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Abstract. Building energy consumption accounts for a large proportion of the overall energy use in society, and energy-saving optimization
scheduling is currently a research hotspot. However, traditional scheduling methods often struggle to achieve an effective balance between multiple
objectives such as energy conservation, economy, and indoor comfort. To construct an energy-saving scheduling model that can consider multiple
objectives, this paper puts forward a building energy scheduling model based on a Multi-Objective Grey Wolf Optimizer, taking total energy
consumption, operating cost, and indoor comfort deviation as the optimization objectives. The model introduces a set of multi-energy collaborative
constraints involving wind energy, photovoltaic systems, energy storage, and combined cooling, heating, and power systems. To improve algorithm
performance, we innovatively integrated particle swarm optimization and simulated annealing to enhance the model's global search and local
optimization capabilities, and introduced residual long short-term memory networks to improve load forecasting accuracy. Experimental results show
that compared to similar models, the proposed algorithm improves the energy-saving rate by 13.3% in a typical household scenario. Its response time
is 12 s, memory usage is 89 MB, and convergence speed is 42.86% faster than the slowest comparable model. The Multi-Objective Grey Wolf
Optimizer effectively coordinates the multi-objective needs of building energy systems. It significantly improves energy savings and economic
performance while ensuring indoor comfort. This algorithm provides strong support for intelligent building energy scheduling and offers practical
value for promoting the carbon neutrality goals in the building sector.
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1. Introduction scheduling (Zhao et al.,2022). However, current MOGWO

applications in building scenarios still face significant
limitations. These include a lack of solution diversity, poor
adaptability to the dynamic and multi-objective nature of
building loads, weak handling of high-dimensional constraints,
a tendency to generate infeasible solutions, and difficulty
balancing convergence speed with solution accuracy. These
issues make it hard to meet the needs of real-time scheduling
(Zhao et al.,2023; Phong et al.,2022). In order to overcome these
challenges, this study innovatively proposed an improved
MOGWO for building energy-saving scheduling. By introducing
PSO and SA to help MOGWO perform global search and escape
from local optimality, and integrating the Residual Network-
Long Short-Term Memory (ResNet-LSTM) network optimized
by Cosine Annealing (CA) to make up for the defects of
spatiotemporal feature extraction, finally constructed a building
energy scheduling model that takes into account the lowest
energy consumption, optimal cost and comfort guarantee. It is
expected that it can provide theoretical and technical support
for the efficient operation of complex building energy systems.

The innovation of this study lies in integrating PSO and SA into
MOGWO, constructing a hybrid optimization mechanism, and
proposing a ResNet LSTM optimized based on CA mechanism,

With the global energy crisis and the advancement of carbon
neutrality goals, optimizing energy use in buildings has become
a core issue for sustainable development. Building energy-
efficient scheduling dynamically adjusts air conditioning,
lighting, energy storage, and renewable energy systems to
reduce energy consumption while maintaining indoor comfort
(Zhu et al,2022). It is a key technological path toward low-
carbon buildings. As building energy systems become
increasingly complex, traditional rule-based scheduling or
single-objective optimization methods can no longer meet the
multi-dimensional demands of energy use, cost, and comfort.
Efficient multi-objective optimization methods are urgently
needed (Mou et al.,2022). At present, many related studies apply
intelligent optimization algorithms to solve scheduling
problems. For example, Genetic Algorithms and Particle Swarm
Optimization (PSO) are widely used in load distribution but tend
to fall into local optima. Simulated Annealing (SA) has a strong
global search ability but suffers from slow convergence
(Shekhar et al.,2023). The Multi-Objective Grey Wolf Optimizer
(MOGWO), a newly developed intelligent algorithm, shows
strong adaptability in handling multi-constraint and nonlinear
problems and has been preliminarily applied in microgrid
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which enhances the ability to extract and predict the
spatiotemporal characteristics of building energy consumption.
The main contribution of this study is the organic integration of
improved optimization algorithms with load forecasting models,
achieving full process optimization from data input to
scheduling strategy generation. By introducing multi energy
device constraints and dynamic load characteristics, the
feasibility and practicality of the model in actual building
environments have been improved.

