
Int. J. Renew. Energy Dev. 2026, 15 (2), 230-241 
| 230 

https://doi.org/10.61435/ijred.2026.61709  
ISSN: 2252-4940/© 2026.The Author(s). Published by CBIORE 

 Contents list available at CBIORE journal website 
 

International Journal of Renewable Energy Development 
 

Journal homepage: https://ijred.cbiore.id 

 

 

Multi objective building energy efficiency optimization scheduling by 
integrating multi objective grey wolf optimizer and long short term 
memory network 
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Abstract. Building energy consumption accounts for a large proportion of the overall energy use in society, and energy-saving optimization 
scheduling is currently a research hotspot. However, traditional scheduling methods often struggle to achieve an effective balance between multiple 
objectives such as energy conservation, economy, and indoor comfort. To construct an energy-saving scheduling model that can consider multiple 
objectives, this paper puts forward a building energy scheduling model based on a Multi-Objective Grey Wolf Optimizer, taking total energy 
consumption, operating cost, and indoor comfort deviation as the optimization objectives. The model introduces a set of multi-energy collaborative 
constraints involving wind energy, photovoltaic systems, energy storage, and combined cooling, heating, and power systems. To improve algorithm 
performance, we innovatively integrated particle swarm optimization and simulated annealing to enhance the model's global search and local 
optimization capabilities, and introduced residual long short-term memory networks to improve load forecasting accuracy. Experimental results show 
that compared to similar models, the proposed algorithm improves the energy-saving rate by 13.3% in a typical household scenario. Its response time 
is 12 s, memory usage is 89 MB, and convergence speed is 42.86% faster than the slowest comparable model. The Multi-Objective Grey Wolf 
Optimizer effectively coordinates the multi-objective needs of building energy systems. It significantly improves energy savings and economic 
performance while ensuring indoor comfort. This algorithm provides strong support for intelligent building energy scheduling and offers practical 
value for promoting the carbon neutrality goals in the building sector. 
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1. Introduction 

With the global energy crisis and the advancement of carbon 
neutrality goals, optimizing energy use in buildings has become 
a core issue for sustainable development. Building energy-
efficient scheduling dynamically adjusts air conditioning, 
lighting, energy storage, and renewable energy systems to 
reduce energy consumption while maintaining indoor comfort 
(Zhu et al.,2022). It is a key technological path toward low-
carbon buildings. As building energy systems become 
increasingly complex, traditional rule-based scheduling or 
single-objective optimization methods can no longer meet the 
multi-dimensional demands of energy use, cost, and comfort. 
Efficient multi-objective optimization methods are urgently 
needed (Mou et al.,2022). At present, many related studies apply 
intelligent optimization algorithms to solve scheduling 
problems. For example, Genetic Algorithms and Particle Swarm 
Optimization (PSO) are widely used in load distribution but tend 
to fall into local optima. Simulated Annealing (SA) has a strong 
global search ability but suffers from slow convergence 
(Shekhar et al.,2023). The Multi-Objective Grey Wolf Optimizer 
(MOGWO), a newly developed intelligent algorithm, shows 
strong adaptability in handling multi-constraint and nonlinear 
problems and has been preliminarily applied in microgrid 
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scheduling (Zhao et al.,2022). However, current MOGWO 
applications in building scenarios still face significant 
limitations. These include a lack of solution diversity, poor 
adaptability to the dynamic and multi-objective nature of 
building loads, weak handling of high-dimensional constraints, 
a tendency to generate infeasible solutions, and difficulty 
balancing convergence speed with solution accuracy. These 
issues make it hard to meet the needs of real-time scheduling 
(Zhao et al.,2023; Phong et al.,2022). In order to overcome these 
challenges, this study innovatively proposed an improved 
MOGWO for building energy-saving scheduling. By introducing 
PSO and SA to help MOGWO perform global search and escape 
from local optimality, and integrating the Residual Network-
Long Short-Term Memory (ResNet-LSTM) network optimized 
by Cosine Annealing (CA) to make up for the defects of 
spatiotemporal feature extraction, finally constructed a building 
energy scheduling model that takes into account the lowest 
energy consumption, optimal cost and comfort guarantee. It is 
expected that it can provide theoretical and technical support 
for the efficient operation of complex building energy systems. 
The innovation of this study lies in integrating PSO and SA into 
MOGWO, constructing a hybrid optimization mechanism, and 
proposing a ResNet LSTM optimized based on CA mechanism, 
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which enhances the ability to extract and predict the 
spatiotemporal characteristics of building energy consumption. 
The main contribution of this study is the organic integration of 
improved optimization algorithms with load forecasting models, 
achieving full process optimization from data input to 
scheduling strategy generation. By introducing multi energy 
device constraints and dynamic load characteristics, the 
feasibility and practicality of the model in actual building 
environments have been improved. 

