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Abstract. This study analyzes the impact of missing wind data points on the accuracy of Annual Energy Production (AEP) estimation in wind resource 
assessment (WRA). Evaluations were made under different scenarios using various Measure-Correlate-Predict (MCP) methods and reanalysis 
datasets. One year of wind measurements was collected from an inland met mast located in the Gashiri area of Jeju Island, South Korea. Three types 
of long-term reanalysis datasets- ERA-5, MERRA-2 and WRF (ERA-5)- were obtained, each exhibiting different levels of correlations with the met 
mast wind measurements. To simulate missing data points scenarios, a yearly percentage sampling method was applied to the one-year met mast 
wind data with sampling rates ranging from 10% to 90%. To ensure statistical reliability, random sampling was performed 12 times for each sampling 
rate. The MCP method was applied after pairing each sampled dataset with the reanalysis datasets. Long-term predictions were generated using four 
MCP approaches- two machine learning techniques (Random Forest and Gradient Boosting Regression) and two traditional methods (Regression and 
Matrix). AEP was calculted from these predictions and compared to the reference AEP derived from the complete dataset. Results show that accurate 
AEP estimation remained feasible even when using reanalysis datasets with low correlation to the measured data. Moreover, all four MCP methods 
demonstrated similar performance, with machine learning–based approaches producing results comparable to those of traditional methods. While 
conventional WRA practice recommends a data recovery rate above 90% for accurate AEP estimation, this study demonstrated reliable AEP estimates 
could be achieved with rates as low as 50%. 

Keywords: Wind resource assessment, Measure-Correlate-Predict method, Annual energy production, Missing wind measurements, Reanalysis 
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1. Introduction 

Renewable energy generation has been steadily replacing 
conventional thermal power production, leading to significant 
reductions in fossil fuel consumption and carbon dioxide 
emissions (Cai et al., 2024; Li et al., 2020; Loza et al., 2024). Wind 
energy has become one of the most prominent renewable 
energy sources due to its substantial potential, minimal 
environmental impact, high economic viability, and ability to 
contribute to local economic development (Khosravi et al., 
2018). As reported by the Global Wind Energy Council, the total 
global installed wind power capacity exceeded 1,136 GW as of 
the end of 2024, with approximately 127 GW added that year 
(GWEC, 2025). Furthermore, the International Energy Agency 
(IEA) projects that annual wind power additions should 
quadruple by 2030 compared with 2020 levels to achieve the 
Net Zero Emissions goal by 2050 (IEA, 2021).  

Accurate wind resource assessment (WRA) plays an 
essential role in planning and developing wind energy projects, 
as it determines the wind energy potential and expected energy 
yield at a specific site (Pelser et al., 2024; Spiru & Simona, 2024). 
In other words, a reliable assessment of wind resources is 
crucial for estimating energy production, optimizing turbine 
placement and minimizing financial risk (Wang et al., 2016; 
Zhou et al., 2011). WRA generally follows a structured, multi-
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step process to ensure accurate characterization of wind 
conditions at a candidate project site (Brower, 2012). Typically, 
the process begins with site selection and the installation of a 
met mast to collect wind measurements and other 
meteorological parameters over a monitoring period of at least 
one year (Kang et al., 2023; Weekes et al., 2015; X. Zhang et al., 
2017). Following data collection, wind data validation 
procedures are conducted to filter low-quality data (Brower, 
2012). Once data is validated, the short-term on-site 
measurements are statistically correlated with nearby long-term 
reference datasets using the Measure–Correlate–Predict (MCP) 
method to estimate long-term wind conditions (Ali et al., 2018; 
Basse et al., 2021; Carta et al., 2013; Miguel et al., 2019). 
Subsequently, wind flow modeling and terrain analysis are 
performed to evaluate spatial wind distribution and support 
turbine micro-siting (Song et al., 2014). Finally, Annual Energy 
Productions (AEPs) are estimated at specific wind turbine 
positions, which are used to assess overall project economic 
feasibility (Bodini et al., 2020). 