2. Related works

MOGWO was developed based on the Grey Wolf Optimizer
(GWO) and has been widely applied in various fields. Many
researchers have conducted relevant studies on this algorithm.
For example, Torabi A et al. (2024) proposed a method to link
MOGWO with an integrated modeling framework to address
the complex interactions between surface water and
groundwater in dynamic studies. They identified optimal
allocation parameters by minimizing groundwater extraction at
the end of the operation period. Chen L et al., (2024) inspired by
the effectiveness of mathematical models in describing
biological phenomena, introduced MOGWO to determine the
optimal concentration of cancer cells during treatment. They
formulated a drug delivery strategy by simultaneously
minimizing cancer cell concentration and medication dosage.
Bai Y et al. (2025) focused on the challenge of a single pursuer
being unable to intercept an evader when the pursuer had
limited maneuverability. They proposed an improved MOGWO
to find the optimal game point. By describing the relative motion
equations between the pursuer and the evader, they designed a
constrained multi-objective function and developed an optimal
strategy for the differential game. Goyal K K et al. (2022) aimed
to overcome the lack of empirical models for every response in
alloy processing. They proposed using an enhanced MOGWO
to obtain a Pareto front across conflicting process responses. A
Levy flight algorithm was introduced to improve the efficiency
of MOGWO. Kumar A et al. (2024) addressed the difficulty in
identifying optimal process parameters due to changes in
processing conditions. They used an artificial neural network-
based MOGWO to search for optimal parameter settings. By
minimizing both pulsed and non-pulsed parameter corner
errors, they achieved improved machining outcomes.

Building energy scheduling plays a critical role under the
current energy crisis and increasingly strict environmental
regulations. Many researchers have explored this topic in depth.
Tang H and Wang S (2022) addressed the limited flexibility of
aggregated buildings in electricity market bidding. They
proposed a multi-level optimized scheduling strategy and
developed a model-based quantification method aimed at
increasing flexibility profits and minimizing the complexity of
optimization. Li Z et al. (2022) focused on the suboptimal
performance of distributed energy management in office
buildings. They proposed an Active Distribution Network (ADN)
energy management method for aggregated office buildings. By
incorporating detailed building thermodynamics and occupants'
movement patterns, they built an ADN optimization model.
Zheng W et al. (2023) tackled the problem of traditional
Integrated Energy Systems (IES) being unable to function due
to the uncertain nature of hydrogen injection and gas transport
properties. They proposed an HCNG-permeated IES scheduling
method. A mass flow model considering variable blending ratios
and initial flow directions was established to describe the
hydrogen injection process. Sun Y (2025) aimed to improve
voltage stability in energy scheduling and proposed a demand-
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side scheduling method that prioritizes energy-efficient
buildings. By analyzing the load stacking behavior of energy-
efficient buildings, an energy scheduling priority index was
created, and the scheduling function was solved accordingly.
Zhang B et al. (2024) highlighted the importance of integrated
energy systems in achieving carbon peaking and neutrality
goals. To manage electricity-heat-gas-cooling systems, they
devised a two-stage robust optimization approach. A combined
cooling, heating, and power model was built based on power-
to-gas and carbon capture technologies. The robust two-stage
model for IES scheduling enabled effective absorption of
renewable energy and reduced the total system cost. Nath A D
et al. (2025) investigated the performance of phase change
material integrated cross laminated wood wall systems in 17
climate zones in the United States to address the lack of
consensus on the optimal placement of phase change materials
within wall components. They used EnergyPlus simulation to
analyze five wall configurations. The results showed that the
phase change material integrated cross laminated wood wall
system achieved a cooling energy saving of up to 72.48%.
Devianto D et al. (2025) investigated the management of carbon
dioxide emissions and used Bayesian vector autoregression
models to address the complexity of multiple interactions. The
results indicate that the BVAR model demonstrates a
considerable level of predictive accuracy. Kamaruddin M et al.
(2025) addressed the issue of traditional methods being unable
to capture the complexity of design and climate conditions by
using parameterized energy modeling methods, and analyzed
the impact of design parameters on building energy intensity.
The simulation results indicate that building orientations of
140°, 90°, 135°, and 270° tend to generate higher energy
intensity values.

In summary, existing research has made progress in the
field of building energy scheduling. However, many
optimization strategies still face difficulties in balancing multiple
objectives, and the algorithms often lack generalizability and
robustness. To tackle these problems, this paper proposes a
building energy-efficient scheduling model based on MOGWO.
By introducing PSO and CA to improve global search capability,
and integrating a cosine-annealed ResNet-LSTM to extract
spatiotemporal features from energy data, the proposed model
aims to meet the multi-objective optimization needs of building
energy systems. Compared with existing research, the
outstanding advantage of this study lies in proposing a building
energy-saving scheduling model that integrates multi energy
collaborative constraints and improved multi-objective
optimization algorithms, effectively balancing multiple
conflicting objectives such as energy consumption, cost, and
comfort, filling the research gap in multi-objective collaboration
and real-time scheduling capabilities of existing methods in
complex building energy systems.