2. Related works 

MOGWO was developed based on the Grey Wolf Optimizer 
(GWO) and has been widely applied in various fields. Many 
researchers have conducted relevant studies on this algorithm. 
For example, Torabi A et al. (2024) proposed a method to link 
MOGWO with an integrated modeling framework to address 
the complex interactions between surface water and 
groundwater in dynamic studies. They identified optimal 
allocation parameters by minimizing groundwater extraction at 
the end of the operation period. Chen L et al., (2024) inspired by 
the effectiveness of mathematical models in describing 
biological phenomena, introduced MOGWO to determine the 
optimal concentration of cancer cells during treatment. They 
formulated a drug delivery strategy by simultaneously 
minimizing cancer cell concentration and medication dosage. 
Bai Y et al. (2025) focused on the challenge of a single pursuer 
being unable to intercept an evader when the pursuer had 
limited maneuverability. They proposed an improved MOGWO 
to find the optimal game point. By describing the relative motion 
equations between the pursuer and the evader, they designed a 
constrained multi-objective function and developed an optimal 
strategy for the differential game. Goyal K K et al. (2022) aimed 
to overcome the lack of empirical models for every response in 
alloy processing. They proposed using an enhanced MOGWO 
to obtain a Pareto front across conflicting process responses. A 
Levy flight algorithm was introduced to improve the efficiency 
of MOGWO. Kumar A et al. (2024) addressed the difficulty in 
identifying optimal process parameters due to changes in 
processing conditions. They used an artificial neural network-
based MOGWO to search for optimal parameter settings. By 
minimizing both pulsed and non-pulsed parameter corner 
errors, they achieved improved machining outcomes. 

Building energy scheduling plays a critical role under the 
current energy crisis and increasingly strict environmental 
regulations. Many researchers have explored this topic in depth. 
Tang H and Wang S (2022) addressed the limited flexibility of 
aggregated buildings in electricity market bidding. They 
proposed a multi-level optimized scheduling strategy and 
developed a model-based quantification method aimed at 
increasing flexibility profits and minimizing the complexity of 
optimization. Li Z et al. (2022) focused on the suboptimal 
performance of distributed energy management in office 
buildings. They proposed an Active Distribution Network (ADN) 
energy management method for aggregated office buildings. By 
incorporating detailed building thermodynamics and occupants' 
movement patterns, they built an ADN optimization model. 
Zheng W et al. (2023) tackled the problem of traditional 
Integrated Energy Systems (IES) being unable to function due 
to the uncertain nature of hydrogen injection and gas transport 
properties. They proposed an HCNG-permeated IES scheduling 
method. A mass flow model considering variable blending ratios 
and initial flow directions was established to describe the 
hydrogen injection process. Sun Y (2025) aimed to improve 
voltage stability in energy scheduling and proposed a demand-

side scheduling method that prioritizes energy-efficient 
buildings. By analyzing the load stacking behavior of energy-
efficient buildings, an energy scheduling priority index was 
created, and the scheduling function was solved accordingly. 
Zhang B et al. (2024) highlighted the importance of integrated 
energy systems in achieving carbon peaking and neutrality 
goals. To manage electricity-heat-gas-cooling systems, they 
devised a two-stage robust optimization approach. A combined 
cooling, heating, and power model was built based on power-
to-gas and carbon capture technologies. The robust two-stage 
model for IES scheduling enabled effective absorption of 
renewable energy and reduced the total system cost. Nath A D 
et al. (2025) investigated the performance of phase change 
material integrated cross laminated wood wall systems in 17 
climate zones in the United States to address the lack of 
consensus on the optimal placement of phase change materials 
within wall components. They used EnergyPlus simulation to 
analyze five wall configurations. The results showed that the 
phase change material integrated cross laminated wood wall 
system achieved a cooling energy saving of up to 72.48%. 
Devianto D et al. (2025) investigated the management of carbon 
dioxide emissions and used Bayesian vector autoregression 
models to address the complexity of multiple interactions. The 
results indicate that the BVAR model demonstrates a 
considerable level of predictive accuracy. Kamaruddin M et al. 
(2025) addressed the issue of traditional methods being unable 
to capture the complexity of design and climate conditions by 
using parameterized energy modeling methods, and analyzed 
the impact of design parameters on building energy intensity. 
The simulation results indicate that building orientations of 
140°, 90°, 135°, and 270° tend to generate higher energy 
intensity values. 

In summary, existing research has made progress in the 
field of building energy scheduling. However, many 
optimization strategies still face difficulties in balancing multiple 
objectives, and the algorithms often lack generalizability and 
robustness. To tackle these problems, this paper proposes a 
building energy-efficient scheduling model based on MOGWO. 
By introducing PSO and CA to improve global search capability, 
and integrating a cosine-annealed ResNet-LSTM to extract 
spatiotemporal features from energy data, the proposed model 
aims to meet the multi-objective optimization needs of building 
energy systems. Compared with existing research, the 
outstanding advantage of this study lies in proposing a building 
energy-saving scheduling model that integrates multi energy 
collaborative constraints and improved multi-objective 
optimization algorithms, effectively balancing multiple 
conflicting objectives such as energy consumption, cost, and 
comfort, filling the research gap in multi-objective collaboration 
and real-time scheduling capabilities of existing methods in 
complex building energy systems. 

