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Abstract. This study analyzes the impact of missing wind data points on the accuracy of Annual Energy Production (AEP) estimation in wind resource
assessment (WRA). Evaluations were made under different scenarios using various Measure-Correlate-Predict (MCP) methods and reanalysis
datasets. One year of wind measurements was collected from an inland met mast located in the Gashiri area of Jeju Island, South Korea. Three types
of long-term reanalysis datasets- ERA-5, MERRA-2 and WRF (ERA-5)- were obtained, each exhibiting different levels of correlations with the met
mast wind measurements. To simulate missing data points scenarios, a yearly percentage sampling method was applied to the one-year met mast
wind data with sampling rates ranging from 10% to 90%. To ensure statistical reliability, random sampling was performed 12 times for each sampling
rate. The MCP method was applied after pairing each sampled dataset with the reanalysis datasets. Long-term predictions were generated using four
MCP approaches- two machine learning techniques (Random Forest and Gradient Boosting Regression) and two traditional methods (Regression and
Matrix). AEP was calculted from these predictions and compared to the reference AEP derived from the complete dataset. Results show that accurate
AEP estimation remained feasible even when using reanalysis datasets with low correlation to the measured data. Moreover, all four MCP methods
demonstrated similar performance, with machine learning—based approaches producing results comparable to those of traditional methods. While
conventional WRA practice recommends a data recovery rate above 90% for accurate AEP estimation, this study demonstrated reliable AEP estimates
could be achieved with rates as low as 50%.
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1. Introduction step process to ensure accurate characterization of wind

conditions at a candidate project site (Brower, 2012). Typically,
the process begins with site selection and the installation of a
met mast to collect wind measurements and other
meteorological parameters over a monitoring period of at least
one year (Kang et al., 2023; Weekes et al., 2015; X. Zhang et al.,
2017). Following data collection, wind data validation
procedures are conducted to filter low-quality data (Brower,
2012). Once data is validated, the short-term on-site
measurements are statistically correlated with nearby long-term
reference datasets using the Measure—Correlate—Predict (MCP)
method to estimate long-term wind conditions (Ali et al., 2018;
Basse et al, 2021; Carta et al, 2013; Miguel et al, 2019).
Subsequently, wind flow modeling and terrain analysis are
performed to evaluate spatial wind distribution and support
turbine micro-siting (Song et al., 2014). Finally, Annual Energy
Productions (AEPs) are estimated at specific wind turbine
positions, which are used to assess overall project economic
feasibility (Bodini et al., 2020).

Reanalysis datasets, among one of the long-term reference
datasets, are gridded global atmospheric fields generated by
assimilating historical weather observations into numerical
weather prediction (NWP) models (Buontempo et al., 2025).
These datasets provide long-term meteorological data such as

Renewable energy generation has been steadily replacing
conventional thermal power production, leading to significant
reductions in fossil fuel consumption and carbon dioxide
emissions (Cai et al., 2024; Li et al., 2020; Loza et al., 2024). Wind
energy has become one of the most prominent renewable
energy sources due to its substantial potential, minimal
environmental impact, high economic viability, and ability to
contribute to local economic development (Khosravi et al.,
2018). As reported by the Global Wind Energy Council, the total
global installed wind power capacity exceeded 1,136 GW as of
the end of 2024, with approximately 127 GW added that year
(GWEC, 2025). Furthermore, the International Energy Agency
(IEA) projects that annual wind power additions should
quadruple by 2030 compared with 2020 levels to achieve the
Net Zero Emissions goal by 2050 (IEA, 2021).

Accurate wind resource assessment (WRA) plays an
essential role in planning and developing wind energy projects,
as it determines the wind energy potential and expected energy
yield at a specific site (Pelser et al., 2024; Spiru & Simona, 2024).
In other words, a reliable assessment of wind resources is
crucial for estimating energy production, optimizing turbine
placement and minimizing financial risk (Wang et al., 2016;
Zhou et al., 2011). WRA generally follows a structured, multi-
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wind speed, wind direction, temperature and other parameters
across multiple atmospheric height levels (Mavromatis, 2022).
In wind energy applications, reanalysis datasets are a key
component in the effective execution of the MCP method, as
they directly influence the accuracy of long-term wind
predictions (Davidson & Millstein, 2022; Gualtieri, 2022; Zekeik
et al., 2024). In practice, the correlation between met mast data
and reanalysis datasets is often regarded as a primary indicator
of dataset suitability for long-term wind forecasting. Correlation
coefficients below 0.6 are generally considered poor, 0.6 to 0.7
weak, 0.7 to 0.8 moderate, and above 0.8 good (M. H. Zhang,
2015). Therefore, the careful selection of reanalysis datasets is
important for ensuring accurate AEP estimation over a wind
farm’s lifetime (Manwell et al., 2010).