3. Building energy-efficient scheduling model based on
MOGWO

3.1 Design of MOGWO algorithm enhanced by PSO and SA

Building energy-efficient scheduling optimization dynamically
manages energy systems, device operations, and load
distribution. It meets constraints such as comfort and device
safety while achieving multiple goals, including energy
reduction, cost savings, and carbon emission control (Huang et
al.,2025). MOGWO is an ideal tool for this task due to its ability
to handle multiple objectives, perform global search, and
provide efficient solutions (Liu et al.,2024). MOGWO inherits the
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Fig 1 Schematic diagram of MOGWO's operation process (Icon source from: https://www.iconfont.cn/)

core parameters of GWO to balance global exploration and local
exploitation (Heidari et al.,2023). The operational process of
MOGWO in building energy scheduling optimization is shown
in Figure 1.

As shown in Figure 1, the algorithm first collects basic data
such as building energy device -characteristics and
environmental conditions. It then generates a grey wolf
population representing potential scheduling schemes and
initializes an external archive to store the Pareto optimal
solutions found during iteration. Based on multi-objective
functions such as energy efficiency and economy, and
considering energy supply and demand as well as device
operation constraints, the algorithm evaluates each scheme.
The leader wolf guides the update of scheduling solutions,
iterating until a preset threshold is reached and outputting the
optimal energy-efficient scheduling plan for the building (Du et
al.,2025). The convergence factor @ of MOGWO is defined in
Equation (1).

a=2—-tXx

(1)

Tmax

In Equation (1), t is the current iteration number. The coefficient
vector is calculated as shown in Equation (2).

A=2a-1m—a

{esah @
In Equation (2), A determines the direction and step size of
position updates, and C simulates the random movement of
prey. r; and r, are random vectors. In MOGWO, the position of
each grey wolf is updated based on the best three wolves in the
population by simulating the hunting behavior of wolves.
MOGWO tackled multi-objective problems by incorporating
Pareto dominance and maintaining an external archive to
identify and retain non-dominated solutions (Navin Dhinnesh et
al.,2024). For two solutions x and y, if x dominates y, denoted
as x <y, the dominance condition must satisfy Equation (3)
(Singh et al.,2023).

{Vi € {1,2,-,m}, fi(x) < fi(y)

3j € (1,2, m}, £,(0) < fi(y) )

Y
san — @\ — éa'\ ERENEP
Initialize Calcullate the objective  PSO speed N Whether the Outout th
arameters function value of the  position update terminati Output the
p initial solution erminaton optimal solution
conditions are met?
5==l D 4
e 0 Y
s - qQ :
Generate Calculate the objective
neighborhood function value of the .Cal(mlate the energy Accept neighboring solutions
solutions neighborhood solution, d1ff§frelrl1ce agigete.rmme and update the current and
ifthe peighboring optimal solutions
l N solution is better/YV
Lo
Calculz.it.e the Generate Random number < Lower the
probab'lh'ty of random receiving probability? temperature
receiving numbers

Fig 2 Structure diagram of PSO-SA (Icon source from: https://www.iconfont.cn/)

ISSN: 2252-4940/© 2026. The Author(s). Published by CBIORE



S.Dengand L. Lv

. f
Enter building
parameters

Initialization

Int. J. Renew. Energy Dev 2026, 15(2), 230-241

233
t<T_max l, \h('

Choose the
leading wolf o,p,0

D S

4_

Output Paret
. utpu areto Evaluate new solutions Update S
optimal scheduling . . PSO-SA optimization
scheme and update archives  scheduling plan

Fig 3 PSO-SA-MOGWO operation flow chart (Icon source from: https://www.iconfont.cn/)

In Equation (3), m is the number of objective functions, and
fi(x) is the fitness value of solution x in the i -th objective. A
non-dominated solution is one that is not dominated by any
other solution (Hosseini et al.,2024). When the external archive
contains more solutions than its defined threshold, the
algorithm filters out redundant solutions using grid density to
maintain diversity. The grid density is calculated by Equation
(4) (Li et al.,2025).

DenSit}’(x) = ZyEArchive,yzx exl’(_l ~d(x, y)) (4)

In Equation (4), d(x,y) is the Euclidean distance, and 1 is a
tuning parameter. Although MOGWO demonstrates strong
capabilities in multi-objective optimization for building energy
scheduling, it has limitations such as insufficient solution
diversity and difficulty balancing convergence speed and
accuracy. SA algorithm, with its global optimization ability
based on a probability acceptance criterion, can effectively
address these issues (Poursaeid et al.,2025). When combined,
MOGWO retains its multi-objective coordination capability,
while SA enhances global search and helps avoid local optima.
However, SA often suffers from slow convergence and
sensitivity to parameter settings (Kosanoglu et al,2024).
Therefore, this study uses PSO to enhance SA. PSO provides
global guidance for SA's neighborhood search by updating
particle velocity and position, helping overcome the inefficiency
of SA's random walk. The structure of PSO-SA is shown in
Figure 2.