3. Building energy-efficient scheduling model based on 
MOGWO 

3.1 Design of MOGWO algorithm enhanced by PSO and SA 

Building energy-efficient scheduling optimization dynamically 
manages energy systems, device operations, and load 
distribution. It meets constraints such as comfort and device 
safety while achieving multiple goals, including energy 
reduction, cost savings, and carbon emission control (Huang et 
al.,2025). MOGWO is an ideal tool for this task due to its ability 
to handle multiple objectives, perform global search, and 
provide efficient solutions (Liu et al.,2024). MOGWO inherits the 
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core parameters of GWO to balance global exploration and local 
exploitation (Heidari et al.,2023). The operational process of 
MOGWO in building energy scheduling optimization is shown 
in Figure 1. 

As shown in Figure 1, the algorithm first collects basic data 
such as building energy device characteristics and 
environmental conditions. It then generates a grey wolf 
population representing potential scheduling schemes and 
initializes an external archive to store the Pareto optimal 
solutions found during iteration. Based on multi-objective 
functions such as energy efficiency and economy, and 
considering energy supply and demand as well as device 
operation constraints, the algorithm evaluates each scheme. 
The leader wolf guides the update of scheduling solutions, 
iterating until a preset threshold is reached and outputting the 
optimal energy-efficient scheduling plan for the building (Du et 
al.,2025). The convergence factor a  of MOGWO is defined in 
Equation (1). 

𝑎 = 2 − 𝑡 ×
2

𝑇𝑚𝑎𝑥
            (1) 

In Equation (1), 𝑡 is the current iteration number. The coefficient 
vector is calculated as shown in Equation (2). 

{
𝐴 = 2𝑎 ⋅ 𝑟1 − 𝑎

𝐶 = 2 ⋅ 𝑟2
          (2) 

In Equation (2), 𝐴  determines the direction and step size of 
position updates, and 𝐶  simulates the random movement of 
prey. 𝑟1 and 𝑟2 are random vectors. In MOGWO, the position of 
each grey wolf is updated based on the best three wolves in the 
population by simulating the hunting behavior of wolves. 
MOGWO tackled multi-objective problems by incorporating 
Pareto dominance and maintaining an external archive to 
identify and retain non-dominated solutions (Navin Dhinnesh et 
al.,2024). For two solutions 𝑥 and 𝑦, if 𝑥 dominates 𝑦, denoted 
as 𝑥 < 𝑦 , the dominance condition must satisfy Equation (3) 
(Singh et al.,2023). 

{
∀𝑖 ∈ {1,2,⋯ ,𝑚}, 𝑓𝑖(𝑥) ≤ 𝑓𝑖(𝑦)

∃𝑗 ∈ {1,2,⋯ ,𝑚}, 𝑓𝑖(𝑥) < 𝑓𝑖(𝑦)
       (3) 
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Fig 1 Schematic diagram of MOGWO's operation process (Icon source from: https://www.iconfont.cn/) 
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Fig 2 Structure diagram of PSO-SA (Icon source from: https://www.iconfont.cn/) 
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In Equation (3), 𝑚  is the number of objective functions, and 
𝑓𝑖(𝑥) is the fitness value of solution 𝑥 in the 𝑖 -th objective. A 
non-dominated solution is one that is not dominated by any 
other solution (Hosseini et al.,2024). When the external archive 
contains more solutions than its defined threshold, the 
algorithm filters out redundant solutions using grid density to 
maintain diversity. The grid density is calculated by Equation 
(4) (Li et al.,2025). 

𝐷𝑒𝑛𝑠𝑖𝑡𝑦(𝑥) = ∑ 𝑒𝑥𝑝(−𝜆 ⋅ 𝑑(𝑥, 𝑦))𝑦∈𝐴𝑟𝑐ℎ𝑖𝑣𝑒,𝑦≠𝑥      (4) 

In Equation (4), 𝑑(𝑥, 𝑦)  is the Euclidean distance, and 𝜆  is a 
tuning parameter. Although MOGWO demonstrates strong 
capabilities in multi-objective optimization for building energy 
scheduling, it has limitations such as insufficient solution 
diversity and difficulty balancing convergence speed and 
accuracy. SA algorithm, with its global optimization ability 
based on a probability acceptance criterion, can effectively 
address these issues (Poursaeid et al.,2025). When combined, 
MOGWO retains its multi-objective coordination capability, 
while SA enhances global search and helps avoid local optima. 
However, SA often suffers from slow convergence and 
sensitivity to parameter settings (Kosanoglu et al.,2024). 
Therefore, this study uses PSO to enhance SA. PSO provides 
global guidance for SA's neighborhood search by updating 
particle velocity and position, helping overcome the inefficiency 
of SA's random walk. The structure of PSO-SA is shown in 
Figure 2. 

As shown in Figure 2, the algorithm first initializes 
parameters, including core algorithm settings and variables to 
be optimized in building energy scheduling. According to 
optimization rules, PSO adjusts device operation parameters 
through the utilization of personal and global best locations 
(Demir et al.,2023). The algorithm checks whether the 
termination condition is met. If not, SA performs local fine-
tuning to generate neighborhood solutions. If the new solution 
has lower energy consumption, it is directly accepted. If not, the 
SA acceptance mechanism is used. This mechanism permits the 
acceptance of inferior solutions at higher temperatures while 
enforcing stricter selection criteria at lower temperatures, 
thereby facilitating the escape from local optima. The algorithm 
continuously updates the global best solution and finally outputs 
the optimal scheduling plan. SA simulates the physical 
annealing process, where high temperatures enable random 
search and low temperatures lead to convergence (Sylejmani et 
al.,2023). By introducing the Metropolis criterion, the global 
search capability is enhanced. The Metropolis criterion allows 
acceptance of solutions with worse objective values under a 
certain probability, as shown in Equation (5). 