However, missing or low-quality data points in wind
measurement causes wind data loss leading to poor AEP
estimation, which has been a common issue in WRA. It may
occur for various reasons, including sensor malfunctions, data
logger failures, tower shadow effects, power outages,
communication disruptions and so on (Coville et al., 2011;
Gottschall & Doérenkamper, 2021). Although conventional WRA
typically relies on at least one year of wind measurements with
over 90% wind data availability (Brower, 2012), it is typically
required to estimate AEP using incomplete datasets due to
significant time and financial investments.

In this context, machine learning techniques offer
powerful tools for wind speed forecasting, energy production
estimation and management of missing data points. Since these
techniques effectively capture both linear and nonlinear
relationships between variables, they are well-suited for
handling wind data gaps and applying the MCP method (Salah
et al., 2022). Numerous studies have been carried out for the
application of machine learning techniques to the wind energy
research field. Offshore wind farm power outputs were analyzed
using several machine learning algorithms, including multiple
linear regression (MLR), artificial neural networks (ANNSs),
decision trees (DTs) and support vector regression (SVR). The
results indicated that MLR was the most effective algorithm for
MCP execution, followed closely by ANN, whereas DT and SVR
exhibited higher error levels (Mifsud et al., 2020). Also, arandom
forest (RF)-based model was the best choice to extrapolate
near-surface wind speeds up to 200 meters, achieving higher
accuracy, lower bias, and stronger correlation compared to
conventional MCP-corrected ERAS profiles (Rouholahnejad &
Gottschall, 2025). Chen et al., (2022) developed an MCP model
that combines a neural network with the frozen flow hypothesis
to capture large-scale wind velocity fluctuations. The results
exhibited high predictive accuracy, particularly when the
spanwise offset between the target and reference points was
small.

To estimate long-term wind conditions, Zhang et al,
(2014) proposed a hybrid MCP method that utilized data from
multiple reference stations. The result indicated that the optimal
combination of MCP algorithms was dependent on the length of

Table 1
Information on the met mast and the reanalysis data
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the concurrent short-term correlation period. In addition,
Ayuso-Virgili et al., (2024) evaluated four MCP models (linear
regression, variance ratio, ANN, and SVR) to enhance the
estimation performance of wind and wave energy availability at
a semi-exposed coastal site. The findings noted improvement in
prediction accuracy for all four models when swell heading was
performed as a sorting strategy during peak waves.

The Gradient Boosting Regression (GBR) model was also
applied for wind power forecasting, leading to superior
predictive accuracy (Singh et al., 2021). Furthermore, Jonietz
Alvarez et al.,, (2024) introduced K-Nearest Neighbors (KNN),
linear interpolation, and sector average deviation MCP methods
for filling data gaps, resulting in the KNN-based MCP method
performing best overall. These studies have demonstrated the
capabilities of machine learning techniques in enhancing the
MCP performance and supporting wind energy analysis.

The objective of this study is to clarify the effect of missing
wind data points on the accuracy of AEP estimates with various
correlation coefficients between site measurements and
reference data as well as various MCP algorithms. Different
reanalysis datasets with various correlation coefficients
between the datasets and on-site measurements were utilized
for the investigation. Four MCP methods were also employed:
two traditional MCP methods (Regression and Matrix) and two
machine learning approaches (Random Forest and Gradient
Boosting Regression). The one-year measured wind data points
were sampled at rates ranging from 10% to 90%, which were
used for MCP execution. Finally, relative errors of the estimated
AEP values were analyzed to find the influence of data loss and
dataset correlation on AEP prediction accuracy. The novel
contribution of this study lies in evaluating whether AEP
estimation remains reliable under conditions of specific data
point loss, even when correlations with reanalysis datasets are
limited.