As shown in Figure 2, the algorithm first initializes
parameters, including core algorithm settings and variables to
be optimized in building energy scheduling. According to
optimization rules, PSO adjusts device operation parameters
through the utilization of personal and global best locations
(Demir et al.,2023). The algorithm checks whether the
termination condition is met. If not, SA performs local fine-
tuning to generate neighborhood solutions. If the new solution
has lower energy consumption, it is directly accepted. If not, the
SA acceptance mechanism is used. This mechanism permits the
acceptance of inferior solutions at higher temperatures while
enforcing stricter selection criteria at lower temperatures,
thereby facilitating the escape from local optima. The algorithm
continuously updates the global best solution and finally outputs
the optimal scheduling plan. SA simulates the physical
annealing process, where high temperatures enable random
search and low temperatures lead to convergence (Sylejmani et
al.,2023). By introducing the Metropolis criterion, the global
search capability is enhanced. The Metropolis criterion allows
acceptance of solutions with worse objective values under a
certain probability, as shown in Equation (5).

(5)

exp (— ATf) Af=0
In Equation (5), P is the chance of accepting a newly generated
solution, A f is the difference in objective value. To replicate
the temperature decline characteristic of physical annealing, SA
adjusts the temperature using a cooling schedule, as defined in
Equation (6).

F Af<0

Teyr =aXTy (6)

In Equation (6), Ty, is the temperature at the k -th iteration, and
a is the cooling rate. The core of the PSO enhancement lies in
the velocity update, calculated by Equation (7).

Vigt+1)=w- v4@) + ey [Pi,d @) — xiq (t)] +
CaT, [Pg,d ) —xiq (t)] (7)

In Equation (7), v; 4(t) is the velocity of particle i in the ¢t -th
generation and d -th dimension, x; 4(t) is the position. p; 4(t) is
the historical best position of particle i, and pg q(t) is the global
best position. w is the inertia weight. ¢; and ¢, are acceleration
constants. The particle position update is defined in Equation

(8).
Xigt+1) =x40) +vqt+1) (8)

Based on the above, the complete flowchart of PSO-SA-
MOGWO is shown in Figure 3.

As shown in Figure 3, the algorithm first inputs building
parameters, including basic information, energy consumption
targets, and comfort requirements. It then initializes algorithm
parameters and controls the number of iterations by checking
whether the maximum iteration count is reached. MOGWO
performs multi-objective optimization guided by the leader wolf
to update positions. PSO and SA carry out global exploration
and local refinement respectively. The scheduling method is
then updated, and the new solution is evaluated using objective
functions. If it is better, the archive is updated and the algorithm
proceeds to the next iteration. This process gradually
approaches the optimal solution. Once the maximum number of
iterations is completed, the algorithm outputs the Pareto
optimal scheduling scheme. In the modeling process of this
study, several key assumptions were set based on typical
scenarios: (1) to control algorithm complexity for
implementation and comparison, the research assumes that the
core parameters of PSO, SA, and MOGWO remain stable or
change according to preset rules during the optimization
process. (2) To simplify the model construction and facilitate
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Fig 4 ResNet-LSTM structure diagram (Icon source from: https://www.iconfont.cn/)

quick solving, the model assumes that the efficiency of the
energy conversion equipment is constant and ignores its start
stop loss and ramp up constraints. (3) Assuming that the input
building load, meteorological, and energy price data is complete
and accurate.

3.2 The optimization model combining CA-ResNet-LSTM and
improved MOGWO

Although the PSO-SA-MOGWO hybrid algorithm finds optimal
scheduling schemes under complex constraints, it increases
computational cost and algorithmic complexity, and it requires
high-quality input data. To address these challenges, this study
introduces ResNet-LSTM to enhance the model by extracting
spatiotemporal features from energy consumption data,
providing accurate prediction and intelligent decision support
for energy-efficient scheduling (Lee et al.,2024). The workflow
of ResNet-LSTM is shown in Figure 4.

In Figure 4, ResNet-LSTM first preprocesses the input
data. It takes energy consumption monitoring data from
different building zones at different times and applies
normalization (Banerjee et al.,2024). Then it assigns adaptive
weights to the data, emphasizing important information and
weakening secondary information. After that, feature extraction
is performed. The residual and LSTM modules improve the
model's capability to extract features from data and capture
energy consumption patterns across different time intervals.
ResNet addresses the vanishing gradient issue in deep networks
by incorporating residual blocks. Its core equation is shown in
Equation (9) (Yu et al.,2024).

y=FC, W} +x (9)

In Equation (9), x and y represent the input and output features,
and F (x, {W,;}) is the residual function. The forget gate of LSTM
is defined in Equation (10) (Usman et al.,2023).

fe = O'(Wf [he—1, %] + bf) (10)

In Equation (10), ¢ is the Sigmoid function, which compresses
values into the [0,1] interval. Wy is the weight matrix of the
forget gate. [h;_q,x;| represents the combination of the
previous hidden state and the current input. by is the bias term
of the forget gate. The input gate controls which information
from the current input x; is added to the cell state. The equation
is shown in Equation (11).