Reanalysis datasets, among one of the long-term reference 
datasets, are gridded global atmospheric fields generated by 
assimilating historical weather observations into numerical 
weather prediction (NWP) models (Buontempo et al., 2025). 
These datasets provide long-term meteorological data such as 
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wind speed, wind direction, temperature and other parameters 
across multiple atmospheric height levels (Mavromatis, 2022). 
In wind energy applications, reanalysis datasets are a key 
component in the effective execution of the MCP method, as 
they directly influence the accuracy of long-term wind 
predictions (Davidson & Millstein, 2022; Gualtieri, 2022; Zekeik 
et al., 2024). In practice, the correlation between met mast data 
and reanalysis datasets is often regarded as a primary indicator 
of dataset suitability for long-term wind forecasting. Correlation 
coefficients below 0.6 are generally considered poor, 0.6 to 0.7 
weak, 0.7 to 0.8 moderate, and above 0.8 good (M. H. Zhang, 
2015). Therefore, the careful selection of reanalysis datasets is 
important for ensuring accurate AEP estimation over a wind 
farm’s lifetime (Manwell et al., 2010). 

However, missing or low-quality data points in wind 
measurement causes wind data loss leading to poor AEP 
estimation, which has been a common issue in WRA. It may 
occur for various reasons, including sensor malfunctions, data 
logger failures, tower shadow effects, power outages, 
communication disruptions and so on (Coville et al., 2011; 
Gottschall & Dörenkämper, 2021). Although conventional WRA 
typically relies on at least one year of wind measurements with 
over 90% wind data availability (Brower, 2012), it is typically 
required to estimate AEP using incomplete datasets due to 
significant time and financial investments. 

In this context, machine learning techniques offer 
powerful tools for wind speed forecasting, energy production 
estimation and management of missing data points. Since these 
techniques effectively capture both linear and nonlinear 
relationships between variables, they are well-suited for 
handling wind data gaps and applying the MCP method (Salah 
et al., 2022). Numerous studies have been carried out for the 
application of machine learning techniques to the wind energy 
research field. Offshore wind farm power outputs were analyzed 
using several machine learning algorithms, including multiple 
linear regression (MLR), artificial neural networks (ANNs), 
decision trees (DTs) and support vector regression (SVR). The 
results indicated that MLR was the most effective algorithm for 
MCP execution, followed closely by ANN, whereas DT and SVR 
exhibited higher error levels (Mifsud et al., 2020). Also, a random 
forest (RF)-based model was the best choice to extrapolate 
near-surface wind speeds up to 200 meters, achieving higher 
accuracy, lower bias, and stronger correlation compared to 
conventional MCP-corrected ERA5 profiles (Rouholahnejad & 
Gottschall, 2025). Chen et al., (2022) developed an MCP model 
that combines a neural network with the frozen flow hypothesis 
to capture large-scale wind velocity fluctuations. The results 
exhibited high predictive accuracy, particularly when the 
spanwise offset between the target and reference points was 
small. 

To estimate long-term wind conditions, Zhang et al.,  
(2014) proposed a hybrid MCP method that utilized data from 
multiple reference stations. The result indicated that the optimal 
combination of MCP algorithms was dependent on the length of 

the concurrent short-term correlation period. In addition, 
Ayuso-Virgili et al., (2024) evaluated four MCP models (linear 
regression, variance ratio, ANN, and SVR) to enhance the 
estimation performance of wind and wave energy availability at 
a semi-exposed coastal site. The findings noted improvement in 
prediction accuracy for all four models when swell heading was 
performed as a sorting strategy during peak waves.  

The Gradient Boosting Regression (GBR) model was also 
applied for wind power forecasting, leading to superior 
predictive accuracy (Singh et al., 2021). Furthermore, Jonietz 
Alvarez et al., (2024) introduced K-Nearest Neighbors (KNN), 
linear interpolation, and sector average deviation MCP methods 
for filling data gaps, resulting in the KNN-based MCP method 
performing best overall. These studies have demonstrated the 
capabilities of machine learning techniques in enhancing the 
MCP performance and supporting wind energy analysis. 