2. Site setup and methodology

2.1 Site setup

This study was carried out in the Gashiri region of Jeju
Island, South Korea. Fig. 1 shows the location of Jeju Island and

Met-Mast
07109 C 8 @ Reanalysis data

X
Y
A
\

13.1 lfnl \WRF (ERA-5)

g 1.8km
10.6km ; Met-Mast "

Fig. 1 Location of Jeju Island and measurement site

Data types Location Mean wind speeds Data periods Analyzed heights WS/WD [m]
(UTM-WGS84) [m/s]

Met-Mast E: 289,641 6.81 2012.05.01 -2013.04.30 70/65

N: 3,697,537 1 year
ERA-5 E: 287,718 5.12 1994.05.01 — 2013.04.30 100/100

N: 3,687,098 19 years

MERRA-2 E: 283,461 6.50 1993.05.01 — 2013.04.30 50/55
N: 3,709,151 20 years

WRF (ERA-5) E: 290,375 7.75 1999.05.01 — 2013.04.30 75/75

N: 3,699,108 14 years
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Table 2
Specifications of the wind turbine
Item Category Specification
Model GE 3.2-103
Rated power 3,200 kW
Hub height 70 m
Wind turbine Rotor diameter 103 m
Cut-in wind speed 3m/s
Rated wind speed 14.8 m/s
Cut-out wind speed 25m/s
3500 challenging samples. The GBR algorithm is effective for
modeling complex relationships and is widely acknowledged for
E‘ 3000 its strong predictive performance in regression applications
= (Friedman, 2001).
= 2500 - . . .
o In addition to the machine learning algorithms, two
s 2000 traditional MCP methods (Regression and Matrix) were also
fo applied for comparison. These approaches have been widely
g 1500 used for MCP applications due to their simplicity,
5 1000 interpretability and practicality in long-term wind data
= prediction (Carta et al., 2013; M. H. Zhang, 2015).
& 500
0 AEP was calculated by the following equation:
0 10 20 30

Wind speed [m/s]
Fig. 2 Power curve of wind turbine

the 70-meter-high met mast position in Gashiri. A Thies First
Class anemometer and wind vane were equipped to collect
wind speeds and direction. To apply the MCP methods, long-
term reanalysis datasets of ERA-5, MERRA-2 and EMD-WRF
(ERA-5) were collected. The spatial distances from the met mast
to the respective reanalysis dataset grid points were 10.6 km,
13.1 km, and 1.8 km, respectively. Table 1 presents the
information regarding the met mast and the reanalysis data. The
wind measurement campaign spanned one year (May 1, 2012-
April 30, 2013), obtaining 10-minute average wind data.
Furthermore, the ERA-5, MERRA-2 and WRF (ERA-5)
reanalysis datasets were collected for the periods of 19, 20, and
14 years, respectively. The mean wind speeds were listed at the
analyzed heights. Table 2 shows the specifications of the wind
turbine used for the investigation. The AEP was calculated using
a 3.2 MW GE-103 wind turbine. The power curve of the wind
turbine is presented in Fig. 2. The cut-in, rated and cut-out wind
speeds of the wind turbine are 3 m/s, 14.8 m/s and 25 m/s,
respectively.

2.2 Methodology and workflow

Two machine learning algorithms- Random Forest (RF)
and Gradient Boosting Regression (GBR)- were applied in this
study. RF, introduced by Breiman (2001), constructs multiple
decision trees during training and outputs their average
prediction for regression problems (Breiman, 2001; Ishak, 2016).
It utilizes bootstrap sampling and random feature selection to
reduce overfitting and improve generalization. Since the RF
algorithm is effective at capturing nonlinear relationships and
handling high-dimensional datasets, it is well-suited for complex
prediction tasks (Ho et al., 2023; Sathyaraj & Sankardoss, 2024).
GBR also operates by constructing decision trees sequentially
with each new tree trained to correct the residual errors of its
predecessor (Boldini et al, 2023; Park et al, 2023). By
minimizing a specified loss function through gradient descent,
GBR enables the model to iteratively focus on the most

AEP [kWh] = Y87°°[P(V})] (1)

where P (Vi) is the power output at the i wind speed and Vi is
wind speed at i time stamp.

Then, the relative error of AEPs was calculated using the
AEP reference value derived from one-year estimates based on
100% of the met-mast data points. The AEP relative error, €acp,
was expressed by the following equation:

AEP,of — AEP
Eagp [%] — ref 5 c:llculated X 100% (2)
re

where, AEP. is the reference AEP and AEPcacuated is the AEP
calculated from each MCP result.