{ ir = o(W; - [heq, x] + by) (11)

C~t = tanh(WC . [ht_p xt] + bc)

In Equation (11), W; and W, are the weight matrices of the input
gate and the candidate cell state. b; and b, are their
corresponding biases. tanh is the hyperbolic tangent activation
function with a range of (—1,1). The cell state is updated
according to Equation (12).

CtzftGCt—1+itO€t (12)

In Equation (12), © indicates element-wise multiplication. The
output gate determines which information in the cell state C; is
used to generate the current hidden state h,. The equation is
shown in Equation (13).

{Ot =o(W, - [he_1,x¢] + b,)

ht = 0 tanh(Ct) (13)

In Equation (13), W, is the weight matrix of the output gate, and
b, is the bias term. Although ResNet-LSTM effectively handles
spatiotemporal data in building energy systems, it suffers from
low training efficiency, local optima, and unstable gradients
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(Huang et al.,2024). To overcome these problems, this study
applies CA to optimize the model. The CA-ResNet-LSTM
workflow is shown in Figure 5.

As shown in Figure 5, after preprocessing, the algorithm
extracts spatiotemporal features from the data. After each
iteration, it calculates a new learning rate using the cosine
function to coordinate the optimization of ResNet convolution
layers and LSTM gate parameters. It then performs periodic
restarts to help the model escape local optima. In the early
stage, cosine annealing helps LSTM quickly capture energy
consumption patterns across day and night. In the later stage, it
supports ResNet in adjusting spatial weights across different
zones. The final output provides reliable energy predictions for
scheduling. The core idea of CA is to simulate the periodic
decay of the cosine function to dynamically adjust the learning
rate (Zhou et al.,2023). This method addresses the drawbacks of
traditional learning rate decay, such as slow convergence and
local optima. The key equation is shown in Equation (14).

=1 % (nminmax (1 + cos (% ()) ())) (14)

min

In Equation (14), n; is the learning rate at step t T,,;ren: 1S the
current training step, and Ty, is the total number of steps in
one cycle. To further enhance performance, a restart
mechanism is often introduced. After completing one cycle T,
the learning rate is reset to 1,4, and a new decay cycle begins.
The restart rule is shown in Equation (15).

ne = n%(nminmax (1 + cos (% : n))) _ (15)
min

In Equation (15), Ty is the iteration number of the k -th restart.

The restart mechanism facilitates the algorithm's ability to

escape from local optima. The overall flowchart of the building

energy-efficient scheduling model based on improved MOGWO

and CA-ResNet-LSTM is shown in Figure 6.

As shown in Figure 6, the proposed model, named PSO-
SA-IMOGWO, combines CA-ResNet-LSTM and PSO-SA-
MOGWO for building energy-efficient scheduling. Firstly, input
historical energy consumption, meteorological conditions, and
time characteristics, and use the CA ResNet LSTM model for
future load forecasting of buildings. The ResNet module is
responsible for extracting spatial features of energy
consumption data, LSTM is responsible for capturing temporal
dependencies, and the CA mechanism is responsible for
dynamically adjusting the learning rate to accelerate
convergence and avoid local optima. Subsequently, the PSO-
SA-MOGWO multi-objective optimization scheduling model
takes total energy consumption, operating costs, and comfort
deviation as objective functions, and introduces multi energy
device constraints. In each iteration, MOGWO performs the
dominant search, PSO updates the scheduling scheme based on
individual and global optima, SA accepts neighboring solutions
using Metropolis criteria to enhance local escape, and maintains
solution set diversity using non dominated sorting and grid
density. Finally, based on the prediction results of CA ResNet
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Fig 6 The operation process of the proposed building energy-saving optimization scheduling model (Icon source from: https://www.iconfont.cn/)
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LSTM, dynamically adjust the scheduling strategies of
renewable energy and energy storage systems, and ultimately
output the Pareto optimal solution.