The objective of this study is to clarify the effect of missing 
wind data points on the accuracy of AEP estimates with various 
correlation coefficients between site measurements and 
reference data as well as various MCP algorithms. Different 
reanalysis datasets with various correlation coefficients 
between the datasets and on-site measurements were utilized 
for the investigation. Four MCP methods were also employed: 
two traditional MCP methods (Regression and Matrix) and two 
machine learning approaches (Random Forest and Gradient 
Boosting Regression). The one-year measured wind data points 
were sampled at rates ranging from 10% to 90%, which were 
used for MCP execution. Finally, relative errors of the estimated 
AEP values were analyzed to find the influence of data loss and 
dataset correlation on AEP prediction accuracy. The novel 
contribution of this study lies in evaluating whether AEP 
estimation remains reliable under conditions of specific data 
point loss, even when correlations with reanalysis datasets are 
limited. 
 
2. Site setup and methodology 

2.1 Site setup 

This study was carried out in the Gashiri region of Jeju 
Island, South Korea. Fig. 1 shows the location of Jeju Island and 

 
Fig. 1 Location of Jeju Island and measurement site 

 

 Table 1 

Information on the met mast and the reanalysis data 

Data types Location 
(UTM-WGS84) 

Mean wind speeds 
[m/s] 

Data periods Analyzed heights WS/WD [m] 

Met-Mast E: 289,641 
N: 3,697,537 

6.81 2012.05.01 –2013.04.30 
1 year 

70/65 

ERA-5 E: 287,718 
N: 3,687,098 

5.12 1994.05.01 – 2013.04.30 
19 years 

100/100 

MERRA-2 E: 283,461 
N: 3,709,151 

6.50 1993.05.01 – 2013.04.30 
20 years 

50/55 

WRF (ERA-5) E: 290,375 
N: 3,699,108 

7.75 1999.05.01 – 2013.04.30 
14 years 

75/75 
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the 70-meter-high met mast position in Gashiri. A Thies First 
Class anemometer and wind vane were equipped to collect 
wind speeds and direction. To apply the MCP methods, long-
term reanalysis datasets of ERA-5, MERRA-2 and EMD-WRF 
(ERA-5) were collected. The spatial distances from the met mast 
to the respective reanalysis dataset grid points were 10.6 km, 
13.1 km, and 1.8 km, respectively. Table 1 presents the 
information regarding the met mast and the reanalysis data. The 
wind measurement campaign spanned one year (May 1, 2012-
April 30, 2013), obtaining 10-minute average wind data. 
Furthermore, the ERA-5, MERRA-2 and WRF (ERA-5) 
reanalysis datasets were collected for the periods of 19, 20, and 
14 years, respectively. The mean wind speeds were listed at the 
analyzed heights. Table 2 shows the specifications of the wind 
turbine used for the investigation. The AEP was calculated using 
a 3.2 MW GE-103 wind turbine. The power curve of the wind 
turbine is presented in Fig. 2. The cut-in, rated and cut-out wind 
speeds of the wind turbine are 3 m/s, 14.8 m/s and 25 m/s, 
respectively.  

 
2.2 Methodology and workflow 
 

Two machine learning algorithms- Random Forest (RF) 
and Gradient Boosting Regression (GBR)- were applied in this 
study. RF, introduced by Breiman (2001), constructs multiple 
decision trees during training and outputs their average 
prediction for regression problems (Breiman, 2001; Ishak, 2016). 
It utilizes bootstrap sampling and random feature selection to 
reduce overfitting and improve generalization. Since the RF 
algorithm is effective at capturing nonlinear relationships and 
handling high-dimensional datasets, it is well-suited for complex 
prediction tasks (Ho et al., 2023; Sathyaraj & Sankardoss, 2024). 
GBR also operates by constructing decision trees sequentially 
with each new tree trained to correct the residual errors of its 
predecessor (Boldini et al., 2023; Park et al., 2023). By 
minimizing a specified loss function through gradient descent, 
GBR enables the model to iteratively focus on the most 

challenging samples. The GBR algorithm is effective for 
modeling complex relationships and is widely acknowledged for 
its strong predictive performance in regression applications 
(Friedman, 2001). 

In addition to the machine learning algorithms, two 
traditional MCP methods (Regression and Matrix) were also 
applied for comparison. These approaches have been widely 
used for MCP applications due to their simplicity, 
interpretability and practicality in long-term wind data 
prediction (Carta et al., 2013; M. H. Zhang, 2015). 

