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Abstract. Accurate wind speed forecasts are critical for integrating wind energy into power grids, reducing imbalance costs in electricity markets,
and optimizing wind farm operations. Day-ahead forecasts are typically generated using numerical weather prediction (NWP) models. This work
proposes a hybrid model for 24-hour wind speed forecasting, which combines the Weather Research and Forecasting (WRF) model with the Seasonal
Autoregressive Integrated Moving Average (SARIMA) model. The proposed model improves the accuracy of the WRF wind speed forecast through
the SARIMA technique by identifying significant autocorrelations in the forecast errors. The study was conducted in La Ventosa, Mexico, a region
with significant development in the wind power sector. Wind speed data measured at heights of 17.5 m and 40 m were used during periods of low
and high wind speeds. The model’s performance was evaluated using the metrics mean absolute error (MAE), mean square error (MSE), and root
mean square error (RMSE). The results showed that the hybrid WRF-SARIMA model outperformed the WRF model. Forecast errors for MAE were
reduced between 29% and 45%, for MSE between 40% and 67%, and for RSME between 22% and 43%. The WRF-SARIMA leverages the benefits of
physical NWP models while incorporating the interpretability and reduced computational cost of traditional statistical models. In this way, the
proposed model improves wind speed forecast accuracy, especially in the operational contexts of wind energy management.
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1. Introduction Wind speed forecasting models can be divided into two

broad categories: statistical methods, which analyze historical
data to generate forecasts, and physical methods, which derive
forecasts from numerical weather prediction models. In recent
years, the literature has shown a predominance of hybrid
models over single models, indicating that combining multiple
forecasting techniques can significantly improve accuracy
(Makridakis, 1989). Hybrid models encompass various
combinations of different statistical methods, as well as
combinations of a physical model with statistical techniques.
Statistical forecasting models include autoregressive moving
average models (Aasim et al.,, 2019; Tian et al, 2020; Zhang et
al, 2020; Hu et al, 2021), neural networks (Sun et al.,, 2022;
Zhang et al., 2020), long short-term memory (Lawal et al., 2021;
Tyass et al, 2023), and deep learning (Zhang et al., 2024). In
addition, techniques such as signal decomposition (Liu et al,
2021; Moreno etal., 2021; Wang et al., 2021; Li et al., 2022), error
correction (Ding et al, 2022; Duan et al, 2021; Wang et al,
2018), and optimization (Liu et al, 2020; Liu et al.,, 2024) are
considered. Statistical models typically focus on the short and
very short-term forecasts. However, they can also release the
24-hour wind speed forecast, for example, using models based
on deep learning (Moreno et al., 2024; Hong et al., 2024; Thu et
al., 2023) or traditional statistical methods (Liu et al., 2021; Costa
et al, 2021). Regarding the SARIMA model, Liu et al. (2021)

Throughout history, the availability of energy has constrained
technological development and human activities. Economic and
technological growth lead to increased energy consumption
(Hagens, 2020). The current energy demand, along with the
adverse effects of fossil fuels, have contributed to the growth of
wind energy. In 2024, 117 GW of new wind power capacity was
connected to power grids globally, bringing the total installed
wind capacity to 1136 GW (Zhao, 2025). In Mexico, wind power
generation in 2023 reached 20,700 GWh, accounting for 5.97%
of total electricity generation, nearly double the 2017 figure of
10,456 GWh (Secretaria de Energia [SENER], 2024).

Power system operators must maintain a balance between
energy demand and generation. The variable nature of wind
poses a challenge for operators, particularly as the share of wind
power in the grid increases. Wind speed forecast has proven to
be a valuable and reliable tool for addressing this issue.

Wind speed forecasts cover various time horizons: 1)
forecast of seconds or minutes for unit maintenance and control,
2) 1 to 6 hours for the operation of small power systems, 3) 1 to
72 hours for the operation of interconnected power systems,
and 4) 1 to 7 days for maintenance planning (El-Fouly et al,
2008). The 24-hour forecasts are fundamental due to their
connection to electricity markets and their support for decision-
making in power systems.
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demonstrated that a 24-hour SARIMA model could outperform
the long short-term memory and gated recurrent unit models.
These studies indicate that statistical models can be effective for
24-hour forecasts.

Day-ahead forecasts, important for electricity markets, are
primarily produced by physical models, also known as
numerical weather prediction (NWP) models, which
numerically solve the equations for the conservation of mass,
energy, and momentum that describe atmospheric processes.
Different physical models have been used for wind speed
forecasting, including the European Centre for Medium-Range
Weather Forecasts (ECMWF) (Zhang et al., 2023; Yang et al.,
2023), High-Resolution Rapid Refresh (HRRR) (Myers et al,
2024), China Meteorological Administration mesoscale model
(CMA-MESO) (Liu et al, 2024), and the most widely used,
Weather Research and Forecasting (WRF) model (Zhao et al.,
2021).