The experimental dataset includes the Honda Research
Institute's European Intelligent Building Energy Dataset and the
Pecan Street Dataset. Among them, the Honda Research
Institute's European Intelligent Building Energy Dataset was
collected from 2018 to 2020, covering data from 72 electricity
meters, 9 heat meters, and meteorological stations, including
operation records of multi energy equipment such as
photovoltaics, gas-fired cogeneration, and central cooling
systems. The Pecan Street dataset contains electricity
consumption, solar power generation, outdoor temperature,
and time of use electricity price data for American households
from 2017 to 2021. The data is automatically collected through
smart meters and sensors, and after cleaning, normalization,
and missing value interpolation, it is constructed into
standardized time-series samples. Divide the dataset into
training set, testing set, and validation set in a ratio of 7:2:1.

4. Result
4.1 Validation of the PSO-SA-MOGWO algorithm

To verify the superiority of the PSO-SA-MOGWO algorithm for
building energy-efficient scheduling, this study compared it with
three other algorithms: Sparrow Search Algorithm—Genetic
Algorithm (SSA-GA), Improved Satin Bowerbird Optimizer—
Radial Basis Function (ISBO-RBF), and Non-dominated Sorting
Genetic Algorithm II-Differential Evolution (NSGA-II-DE). The
experimental environment used Windows 10 with a Linux
5.15.133 kernel, the deep learning framework was PyTorch, the
optimizer was Adam, and the programming language was
Python 3.10.12. The hardware configuration included an
NVIDIA RTX 3080 GPU and 10 GB of memory. The
experimental datasets included the Honda Research Institute
Europe smart building energy dataset and the Pecan Street
dataset. According to the standard strategy, the acceleration
constant of PSO was set to 2.0, the initial temperature of SA was
set to 1000, the convergence factor was set to 2 — 0, the
maximum number of iterations was set to 1000, the epoch was
set to 500, the batch_size was set to 64, the initial learning rate
was set to 0.01, and the Adam optimizer was used. To evaluate
the impact of key parameters on model performance, this study
also designed parameter sensitivity experiments for the system.
On the Pecan Street dataset, the control variable method was
used to test five core parameters: PSO inertia weight, SA cooling
rate, and MOGWO population size. Select 3 different values for
each parameter within a reasonable range, and fix the other
parameters as benchmark values (inertia weight of 0.9 — 0.4,
cooling rate of 0.95, population size of 50). The evaluation
indicators include energy-saving rate, convergence time, and
absolute error. The results of parameter sensitivity analysis are
shown in Table 1.

From Table 1, it can be seen that using a linear decreasing
strategy of 0.9—0.4 for the inertia weight of PSO yields the best
results. This may be because a higher initial inertia weight helps
with global exploration, while a later decrease is beneficial for
local fine search, in line with the design principles of dynamic
balance search strategy (Choudhary et al.,2023). In contrast, if
the inertia weight is too high (1.2—0.6), although it maintains
strong exploration ability, the convergence time is significantly
prolonged, indicating that parameter settings need to strike a
balance between exploration and development. When the
cooling rate of SA is 0.95, the optimal balance between solution
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Table 1
Parameter sensitivity analysis results
Value Engrgy Convergence  Absolute
Parameter . saving -
retrieval time/s error
rate/%
Inertial 0.6—02 11.82 14.06 0.32
weight 0.9—-04 1331 11.98 0.28
1.2-0.6 12.09 15.88 0.35
Cooling 0.90 12.24 10.14 0.31
rate 0.95 13.31 12.20 0.28
0.98 13.08 18.11 0.29
Population 30 12.04 8.04 0.33
size 50 13.31 12.23 0.28
70 13.37 20.86 0.27

mass and computational efficiency is achieved. A MOGWO
population size of 50 is optimal for performance. A population
size that is too small (N=30) can lead to insufficient diversity and
decreased performance, while a population size that is too large
(N=70) can result in doubled computational costs. To evaluate
the practical performance of the PSO-SA-MOGWO, the study
compared its processing time, memory usage, and energy
consumption reduction rate with those of SSA-GA, ISBO-RBF,
and NSGA-II-DE. All comparison algorithms are based on fair
comparison of the same dataset partition and random seeds.
The results are shown in Table 2.

As shown in Table 2, in the Honda dataset, the PSO-SA-
MOGWO algorithm had the shortest computation time of 13
min, used 673 MB of memory, and achieved a 24.7% reduction
in energy consumption. In contrast, the SSA-GA took 12 min
longer, used 574 MB more memory, and only reduced energy
consumption by 15.6%. In the Pecan Street dataset, PSO-SA-
MOGWO completed processing in 12 s, used 89 MB of memory,
and achieved a 13.3% reduction in energy consumption. ISBO-
RBF also achieved a reduction rate above 10% but required 15
s and 114 MB of memory. The results indicate that the PSO-SA-
MOGWO algorithm has good real-time processing potential
while maintaining high optimization accuracy, which may be
attributed to the collaborative mechanism of PSO's global
guidance and SA's local optimization, effectively avoiding the
problem of traditional multi-objective algorithms easily falling
into local optima (Wei et al., 2025). To further demonstrate the
advantages of PSO-SA-MOGWO, all four algorithms were
trained on the Pecan Street dataset to compare convergence
and scheduling performance. The results are shown in Figure 7.