Fig. 3 shows the overall workflow of the study. Wind data
were collected from the met mast and three types of long-term
hourly reanalysis datasets- ERA-5, MERRA-2 and WRF (ERA-
5). A data quality check was then performed for the met mast
data, resulting in a data recovery rate of 99%. The original 10-
minute interval wind data from the met mast were aggregated
to hourly averages to align with the temporal resolution of the
reanalysis data. Subsequently, to generate missing data point
scenarios, the wind data points from the met mast were sampled
using a percentage data sampling method over a measurement
year. Following this approach, the one-year wind data points
were randomly sampled at 10% increments ranging from 10%
to 90%.

To verify that every sampling dataset preserves temporal
wind variation, seasonal and diurnal wind speed variations of
each sampled dataset were compared with the full one-year
measurement dataset. Fig. 4 shows an example of diurnal wind
speed variation using the full and 50% sampled datasets. Fig. 5
illustrates an example of seasonal wind speed variation using
the full and 50% sampled datasets. As shown in Figs. 4 and 5,
the sampled datasets retained the patterns of the full dataset,
confirming that temporal variation was preserved. The random
sampling process was repeated twelve times for each
percentage level to ensure consistency and reduce sampling
bias. Then, all sampling datasets were paired with the three
types of reanalysis data to apply the MCP method.
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Fig. 3 Workflow for this study
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Fig. 4 Diurnal wind speed variation for the full and sampled
datasets

Each paired dataset was divided into a training set (80%)
and a testing set (20%). The RF and GBR models were trained
on the training dataset using optimized hyperparameters (RF:
n_estimators=200, max_depth= none, random_state=42; GBR:
n_estimators=200, learning_rate=0.1, max_depth=3,
random_state=42), and their performance was subsequently
evaluated on the testing dataset.

The resulting trained models were incorporated into the
MCP framework. The traditional Regression and Matrix
methods were also implemented for comparison. All the trained

—C— One-year measurements == 50% sampled data

-
o

=]

E-N

Mean wind speed [m/s]
N [=1]

o

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month

Fig. 5 Seasonal wind speed variation for the full and sampled

models and the traditional models were then applied to the
three types of long-term reanalysis datasets, resulting in twelve
types of MCP estimates. These were generated by combining
four MCP methods with three different pairings of reanalysis
and met mast datasets.

From these predicted MCP estimates, only the data points
corresponding to the met mast measurement period were
extracted for AEP calculations. For each one-year MCP
estimates extracted, the AEP was calculated 108 times caused
by repeating a random data selection process twelve times at

ISSN: 2252-4940/© 2025. The Author(s). Published by CBIORE
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each percentage interval from 10% to 90%. Finally, the AEP
estimates were compared with the reference AEP value to
derive the relative errors, from which conclusions were drawn.

3. Results and discussion

3.1 Linear regression analysis between met mast measurements and
reanalysis data

Fig. 6 presents the results of the linear regression analysis
between the wind speeds measured on the met mast and those
obtained from each reanalysis dataset: (a) ERA-5, (b) MERRA-2
and (c) WRF (ERA-5). Reanalysis datasets with different levels
of correlation to the met mast measurements were selected to
find out the effect of correlation coefficients on AEP estimation.
Among the three reanalysis datasets, WRF (ERA-5) exhibited
the highest correlation, with a regression line slope of 0.93 and
a correlation coefficient (R) of 0.84. MERRA-2 showed a
moderate correlation with a slope of 0.60 and R=0.74, while

=0 y=0.47x+2.04
8 450 R2:0.39
E R: 0/62 .
w 30
3
225 .
o - .
o 20
g
L£1s
2
n 10
1
g5
o 5 10 15 20 25 30 35
Met-Mast wind speeds [m/s]
a) ERA-5
WAy - 0.60x +2.54
E 351 Ru:0.54
" R: 0,74
T 30
o
225
n .
= 20 =
£
215
~N ..
i 10 :
w 5
m A
20

10 15 20 25 30 35
Met-Mast wind speeds [m/s]
b) MERRA-2

—_ y =0,93x + 1,67 . .
w35 R%: 0.71
R: 0.84

=

5 10 15 20 25 30 35
Met-Mast wind speeds [m/s]
c) WRF

Fig. 6 Linear regression analysis between met mast wind speeds
and (a) ERA-5, (b) MERRA-2 and (c) WRF (ERA-5) reanalysis
datasets.
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ERA-5 demonstrated the lowest correlation with a slope of 0.47
and R=0.62.