𝑃 = {
1       △ 𝑓 < 0

𝑒𝑥𝑝 (−
△𝑓

𝑇
)  △ 𝑓 ≥ 0

        (5) 

In Equation (5), 𝑃 is the chance of accepting a newly generated 
solution, △ 𝑓 is the difference in objective value. To replicate 
the temperature decline characteristic of physical annealing, SA 
adjusts the temperature using a cooling schedule, as defined in 
Equation (6). 

𝑇𝑘+1 = 𝛼 × 𝑇𝑘            (6) 

In Equation (6), 𝑇𝑘 is the temperature at the 𝑘 -th iteration, and 
𝛼 is the cooling rate. The core of the PSO enhancement lies in 
the velocity update, calculated by Equation (7). 

𝑣𝑖,𝑑(𝑡 + 1) = 𝜔 ⋅ 𝑣𝑖,𝑑(𝑡) + 𝑐1𝑟1[𝑝𝑖,𝑑(𝑡) − 𝑥𝑖,𝑑(𝑡)] +

𝑐2𝑟2[𝑝𝑔,𝑑(𝑡) − 𝑥𝑖,𝑑(𝑡)]           (7) 

In Equation (7), 𝑣𝑖,𝑑(𝑡) is the velocity of particle 𝑖 in the 𝑡 -th 

generation and 𝑑 -th dimension, 𝑥𝑖,𝑑(𝑡) is the position. 𝑝𝑖,𝑑(𝑡) is 

the historical best position of particle 𝑖, and 𝑝𝑔,𝑑(𝑡) is the global 

best position. 𝜔 is the inertia weight. 𝑐1 and 𝑐2 are acceleration 
constants. The particle position update is defined in Equation 
(8). 

𝑥𝑖,𝑑(𝑡 + 1) = 𝑥𝑖,𝑑(𝑡) + 𝑣𝑖,𝑑(𝑡 + 1)   (8) 

Based on the above, the complete flowchart of PSO-SA-
MOGWO is shown in Figure 3. 

As shown in Figure 3, the algorithm first inputs building 
parameters, including basic information, energy consumption 
targets, and comfort requirements. It then initializes algorithm 
parameters and controls the number of iterations by checking 
whether the maximum iteration count is reached. MOGWO 
performs multi-objective optimization guided by the leader wolf 
to update positions. PSO and SA carry out global exploration 
and local refinement respectively. The scheduling method is 
then updated, and the new solution is evaluated using objective 
functions. If it is better, the archive is updated and the algorithm 
proceeds to the next iteration. This process gradually 
approaches the optimal solution. Once the maximum number of 
iterations is completed, the algorithm outputs the Pareto 
optimal scheduling scheme. In the modeling process of this 
study, several key assumptions were set based on typical 
scenarios: (1) to control algorithm complexity for 
implementation and comparison, the research assumes that the 
core parameters of PSO, SA, and MOGWO remain stable or 
change according to preset rules during the optimization 
process. (2) To simplify the model construction and facilitate 
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Fig 3 PSO-SA-MOGWO operation flow chart (Icon source from: https://www.iconfont.cn/) 
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quick solving, the model assumes that the efficiency of the 
energy conversion equipment is constant and ignores its start 
stop loss and ramp up constraints. (3) Assuming that the input 
building load, meteorological, and energy price data is complete 
and accurate. 

3.2 The optimization model combining CA-ResNet-LSTM and 
improved MOGWO 

Although the PSO-SA-MOGWO hybrid algorithm finds optimal 
scheduling schemes under complex constraints, it increases 
computational cost and algorithmic complexity, and it requires 
high-quality input data. To address these challenges, this study 
introduces ResNet-LSTM to enhance the model by extracting 
spatiotemporal features from energy consumption data, 
providing accurate prediction and intelligent decision support 
for energy-efficient scheduling (Lee et al.,2024). The workflow 
of ResNet-LSTM is shown in Figure 4. 

In Figure 4, ResNet-LSTM first preprocesses the input 
data. It takes energy consumption monitoring data from 
different building zones at different times and applies 
normalization (Banerjee et al.,2024). Then it assigns adaptive 
weights to the data, emphasizing important information and 
weakening secondary information. After that, feature extraction 
is performed. The residual and LSTM modules improve the 
model's capability to extract features from data and capture 
energy consumption patterns across different time intervals. 
ResNet addresses the vanishing gradient issue in deep networks 
by incorporating residual blocks. Its core equation is shown in 
Equation (9) (Yu et al.,2024). 

𝑦 = 𝐹(𝑥, {𝑊𝑖}) + 𝑥         (9) 

In Equation (9), 𝑥 and 𝑦 represent the input and output features, 
and 𝐹(𝑥, {𝑊𝑖}) is the residual function. The forget gate of LSTM 
is defined in Equation (10) (Usman et al.,2023). 