Table 2
Performance comparison of four algorithms in different datasets
Processin; Usage cofsifrrlg}tlion
Dataset ~ Algorithm - J memory p
time (MB) reduction
rate (%)
PSO-SA- .
MOGWO 13 min 673 24.7
SSA-GA 25 min 1247 15.6
Honda ISBO- .
RBF 19 min 952 20.1
NSGA-1I - .
DE 18 min 1032 18.3
PSO-SA-
MOGWO 12s 89 13.3
SSA-GA 12s 103 7.6
Pecan ISBO-
Street RBF 15s 114 10.4
NSGA-1I -
DE 14s 107 9.7
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Fig 7 Comparison of algorithm convergence and optimization scheduling capabilities

As shown in Figure 7, the PSO-SA-MOGWO algorithm
stabilized after 800 iterations, with electricity cost maintained at
3150 yuan and loss values ranging between 10 and 107, Its
convergence speed was 42.86% faster than the slowest SSA-GA.
The ISBO-RBF algorithm reached 3500 yuan after 1200
iterations. Other algorithms had slower loss function declines
and still performed worse than PSO-SA-MOGWO after 1000
iterations, mainly due to their tendency to fall into local optima.
Overall, PSO-SA-MOGWO demonstrated faster convergence
and lower electricity cost, which may be attributed to the
combination of PSO's group collaboration mechanism and SA's
annealing acceptance strategy, helping the algorithm to jump
out of local optima in the early stages and accelerate its
approach to the Pareto front (Rafay et al., 2025). To evaluate the
robustness of the PSO-SA-MOGWO algorithm, robustness tests
were conducted in comparison with the other algorithms. The
results are shown in Figure 8.

In Figure 8, the PSO-SA-MOGWO achieved the lowest
electricity cost in both datasets. In the Honda dataset, it
maintained an average electricity cost of 10,500 yuan. The box
plot was narrow and the whiskers were short, indicating high
result stability and strong robustness. The SSA-GA performed

the worst, with higher electricity cost and longer whiskers,
indicating greater result fluctuation and weak robustness. ISBO-
RBF and NSGA-II-DE showed similar, moderate performance.
In conclusion, PSO-SA-MOGWO achieved both low energy
consumption and strong robustness, making it the best among
the four algorithms.

4.2 Evaluation of the improved scheduling model for building energy
efficiency

After verifying the superior performance of the PSO-SA-
MOGWO algorithm, the study further evaluated the practical
application of the PSO-SA-IMOGWO model for building
energy-efficient scheduling. The PSO-SA-IMOGWO model was
compared with the ISBO-RBF, NSGA-II-DE, and SSA-GA
models. The Honda dataset was used, the experimental
environment remained unchanged, and the scheduling results
are shown in Figure 9.

In Figure 9, the PSO-SA-IMOGWO model achieved the
highest usage of photovoltaic and wind power during daytime
hours, maximizing the use of renewable energy and reducing
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Fig 8 Robustness comparison of four algorithms
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dependence on traditional sources. Energy storage was
concentrated between 22:00 and 4:00, and released during
daytime low-demand periods. In contrast, the SSA-GA model
had a lower proportion of photovoltaic and wind power,
indicating a more conservative renewable energy scheduling
strategy. The NSGA-II-DE model showed large fluctuations in
energy storage charging and discharging, reflecting poor

Cost objective function (kW)

2% PSO-SA-
% IMOGWO

Fig 10 Comparison of results under dual-objective optimization
objectives

scheduling stability. In summary, the PSO-SA-IMOGWO model
more efficiently coordinated multi-energy complementarity,
achieving better carbon reduction and energy savings. To
evaluate the performance of PSO-SA-IMOGWO in multi-
objective optimization, the four models were tested for their
ability to balance energy consumption and cost. The results are
shown in Figure 10.

In Figure 10, the PSO-SA-IMOGWO model achieved the
best balance between energy consumption and cost. Its overall
curve was closest to the coordinate origin. When the energy
consumption target was 10,500 yuan, the cost was 9500 yuan.
When the energy consumption target increased to 15,000 yuan,
the cost decreased to 8100 yuan. In contrast, SSA-GA and
NSGA-II-DE had more scattered distributions, and showed
cases where energy consumption was reduced but cost
increased. The PSO-SA-IMOGWO model performed better in
building multi-objective energy-efficient scheduling because
MOGWO effectively balanced objectives such as energy
consumption, cost, and comfort. In conclusion, PSO-SA-
IMOGWO simultaneously reduced energy use and controlled
cost, demonstrating excellent performance. To further evaluate
the dynamic scheduling ability of the PSO-SA-IMOGWO model,
the study conducted low-carbon and economic cost tests in
comparison with the other models. The results are shown in
Figure 11.