The WRF model is a limited-area model that utilizes initial
and boundary conditions from global models. The model’s
physical parameterizations can be adjusted to accurately
represent the regional characteristics of the simulation domain.
For wind speed simulation at low altitudes, the Planetary
Boundary Layer (PBL) parameter has proven to be the most
sensitive (Jacondino et al., 2021; Mi et al., 2023). Various PBL
schemes have been tested to enhance wind speed forecast
(Yang et al., 2023; Dzebre et al, 2020). NWP models have
limitations; for instance, wind speeds derived from numerical
simulations are particularly biased close to the surface.
Additionally, truncations in the integration processes,
simplifications of atmospheric processes, and inaccuracies in
initial and boundary conditions, contribute to greater forecast
errors (Al-Yahyai et al., 2010). To overcome this problem, hybrid
models that use statistical methods to correct forecast errors
have been proposed. Chen et al. (2019) propose a linear
regression method to correct the forecast bias of a WRF
ensemble. Tsai et al. (2021) use the decaying average algorithm
to adjust a wind speed forecast made with a WRF ensemble. Xu
et al. (2021) employ a long short-term memory model to correct
wind speed forecast errors obtained with a WRF model. Liu et
al. (2023) and Zhao et al. (2024) use temporal convolutional
networks and long short-term memory models to reduce
forecast errors from a WRF model. Wang et al. (2019) apply five
models: linear regression, support vector machine, back-
propagation neural network, random forest, and radial basis
function neural network as a strategy to correct the wind speed
forecast errors of an NWP model. These investigations
demonstrate that using statistical models as an error correction
strategy effectively improves the wind speed forecasts of
physical models. However, many of these approaches lack
interpretability and require extensive training data, and do not
prioritize forecast error analysis as a fundamental component of
the error correction process. It is not sufficient to provide the
statistical model with enough data to obtain accurate
predictions; it is necessary to evaluate whether the data can be
interpreted and predicted by the model.

In contrast to machine learning-based models, SARIMA
models do not require large amounts of data to train the models,
achieving comparable improvements with reduced
computational complexity. A SARIMA-based approach
provides an explicit, robust methodology for analyzing trends
and seasonal components of data, an important aspect in the
energy sector where more interpretability is required. They
possess a solid mathematical foundation and, in the case of
univariate small data sets, they prevail over the machine
learning ones (Kontopoulou et al, 2023), even for 24-hour
forecasts (Liu et al., 2021)
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Every approach has different strengths and weaknesses
depending on the specific application and the characteristics of
the dataset (Iaousse et al, 2023). The advantages of SARIMA
models are: 1) smaller data sets, 2) interpretability, 3) solid
mathematical foundation, and 4) lower computational cost. The
disadvantage is the model's linearity, but, as has been found, this
does not limit its ability to predict complex and oscillatory
patterns.

This study proposes a WRF-SARIMA model for 24-hour-
ahead wind speed forecasts. The main contribution is the
implementation of an error-correction strategy using an
interpretable, automatable approach, validated under real-
world conditions. Initially, the focus is on identifying sequential
dependencies or remaining patterns in the forecast errors
generated from the on-site measurements and the WRF model.
Due to the characteristics of the datasets available for this study,
it is concluded that the SARIMA technique is the best option for
modeling the identified patterns in the forecast errors. Time
series with seasonal and trend components can be effectively
analyzed using SARIMA models. These models are generally
faster and easier to implement than more complex alternatives,
such as machine learning-based approaches. The SARIMA
models are used to predict forecast errors and incorporate them
into the final forecast.

To assess the accuracy of the proposed WRF-SARIMA
model, its performance was compared with that of the
standalone WRF model using mean absolute error (MAE), mean
square error (MSE), and root mean square error (RMSE) as
evaluation metrics.

The remainder of this paper is organized as follows: Section
2 presents the available data and details of the WRF simulations.
Section 3 describes the methodology of the proposed model.
Section 4 covers the results and discussions, while Section 5
presents the conclusions.

2. Available data
2.1 Study area and in-situ measurement data

This study was conducted in La Ventosa, Oaxaca (16°32'40.8"N,
94°57'09.0"W), an open terrain with a high level of turbulence
(Lopez, 2018), which is located in southeastern Mexico on the
Isthmus of Tehuantepec (Figure 1). This region has shown
significant development in the wind power sector due to strong
winds. These winds, known as nortes or tehuanos, result from
atmospheric conditions and local topography. The pressure
difference between the Gulf of Mexico and the Gulf of
Tehuantepec generates strong northerly winds that flow
through a mountain gap (Romero, 2003).

Wind speed data (Figure 2) were collected at heights of
17.5 m and 40 m above the ground using a Gill WindMaster 3D
ultrasonic anemometer mounted on a lattice mast, with
measurements taken at a frequency of 1 Hz. The original

ﬁ""‘r

La Ventosa & ”_

Fig 1. Location of La Ventosa, Oaxaca, Mexico. A region with a
high level of turbulence and strong winds.
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Wind Speed: January 20 to December 12, 2018
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Fig 2. Wind speed time series measured at heights of 17.5 m and 40 m, in La Ventosa, from January 20 to
December 12, 2018.

Table 1
Average wind speed in La Ventosa
Season Wind speed Wind speed
at 40 m (m/s) at 17.5m (m/s)
Spring 6.34 5.48
Summer 7.10 6.16
Autumm 8.29 7.11
Winter 9.67 8.46
Mean 7.66 6.64
Maximum 28.41 25.54
Standard deviation 4.43 3.98

measurement period spanned from January 20 to December 12,
2018, with a temporal resolution of 1 second. For this work, the
data were averaged hourly, resulting in 7848 values.

Maximum wind speed was observed during the autumn
and winter seasons. Table 1 shows the seasonal and annual
average, the maximum value, and the standard deviation of
wind speed, estimated from the measured data. The estimated
average wind speed in winter was 9.67 m/s at the height of 40
m and 8.46 m/s at the height of 17.5 m. In autumn, the average
was 8.29 m/s at the height of 40 m and 7.11 m/s at the height
of 17.5 m. The annual average wind speed was 7.66 m/s at the
height of 40 m and 6.64 m/s at the height of 17.5 m. Figure 3
shows that a Weibull distribution model fits the measured wind
speed data at heights of 17.5 m and 40 m.