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)        (10) 

In Equation (10), 𝜎 is the Sigmoid function, which compresses 

values into the [0,1]  interval. 𝑊𝑓  is the weight matrix of the 
forget gate. [ℎ𝑡−1, 𝑥𝑡]  represents the combination of the 

previous hidden state and the current input. 𝑏𝑓 is the bias term 
of the forget gate. The input gate controls which information 
from the current input 𝑥𝑡 is added to the cell state. The equation 
is shown in Equation (11). 

{
𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)

𝐶̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐)
         (11) 

In Equation (11), 𝑊𝑖 and 𝑊𝑐 are the weight matrices of the input 
gate and the candidate cell state. 𝑏𝑖  and 𝑏𝑐  are their 
corresponding biases. 𝑡𝑎𝑛ℎ is the hyperbolic tangent activation 
function with a range of (−1,1) . The cell state is updated 
according to Equation (12). 

𝐶𝑡 = 𝑓𝑡 ⊙𝐶𝑡−1 + 𝑖𝑡 ⊙ 𝐶̃𝑡        (12) 

In Equation (12), ⊙ indicates element-wise multiplication. The 
output gate determines which information in the cell state 𝐶𝑡 is 
used to generate the current hidden state ℎ𝑡. The equation is 
shown in Equation (13). 

{
𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)

ℎ𝑡 = 𝑜𝑡 𝑡𝑎𝑛ℎ(𝐶𝑡)
        (13) 

In Equation (13), 𝑊𝑜 is the weight matrix of the output gate, and 
𝑏𝑜 is the bias term. Although ResNet-LSTM effectively handles 
spatiotemporal data in building energy systems, it suffers from 
low training efficiency, local optima, and unstable gradients 
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Fig 4 ResNet-LSTM structure diagram (Icon source from: https://www.iconfont.cn/) 
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(Huang et al.,2024). To overcome these problems, this study 
applies CA to optimize the model. The CA-ResNet-LSTM 
workflow is shown in Figure 5. 

As shown in Figure 5, after preprocessing, the algorithm 
extracts spatiotemporal features from the data. After each 
iteration, it calculates a new learning rate using the cosine 
function to coordinate the optimization of ResNet convolution 
layers and LSTM gate parameters. It then performs periodic 
restarts to help the model escape local optima. In the early 
stage, cosine annealing helps LSTM quickly capture energy 
consumption patterns across day and night. In the later stage, it 
supports ResNet in adjusting spatial weights across different 
zones. The final output provides reliable energy predictions for 
scheduling. The core idea of CA is to simulate the periodic 
decay of the cosine function to dynamically adjust the learning 
rate (Zhou et al.,2023). This method addresses the drawbacks of 
traditional learning rate decay, such as slow convergence and 
local optima. The key equation is shown in Equation (14). 

𝜂𝑡 = 𝜂
1

2
(𝜂𝑚𝑖𝑛𝑚𝑎𝑥 (1 + 𝑐𝑜𝑠 (

𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝑇𝑚𝑎𝑥
()) ()))

𝑚𝑖𝑛

   (14) 

In Equation (14), 𝜂𝑡 is the learning rate at step 𝑡 𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is the 
current training step, and 𝑇𝑚𝑎𝑥 is the total number of steps in 
one cycle. To further enhance performance, a restart 
mechanism is often introduced. After completing one cycle 𝑇, 
the learning rate is reset to 𝜂𝑚𝑎𝑥, and a new decay cycle begins. 
The restart rule is shown in Equation (15). 

𝜂𝑡 = 𝜂
1

2
(𝜂𝑚𝑖𝑛𝑚𝑎𝑥 (1 + 𝑐𝑜𝑠 (

𝑡−𝑇𝑘

𝑇𝑘+1−𝑇𝑘
⋅ 𝜋)))

𝑚𝑖𝑛

      (15) 

In Equation (15), 𝑇𝑘 is the iteration number of the 𝑘 -th restart. 
The restart mechanism facilitates the algorithm's ability to 
escape from local optima. The overall flowchart of the building 
energy-efficient scheduling model based on improved MOGWO 
and CA-ResNet-LSTM is shown in Figure 6. 

As shown in Figure 6, the proposed model, named PSO-
SA-IMOGWO, combines CA-ResNet-LSTM and PSO-SA-
MOGWO for building energy-efficient scheduling. Firstly, input 
historical energy consumption, meteorological conditions, and 
time characteristics, and use the CA ResNet LSTM model for 
future load forecasting of buildings. The ResNet module is 
responsible for extracting spatial features of energy 
consumption data, LSTM is responsible for capturing temporal 
dependencies, and the CA mechanism is responsible for 
dynamically adjusting the learning rate to accelerate 
convergence and avoid local optima. Subsequently, the PSO-
SA-MOGWO multi-objective optimization scheduling model 
takes total energy consumption, operating costs, and comfort 
deviation as objective functions, and introduces multi energy 
device constraints. In each iteration, MOGWO performs the 
dominant search, PSO updates the scheduling scheme based on 
individual and global optima, SA accepts neighboring solutions 
using Metropolis criteria to enhance local escape, and maintains 
solution set diversity using non dominated sorting and grid 
density. Finally, based on the prediction results of CA ResNet 
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Fig 5 Schematic diagram of the operation process of CA-ResNet-LSTM (Icon source from: https://www.iconfont.cn/) 
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Fig 6 The operation process of the proposed building energy-saving optimization scheduling model (Icon source from: https://www.iconfont.cn/) 

 



S.Deng and L. Lv  Int. J. Renew. Energy Dev 2026, 15(2), 230-241 

| 236 

 

ISSN: 2252-4940/© 2026. The Author(s). Published by CBIORE 

LSTM, dynamically adjust the scheduling strategies of 
renewable energy and energy storage systems, and ultimately 
output the Pareto optimal solution. 

