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Abstract. Accurate wind speed forecasts are critical for integrating wind energy into power grids, reducing imbalance costs in electricity markets, 
and optimizing wind farm operations. Day-ahead forecasts are typically generated using numerical weather prediction (NWP) models. This work 
proposes a hybrid model for 24-hour wind speed forecasting, which combines the Weather Research and Forecasting (WRF) model with the Seasonal 
Autoregressive Integrated Moving Average (SARIMA) model. The proposed model improves the accuracy of the WRF wind speed forecast through 
the SARIMA technique by identifying significant autocorrelations in the forecast errors. The study was conducted in La Ventosa, Mexico, a region 
with significant development in the wind power sector. Wind speed data measured at heights of 17.5 m and 40 m were used during periods of low 
and high wind speeds. The model’s performance was evaluated using the metrics mean absolute error (MAE), mean square error (MSE), and root 
mean square error (RMSE). The results showed that the hybrid WRF-SARIMA model outperformed the WRF model. Forecast errors for MAE were 
reduced between 29% and 45%, for MSE between 40% and 67%, and for RSME between 22% and 43%. The WRF-SARIMA leverages the benefits of 
physical NWP models while incorporating the interpretability and reduced computational cost of traditional statistical models. In this way, the 
proposed model improves wind speed forecast accuracy, especially in the operational contexts of wind energy management. 
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1. Introduction 

Throughout history, the availability of energy has constrained 
technological development and human activities. Economic and 
technological growth lead to increased energy consumption 
(Hagens, 2020). The current energy demand, along with the 
adverse effects of fossil fuels, have contributed to the growth of 
wind energy. In 2024, 117 GW of new wind power capacity was 
connected to power grids globally, bringing the total installed 
wind capacity to 1136 GW (Zhao, 2025). In Mexico, wind power 
generation in 2023 reached 20,700 GWh, accounting for 5.97% 
of total electricity generation, nearly double the 2017 figure of 
10,456 GWh (Secretaria de Energia [SENER], 2024). 

Power system operators must maintain a balance between 
energy demand and generation. The variable nature of wind 
poses a challenge for operators, particularly as the share of wind 
power in the grid increases. Wind speed forecast has proven to 
be a valuable and reliable tool for addressing this issue. 

Wind speed forecasts cover various time horizons: 1) 
forecast of seconds or minutes for unit maintenance and control, 
2) 1 to 6 hours for the operation of small power systems, 3) 1 to 
72 hours for the operation of interconnected power systems, 
and 4) 1 to 7 days for maintenance planning (El-Fouly et al., 
2008). The 24-hour forecasts are fundamental due to their 
connection to electricity markets and their support for decision-
making in power systems. 
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Wind speed forecasting models can be divided into two 
broad categories: statistical methods, which analyze historical 
data to generate forecasts, and physical methods, which derive 
forecasts from numerical weather prediction models. In recent 
years, the literature has shown a predominance of hybrid 
models over single models, indicating that combining multiple 
forecasting techniques can significantly improve accuracy 
(Makridakis, 1989). Hybrid models encompass various 
combinations of different statistical methods, as well as 
combinations of a physical model with statistical techniques. 
Statistical forecasting models include autoregressive moving 
average models (Aasim et al., 2019; Tian et al., 2020; Zhang et 
al., 2020; Hu et al., 2021), neural networks (Sun et al., 2022; 
Zhang et al., 2020), long short-term memory (Lawal et al., 2021; 
Tyass et al., 2023), and deep learning (Zhang et al., 2024). In 
addition, techniques such as signal decomposition (Liu et al.,  
2021; Moreno et al., 2021; Wang et al., 2021; Li et al., 2022), error 
correction (Ding et al., 2022; Duan et al., 2021; Wang et al., 
2018), and optimization (Liu et al., 2020; Liu et al., 2024) are 
considered. Statistical models typically focus on the short and 
very short-term forecasts. However, they can also release the 
24-hour wind speed forecast, for example, using models based 
on deep learning (Moreno et al., 2024; Hong et al., 2024; Thu et 
al., 2023) or traditional statistical methods (Liu et al., 2021; Costa 
et al., 2021). Regarding the SARIMA model, Liu et al. (2021) 

Research Article 

https://doi.org/10.61435/ijred.2026.61746
https://doi.org/10.61435/ijred.2026.61746
https://ijred.cbiore.id/
http://creativecommons.org/licenses/by-sa/4.0/
mailto:ecadenas@umich.mx
https://orcid.org/0009-0009-4887-4659
https://orcid.org/0000-0002-1553-0042
https://orcid.org/0000-0003-2387-0335
https://orcid.org/0000-0003-3380-2598
http://crossmark.crossref.org/dialog/?doi=10.61435/ijred.2026.61746&domain=pdf


M. Bernabe et al  Int. J. Renew. Energy Dev 2026, 15(1), 76-88 

| 77 

 

ISSN: 2252-4940/© 2026. The Author(s). Published by CBIORE 

demonstrated that a 24-hour SARIMA model could outperform 
the long short-term memory and gated recurrent unit models. 
These studies indicate that statistical models can be effective for 
24-hour forecasts. 

Day-ahead forecasts, important for electricity markets, are 
primarily produced by physical models, also known as 
numerical weather prediction (NWP) models, which 
numerically solve the equations for the conservation of mass, 
energy, and momentum that describe atmospheric processes. 
Different physical models have been used for wind speed 
forecasting, including the European Centre for Medium-Range 
Weather Forecasts (ECMWF) (Zhang et al., 2023; Yang et al., 
2023), High-Resolution Rapid Refresh (HRRR) (Myers et al., 
2024), China Meteorological Administration mesoscale model 
(CMA-MESO) (Liu et al., 2024), and the most widely used, 
Weather Research and Forecasting (WRF) model (Zhao et al., 
2021). 