2.2 WRF simulations

The WRF model is a system developed for research and
numerical weather predictions. It has two modules: the WRF
Pre-processing System (WPS) and the Advanced Research WRF
(ARW). The ARW core uses a non-hydrostatic approximation
with an Arakawa staggered C-grid and vertical coordinates that
follow the terrain topography near the surface. Numerical
simulations were conducted to forecast wind speed data for
June 2018 and for November 13 to December 12, 2018. The
outputs utilized in this study were provided by the Ocean-
Atmosphere Interaction Group (Grupo Interaccién Océano-
Atmosfera [IOA], 2025) of the Institute of Atmospheric Sciences
and Climate Change (Instituto de Ciencias de la Atmoésfera y
Cambio Climatico [ICAyCC], 2025) at the National Autonomous
University of Mexico. The IOA group has investigated the WRF
model's sensitivity to various initial and boundary conditions
(Jurado, 2017) and has incorporated accurate land-use and
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Fig 3. Probability distribution of measured wind speed in La
Ventosa, showing the fit to a Weibull distribution for both 17.5 m
and 40 m heights.

vegetation data to enhance weather forecast accuracy (Rivera-
Martinez, 2018; Lopez-Espinoza et al., 2020).

The WRF simulations were conducted using version 3.9,
with a domain covering the entire Mexican territory, ranging
from 4.12° N to 38.42° N and from 74.87° W to 123.36° W, with
a horizontal resolution of 15 km, 338 x 262 grid points, 50
vertical levels, and an hourly temporal resolution. The initial and
boundary conditions come from the Global Forecast System
Model (GFS) database at a horizontal resolution of 0.25°,
beginning at 00:00 Universal Time Coordinated (UTC). Table 2
shows the physical parameterization schemes used by the WRF
model. The forecast is updated daily.

The first six hours of simulation with the WRF model were
discarded due to spin-up, while retaining the subsequent 24
hours to capture a diurnal cycle (local time) of the wind speed.
Figure 4 shows the bilinear interpolation performed to obtain
the wind speed values at the site of interest, using the four
nearest WRF grid points ws;; to the measurement site ws.
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Table 2
WREF physics parameterization schemes

Physics options

Microphysics Scheme WRF  Single-moment 3-class
Scheme

Planetary Boundary  Yonsei University Scheme (YSU)

Layer

Cumulus Kain—Fritsch Scheme

Parameterization

Dudhia scheme
RRTM scheme

Shortwave radiation
Longwave radiation

Land Surface Unified Noah Land Surface Model
y2
ws12 ws22
ws(, y)
y
wsi wsy1
Y1

&y % 2

Fig 4. Schematic of the bilinear interpolation used to derive the
WRF wind speed at the exact mast location from the four nearest
grid points.

WS11 W512] [yz -y

y - }’1] M

[x—x, % — x] [w521 WSy

1
ws(x,y) = (=1 V=)

where ws;; = WS(inYj)-

3. Methodology
3.1 SARIMA model

The ARMA models combine autoregressive (AR) and moving
average (MA) schemes. They are widely used for wind speed
forecasting due to their robustness and easy application. A time
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series Y; is modeled as a combination of past values Y;_; and
past errors e;_j

Vi=c+¢rYe g+ -+ Yo +e—0re g — - — ey (2)

The SARIMA models are employed when the time series
exhibits seasonal patterns. Non-seasonal variables are
represented by p,d, q, and seasonal variables by P,D,Q. The
general expression for the SARIMA(p,d, q)(P, D, Q)s model is
given as:

(1—¢1B—&..— $,BP)(1 — ®,B% — - — ®pB")(1 — B)4(1 — BS)PY,
=(1-6,B—-—0,B7)(1-0,B%—-—0,B%)e, 3)
where  ¢; = ith non-seasonal autoregressive parameter,

0; = jth non-seasonal moving average parameter,
&, = mth seasonal autoregressive parameter,
0,, = nth seasonal moving average parameter,
d = number of non-seasonal differences,
D = number of seasonal differences,
e; = the error term at time ¢,
s = number of periods per season.

such that BYt = Yt—l and Bet = €t_1.

The simple exponential smoothing (SES) model prediction
equation is mathematically equivalent to an ARIMA(0,1,1) model
without the constant term. Similarly, Holt's forecast method is
comparable to an ARIMA(0,2,2) model. George Box and Gwilym
Jenkins developed the most popular modeling strategy, the
Box-Jenkins methodology (Makridakis, 2008).

3.2 Hybrid WRF-SARIMA model

This study develops a multi-step wind speed forecasting model
that combines the WRF wind speed forecast with SARIMA
models. The proposed methodology, shown in Figure 5,
consists of five stages: collecting wind speed time series,
analyzing forecasting errors, modeling and forecasting using
SARIMA, combining the wind speed forecasts obtained with the
WRF and SARIMA models, and evaluating the final proposed
model. Each stage is elaborated in detail in the following
subsections. Figure 6 illustrates the flowchart for the proposed
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Fig 5. Diagram of the proposed hybrid WRF-SARIMA methodology, showing the five main stages: data
acquisition, error analysis, modeling, forecast combination, and model evaluation.
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Fig 6. Detailed flowchart of the WRF-SARIMA model, illustrating
the sequence from data input to the final forecast.

WRF-SARIMA model. A consideration was selecting steps that
could be automated to enable effective real-world deployment.