The experimental dataset includes the Honda Research 
Institute's European Intelligent Building Energy Dataset and the 
Pecan Street Dataset. Among them, the Honda Research 
Institute's European Intelligent Building Energy Dataset was 
collected from 2018 to 2020, covering data from 72 electricity 
meters, 9 heat meters, and meteorological stations, including 
operation records of multi energy equipment such as 
photovoltaics, gas-fired cogeneration, and central cooling 
systems. The Pecan Street dataset contains electricity 
consumption, solar power generation, outdoor temperature, 
and time of use electricity price data for American households 
from 2017 to 2021. The data is automatically collected through 
smart meters and sensors, and after cleaning, normalization, 
and missing value interpolation, it is constructed into 
standardized time-series samples. Divide the dataset into 
training set, testing set, and validation set in a ratio of 7:2:1. 

4. Result 

4.1 Validation of the PSO-SA-MOGWO algorithm 

To verify the superiority of the PSO-SA-MOGWO algorithm for 
building energy-efficient scheduling, this study compared it with 
three other algorithms: Sparrow Search Algorithm–Genetic 
Algorithm (SSA-GA), Improved Satin Bowerbird Optimizer–
Radial Basis Function (ISBO-RBF), and Non-dominated Sorting 
Genetic Algorithm II–Differential Evolution (NSGA-II-DE). The 
experimental environment used Windows 10 with a Linux 
5.15.133 kernel, the deep learning framework was PyTorch, the 
optimizer was Adam, and the programming language was 
Python 3.10.12. The hardware configuration included an 
NVIDIA RTX 3080 GPU and 10 GB of memory. The 
experimental datasets included the Honda Research Institute 
Europe smart building energy dataset and the Pecan Street 
dataset. According to the standard strategy, the acceleration 
constant of PSO was set to 2.0, the initial temperature of SA was 
set to 1000, the convergence factor was set to 2 → 0, the 
maximum number of iterations was set to 1000, the epoch was 
set to 500, the batch_size was set to 64, the initial learning rate 
was set to 0.01, and the Adam optimizer was used. To evaluate 
the impact of key parameters on model performance, this study 
also designed parameter sensitivity experiments for the system. 
On the Pecan Street dataset, the control variable method was 
used to test five core parameters: PSO inertia weight, SA cooling 
rate, and MOGWO population size. Select 3 different values for 
each parameter within a reasonable range, and fix the other 
parameters as benchmark values (inertia weight of 0.9 → 0.4, 
cooling rate of 0.95, population size of 50). The evaluation 
indicators include energy-saving rate, convergence time, and 
absolute error. The results of parameter sensitivity analysis are 
shown in Table 1. 

From Table 1, it can be seen that using a linear decreasing 
strategy of 0.9→0.4 for the inertia weight of PSO yields the best 
results. This may be because a higher initial inertia weight helps 
with global exploration, while a later decrease is beneficial for 
local fine search, in line with the design principles of dynamic 
balance search strategy (Choudhary et al.,2023). In contrast, if 
the inertia weight is too high (1.2→0.6), although it maintains 
strong exploration ability, the convergence time is significantly 
prolonged, indicating that parameter settings need to strike a 
balance between exploration and development. When the 
cooling rate of SA is 0.95, the optimal balance between solution 

mass and computational efficiency is achieved. A MOGWO 
population size of 50 is optimal for performance. A population 
size that is too small (N=30) can lead to insufficient diversity and 
decreased performance, while a population size that is too large 
(N=70) can result in doubled computational costs. To evaluate 
the practical performance of the PSO-SA-MOGWO, the study 
compared its processing time, memory usage, and energy 
consumption reduction rate with those of SSA-GA, ISBO-RBF, 
and NSGA-II-DE. All comparison algorithms are based on fair 
comparison of the same dataset partition and random seeds. 
The results are shown in Table 2. 

As shown in Table 2, in the Honda dataset, the PSO-SA-
MOGWO algorithm had the shortest computation time of 13 
min, used 673 MB of memory, and achieved a 24.7% reduction 
in energy consumption. In contrast, the SSA-GA took 12 min 
longer, used 574 MB more memory, and only reduced energy 
consumption by 15.6%. In the Pecan Street dataset, PSO-SA-
MOGWO completed processing in 12 s, used 89 MB of memory, 
and achieved a 13.3% reduction in energy consumption. ISBO-
RBF also achieved a reduction rate above 10% but required 15 
s and 114 MB of memory. The results indicate that the PSO-SA-
MOGWO algorithm has good real-time processing potential 
while maintaining high optimization accuracy, which may be 
attributed to the collaborative mechanism of PSO's global 
guidance and SA's local optimization, effectively avoiding the 
problem of traditional multi-objective algorithms easily falling 
into local optima (Wei et al., 2025). To further demonstrate the 
advantages of PSO-SA-MOGWO, all four algorithms were 
trained on the Pecan Street dataset to compare convergence 
and scheduling performance. The results are shown in Figure 7. 