The WRF model is a limited-area model that utilizes initial 
and boundary conditions from global models. The model’s 
physical parameterizations can be adjusted to accurately 
represent the regional characteristics of the simulation domain. 
For wind speed simulation at low altitudes, the Planetary 
Boundary Layer (PBL) parameter has proven to be the most 
sensitive (Jacondino et al., 2021; Mi et al., 2023). Various PBL 
schemes have been tested to enhance wind speed forecast 
(Yang et al., 2023; Dzebre et al., 2020). NWP models have 
limitations; for instance, wind speeds derived from numerical 
simulations are particularly biased close to the surface. 
Additionally, truncations in the integration processes, 
simplifications of atmospheric processes, and inaccuracies in 
initial and boundary conditions, contribute to greater forecast 
errors (Al-Yahyai et al., 2010). To overcome this problem, hybrid 
models that use statistical methods to correct forecast errors 
have been proposed. Chen et al. (2019) propose a linear 
regression method to correct the forecast bias of a WRF 
ensemble. Tsai et al. (2021) use the decaying average algorithm 
to adjust a wind speed forecast made with a WRF ensemble. Xu 
et al. (2021) employ a long short-term memory model to correct 
wind speed forecast errors obtained with a WRF model. Liu et 
al. (2023) and Zhao et al. (2024) use temporal convolutional 
networks and long short-term memory models to reduce 
forecast errors from a WRF model. Wang et al. (2019) apply five 
models: linear regression, support vector machine, back-
propagation neural network, random forest, and radial basis 
function neural network as a strategy to correct the wind speed 
forecast errors of an NWP model. These investigations 
demonstrate that using statistical models as an error correction 
strategy effectively improves the wind speed forecasts of 
physical models. However, many of these approaches lack 
interpretability and require extensive training data, and do not 
prioritize forecast error analysis as a fundamental component of 
the error correction process. It is not sufficient to provide the 
statistical model with enough data to obtain accurate 
predictions; it is necessary to evaluate whether the data can be 
interpreted and predicted by the model.  

In contrast to machine learning-based models, SARIMA 
models do not require large amounts of data to train the models, 
achieving comparable improvements with reduced 
computational complexity. A SARIMA-based approach 
provides an explicit, robust methodology for analyzing trends 
and seasonal components of data, an important aspect in the 
energy sector where more interpretability is required. They 
possess a solid mathematical foundation and, in the case of 
univariate small data sets, they prevail over the machine 
learning ones (Kontopoulou et al., 2023), even for 24-hour 
forecasts (Liu et al., 2021) 

Every approach has different strengths and weaknesses 
depending on the specific application and the characteristics of 
the dataset (Iaousse et al., 2023). The advantages of SARIMA 
models are: 1) smaller data sets, 2) interpretability, 3) solid 
mathematical foundation, and 4) lower computational cost. The 
disadvantage is the model's linearity, but, as has been found, this 
does not limit its ability to predict complex and oscillatory 
patterns. 

This study proposes a WRF-SARIMA model for 24-hour-
ahead wind speed forecasts. The main contribution is the 
implementation of an error-correction strategy using an 
interpretable, automatable approach, validated under real-
world conditions. Initially, the focus is on identifying sequential 
dependencies or remaining patterns in the forecast errors 
generated from the on-site measurements and the WRF model. 
Due to the characteristics of the datasets available for this study, 
it is concluded that the SARIMA technique is the best option for 
modeling the identified patterns in the forecast errors. Time 
series with seasonal and trend components can be effectively 
analyzed using SARIMA models. These models are generally 
faster and easier to implement than more complex alternatives, 
such as machine learning-based approaches. The SARIMA 
models are used to predict forecast errors and incorporate them 
into the final forecast. 

To assess the accuracy of the proposed WRF-SARIMA 
model, its performance was compared with that of the 
standalone WRF model using mean absolute error (MAE), mean 
square error (MSE), and root mean square error (RMSE) as 
evaluation metrics. 

The remainder of this paper is organized as follows: Section 
2 presents the available data and details of the WRF simulations. 
Section 3 describes the methodology of the proposed model. 
Section 4 covers the results and discussions, while Section 5 
presents the conclusions. 

2.   Available data 

2.1 Study area and in-situ measurement data 

This study was conducted in La Ventosa, Oaxaca (16°32'40.8''N, 
94°57'09.0''W), an open terrain with a high level of turbulence 
(Lopez, 2018), which is located in southeastern Mexico on the 
Isthmus of Tehuantepec (Figure 1). This region has shown 
significant development in the wind power sector due to strong 
winds. These winds, known as nortes or tehuanos, result from 
atmospheric conditions and local topography. The pressure 
difference between the Gulf of Mexico and the Gulf of 
Tehuantepec generates strong northerly winds that flow 
through a mountain gap (Romero, 2003).  

Wind speed data (Figure 2) were collected at heights of 
17.5 m and 40 m above the ground using a Gill WindMaster 3D 
ultrasonic anemometer mounted on a lattice mast, with 
measurements taken at a frequency of 1 Hz. The original 

 

Fig 1. Location of La Ventosa, Oaxaca, Mexico. A region with a 
high level of turbulence and strong winds. 
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measurement period spanned from January 20 to December 12, 
2018, with a temporal resolution of 1 second. For this work, the 
data were averaged hourly, resulting in 7848 values. 