3.2.1 Stage I. Wind speed time series

This stage includes the pre-processing steps that ensure that the
mast-measured wind speed time series, denoted by O;, and the
WRF wind speed time series, denoted by W,, have the same
temporal resolution covering the same period of time and
location. The forecast error time series, denoted by N, is
defined as the difference between time series O, and W,:

Ny =0, —-W, (4)

Consequently, the time series N, has the same temporal
resolution covering an identical period and location as the time
series O, and W,.

3.2.2 Stage II. Forecast errors analysis

It includes the statistical tests performed on the forecast error
time series N, to determine whether it exhibits serial correlation
and, therefore, whether the time series is predictable. Analyzing
the correlation properties of the time series N, is crucial for
determining the feasibility of predicting forecast errors. The
autocorrelation function (ACF) quantifies the relationship
between values in a time series and helps to identify cyclical and
seasonal patterns. The ACF is the set of autocorrelation
coefficients 7y, at lag k.

I Lies1(Ni = N)(Ni—y — N)
k= YL (N - N)?

)

If autocorrelation values are found outside the range of critical
values, it indicates that the time series N, exhibits linear
correlations.

Additional tests, such as the von Neumann ratio of the
mean-square-successive difference test, the Ljung-Box test, and
heteroskedasticity graphs, are used to support or reject the
hypothesis of serial correlation in the time series.
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3.2.3 Stage III. SARIMA modeling and forecasting

Once the series N; has been found to be predictable based on
previous tests, the time series is modeled and forecasted using
SARIMA models, a robust technique with a clear methodology
and an explicit explanation of how the models operate.

The algorithmic process proposed in this study is a
variation of that proposed by Box-Jenkins (Makridakis et al.,
2008), incorporating additional conditions. The methodology is
divided into four steps: Stationarity, Examination of ACF and
PACF, Model selection, and Forecasting. The values predicted
by the SARIMA(p,d, q)(P,D, Q),4 model are saved for use in
the next stage.

3.2.4 Stage IV. Combination of forecasts

W, denotes the 24-hour WRF wind speed forecast. Then, N, and
W, are both time series corresponding to hourly 24-hour
forecasts, and each consists of 24 elements. These values serve
as inputs to the new hybrid model H,, defined as:

H. =W, +N, (6)

The time series H, represents the 24-step ahead wind speed
forecast generated by the hybrid WRF-SARIMA model. This
series contains 24 elements and combines the WRF model's
wind speed forecast with the SARIMA model's predicted
forecast error. It is important to note that this methodology is
fully automatable, making its operational implementation much
easier.

3.2.5 Stage IV. Model evaluation

The performance of the proposed model is evaluated using the
metrics of bias, mean absolute error (MAE), mean squared error
(MSE), and root mean squared error (RMSE).

The time series 0, represents in-situ measurements
corresponding to the same time period as W, and N,.

Let ey = Ot - Wt and & = Ot - Ht then:

e, = &+ N, (7)

If &, and N, have the same sign (g,N; > 0), then:

leel < legl (8)
That is, the residuals & of the hybrid model are smaller in
magnitude than those e; of the WRF model under certain
conditions. The performance of the hybrid WRF-SARIMA
model is compared to that of the WRF model and two other
hybrid models: WRF-Simple Exponential Smoothing (WRF-
SES) and WRF-Holt’s Method (WRF-Holt).

3.3 Evaluation criteria

The accuracy measures used to evaluate the model's
performance include bias, mean absolute error (MAE), mean
squared error (MSE), and root mean squared error (RMSE).

BIAS = -3 e 9)
Mean absolute error (MAE)
MAE = =31 |e,] (10)
Mean squared error (MSE)
MSE = -3, e? (11)

Root mean squared error (RMSE)
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Fig 7. Comparison of wind speed time series: mast measurements vs. WRF model simulations.
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Fig 8. Time series of forecast errors for all four experiments,
showing the discrepancy between the WRF simulations and the
mast measurements.

RMSE = [-37, e? (12)
The residual e; is defined as:
e, =0, —F, (13)

where O, denotes the in-situ wind speed measurements for a
period ¢, F; the forecasted wind speed from various models for
the same period ¢, and 7 the total number of elements.

Bias refers to whether a model's forecast tends to underestimate
or overestimate. An overestimated forecast predicts a
nonexistent wind resource, while an underestimation overlooks
valuable wind resources. MAE and MSE assess the magnitude
of forecast residuals, while RMSE measures their spread,
placing more weight on larger residuals than on smaller ones.

4. Results and discussions

Four experiments were conducted to apply the proposed
model. Experiment I took place from June 1 to 29, 2018, at a
height of 40 meters. Experiment II spanned from November 12

to December 10, 2018, at 40 meters. Experiment III covered
June 1 to 29, 2018, but at a height of 17.5 meters. Experiment
IV was performed from November 12 to December 10, 2018, at
17.5 meters. Each experiment lasted 30 days at hourly temporal
resolution, resulting in 720 values, excluding a 24-hour period
for the forecast test.

Figure 7 illustrates the wind speed time series obtained
from the mast measurements and the WRF simulations for the
four experiments. Lower wind speeds characterized
Experiments I and III, while higher wind speeds characterized
Experiments II and IV.

4.1 Forecast errors analysis

Figure 8 shows the time series N; of the wind speed forecast
errors for the four experiments. Following the methodology, the
time series N, is calculated as the difference between the mast
measurements O, and the WRF simulations W;.

Nl' = Ot - (14)

In Experiment I, the time series N, exhibited a minimum value
of -7.40 m/s and a maximum value of 4.44 m/s. In Experiment
II, the minimum value was -11.83 m/s, while the maximum
reached 8.12 m/s. For Experiment III, the minimum value was
-5.98 m/s, and the maximum was 4.67 m/s. Lastly, in
Experiment IV, the minimum value was -9.35 m/s, whereas the
maximum was 7.09 m/s.