3.2 Impact of reanalysis data selection on AEP estimation

Fig. 7 shows box plots of the relative errors and standard
deviations in AEP estimations for different correlation
coefficients of the three reanalysis datasets. For the four MCP
methods, twelve AEP relative errors were calculated by
repeating the random sampling process twelve times for each
sampling percentage from 10% to 90%. For the 100% case, only
a single AEP relative error was calculated by each MCP method,
since the complete dataset was available and no random
sampling was required. As a result, each box from 10% to 90%
in Fig. 7 contained a total of 48 values (12 repetitions x 4 MCP
methods), while the box for 100% had 4 values (only 4 MCP

10.0
7.5
5.0

4 Mean —e— Standard Deviation © Outliers

R=10.62

2.5
0.0
-2.5
-5.0

AEP relative error [%]

-7.5
-10.0

10 20 30 40 50 60 70 80 90 100
Sampling percentage [%]

a) ERA-5

10.0
4 Mean —8— Standard Deviation © OQutliers
7.5
R=0.74
5.0

[+

2.5 g

0.0

-2.5
-5.0 ¢
-7.5

AEP relative error [%]

=-10.0

10 20 30 40 50 60 70 80 90 100
Sampling percentage [%]

b) MERRA-2

10.0

4 Mean —8— Standard Deviation © Outliers
7.5

R=0.84
5.0
2.5
0.0

-2.5

-5.0

AEP relative error [%]

-7.5

-10.0

10 20 30 40 50 60 70 80 90 100
Sampling percentage [%]

c) WRF (ERA-5)
Fig. 7 Box plots of AEP relative errors and standard deviations for

(a) ERA-5, (b) MERRA-2, and (c) WRF (ERA-5) reanalysis datasets
across different data recovery rates.
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methods). The standard deviation was derived from 48 values
of each percentage.

Over the three box plots of Fig. 7, the mean values of the
relative errors for the sampling percentages from 20% to 90%
were close to those at the 100% (reference) case. The median
values were also close to the mean values at all sampling
percentages. The minimum and the maximum whisker values
of each box decreased as the sampling rate increased. At the
10% sampling percentage, the minimum and the maximum
whiskers were within £8.5%, and they converged to £2.5% at a
90% sampling percentage. The standard deviations of AEP
relative errors for the three correlation coefficients were 2.85%
at most at 10% sampling. Those decreased as the sampling
percentage increased, finally reaching 0.86% at most at 90%
sampling.

Although the reanalysis dataset with a correlation coefficient
of 0.84 was considered a good choice for accurate AEP
estimations, the dataset with a moderate correlation coefficient
of 0.74 still produced comparable AEP results. Furthermore,
even when the reanalysis dataset with the lowest correlation
coefficient of 0.62 was used, it did not show a significant decline
in AEP estimation performance. Though reanalysis datasets
with strong correlations to met mast measurements are typically
preferred for MCP execution, such high-quality datasets may
not always be freely available for a given site. This finding show
that even when only lower-correlation reanalysis datasets are
available, they could nevertheless be used to generate long-
term wind speed predictions comparable to those derived from
higher-correlation datasets.

3.3 Impact of MCP methods selection on AEP estimation

Figs. 8 and 9 represent box plots of AEP relative errors and
standard deviations for the four MCP methods. At each

10.0

4 Mean —®— Standard Deviation C Qutliers
7.5

5.0
25
0.0
-2.5

-5.0

AEP relative error [%]

=7.5

=-10.0

10 20 30 40 50 60 70 80 90 100
Sampling percentage [%]
a) Regression
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2.5
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=7.5

-10.0

10 20 30 40 50 60 70 80 90 100
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b) Matrix

Fig. 8 Box plots of AEP relative errors and standard deviations
for traditional MCP methods: (a) Regression and (b) Matrix
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b) Gradient Boosting Regressor

Fig. 9 Box plot of AEP relative errors and standard deviations for
machine learning-based MCP methods: (a) RF and (b) GBR

sampling percentage from 10% to 90%, each box includes a total
of 36 AEP relative errors, which were from twelve random
sampling repetitions with three types of reanalysis data. For the
100%, each box had 3 values from only reanalysis data.