 
AEP was calculated by the following equation: 
 

AEP [kWh] = ∑ [𝑃(𝑉𝑖)] 8760
𝑖=1                                           (1) 

 
where P (Vi) is the power output at the ith wind speed and Vi is 
wind speed at ith time stamp.  

Then, the relative error of AEPs was calculated using the 
AEP reference value derived from one-year estimates based on 
100% of the met-mast data points. The AEP relative error, εAEP, 
was expressed by the following equation: 
 

𝜀𝐴𝐸𝑃 [%]  =
AEPref − AEPcalculated  

AEPref 
× 100%                   (2) 

where, AEPref is the reference AEP and AEPcalculated is the AEP 
calculated from each MCP result. 

Fig. 3 shows the overall workflow of the study. Wind data 
were collected from the met mast and three types of long-term 
hourly reanalysis datasets- ERA-5, MERRA-2 and WRF (ERA-
5). A data quality check was then performed for the met mast 
data, resulting in a data recovery rate of 99%. The original 10-
minute interval wind data from the met mast were aggregated 
to hourly averages to align with the temporal resolution of the 
reanalysis data. Subsequently, to generate missing data point 
scenarios, the wind data points from the met mast were sampled 
using a percentage data sampling method over a measurement 
year. Following this approach, the one-year wind data points 
were randomly sampled at 10% increments ranging from 10% 
to 90%. 

To verify that every sampling dataset preserves temporal 
wind variation, seasonal and diurnal wind speed variations of 
each sampled dataset were compared with the full one-year 
measurement dataset. Fig. 4 shows an example of diurnal wind 
speed variation using the full and 50% sampled datasets. Fig. 5 
illustrates an example of seasonal wind speed variation using 
the full and 50% sampled datasets. As shown in Figs. 4 and 5, 
the sampled datasets retained the patterns of the full dataset, 
confirming that temporal variation was preserved. The random 
sampling process was repeated twelve times for each 
percentage level to ensure consistency and reduce sampling 
bias. Then, all sampling datasets were paired with the three 
types of reanalysis data to apply the MCP method. 

Table 2 
Specifications of the wind turbine 

Item Category Specification 

 
 
 

Wind turbine  
 

Model GE 3.2-103 
Rated power 3,200 kW 
Hub height 70 m 

Rotor diameter 103 m 
Cut-in wind speed 3 m/s 
Rated wind speed 14.8 m/s 

Cut-out wind speed 25 m/s 

 

 
Fig. 2 Power curve of wind turbine 
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Each paired dataset was divided into a training set (80%) 
and a testing set (20%).  The RF and GBR models were trained 
on the training dataset using optimized hyperparameters (RF: 
n_estimators=200, max_depth= none, random_state=42; GBR: 
n_estimators=200, learning_rate=0.1, max_depth=3, 
random_state=42), and their performance was subsequently 
evaluated on the testing dataset. 

The resulting trained models were incorporated into the 
MCP framework. The traditional Regression and Matrix 
methods were also implemented for comparison. All the trained 

models and the traditional models were then applied to the 
three types of long-term reanalysis datasets, resulting in twelve 
types of MCP estimates. These were generated by combining 
four MCP methods with three different pairings of reanalysis 
and met mast datasets. 

From these predicted MCP estimates, only the data points 
corresponding to the met mast measurement period were 
extracted for AEP calculations. For each one-year MCP 
estimates extracted, the AEP was calculated 108 times caused 
by repeating a random data selection process twelve times at 

 

Fig. 3 Workflow for this study 

 

 

 

Fig. 4 Diurnal wind speed variation for the full and sampled 
datasets 

 

 

Fig. 5 Seasonal wind speed variation for the full and sampled 
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each percentage interval from 10% to 90%. Finally, the AEP 
estimates were compared with the reference AEP value to 
derive the relative errors, from which conclusions were drawn.  