Initially, it was determined whether the forecast was
overestimated or underestimated by calculating the mean of the
time series N or bias, and the standard deviation ¢. The results
in Table 3 indicated negative bias values, meaning the WRF
model overestimated wind speed forecasts. The standard

Table 3
Mean and standard deviation of forecast errors

Time series Bias Std. Dev. o z-Statistic
Experiment I -1.19 2.06 -15.17
Experiment II -1.80 2.78 -17.09
Experiment III -0.91 1.70 -14.10
Experiment IV -1.09 2.44 -11.78
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Fig 9. Histogram and Q-Q plot to verify the normality of the
forecast errors.

deviation for the experiments was: +2.06 m/s for Experiment I,
+2.78 m/s for Experiment II, +1.70 m/s for Experiment III, and
+2.44 m/s for Experiment IV.

A z-test was conducted to determine whether the mean N
is statistically different from zero. Before performing the z-test,
normality tests were conducted on the time series. The results
indicated that at a significance level of « = 0.05, the data were
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Fig 10. Autocorrelation function (ACF) of the time series of
forecast errors, revealing significant correlations at multiple lags,
including a seasonal pattern at lag 24 (diurnal cycle).
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Table 4
Values of autocorrelation of the forecast errors for Experiment I

Experiment I

r1=0.78 rs=-0.01 r15=-0.05 r2=0.21
r2=0.60 r9=-0.06 rie=-0.01 r23=0.21
r3=0.45 rio=-0.07 ri7=0.03 r2a=0.21
rs=0.32 ri1=-0.05 ris=0.10 r25=10.18
rs=0.19 ri2=-0.04 riv=0.16 r26=0.15
re=0.10 ri3=-0.05 r20=0.19 r27=0.11
r7=0.05 ri4=-0.06 r21=0.21 128 = 0.07

normally distributed in the four experiments. Figure 9 shows the
Q-Q plots. Also, in Figure 9, a normal density function was fitted
to the histograms of the four experiments.

The z-score for a significance level of a = 0.05 is z=1.96.
Since the calculated z-scores for the experiments are much
lower than z=1.96, the null hypothesis is rejected, indicating that
the mean forecast error for the four experiments is statistically
different from zero. Next, an analysis of sequential
dependencies was performed to verify whether the time series
of forecast errors met the condition of predictability. The
autocorrelations 1, were determined for the first 28 lags. The
critical values interval was: +1.96/4/696 = +0.0743.

The ACF plots, shown in Figure 10, indicate the following
results for each experiment: Experiment I, the autocorrelations
11, ., Te, Tig -, V27 fall outside the interval of the critical values;
in Experiment II, the autocorrelations 1y, ..., 1,g fall outside the
interval of the critical values; in Experiment III the
autocorrelations 1y, ...,75, T19,..,727 also fall outside the
interval of the critical values; in Experiment IV, the
autocorrelations 7y, ..., 1, also fall outside the interval of the
critical values. From the ACF plots, the value r,, is significant in
each experiment, exhibiting seasonal patterns over a 24-hour
period. Table 4 shows the autocorrelation values for experiment
L

A von Neumann ratio of the mean-square-successive difference
test was computed to verify the presence of serial correlation in
consecutive values. The z-score for a significance level of a =
0.05is z=1.96. In Experiment I, a value z=20.70 and a coefficient
VN= 0.43 were obtained; in Experiment II, a value z=23.22 and
a coefficient VN= 0.24 were obtained; in Experiment III, a value
z=20.91 and a coefficient VN= 0.42 were obtained; in
Experiment IV, a value z=23.47 and a coefficient VN= 0.22 were
obtained. In all four experiments, the null hypothesis was
rejected in favor of the alternative, indicating the presence of
serial correlation at lag 1 in the time series. The p-values from
the Ljung-Box test for a lag of h=24 allowed rejection of the null
hypothesis in all four experiments. This supports the alternative
hypothesis, which indicates that the time series of forecast
errors is not independently distributed and exhibits correlations.
Additionally, the plots in Figure 12 of the standardized errors
against the WRF predicted values clearly illustrate a pattern in
the dispersion of the errors.

These results conclude that the time series N, for each of the
four experiments satisfies the condition of being predictable.
Therefore, it is plausible to model and forecast the time series.

4.2 SARIMA modeling and forecasting

Figure 11 illustrates the flowchart for modeling and 24-hour
forecasting for the time series using the
SARIMA(p,d,q)(P,D,Q),, models. The methodology is
divided into four steps:

1. Stationarity: Use the Augmented Dickey-Fuller test to verify
whether the series N, is stationary. Calculate the difference
Ny — N;_, for a no-stationarity time series; from here, the
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Fig 11. SARIMA modeling and forecasting flowchart. The steps to select the best-fitting model for predicting errors.
value for d is obtained. A seasonal difference Ny — N;_,, is
calculated for a seasonal non-stationary time series, Table 5 o ]
obtaining the value of D. A maximum of two differences is The 20 best-fitting SARIMA models for Experiment |
recommended. Model AICc_ Sum Model AICc Sum
2. Examination of ACF and PACF: Autocorrelation coefficients SARIMA(1,0,5)(1,0,2)2« 2110 9  SARIMA(2,0,4)(0,0,2).s 2118 8
(ACF) and partial autocorrelation coefficients (PACF) are SARIMA(1,0,5)(2,0,2).s 2112 10  SARIMA(0,0,4)(1,0,2)s 2121 7
calculated to identify potential SARIMA(p,d,q)(P,D, Q)4 SARIMA(0,0,5)(1,0,2).« 2112 8  SARIMA(1,0,3)(1,0,2)s 2121 7
models. The 7, values that fall outside of the interval of 2:?%:8’8’323’8’2“ 2113 8 Ziimigg’zgg’gg“ 2122 8
i - . ,0,6)(0,0,2)24 2113 8 ,0,2)(2,0,2)0 2122 7
critical \{alues +1.96/+/n are a guideline for d.etermmmg the SARIMA(05)2.02he 2114 9  SARIMA0.O4)202 2123 8
appropriate ranges for thg non-seasonal variables p and g, SARIMA(1,0,4)(2,0,2) 2116 9  SARIMA(20,1)20,0): 2123 5
as well as thg seasqnal variables P apd Q. _ SARIMA(1,0,4)(0,0,2).« 2116 7  SARIMA(1,0,2)(1,0,2).s 2124 6
3. Model selection: Given the appropriate ranges, all possible SARIMA(2,0,4)(1,0,2):« 2116 9  SARIMA(1,0,3)(2,0,2)« 2124 8
combinations of the variables p, d, g, P, D, Q are determined. SARIMA(0,0,5)(0,0,2)2¢ 2117 7  SARIMA(0,0,4)(0,0,2):s 2125 6

Each combination is a potential model. The arima function
from the forecast package in R (Hyndman et al., 2008) is
used to estimate the parameters ¢, 8, ®, and O for the
potential models. Using the Corrected Akaike's Information
Criterion (AICc), the 20 best-performing models are
selected. The final SARIMA model is selected according to
the Parsimony principle, favoring the model with fewer
parameters.

4. Forecasting: A 24-step ahead forecast of the time series N,
is performed using the SARIMA model selected in the
previous step. The predicted values are denoted by
N1, N3, ..., N3, Nyy. To ensure that the predicted values N,
are consistent with the time series N, the condition that the
predicted values N, are within the interval [—2¢, +20] must
be satisfied, where ¢ denotes the standard deviation of the
series N,. Given the case where N, € [—20, +20], another
potential model is selected, omitting the model that did not
meet the condition.

The dataset N, consisting of 29 days, was used to train the
ARIMA model for each experiment, followed by an out-of-
sample forecast for the 30th day. The modeling and forecasting
were conducted according to the methodology described
previously.

An Augmented Dickey-Fuller test was performed to
determine the stationarity of the time series for each
experiment. The values of d=0 and D=0 were obtained for
Experiment I, d=1 and D=0 for Experiment II, =0 and D=0 for
Experiment III, d=1 and D=0 for Experiment IV. Since the time
series exhibits a 24-hour seasonal pattern in the four
experiments, a seasonal period of s=24 was determined. To
identify potential SARIMA models, the ACF and partial ACF
were examined. The autocorrelations r;, that fall outside the
critical value interval helped determine the ranges for the

Sum: Sum of variables p, d, ¢, P, D, Q.

variables p, g, P, and Q. In Experiment I, a potential model
search was conducted with the variables p and P ranging from
0 to 6, and g and Q also ranging from 0 to 6. In Experiment II,
the ranges for p and P were from 0 to 9 and from 0 to 9 for g and
Q. In Experiment III, the variables p and P were tested over the
range 0 to 5, and the variables q and Q were tested over the
range 0 to 5. In Experiment IV, the ranges for p and P were 0 to
9, and similarly for q and Q. The AICc was used to determine
the 20 best-fitting SARIMA models for the time series (Table 5);

Experiment | Experiment I

Standardized Error

Forecast Forecast

Experiment Ill Experiment IV

Standardized Error

Forecast Forecast

Fig 12. Heteroscedasticity plots: standardized errors against
forecasted values, illustrating non-random dispersion patterns that
confirm the predictability of the forecast errors.
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Fig 13. Residual autocorrelation plot of the best-fitting SARIMA
model, exhibiting white noise behavior.

among these, the final model was the one with the fewest
parameters, according to the Parsimony principle.

To explore a cost-effective alternative, the auto.arima
function from the forecast package in R (Hyndman et al., 2008)
was tested, yielding satisfactory results. In the function, the
variables p, g, P, and Q are selected by minimizing AlCc;
variables d and D are selected using the KPSS unit test. The
function returns the best-fitting model based on the AICc.

The model selected in Experiment I was SARIMA(2,0,1)(2,0,0)24,
which has the following equation:

N, = 1.58N,_; — 0.64N,_, + 0.06N,_,, — 0.10N,_,5 + 0.04N;_¢
+0.06N,_45 — 0.10N,_4o + 0.04N,_go — 0.77€,_, + €, (15)

In Experiment I, the selected  model  was
SARIMA(0,1,2)(0,0,2)24, which has the following equation:

Ny = N,_; +0.05 €,_; — 0.10 €,_, + 0.09 €,_54 + 0.01 &,_p5
—0.01 €56 + 0.10 €,_45 + 0.01 €,_40 — 0.01 €,_50 + €, (16)

In Experiment 111, the selected model was
SARIMA(3,0,1)(0,0,2)24, which has the following equation:

N; = 1.50N;_; — 0.50N;_, — 0.08N;_3 — 0.71€;_, + 0.07€;_54
—0.05€;_55 + 0.06€;_45 — 0.05€;_49 + €; (17)

And, in Experiment IV, the selected model was
SARIMA(0,1,2)(0,0,2)24, which has the following equation:

Ny =N,_q +0.09 €,_; —0.09 €,_, + 0.10 €,_54 + 0.01 €,_55
—0.01 €;_36 + 0.09 €,_45 + 0.01 €,_40 — 0.01 €,_50 + €; (18)

Figure 13 displays the autocorrelation plots for the best-fitting
SARIMA models. For white noise, about 95% of the
autocorrelation values are expected to fall within the interval
(Makridakis et al., 2008). This indicates that the residuals of the
chosen SARIMA models demonstrate random behavior.
Additionally, Figure S1 presents the residuals of the best-fitting
SARIMA model, along with the autocorrelation plot and
histogram for each experiment. This further confirms that the
residuals exhibit random, or white noise, behavior, thereby
validating the selection of the model.