Maximum wind speed was observed during the autumn 
and winter seasons. Table 1 shows the seasonal and annual 
average, the maximum value, and the standard deviation of 
wind speed, estimated from the measured data. The estimated 
average wind speed in winter was 9.67 m/s at the height of 40 
m and 8.46 m/s at the height of 17.5 m. In autumn, the average 
was 8.29 m/s at the height of 40 m and 7.11 m/s at the height 
of 17.5 m. The annual average wind speed was 7.66 m/s at the 
height of 40 m and 6.64 m/s at the height of 17.5 m. Figure 3 
shows that a Weibull distribution model fits the measured wind 
speed data at heights of 17.5 m and 40 m. 

2.2 WRF simulations 

The WRF model is a system developed for research and 
numerical weather predictions. It has two modules: the WRF 
Pre-processing System (WPS) and the Advanced Research WRF 
(ARW). The ARW core uses a non-hydrostatic approximation 
with an Arakawa staggered C-grid and vertical coordinates that 
follow the terrain topography near the surface. Numerical 
simulations were conducted to forecast wind speed data for 
June 2018 and for November 13 to December 12, 2018. The 
outputs utilized in this study were provided by the Ocean-
Atmosphere Interaction Group (Grupo Interacción Océano-
Atmósfera [IOA], 2025) of the Institute of Atmospheric Sciences 
and Climate Change (Instituto de Ciencias de la Atmósfera y 
Cambio Climático [ICAyCC], 2025) at the National Autonomous 
University of Mexico. The IOA group has investigated the WRF 
model's sensitivity to various initial and boundary conditions 
(Jurado, 2017) and has incorporated accurate land-use and 

vegetation data to enhance weather forecast accuracy (Rivera-
Martínez, 2018; López-Espinoza et al., 2020).  

The WRF simulations were conducted using version 3.9, 
with a domain covering the entire Mexican territory, ranging 
from 4.12° N to 38.42° N and from 74.87° W to 123.36° W, with 
a horizontal resolution of 15 km, 338 x 262 grid points, 50 
vertical levels, and an hourly temporal resolution. The initial and 
boundary conditions come from the Global Forecast System 
Model (GFS) database at a horizontal resolution of 0.25°, 
beginning at 00:00 Universal Time Coordinated (UTC). Table 2 
shows the physical parameterization schemes used by the WRF 
model. The forecast is updated daily. 

The first six hours of simulation with the WRF model were 
discarded due to spin-up, while retaining the subsequent 24 
hours to capture a diurnal cycle (local time) of the wind speed. 
Figure 4 shows the bilinear interpolation performed to obtain 
the wind speed values at the site of interest, using the four 
nearest WRF grid points 𝑤𝑠𝑖𝑗 to the measurement site 𝑤𝑠. 

Fig 2. Wind speed time series measured at heights of 17.5 m and 40 m, in La Ventosa, from January 20 to 
December 12, 2018. 

Table 1 
Average wind speed in La Ventosa 

Season 
Wind speed 

at 40 m (m/s) 
Wind speed 

at 17.5 m (m/s) 

Spring 6.34 5.48 
Summer 7.10 6.16 
Autumm 8.29 7.11 
Winter 9.67 8.46 

Mean 7.66 6.64 
Maximum 28.41 25.54 

Standard deviation 4.43 3.98 

 

 

Fig 3. Probability distribution of measured wind speed in La 
Ventosa, showing the fit to a Weibull distribution for both 17.5 m 
and 40 m heights. 
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𝑤𝑠(𝑥, 𝑦) =
1

(𝑥2−𝑥1)(𝑦2−𝑦1)
[𝑥2−𝑥, 𝑥 − 𝑥1] [

𝑤𝑠11 𝑤𝑠12

𝑤𝑠21 𝑤𝑠22
] [

𝑦2 − 𝑦
𝑦 − 𝑦1

]    (1) 

where  𝑤𝑠𝑖𝑗 = 𝑤𝑠(𝑥𝑖, 𝑦𝑗). 

3. Methodology 

3.1 SARIMA model 

The ARMA models combine autoregressive (AR) and moving 
average (MA) schemes. They are widely used for wind speed 
forecasting due to their robustness and easy application. A time 

series 𝑌𝑡 is modeled as a combination of past values 𝑌𝑡−𝑘 and 
past errors 𝑒𝑡−𝑘 

𝑌𝑡 = 𝑐 + 𝜙1𝑌𝑡−1 + ⋯ + 𝜙𝑘𝑌𝑡−𝑘 + 𝑒𝑡 − 𝜃1𝑒𝑡−1 − ⋯ − 𝜃𝑘𝑒𝑡−𝑘   (2) 

The SARIMA models are employed when the time series 
exhibits seasonal patterns. Non-seasonal variables are 
represented by 𝑝, 𝑑, 𝑞, and seasonal variables by 𝑃, 𝐷, 𝑄. The 
general expression for the 𝑆𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞)(𝑃, 𝐷, 𝑄)𝑠 model is 
given as: 

