature regimes. This level of 
interpretation is typical of symbolic regression models and 
would be impossible to obtain in a black box model such as a 
neural network (Kayri & Aydin, 2022). The influence of wind 
speed (Ew) in part (c) is approximately linear and of moderate 
magnitude, which aligns with its role as a convective cooling 
mechanism (Meflah et al., 2023), whose effectiveness at this 
tropical site, with predominantly low winds, is limited. These 
results highlight the importance of mitigation strategy (tracking 
angle management to limit thermal peaks, geometric separation 
to promote convective sweeping) targeted specifically for 

 

(a)  

 
(b) 

 
Fig. 6 Components and behavior of the SR GA model. a) 
Components of the RS GA model symbolic equation. b) Comparison 
between RS GA model and a clear day 

 

 

Fig. 7 Behavior of models on the day with the highest solar 
radiation 

 

 
Fig. 8 Data distribution of the different models and the 

temperature measured in the bifacial PV module 
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bifacial modules with tracking, which have been recommended 
by others through empirical analysis  (Wang et al., 2022). 

The results complement and extend the existing literature on 
thermal modeling of PV modules that use solar trackers. The RS 
GA model conducts an analysis with a greater number of records 
at a high precision (every 5 minutes), analyzing data from an 
entire year in duration, unlike other models. (Kaplani & Kaplanis, 
2020; Johansson et al., 2022 ; Sanchís-Gómez et al., 2025) and 
Black Box Models (e.g., Neural Networks - (Kayri & Aydin, 2022).  
A key benefit of the RS GA model is that it exceeds the accuracy 
of the RLM and approaches the prediction capabilities of much 
more complex models, but with the added benefit of physical 
interpretability. On the other hand, when comparing the RS GA 
model with the Skoplaki I (Sanchís-Gómez et al., 2025), the end 
result was an RS GA model that was 30% more accurate than the 
prior best Skoplaki I model. In addition, it achieved better 
accuracy than the model by Kaplani & Kaplanis,(2020) whose 
accuracy ranges between ± 5 °C (Kaplani & Kaplanis, 2020) and 
the computational fluid dynamics (CFD) model, which obtained 
an RMSE of 4.2 °C (Johansson et al., 2022). As such, this study 

addresses a gap in the literature that can be summed up as an 
absence of a precise, interpretable, computationally cheap model 
for bifacial modules with trackers in the tropics.  

Despite the promising results, this work presents some 
limitations that must be acknowledged: a) Geographical 
generalization: The model was built and validated based on a 
unique region (San Marcos, Colombia). It is yet to be validated 
in climates where solar radiation patterns, humidity, or wind 
differ radically (e.g., arid, temperate, or cold). b) Computational 
cost: While the final model is a simple one, the RS GA was run 
on a large population (1,000 individual population size) and took 
a of processing time (20 minutes). That might make it less 
practical for certain applications that require constant retraining, 
without the optimal compute hardware to back it up (Sanchís-
Gómez et al., 2025). The implications of this research are both 
practical and academic. The derived equation provides a simple 
tool for engineers and PV plant designers to predict system 
operating temperatures to maximize efficiency and lifespan in 
tropical environments. Eventually, long-term studies (≥ 5 yr) 
could be done to compare the temperature predictions of the 
model with actual observed module performance degradation 
data on a yield basis to create predictive models of service life. 

 
 

 
5. Conclusion 

This study demonstrates the potential of symbolic regression as 
a technique for modeling physical phenomena applied to 
renewable energy, specifically the temperature of a bifacial 
module with a solar tracker located in a tropical region. The RS 
GA model outperformed traditional and statistical methods in 
modeling the temperature of a bifacial module, achieving an 
RMSE of 4.14 ºC and an R² of 0.91.  The main contribution is the 
derivation of Equation (1), which models the thermal behavior of 
the bifacial module. An important finding was that the bifacial 
module with a solar tracker reaches its maximum temperature 
around 14:00h, in contrast to fixed monofacial modules in similar 
tropical latitudes. This behavior highlights the need for specific 
prediction models for systems with solar trackers.  
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Fig 9. Sensitivity of module temperature to a) irradiance, b) 
ambient temperature, and c) wind speed 
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