The chosen model was used to perform a 24-hour forecast
for each experiment. Then, the time series N, contains the 24
forecast values representing the forecast errors predicted by the
SARIMA model. It was also determined whether the forecasted
values N, satisfy the condition N; € [—20,+20]; that is,
whether the predicted values fall within the interval of two
standard deviations of N, in order to ensure that the forecasted
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Fig 14. 24-hour-ahead forecast for the error series using the
selected SARIMA model, including 80% and 95% prediction
intervals.

values N, are consistent with N,. Figure 14 shows the time series
N, and the forecasted values N; with interval predictions at 80%
and 95%, for all four experiments.

4.3 Combination of forecasts

The building of the hybrid model H, was performed using the
equation:

H, =W, +N; te{1,..,24} (19)

where W, denotes the WRF wind speed forecast for the 30th
day, and N; indicates the forecast errors predicted by the
SARIMA model.

Both time series contain 24 values; consequently, H, also
contains 24 values. Therefore, the time series H represents the
24-hour wind speed forecast from the hybrid WRF-SARIMA
model.
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Fig 15. Comparison of 24-hour-ahead wind speed forecasts: mast measurements vs. WRF model vs. hybrid WRF-SARIMA model.

Figure 15 illustrates the wind speed predicted by the
hybrid WRF-SARIMA model, the wind speed predicted by the
WRF model, and the wind speed from the mast measurements.
It is important to note that the proposed methodology can
correct both overestimated WRF forecasts, as observed in
Experiments I and III, and underestimated WRF forecasts, as
seen in Experiments II and IV.

4.4 Model evaluation

The performance of the hybrid WRF-SARIMA model was
compared with two other hybrid models, WRF-SES and WRF-
Holt. The WRF-SES model combines forecasts from the WRF
model with forecast errors predicted by the ARIMA(0,1,1)/SES

Table 6

Error comparisons among forecasting models

Experiment Model Bias MAE MSE RMSE

Experiment WRF -2.22 232 6.97 2.64

I WRF-SARIMA -0.69 1.34 3.53 1.88
WRF-SES 2.56 269 859 293
WRF-Holt 2.65 278 9.02 3.00
% 0% 42% 49%  28%
Improvement

Experiment WRF 199 216 7.75 2.78

I1 WRF-SARIMA 0.60 1.53 4.11 2.03
WRF-SES 091 160 4.65 216
WRF-Holt 088 160 461 215
% 0% 29% 47%  27%
Improvement

Experiment WRF -1.57 159 3.54 1.88

I WRF-SARIMA -0.48 1.02 2.13 1.46
WRF-SES 2.54 259 755 275
WRF-Holt 261 266 293 282
% 69% 36% 40% 22%
Improvement

Experiment WRF 246 251 914  3.02

1A% WRF-SARIMA  0.14 1.38 3.00 1.73
WRF-SES 0.55 1.39 342 1.85
WRF-Holt 0.51 140 341 1.85

0,
4 94% 45% 67% 43%
Improvement

% Improvement: WRF-SARIMA model over the WRF
baseline.

model. Similarly, the WRF-Holt model integrates WRF forecasts
with those generated by the ARIMA(0,2,2)/Holt method. The
error metrics for each model are presented in Table 6.

The error metrics indicated that the hybrid WRF-SARIMA
model outperformed the WRF, WRF-SES, and WRF-Holt
models across the four experiments. In Experiment I, the hybrid
WRF-SARIMA model demonstrated 42% improvement over the
WRF model for the MAE metric, 49% for the MSE, and 28% for
the RMSE. In Experiment II, the WRF-SARIMA model showed
29% improvement in MAE, 47% in MSE, and 27% in RMSE
compared to the WRF model. In Experiment III, the WRF-
SARIMA model demonstrated 36% improvement in MAE, 40%
in MSE, and 22% in RMSE compared with the WRF model.
Finally, in Experiment IV, the WRF-SARIMA model achieved
45% improvement in MAE, 67% in MSE, and 43% in RMSE over
the WRF model. The improvement percentages of the WRF-
SARIMA model over the WRF baseline are also shown in Table
6.

Let e; be the residuals of the WRF model and ¢; be the
residuals of the hybrid WRF-SARIMA model. The comparison
of both residuals, illustrated in Figure 16, indicates that the

Experiment | Experiment ||

Wind Speed (mis)

Wind Spesd (mis)

Experiment Ill Experiment IV

Wind Speed (m's)
Wind Speed (mis)

Time (hs) Time (hvs}

Fig 16. Forecast residual comparisons between the WRF and
WRF-SARIMA models, demonstrating the improvement in
accuracy.
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residuals ¢; have a lower absolute magnitude than the residuals
e

lec] < lexl (22)

The results show that the hybrid model reduces forecast error
magnitude, improving wind speed forecast accuracy.