(1 − 𝜙1𝐵 − & … − 𝜙𝑝𝐵𝑝)(1 − Φ1𝐵𝑠 − ⋯ − Φ𝑃𝐵𝑃𝑠)(1 − 𝐵)𝑑(1 − 𝐵𝑠)𝐷𝑌𝑡 

= (1 − 𝜃1𝐵 − ⋯ − 𝜃𝑞𝐵𝑞)(1 − Θ1𝐵𝑠 − ⋯ − Θ𝑄𝐵𝑄𝑠)𝑒𝑡    (3) 

where  𝜙𝑖   =   ith non-seasonal autoregressive parameter, 
  𝜃𝑗   =  jth non-seasonal moving average parameter, 

Φ𝑚 =  mth seasonal autoregressive parameter, 
 Θ𝑛 =  nth seasonal moving average parameter, 
   𝑑  =  number of non-seasonal differences, 
   𝐷  =  number of seasonal differences, 
  𝑒𝑡  =  the error term at time t, 
    𝑠  =  number of periods per season. 

such that 𝐵𝑌𝑡 = 𝑌𝑡−1 and 𝐵𝑒𝑡 = 𝑒𝑡−1. 

The simple exponential smoothing (SES) model prediction 
equation is mathematically equivalent to an ARIMA(0,1,1) model 
without the constant term. Similarly, Holt's forecast method is 
comparable to an ARIMA(0,2,2) model. George Box and Gwilym 
Jenkins developed the most popular modeling strategy, the 
Box-Jenkins methodology (Makridakis, 2008). 

3.2 Hybrid WRF-SARIMA model 

This study develops a multi-step wind speed forecasting model 
that combines the WRF wind speed forecast with SARIMA 
models. The proposed methodology, shown in Figure 5, 
consists of five stages: collecting wind speed time series, 
analyzing forecasting errors, modeling and forecasting using 
SARIMA, combining the wind speed forecasts obtained with the 
WRF and SARIMA models, and evaluating the final proposed 
model. Each stage is elaborated in detail in the following 
subsections. Figure 6 illustrates the flowchart for the proposed 

Fig 5. Diagram of the proposed hybrid WRF-SARIMA methodology, showing the five main stages: data 
acquisition, error analysis, modeling, forecast combination, and model evaluation. 

Table 2 
WRF physics parameterization schemes 

 Physics options 

Microphysics Scheme WRF Single–moment 3–class 
Scheme 

Planetary Boundary 
Layer 

Yonsei University Scheme (YSU) 

Cumulus 
Parameterization 

Kain–Fritsch Scheme 

Shortwave radiation Dudhia scheme 
Longwave radiation RRTM scheme 
Land Surface Unified Noah Land Surface Model 

 

 

 
Fig 4. Schematic of the bilinear interpolation used to derive the 
WRF wind speed at the exact mast location from the four nearest 
grid points. 
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WRF-SARIMA model. A consideration was selecting steps that 
could be automated to enable effective real-world deployment. 

3.2.1 Stage I. Wind speed time series 

This stage includes the pre-processing steps that ensure that the 
mast-measured wind speed time series, denoted by 𝑂𝑡, and the 
WRF wind speed time series, denoted by 𝑊𝑡, have the same 
temporal resolution covering the same period of time and 
location. The forecast error time series, denoted by 𝑁𝑡, is 
defined as the difference between time series 𝑂𝑡 and 𝑊𝑡:  

𝑁𝑡 = 𝑂𝑡 − 𝑊𝑡      (4) 

Consequently, the time series 𝑁𝑡 has the same temporal 
resolution covering an identical period and location as the time 
series 𝑂𝑡 and 𝑊𝑡. 

3.2.2 Stage II. Forecast errors analysis 

It includes the statistical tests performed on the forecast error 
time series 𝑁𝑡 to determine whether it exhibits serial correlation 
and, therefore, whether the time series is predictable. Analyzing 
the correlation properties of the time series 𝑁𝑡 is crucial for 
determining the feasibility of predicting forecast errors. The 
autocorrelation function (ACF) quantifies the relationship 
between values in a time series and helps to identify cyclical and 
seasonal patterns. The ACF is the set of autocorrelation 
coefficients 𝑟𝑘 at lag 𝑘. 

𝒓𝒌 =
∑ (𝑁𝑖 − 𝑁)(𝑁𝑖−𝑘 − 𝑁)𝑛

𝑖=𝑘+1

∑ (𝑁𝑖 − 𝑁)2𝑛
𝑖=1

                                (5) 

If autocorrelation values are found outside the range of critical 
values, it indicates that the time series 𝑁𝑡 exhibits linear 
correlations. 

Additional tests, such as the von Neumann ratio of the 
mean-square-successive difference test, the Ljung-Box test, and 
heteroskedasticity graphs, are used to support or reject the 
hypothesis of serial correlation in the time series. 

3.2.3 Stage III. SARIMA modeling and forecasting 

Once the series 𝑁𝑡 has been found to be predictable based on 
previous tests, the time series is modeled and forecasted using 
SARIMA models, a robust technique with a clear methodology 
and an explicit explanation of how the models operate. 

The algorithmic process proposed in this study is a 
variation of that proposed by Box-Jenkins (Makridakis et al., 
2008), incorporating additional conditions. The methodology is 
divided into four steps: Stationarity, Examination of ACF and 
PACF, Model selection, and Forecasting. The values predicted 
by the 𝑆𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞)(𝑃, 𝐷, 𝑄)24 model are saved for use in 
the next stage. 