 
3.  Results and discussion 

3.1 Linear regression analysis between met mast measurements and 
reanalysis data 

Fig. 6 presents the results of the linear regression analysis 
between the wind speeds measured on the met mast and those 
obtained from each reanalysis dataset: (a) ERA-5, (b) MERRA-2 
and (c) WRF (ERA-5). Reanalysis datasets with different levels 
of correlation to the met mast measurements were selected to 
find out the effect of correlation coefficients on AEP estimation. 
Among the three reanalysis datasets, WRF (ERA-5) exhibited 
the highest correlation, with a regression line slope of 0.93 and 
a correlation coefficient (R) of 0.84. MERRA-2 showed a 
moderate correlation with a slope of 0.60 and R=0.74, while 

ERA-5 demonstrated the lowest correlation with a slope of 0.47 
and R=0.62. 

 
3.2 Impact of reanalysis data selection on AEP estimation 

Fig. 7 shows box plots of the relative errors and standard 
deviations in AEP estimations for different correlation 
coefficients of the three reanalysis datasets. For the four MCP 
methods, twelve AEP relative errors were calculated by 
repeating the random sampling process twelve times for each 
sampling percentage from 10% to 90%. For the 100% case, only 
a single AEP relative error was calculated by each MCP method, 
since the complete dataset was available and no random 
sampling was required. As a result, each box from 10% to 90% 
in Fig. 7 contained a total of 48 values (12 repetitions × 4 MCP 
methods), while the box for 100% had 4 values (only 4 MCP 

 

 

 

Fig. 6 Linear regression analysis between met mast wind speeds 
and (a) ERA-5, (b) MERRA-2 and (c) WRF (ERA-5) reanalysis 
datasets. 

 

 

 

 

Fig. 7 Box plots of AEP relative errors and standard deviations for 
(a) ERA-5, (b) MERRA-2, and (c) WRF (ERA-5) reanalysis datasets 
across different data recovery rates. 
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methods). The standard deviation was derived from 48 values 
of each percentage. 

Over the three box plots of Fig. 7, the mean values of the 
relative errors for the sampling percentages from 20% to 90% 
were close to those at the 100% (reference) case. The median 
values were also close to the mean values at all sampling 
percentages. The minimum and the maximum whisker values 
of each box decreased as the sampling rate increased. At the 
10% sampling percentage, the minimum and the maximum 
whiskers were within ±8.5%, and they converged to ±2.5% at a 
90% sampling percentage. The standard deviations of AEP 
relative errors for the three correlation coefficients were 2.85% 
at most at 10% sampling. Those decreased as the sampling 
percentage increased, finally reaching 0.86% at most at 90% 
sampling. 

Although the reanalysis dataset with a correlation coefficient 
of 0.84 was considered a good choice for accurate AEP 
estimations, the dataset with a moderate correlation coefficient 
of 0.74 still produced comparable AEP results. Furthermore, 
even when the reanalysis dataset with the lowest correlation 
coefficient of 0.62 was used, it did not show a significant decline 
in AEP estimation performance. Though reanalysis datasets 
with strong correlations to met mast measurements are typically 
preferred for MCP execution, such high-quality datasets may 
not always be freely available for a given site. This finding show 
that even when only lower-correlation reanalysis datasets are 
available, they could nevertheless be used to generate long-
term wind speed predictions comparable to those derived from 
higher-correlation datasets. 

 
3.3 Impact of MCP methods selection on AEP estimation 

Figs. 8 and 9 represent box plots of AEP relative errors and 
standard deviations for the four MCP methods. At each 

sampling percentage from 10% to 90%, each box includes a total 
of 36 AEP relative errors, which were from twelve random 
sampling repetitions with three types of reanalysis data. For the 
100%, each box had 3 values from only reanalysis data.  

Fig. 8 depicts the results for two traditional MCP methods: 
(a) Regression and (b) Matrix. For the two methods, the trends 
and the values of the mean, the median, the maximum and the 
minimum whiskers were similar to those of Fig. 7. At the 10% 
sampling level, the standard deviations of the AEP relative 
errors for the Regression and the Matrix were 3.4% and 2.8%, 
respectively. Those gradually decreased as the sampling 
percentage increased, converging to 0.64% and 1.16% at the 
90% sampling level, respectively. 