As shown in Figure 11, within the 24-hour period, the PSO-
SA-IMOGWO model consistently achieved the lowest minimum
cost at each time point and maintained relatively low carbon
emissions. When the minimum carbon emission was 21 kg, the
minimum cost was 4500 yuan. The ISBO-RBF and NSGA-II-DE
models had higher minimum costs over long periods, and their
curves were more scattered. The SSA-GA model showed the
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highest minimum cost and did not perform well in reducing
carbon emissions. In summary, the PSO-SA-IMOGWO model
successfully balanced the economic and low-carbon
requirements of building energy scheduling.

5. Discussion

This study study proposes an efficient scheduling
method based on MOGWO and establishes a multi-objective
optimization model considering building energy consumption,
indoor comfort, and operational cost. This model integrated a
building load forecasting module and equipment constraints.
The MOGWO algorithm was improved by introducing PSO and
SA, which enhanced convergence speed and solution diversity
in multi-objective spaces. In addition, a CA-optimized ResNet-
LSTM was used to support building load prediction, enabling
multi-objective optimization for energy saving. The results
showed that PSO-SA-MOGWO improved convergence speed
by 42.86% compared with SSA-GA, produced more evenly
distributed solutions, and required only 89 MB of memory. For
large buildings, the memory usage was 673 MB. In the Pecan
Street dataset, the response time was only 12 s. In addition, on
the larger Honda dataset, the memory usage is 673 MB, still
maintaining high computational efficiency. Compared with
existing research, this study has shown significant progress in
method fusion and actual scheduling effectiveness. For example,
the multi-level optimization strategy proposed by Tang et al.
(2022) has a high complexity and does not deeply integrate the
prediction module. Zhang et al. (2024) designed a two-stage
robust optimization model for managing an electricity-heat-gas-
cooling system, which effectively enhanced the renewable
energy consumption capacity. However, its solution process
typically involves a heavy computational burden. Li et al. (2022)
constructed an active distribution network energy management
model based on detailed building thermodynamics and human
activity patterns, but did not conduct in-depth optimization in
terms of algorithm convergence speed and computational
resource efficiency. The PSO-SA-MOGWO model proposed in
this study achieves finer flexibility scheduling while maintaining
lower complexity through algorithm mixing and prediction
scheduling closed loop. The quality flow model established by
Zheng et al. (2023) has limitations in handling multi-objective

collaboration and dynamic adaptability. In contrast, this study
introduces CA ResNet LSTM for load and renewable energy
output prediction and combines multi-objective optimization to
dynamically adjust scheduling strategies, enhancing the
adaptability to energy randomness and achieving a better
balance between economic and low-carbon goals.

The theoretical contribution of this study is mainly
reflected in the proposal of a multi algorithm collaborative
hybrid optimization architecture and a prediction scheduling
integrated modeling framework, which effectively solves the
problems of multi-objective conflicts and dynamic system
adaptability, providing theoretical support for dynamic
scheduling. Through algorithm innovation and model
integration, this study provides a new methodology for the
transformation from single objective optimization to multi-
objective collaborative scheduling in the field of building energy
dispatch, promoting the development of intelligent building
energy management theory. The proposed PSO-SA-IMOGWO
model has broad application prospects in fields such as
intelligent building energy management and regional multi
energy collaborative scheduling. In practical applications, the
model can be embedded in building energy management
systems or regional energy coordination platforms, but
parameter calibration needs to be carried out based on specific
building types, equipment characteristics, and local energy
policies, and interface integration with existing monitoring and
control systems needs to be considered. In addition, the model
is sensitive to the quality of input data, and corresponding data
cleaning and anomaly detection modules need to be equipped
in actual deployment.

6. Conclusion

Overall, the proposed PSO-SA-IMOGWO model effectively
coordinates multiple objectives such as economic cost and
energy efficiency, and has significant advantages in energy-
saving effect, response speed, and computational efficiency,
providing a reliable technical foundation for real-time energy
scheduling in intelligent buildings. However, the adaptability of
the model under extreme weather conditions is still insufficient,
and the handling of the randomness of renewable energy is
relatively simplified. Therefore, future work should introduce
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robust optimization mechanisms to further enhance the stability
of the model in extreme scenarios, and combine stochastic
programming theory to improve the modeling of wind and solar
power output uncertainty.

Fundings: The research was supported by 2025 Lishui City’s
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