3.2.4 Stage IV. Combination of forecasts 

𝑊̂𝑡 denotes the 24-hour WRF wind speed forecast. Then, 𝑁̂𝑡 and 
𝑊̂𝑡 are both time series corresponding to hourly 24-hour 
forecasts, and each consists of 24 elements. These values serve 
as inputs to the new hybrid model 𝐻𝑡, defined as: 

𝐻𝑡 = 𝑊̂𝑡 + 𝑁̂𝑡     (6) 

The time series 𝐻𝑡 represents the 24-step ahead wind speed 
forecast generated by the hybrid WRF-SARIMA model. This 
series contains 24 elements and combines the WRF model's 
wind speed forecast with the SARIMA model's predicted 
forecast error. It is important to note that this methodology is 
fully automatable, making its operational implementation much 
easier. 

3.2.5 Stage IV. Model evaluation 

The performance of the proposed model is evaluated using the 
metrics of bias, mean absolute error (MAE), mean squared error 
(MSE), and root mean squared error (RMSE). 

The time series 𝑂̂𝑡 represents in-situ measurements 
corresponding to the same time period as 𝑊̂𝑡 and 𝑁̂𝑡. 

Let 𝑒𝑡 = 𝑂̂𝑡 − 𝑊̂𝑡 and  𝜀𝑡 = 𝑂̂𝑡 − 𝐻𝑡 then: 
𝑒𝑡 =  𝜀𝑡 + 𝑁̂𝑡      (7) 

If 𝜀𝑡 and 𝑁̂𝑡 have the same sign (𝜀𝑡𝑁̂𝑡 ≥ 0), then: 

|𝜀𝑡| ≤ |𝑒𝑡|     (8) 

That is, the residuals 𝜀𝑡 of the hybrid model are smaller in 
magnitude than those 𝑒𝑡 of the WRF model under certain 
conditions.  The performance of the hybrid WRF-SARIMA 
model is compared to that of the WRF model and two other 
hybrid models: WRF-Simple Exponential Smoothing (WRF-
SES) and WRF-Holt’s Method (WRF-Holt). 

3.3 Evaluation criteria 

The accuracy measures used to evaluate the model's 
performance include bias, mean absolute error (MAE), mean 
squared error (MSE), and root mean squared error (RMSE). 

𝐵𝐼𝐴𝑆 =  
1

𝑛
∑ 𝑒𝑡

𝑛
𝑡=1      (9) 

Mean absolute error (MAE) 

𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑒𝑡|𝑛

𝑡=1     (10) 

Mean squared error (MSE) 

𝑀𝑆𝐸 =  
1

𝑛
∑ 𝑒𝑡

2𝑛
𝑡=1      (11) 

Root mean squared error (RMSE) 

 

Fig 6. Detailed flowchart of the WRF-SARIMA model, illustrating 
the sequence from data input to the final forecast. 
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𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ 𝑒𝑡

2𝑛
𝑡=1     (12) 

The residual 𝑒𝑡 is defined as: 

𝑒𝑡 = 𝑂𝑡 − 𝐹𝑡      (13) 

where 𝑂𝑡 denotes the in-situ wind speed measurements for a 
period t, 𝐹𝑡 the forecasted wind speed from various models for 
the same period t, and n the total number of elements.  
Bias refers to whether a model's forecast tends to underestimate 
or overestimate. An overestimated forecast predicts a 
nonexistent wind resource, while an underestimation overlooks 
valuable wind resources. MAE and MSE assess the magnitude 
of forecast residuals, while RMSE measures their spread, 
placing more weight on larger residuals than on smaller ones. 

4. Results and discussions 

Four experiments were conducted to apply the proposed 
model. Experiment I took place from June 1 to 29, 2018, at a 
height of 40 meters. Experiment II spanned from November 12 

to December 10, 2018, at 40 meters. Experiment III covered 
June 1 to 29, 2018, but at a height of 17.5 meters. Experiment 
IV was performed from November 12 to December 10, 2018, at 
17.5 meters. Each experiment lasted 30 days at hourly temporal 
resolution, resulting in 720 values, excluding a 24-hour period 
for the forecast test. 

Figure 7 illustrates the wind speed time series obtained 
from the mast measurements and the WRF simulations for the 
four experiments. Lower wind speeds characterized 
Experiments I and III, while higher wind speeds characterized 
Experiments II and IV. 

4.1 Forecast errors analysis 

Figure 8 shows the time series 𝑁𝑡 of the wind speed forecast 
errors for the four experiments. Following the methodology, the 
time series 𝑁𝑡 is calculated as the difference between the mast 
measurements 𝑂𝑡 and the WRF simulations 𝑊𝑡. 

𝑁𝑡 = 𝑂𝑡 − 𝑊𝑡     (14) 

In Experiment I, the time series 𝑁𝑡 exhibited a minimum value 
of -7.40 m/s and a maximum value of 4.44 m/s. In Experiment 
II, the minimum value was -11.83 m/s, while the maximum 
reached 8.12 m/s. For Experiment III, the minimum value was 
-5.98 m/s, and the maximum was 4.67 m/s. Lastly, in 
Experiment IV, the minimum value was -9.35 m/s, whereas the 
maximum was 7.09 m/s. 

Initially, it was determined whether the forecast was 
overestimated or underestimated by calculating the mean of the 
time series 𝑵̅ or bias, and the standard deviation 𝝈. The results 
in Table 3 indicated negative bias values, meaning the WRF 
model overestimated wind speed forecasts. The standard 

Fig 7. Comparison of wind speed time series: mast measurements vs. WRF model simulations. 

 

Fig 8. Time series of forecast errors for all four experiments, 
showing the discrepancy between the WRF simulations and the 

mast measurements. 