Fig. 9 displays box plots of AEP relative errors and standard 
deviations for two machine learning–based MCP methods: (a) 
RF and (b) GBR. Consistent with the traditional MCP methods, 
the machine learning–based methods exhibited comparable 
AEP estimation performances, with no significant trend 
differences observed in the mean and the median relative errors 
over all the sampling percentages. The RF exhibited an initial 
standard deviation of about 2.85% at the 10% sampling level, 
and then steadily declined toward 0.51% at the 90% level. For 
the GBR, the standard deviation of the AEP relative errors 
started at 3.2% at the 10% level, which gradually decreased as 
data recovering rate increased and finally reached to 0.69% at 
the 90% level. These findings suggest that both machine 
learning–based and traditional MCP methods demonstrated 
comparable levels of accuracy and variability in AEP estimation 
across all sampling percentages considered in this study. 

 

 

 
Fig. 8 Box plots of AEP relative errors and standard deviations 
for traditional MCP methods: (a) Regression and (b) Matrix 

 

 

 
Fig. 9 Box plot of AEP relative errors and standard deviations for 
machine learning-based MCP methods: (a) RF and (b) GBR 
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3.4 Impact of missing wind measurements on AEP estimation 
 
Fig. 10 displays box plots of AEP relative errors and 

standard deviations across different sampling percentages, 
combining the results from all previous box plots. At each 
sampling percentage from 10% to 90%, each box and whisker 
was created using a total of 144 AEP relative errors, which were 
calculated from twelve random samplings for the combination 
of three reanalysis datasets and four MCP methods. The relative 
error and the standard deviation were all zero at the 100% case, 
which was a reference. 

At lower sampling percentages, particularly at 10%, the 
mean AEP relative error was approximately +0.24%, with a 
standard deviation of 3.14%. The errors ranged from −8.17% to 
+8.31%, showing considerable variability. As the sampling 
percentage increased to 20% and 30%, the mean errors were 
closer to zero and the variability also decreased with standard 
deviations of 1.83% and 1.58%, respectively. At 40%, the mean 
error slightly rose to +0.43% with a standard deviation of 1.33%, 
though variability continued to decline. From 50% to 90%, the 
mean errors stabilized near zero with the standard deviation 
decreasing from 1.21% to 0.81%, respectively. 

These results demonstrated that AEP estimation became 
progressively more stable and reliable with an increase of data 
recovery rate. While larger errors and significant variability are 
observed at lower data sampling levels, particularly at 10%, 
reliable AEP predictions could be obtained with sampling 
percentages exceeding 50%, which were within AEP relative 
errors of  ±3.1% at most. Although a data recovery rate above 
90% is typically required for reliable WRA, field technicians 
often experience recovery rates lower than this threshold. It was 
found that reliable AEP predictions could be obtained with a 
data recovery rate of 50% or higher, when considering the 
corresponding relative errors in AEP. This finding may provide 
practical guidance for wind data analysts working under 
conditions of reduced data recovery. 

 
 
4. Conclusions 
 

This study evaluated the effect of missing wind data points 
on the accuracy of AEP estimates by applying four MCP 
methods- two traditional (Regression and Matrix) and two 
machine learning-based (RF and GBR) models- along with three 
reanalysis datasets- ERA-5, MERRA-2, and WRF (ERA-5)- 
exhibiting different correlation levels to the met mast 

measurements. A yearly percentage sampling approach was 
applied to one-year met mast wind data to simulate data points 
insufficiency, and AEP was estimated for each combination of 
MCP methods and reanalysis datasets. The estimated AEP 
values were then compared with reference AEP to determine 
relative errors. 

The results first show that while the reanalysis dataset with 
the highest correlation coefficient (0.84) was considered to 
provide accurate AEP estimates, the datasets with moderate 
(0.74) and low (0.62) correlations produced similar AEP 
estimations in this study. Second, the performance of traditional 
and machine learning–based MCP methods was comparable in 
terms of accuracy and variability in AEP estimates. Third, AEP 
estimation became more stable and reliable as data recovery 
rates increased. Although larger errors and variability were 
shown at 10% data points sampling, reliable AEP predictions 
were achieved with relative errors within ±3.1% when the data 
recovery rate exceeded 50%. This highlighted that although a 
data recovery rate above 90% is widely recommended for 
accurate AEP estimation in WRA practice, accurate AEP 
predictions remained feasible with data recovery rates of 50% 
or higher when accounting for additional uncertainty. 
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