4.5 Discussions

The data presented significant challenges in developing
this study. Due to high investment costs and the private nature
of most wind power developments, obtaining accurate wind
speed measurements above 10 meters is difficult. The data
utilized in this study are derived from various government-
funded projects. The wind speed measurements from La
Ventosa, recorded at heights of 17.5 meters and 40 meters, are
both reliable and of high quality. Unfortunately, we could not
access data from another location with the same quality.
Consequently, the proposed hybrid model was tested
exclusively at this one site.

Regarding the WRF data, we are thankful for the
opportunity to use the outputs of the forecast model developed
by the IOA research group at ICAyCC-UNAM, which is
continuously tested and improved. However, we could test the
model for only two distinct one-month periods due to
limitations in our storage capacity. We selected one month
characterized by high wind speeds and another month with low
wind speeds for the experiments. Given the relatively short
dataset, there is a risk of overfitting. To avoid it, we used the
principle of Parsimony, which favors simple models over
complex ones; paid special attention to the correct identification
of seasonal periods; included the condition that the predicted
values lie within two standard deviations, and checked the
residuals to verify that they were indeed white noise. This
dataset was the minimal tested set for which the SARIMA model
was able to identify seasonal patterns and trends to generate
reliable forecasts. An extended time period would allow the
model to identify patterns in the time series more clearly,
leading to a better model selection. We acknowledge these
limitations; however, we are confident that the robust
methodology employed, along with the positive outcomes
demonstrated during testing at La Ventosa, a site characterized
by complex conditions, strongly indicates that the model can be
effectively replicated in diverse regions and conditions.

The generalization of the proposed model to other sites
relies on the generalization of both the WRF model and the
SARIMA model. The WRF model has been applied and tested
in different locations (Chen et al.,, 2019; Dzebre et al., 2020;
Jacondino et al., 2021; Liu et al., 2023; Tsai et al., 2021; Xu et al.,
2021; Yang et al., 2023; Zhao et al., 2024), whether for wind
speed forecasting or for wind power forecasting, proving to be
a reliable tool for 24-hour forecasts. On the other hand, the
replicability of SARIMA models, according to the proposed
methodology, depends on the availability of wind speed
measurements at the site of interest. We compared the
proposed model's performance with that of other 24-hour wind
speed forecasting models reported in the literature. The
proposed WRF-SARIMA model showed improvements of 29%
to 45% in MAE, and 22% to 43% in RMSE. Xu et al. (2021)
reported improvements of 24% and 31% in MAE, and 27% and
28% in RMSE, using a long short-term memory model to correct
wind speed forecast errors generated with a WRF model. Zhao
et al. (2024) reported improvements of 15% in MSE and 14% in
RMSE by employing temporal convolutional networks and long
short-term memory models to reduce forecast errors from a
WRF model. Wang et al. (2019) reported improvements of 1.7%
to 3.9% in RMSE by combining machine-learning models to
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correct wind speed forecast errors from an NWP model. The
above shows that the improvement percentages of our model
are within the same range as those reported using machine
learning-based models.

The power supplied by the wind turbine is calculated from
wind speed data and the turbine's power curve; thus, accurate
wind speed forecasts lead to accurate wind power generation
forecasts. Improvements in wind speed accuracy are
operationally very valuable to power system operators because
they enable better estimates of available power, allow dispatch
adjustments, and improve grid frequency stability. Also, reduce
imbalance penalties in electricity markets when producers do
not meet their scheduled commitments. It is also important to
recognize that SARIMA models are linear and are, therefore,
effective at identifying linear patterns in time series data.
However, their performance may be limited when faced with
more complex patterns. To address this limitation, future
research could explore combining nonlinear and linear
statistical models as an error-correction strategy rather than
relying solely on SARIMA. Additionally, it is crucial to consider
the computational costs associated with this approach. We have
noticed that the immediately preceding values significantly
affect the forecasts generated by the ARIMA models. As aresult,
the transition point from the training phase to the forecasting
phase is crucial in shaping the forecast trend. For future work, it
would be helpful to identify the optimal starting point for the
forecast to improve the SARIMA model's performance. One
potential approach is to identify change points in the mean,
variance, and trend. Our findings align with existing research on
the benefits of statistical techniques for improving NWP wind-
speed forecasts. The combination of the WRF and SARIMA
models proves to be a viable and effective approach for
improving the accuracy of the WRF wind speed forecast.
Furthermore, we aim to ensure that the proposed methodology
can be automated, facilitating its application in real-time
scenarios. This leads to better integration of wind energy into
power grids, reduced costs for wind farm operators, and
minimized penalties for imbalances.

5. Conclusions

The study presents a hybrid 24-hour wind speed forecasting
model that combines the Weather Research and Forecasting
(WRF) model with the Seasonal Autoregressive Integrated
Moving Average (SARIMA) model. The hybrid approach
demonstrated consistent performance for both low and high
wind speed periods at different heights above the terrain. The
findings indicate that the WRF-SARIMA hybrid model
outperforms the standalone WRF model. Error metrics showed
notable reductions, with a 29% to 44% decrease in MAE, a 39%
to 67% decline in MSE, and 22% to 42% improvement in RMSE.
By analyzing and modeling the structure of forecast errors
through the SARIMA technique, this methodology offers tools
for identifying predictable patterns within these errors, thereby
facilitating forecast corrections. Overall, this approach enhances
the understanding of forecast errors and suggests more effective
adjustments to improve forecast accuracy. The model
represents a promising alternative for wind speed forecasting
due to its automation potential and ease of implementation.
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