 

Table 3 
Mean and standard deviation of forecast errors 

Time series Bias Std. Dev. σ z-Statistic 

Experiment I -1.19 2.06 -15.17 
Experiment II -1.80 2.78 -17.09 
Experiment III -0.91 1.70 -14.10 
Experiment IV -1.09 2.44 -11.78 
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deviation for the experiments was: ±2.06 m/s for Experiment I, 
±2.78 m/s for Experiment II, ±1.70 m/s for Experiment III, and 
±2.44 m/s for Experiment IV. 

A z-test was conducted to determine whether the mean 𝑁 
is statistically different from zero. Before performing the z-test, 
normality tests were conducted on the time series. The results 
indicated that at a significance level of 𝛼 = 0.05, the data were 

normally distributed in the four experiments. Figure 9 shows the 
Q-Q plots. Also, in Figure 9, a normal density function was fitted 
to the histograms of the four experiments. 

The z-score for a significance level of 𝛼 = 0.05 is z=1.96. 
Since the calculated z-scores for the experiments are much 
lower than z=1.96, the null hypothesis is rejected, indicating that 
the mean forecast error for the four experiments is statistically 
different from zero. Next, an analysis of sequential 
dependencies was performed to verify whether the time series 
of forecast errors met the condition of predictability. The 
autocorrelations 𝑟𝑘, were determined for the first 28 lags. The 

critical values interval was: ±1.96/√696 = ±0.0743. 
The ACF plots, shown in Figure 10, indicate the following 

results for each experiment: Experiment I, the autocorrelations 
𝑟1, … , 𝑟6, 𝑟18, … , 𝑟27 fall outside the interval of the critical values; 
in Experiment II, the autocorrelations 𝑟1, … , 𝑟28 fall outside the 
interval of the critical values; in Experiment III the 
autocorrelations  𝑟1, … , 𝑟5, 𝑟19, … , 𝑟27 also fall outside the 
interval of the critical values; in Experiment IV, the 
autocorrelations 𝑟1, … , 𝑟28 also fall outside the interval of the 
critical values. From the ACF plots, the value 𝑟24 is significant in 
each experiment, exhibiting seasonal patterns over a 24-hour 
period. Table 4 shows the autocorrelation values for experiment 
I. 

A von Neumann ratio of the mean-square-successive difference 
test was computed to verify the presence of serial correlation in 
consecutive values. The z-score for a significance level of 𝛼 =
0.05 is z=1.96. In Experiment I, a value z=20.70 and a coefficient 
VN= 0.43 were obtained; in Experiment II, a value z=23.22 and 
a coefficient VN= 0.24 were obtained; in Experiment III, a value 
z=20.91 and a coefficient VN= 0.42 were obtained; in 
Experiment IV, a value z=23.47 and a coefficient VN= 0.22 were 
obtained. In all four experiments, the null hypothesis was 
rejected in favor of the alternative, indicating the presence of 
serial correlation at lag 1 in the time series. The p-values from 
the Ljung-Box test for a lag of h=24 allowed rejection of the null 
hypothesis in all four experiments. This supports the alternative 
hypothesis, which indicates that the time series of forecast 
errors is not independently distributed and exhibits correlations. 
Additionally, the plots in Figure 12 of the standardized errors 
against the WRF predicted values clearly illustrate a pattern in 
the dispersion of the errors. 

These results conclude that the time series 𝑁𝑡 for each of the 
four experiments satisfies the condition of being predictable. 
Therefore, it is plausible to model and forecast the time series. 

4.2 SARIMA modeling and forecasting 

Figure 11 illustrates the flowchart for modeling and 24-hour 
forecasting for the time series using the 
𝑆𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞)(𝑃, 𝐷, 𝑄)24 models. The methodology is 
divided into four steps: 

1. Stationarity: Use the Augmented Dickey-Fuller test to verify 
whether the series 𝑁𝑡 is stationary. Calculate the difference 
𝑁𝑡 − 𝑁𝑡−1 for a no-stationarity time series; from here, the 

 

Fig 9. Histogram and Q-Q plot to verify the normality of the 
forecast errors. 

 

 

Fig 10. Autocorrelation function (ACF) of the time series of 
forecast errors, revealing significant correlations at multiple lags, 

including a seasonal pattern at lag 24 (diurnal cycle). 

 

Table 4 
Values of autocorrelation of the forecast errors for Experiment I  

Experiment I 

r1 = 0.78 r8 = -0.01 r15 = -0.05 r22 = 0.21 
r2 = 0.60 r9 = -0.06 r16 = -0.01 r23 = 0.21 
r3 = 0.45 r10 = -0.07 r17 = 0.03 r24 = 0.21 
r4 = 0.32 r11 = -0.05 r18 = 0.10 r25 = 0.18 
r5 = 0.19 r12 = -0.04 r19 = 0.16 r26 = 0.15 
r6 = 0.10 r13 = -0.05 r20 = 0.19 r27 = 0.11 
r7 = 0.05 r14 = -0.06 r21 = 0.21 r28 = 0.07 
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value for d is obtained. A seasonal difference 𝑁𝑡 − 𝑁𝑡−24 is 
calculated for a seasonal non-stationary time series, 
obtaining the value of D. A maximum of two differences is 
recommended. 

2. Examination of ACF and PACF: Autocorrelation coefficients 
(ACF) and partial autocorrelation coefficients (PACF) are 
calculated to identify potential 𝑆𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞)(𝑃, 𝐷, 𝑄)24 
models. The 𝑟𝑘 values that fall outside of the interval of 

critical values ±1.96/√𝑛 are a guideline for determining the 
appropriate ranges for the non-seasonal variables p and q, 
as well as the seasonal variables P and Q. 