Table 1  

Parameter sensitivity analysis results 

Parameter 
Value 
retrieval 

Energy 
saving 
rate/% 

Convergence 
time/s 

Absolute 
error 

Inertial 
weight 

0.6→0.2 11.82 14.06 0.32 
0.9→0.4 13.31 11.98 0.28 
1.2→0.6 12.09 15.88 0.35 

Cooling 
rate 

0.90 12.24 10.14 0.31 
0.95 13.31 12.20 0.28 
0.98 13.08 18.11 0.29 

Population 
size 

30 12.04 8.04 0.33 
50 13.31 12.23 0.28 
70 13.37 20.86 0.27 

 

Table 2 
 Performance comparison of four algorithms in different datasets 

Dataset Algorithm 
Processing 

time 

Usage 
memory 

(MB) 

Energy 
consumption 

reduction 
rate (%) 

Honda 

PSO-SA-
MOGWO 

13 min 673 24.7 

SSA-GA 25 min 1247 15.6 
ISBO-
RBF 

19 min 952 20.1 

NSGA-Ⅱ-
DE 

18 min 1032 18.3 

Pecan 
Street 

PSO-SA-
MOGWO 

12 s 89 13.3 

SSA-GA 12 s 103 7.6 
ISBO-
RBF 

15 s 114 10.4 

NSGA-Ⅱ-

DE 
14 s 107 9.7 
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As shown in Figure 7, the PSO-SA-MOGWO algorithm 
stabilized after 800 iterations, with electricity cost maintained at 
3150 yuan and loss values ranging between 10-4 and 10-3. Its 
convergence speed was 42.86% faster than the slowest SSA-GA. 
The ISBO-RBF algorithm reached 3500 yuan after 1200 
iterations. Other algorithms had slower loss function declines 
and still performed worse than PSO-SA-MOGWO after 1000 
iterations, mainly due to their tendency to fall into local optima. 
Overall, PSO-SA-MOGWO demonstrated faster convergence 
and lower electricity cost, which may be attributed to the 
combination of PSO's group collaboration mechanism and SA's 
annealing acceptance strategy, helping the algorithm to jump 
out of local optima in the early stages and accelerate its 
approach to the Pareto front (Rafay et al., 2025). To evaluate the 
robustness of the PSO-SA-MOGWO algorithm, robustness tests 
were conducted in comparison with the other algorithms. The 
results are shown in Figure 8. 

In Figure 8, the PSO-SA-MOGWO achieved the lowest 
electricity cost in both datasets. In the Honda dataset, it 
maintained an average electricity cost of 10,500 yuan. The box 
plot was narrow and the whiskers were short, indicating high 
result stability and strong robustness. The SSA-GA performed 

the worst, with higher electricity cost and longer whiskers, 
indicating greater result fluctuation and weak robustness. ISBO-
RBF and NSGA-II-DE showed similar, moderate performance. 
In conclusion, PSO-SA-MOGWO achieved both low energy 
consumption and strong robustness, making it the best among 
the four algorithms. 

4.2 Evaluation of the improved scheduling model for building energy 
efficiency 

After verifying the superior performance of the PSO-SA-
MOGWO algorithm, the study further evaluated the practical 
application of the PSO-SA-IMOGWO model for building 
energy-efficient scheduling. The PSO-SA-IMOGWO model was 
compared with the ISBO-RBF, NSGA-II-DE, and SSA-GA 
models. The Honda dataset was used, the experimental 
environment remained unchanged, and the scheduling results 
are shown in Figure 9. 

In Figure 9, the PSO-SA-IMOGWO model achieved the 
highest usage of photovoltaic and wind power during daytime 
hours, maximizing the use of renewable energy and reducing 
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Fig 7 Comparison of algorithm convergence and optimization scheduling capabilities 
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dependence on traditional sources. Energy storage was 
concentrated between 22:00 and 4:00, and released during 
daytime low-demand periods. In contrast, the SSA-GA model 
had a lower proportion of photovoltaic and wind power, 
indicating a more conservative renewable energy scheduling 
strategy. The NSGA-II-DE model showed large fluctuations in 
energy storage charging and discharging, reflecting poor 

scheduling stability. In summary, the PSO-SA-IMOGWO model 
more efficiently coordinated multi-energy complementarity, 
achieving better carbon reduction and energy savings. To 
evaluate the performance of PSO-SA-IMOGWO in multi-
objective optimization, the four models were tested for their 
ability to balance energy consumption and cost. The results are 
shown in Figure 10. 