Fig. 8 depicts the results for two traditional MCP methods:
(a) Regression and (b) Matrix. For the two methods, the trends
and the values of the mean, the median, the maximum and the
minimum whiskers were similar to those of Fig. 7. At the 10%
sampling level, the standard deviations of the AEP relative
errors for the Regression and the Matrix were 3.4% and 2.8%,
respectively. Those gradually decreased as the sampling
percentage increased, converging to 0.64% and 1.16% at the
90% sampling level, respectively.

Fig. 9 displays box plots of AEP relative errors and standard
deviations for two machine learning—based MCP methods: (a)
RF and (b) GBR. Consistent with the traditional MCP methods,
the machine learning—based methods exhibited comparable
AEP estimation performances, with no significant trend
differences observed in the mean and the median relative errors
over all the sampling percentages. The RF exhibited an initial
standard deviation of about 2.85% at the 10% sampling level,
and then steadily declined toward 0.51% at the 90% level. For
the GBR, the standard deviation of the AEP relative errors
started at 3.2% at the 10% level, which gradually decreased as
data recovering rate increased and finally reached to 0.69% at
the 90% level. These findings suggest that both machine
learning-based and traditional MCP methods demonstrated
comparable levels of accuracy and variability in AEP estimation
across all sampling percentages considered in this study.
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Fig. 10 Box plot of AEP relative errors and standard deviations for

different sampling percentages

3.4 Impact of missing wind measurements on AEP estimation

Fig. 10 displays box plots of AEP relative errors and
standard deviations across different sampling percentages,
combining the results from all previous box plots. At each
sampling percentage from 10% to 90%, each box and whisker
was created using a total of 144 AEP relative errors, which were
calculated from twelve random samplings for the combination
of three reanalysis datasets and four MCP methods. The relative
error and the standard deviation were all zero at the 100% case,
which was a reference.

At lower sampling percentages, particularly at 10%, the
mean AEP relative error was approximately +0.24%, with a
standard deviation of 3.14%. The errors ranged from —8.17% to
+8.31%, showing considerable variability. As the sampling
percentage increased to 20% and 30%, the mean errors were
closer to zero and the variability also decreased with standard
deviations of 1.83% and 1.58%, respectively. At 40%, the mean
error slightly rose to +0.43% with a standard deviation of 1.33%,
though variability continued to decline. From 50% to 90%, the
mean errors stabilized near zero with the standard deviation
decreasing from 1.21% to 0.81%, respectively.

These results demonstrated that AEP estimation became
progressively more stable and reliable with an increase of data
recovery rate. While larger errors and significant variability are
observed at lower data sampling levels, particularly at 10%,
reliable AEP predictions could be obtained with sampling
percentages exceeding 50%, which were within AEP relative
errors of +3.1% at most. Although a data recovery rate above
90% is typically required for reliable WRA, field technicians
often experience recovery rates lower than this threshold. It was
found that reliable AEP predictions could be obtained with a
data recovery rate of 50% or higher, when considering the
corresponding relative errors in AEP. This finding may provide
practical guidance for wind data analysts working under
conditions of reduced data recovery.

4. Conclusions

This study evaluated the effect of missing wind data points
on the accuracy of AEP estimates by applying four MCP
methods- two traditional (Regression and Matrix) and two
machine learning-based (RF and GBR) models- along with three
reanalysis datasets- ERA-5, MERRA-2, and WRF (ERA-5)-
exhibiting different correlation levels to the met mast
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measurements. A yearly percentage sampling approach was
applied to one-year met mast wind data to simulate data points
insufficiency, and AEP was estimated for each combination of
MCP methods and reanalysis datasets. The estimated AEP
values were then compared with reference AEP to determine
relative errors.

The results first show that while the reanalysis dataset with
the highest correlation coefficient (0.84) was considered to
provide accurate AEP estimates, the datasets with moderate
(0.74) and low (0.62) correlations produced similar AEP
estimations in this study. Second, the performance of traditional
and machine learning-based MCP methods was comparable in
terms of accuracy and variability in AEP estimates. Third, AEP
estimation became more stable and reliable as data recovery
rates increased. Although larger errors and variability were
shown at 10% data points sampling, reliable AEP predictions
were achieved with relative errors within +3.1% when the data
recovery rate exceeded 50%. This highlighted that although a
data recovery rate above 90% is widely recommended for
accurate AEP estimation in WRA practice, accurate AEP
predictions remained feasible with data recovery rates of 50%
or higher when accounting for additional uncertainty.
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