3. Model selection: Given the appropriate ranges, all possible 
combinations of the variables p, d, q, P, D, Q are determined. 
Each combination is a potential model. The arima function 
from the forecast package in R (Hyndman et al., 2008) is 
used to estimate the parameters 𝝓, 𝜽, 𝚽, and 𝚯 for the 
potential models.  Using the Corrected Akaike's Information 
Criterion (AICc), the 20 best-performing models are 
selected. The final SARIMA model is selected according to 
the Parsimony principle, favoring the model with fewer 
parameters.  

4. Forecasting: A 24-step ahead forecast of the time series 𝑁𝑡 
is performed using the SARIMA model selected in the 
previous step. The predicted values are denoted by 

𝑁1̂, 𝑁2̂, … , 𝑁23̂, 𝑁24̂. To ensure that the predicted values 𝑁𝑡̂ 
are consistent with the time series 𝑁𝑡, the condition that the 

predicted values 𝑁𝑡̂ are within the interval [−2𝜎, +2𝜎] must 
be satisfied, where 𝜎 denotes the standard deviation of the 

series 𝑁𝑡. Given the case where 𝑁𝑡̂ ∉  [−2𝜎, +2𝜎], another 
potential model is selected, omitting the model that did not 
meet the condition. 

The dataset 𝑁𝑡, consisting of 29 days, was used to train the 
ARIMA model for each experiment, followed by an out-of-
sample forecast for the 30th day. The modeling and forecasting 
were conducted according to the methodology described 
previously. 

An Augmented Dickey-Fuller test was performed to 
determine the stationarity of the time series for each 
experiment. The values of d=0 and D=0 were obtained for 
Experiment I, d=1 and D=0 for Experiment II, d=0 and D=0 for 
Experiment III, d=1 and D=0 for Experiment IV. Since the time 
series exhibits a 24-hour seasonal pattern in the four 
experiments, a seasonal period of s=24 was determined. To 
identify potential SARIMA models, the ACF and partial ACF 
were examined. The autocorrelations 𝑟𝑘 that fall outside the 
critical value interval helped determine the ranges for the 

variables p, q, P, and Q. In Experiment I, a potential model 
search was conducted with the variables p and P ranging from 
0 to 6, and q and Q also ranging from 0 to 6. In Experiment II, 
the ranges for p and P were from 0 to 9 and from 0 to 9 for q and 
Q. In Experiment III, the variables p and P were tested over the 
range 0 to 5, and the variables q and Q were tested over the 
range 0 to 5. In Experiment IV, the ranges for p and P were 0 to 
9, and similarly for q and Q. The AICc was used to determine 
the 20 best-fitting SARIMA models for the time series (Table 5); 

 

Fig 11. SARIMA modeling and forecasting flowchart. The steps to select the best-fitting model for predicting errors. 

 

Table 5 
The 20 best-fitting SARIMA models for Experiment I  

Model AICc Sum Model AICc Sum 
SARIMA(1,0,5)(1,0,2)24 2110 9 SARIMA(2,0,4)(0,0,2)24 2118 8 
SARIMA(1,0,5)(2,0,2)24 2112 10 SARIMA(0,0,4)(1,0,2)24 2121 7 
SARIMA(0,0,5)(1,0,2)24 2112 8 SARIMA(1,0,3)(1,0,2)24 2121 7 
SARIMA(1,0,4)(1,0,2)24 2113 8 SARIMA(2,0,3)(1,0,2)24 2122 8 
SARIMA(1,0,5)(0,0,2)24 2113 8 SARIMA(1,0,2)(2,0,2)24 2122 7 
SARIMA(0,0,5)(2,0,2)24 2114 9 SARIMA(0,0,4)(2,0,2)24 2123 8 
SARIMA(1,0,4)(2,0,2)24 2116 9 SARIMA(2,0,1)(2,0,0)24 2123 5 
SARIMA(1,0,4)(0,0,2)24 2116 7 SARIMA(1,0,2)(1,0,2)24 2124 6 
SARIMA(2,0,4)(1,0,2)24 2116 9 SARIMA(1,0,3)(2,0,2)24 2124 8 
SARIMA(0,0,5)(0,0,2)24 2117 7 SARIMA(0,0,4)(0,0,2)24 2125 6 

Sum: Sum of variables p, d, q, P, D, Q. 

 

 

Fig 12. Heteroscedasticity plots: standardized errors against 
forecasted values, illustrating non-random dispersion patterns that 

confirm the predictability of the forecast errors. 
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among these, the final model was the one with the fewest 
parameters, according to the Parsimony principle. 

To explore a cost-effective alternative, the auto.arima 
function from the forecast package in R (Hyndman et al., 2008) 
was tested, yielding satisfactory results. In the function, the 
variables p, q, P, and Q are selected by minimizing AICc; 
variables d and D are selected using the KPSS unit test. The 
function returns the best-fitting model based on the AICc. 