In Figure 10, the PSO-SA-IMOGWO model achieved the 
best balance between energy consumption and cost. Its overall 
curve was closest to the coordinate origin. When the energy 
consumption target was 10,500 yuan, the cost was 9500 yuan. 
When the energy consumption target increased to 15,000 yuan, 
the cost decreased to 8100 yuan. In contrast, SSA-GA and 
NSGA-II-DE had more scattered distributions, and showed 
cases where energy consumption was reduced but cost 
increased. The PSO-SA-IMOGWO model performed better in 
building multi-objective energy-efficient scheduling because 
MOGWO effectively balanced objectives such as energy 
consumption, cost, and comfort. In conclusion, PSO-SA-
IMOGWO simultaneously reduced energy use and controlled 
cost, demonstrating excellent performance. To further evaluate 
the dynamic scheduling ability of the PSO-SA-IMOGWO model, 
the study conducted low-carbon and economic cost tests in 
comparison with the other models. The results are shown in 
Figure 11. 

As shown in Figure 11, within the 24-hour period, the PSO-
SA-IMOGWO model consistently achieved the lowest minimum 
cost at each time point and maintained relatively low carbon 
emissions. When the minimum carbon emission was 21 kg, the 
minimum cost was 4500 yuan. The ISBO-RBF and NSGA-II-DE 
models had higher minimum costs over long periods, and their 
curves were more scattered. The SSA-GA model showed the 
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Fig 9 Comparison of scheduling optimization 
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highest minimum cost and did not perform well in reducing 
carbon emissions. In summary, the PSO-SA-IMOGWO model 
successfully balanced the economic and low-carbon 
requirements of building energy scheduling. 

5. Discussion 

This study study proposes an efficient scheduling 
method based on MOGWO and establishes a multi-objective 
optimization model considering building energy consumption, 
indoor comfort, and operational cost. This model integrated a 
building load forecasting module and equipment constraints. 
The MOGWO algorithm was improved by introducing PSO and 
SA, which enhanced convergence speed and solution diversity 
in multi-objective spaces. In addition, a CA-optimized ResNet-
LSTM was used to support building load prediction, enabling 
multi-objective optimization for energy saving. The results 
showed that PSO-SA-MOGWO improved convergence speed 
by 42.86% compared with SSA-GA, produced more evenly 
distributed solutions, and required only 89 MB of memory. For 
large buildings, the memory usage was 673 MB. In the Pecan 
Street dataset, the response time was only 12 s. In addition, on 
the larger Honda dataset, the memory usage is 673 MB, still 
maintaining high computational efficiency. Compared with 
existing research, this study has shown significant progress in 
method fusion and actual scheduling effectiveness. For example, 
the multi-level optimization strategy proposed by Tang et al. 
(2022) has a high complexity and does not deeply integrate the 
prediction module. Zhang et al. (2024) designed a two-stage 
robust optimization model for managing an electricity-heat-gas-
cooling system, which effectively enhanced the renewable 
energy consumption capacity. However, its solution process 
typically involves a heavy computational burden. Li et al. (2022) 
constructed an active distribution network energy management 
model based on detailed building thermodynamics and human 
activity patterns, but did not conduct in-depth optimization in 
terms of algorithm convergence speed and computational 
resource efficiency. The PSO-SA-MOGWO model proposed in 
this study achieves finer flexibility scheduling while maintaining 
lower complexity through algorithm mixing and prediction 
scheduling closed loop. The quality flow model established by 
Zheng et al. (2023) has limitations in handling multi-objective 

collaboration and dynamic adaptability. In contrast, this study 
introduces CA ResNet LSTM for load and renewable energy 
output prediction and combines multi-objective optimization to 
dynamically adjust scheduling strategies, enhancing the 
adaptability to energy randomness and achieving a better 
balance between economic and low-carbon goals. 

The theoretical contribution of this study is mainly 
reflected in the proposal of a multi algorithm collaborative 
hybrid optimization architecture and a prediction scheduling 
integrated modeling framework, which effectively solves the 
problems of multi-objective conflicts and dynamic system 
adaptability, providing theoretical support for dynamic 
scheduling. Through algorithm innovation and model 
integration, this study provides a new methodology for the 
transformation from single objective optimization to multi-
objective collaborative scheduling in the field of building energy 
dispatch, promoting the development of intelligent building 
energy management theory. The proposed PSO-SA-IMOGWO 
model has broad application prospects in fields such as 
intelligent building energy management and regional multi 
energy collaborative scheduling. In practical applications, the 
model can be embedded in building energy management 
systems or regional energy coordination platforms, but 
parameter calibration needs to be carried out based on specific 
building types, equipment characteristics, and local energy 
policies, and interface integration with existing monitoring and 
control systems needs to be considered. In addition, the model 
is sensitive to the quality of input data, and corresponding data 
cleaning and anomaly detection modules need to be equipped 
in actual deployment. 

6. Conclusion 

Overall, the proposed PSO-SA-IMOGWO model effectively 
coordinates multiple objectives such as economic cost and 
energy efficiency, and has significant advantages in energy-
saving effect, response speed, and computational efficiency, 
providing a reliable technical foundation for real-time energy 
scheduling in intelligent buildings. However, the adaptability of 
the model under extreme weather conditions is still insufficient, 
and the handling of the randomness of renewable energy is 
relatively simplified. Therefore, future work should introduce 
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robust optimization mechanisms to further enhance the stability 
of the model in extreme scenarios, and combine stochastic 
programming theory to improve the modeling of wind and solar 
power output uncertainty. 
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