The model selected in Experiment I was SARIMA(2,0,1)(2,0,0)24, 
which has the following equation: 

𝑁𝑡 = 1.58𝑁𝑡−1 − 0.64𝑁𝑡−2 + 0.06𝑁𝑡−24 − 0.10𝑁𝑡−25 + 0.04𝑁𝑡−26 
+0.06𝑁𝑡−48 − 0.10𝑁𝑡−49 + 0.04𝑁𝑡−50 − 0.77𝜖𝑡−1 + 𝜖𝑡  (15) 

In Experiment II, the selected model was 
SARIMA(0,1,2)(0,0,2)24, which has the following equation:  

𝑁𝑡 = 𝑁𝑡−1 + 0.05 𝜖𝑡−1 − 0.10 𝜖𝑡−2 + 0.09 𝜖𝑡−24 + 0.01 𝜖𝑡−25 
−0.01 𝜖𝑡−26 + 0.10 𝜖𝑡−48 + 0.01 𝜖𝑡−49 − 0.01 𝜖𝑡−50 +  𝜖𝑡 (16) 

In Experiment III, the selected model was 
SARIMA(3,0,1)(0,0,2)24, which has the following equation: 

𝑁𝑡 = 1.50𝑁𝑡−1 − 0.50𝑁𝑡−2 − 0.08𝑁𝑡−3 − 0.71𝜖𝑡−1 + 0.07𝜖𝑡−24 
−0.05𝜖𝑡−25 + 0.06𝜖𝑡−48 − 0.05𝜖𝑡−49 +  𝜖𝑡   (17) 

And, in Experiment IV, the selected model was 
SARIMA(0,1,2)(0,0,2)24, which has the following equation: 

𝑁𝑡 = 𝑁𝑡−1 + 0.09 𝜖𝑡−1 − 0.09 𝜖𝑡−2 + 0.10 𝜖𝑡−24 + 0.01 𝜖𝑡−25 
−0.01 𝜖𝑡−26 + 0.09 𝜖𝑡−48 + 0.01 𝜖𝑡−49 − 0.01 𝜖𝑡−50 +  𝜖𝑡 (18) 

Figure 13 displays the autocorrelation plots for the best-fitting 
SARIMA models. For white noise, about 95% of the 
autocorrelation values are expected to fall within the interval 
(Makridakis et al., 2008). This indicates that the residuals of the 
chosen SARIMA models demonstrate random behavior. 
Additionally, Figure S1 presents the residuals of the best-fitting 
SARIMA model, along with the autocorrelation plot and 
histogram for each experiment. This further confirms that the 
residuals exhibit random, or white noise, behavior, thereby 
validating the selection of the model. 

The chosen model was used to perform a 24-hour forecast 

for each experiment. Then, the time series 𝑁𝑡̂ contains the 24 
forecast values representing the forecast errors predicted by the 
SARIMA model. It was also determined whether the forecasted 

values 𝑁𝑡̂ satisfy the condition 𝑁𝑡̂ ∈  [−2𝜎, +2𝜎]; that is, 
whether the predicted values fall within the interval of two 
standard deviations of 𝑁𝑡, in order to ensure that the forecasted 

values 𝑁𝑡̂ are consistent with 𝑁𝑡. Figure 14 shows the time series 

𝑁𝑡 and the forecasted values 𝑁𝑡̂  with interval predictions at 80% 
and 95%, for all four experiments. 

4.3 Combination of forecasts 

The building of the hybrid model 𝐻𝑡 was performed using the 
equation: 

𝐻𝑡 = 𝑊𝑡̂ + 𝑁𝑡̂               𝑡 ∈ {1, . . ,24}   (19) 

where 𝑊𝑡̂ denotes the WRF wind speed forecast for the 30th 

day, and 𝑁𝑡̂ indicates the forecast errors predicted by the 
SARIMA model. 

Both time series contain 24 values; consequently, 𝐻𝑡 also 
contains 24 values. Therefore, the time series 𝐻𝑡represents the 
24-hour wind speed forecast from the hybrid WRF-SARIMA 
model. 

 

Fig 13. Residual autocorrelation plot of the best-fitting SARIMA 
model, exhibiting white noise behavior. 

 

 

Fig 14. 24-hour-ahead forecast for the error series using the 
selected SARIMA model, including 80% and 95% prediction 

intervals. 
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Figure 15 illustrates the wind speed predicted by the 
hybrid WRF-SARIMA model, the wind speed predicted by the 
WRF model, and the wind speed from the mast measurements. 
It is important to note that the proposed methodology can 
correct both overestimated WRF forecasts, as observed in 
Experiments I and III, and underestimated WRF forecasts, as 
seen in Experiments II and IV. 

4.4 Model evaluation 

The performance of the hybrid WRF-SARIMA model was 
compared with two other hybrid models, WRF-SES and WRF-
Holt. The WRF-SES model combines forecasts from the WRF 
model with forecast errors predicted by the ARIMA(0,1,1)/SES 

model. Similarly, the WRF-Holt model integrates WRF forecasts 
with those generated by the ARIMA(0,2,2)/Holt method. The 
error metrics for each model are presented in Table 6. 

The error metrics indicated that the hybrid WRF-SARIMA 
model outperformed the WRF, WRF-SES, and WRF-Holt 
models across the four experiments. In Experiment I, the hybrid 
WRF-SARIMA model demonstrated 42% improvement over the 
WRF model for the MAE metric, 49% for the MSE, and 28% for 
the RMSE. In Experiment II, the WRF-SARIMA model showed 
29% improvement in MAE, 47% in MSE, and 27% in RMSE 
compared to the WRF model. In Experiment III, the WRF-
SARIMA model demonstrated 36% improvement in MAE, 40% 
in MSE, and 22% in RMSE compared with the WRF model. 
Finally, in Experiment IV, the WRF-SARIMA model achieved 
45% improvement in MAE, 67% in MSE, and 43% in RMSE over 
the WRF model. The improvement percentages of the WRF-
SARIMA model over the WRF baseline are also shown in Table 
6. 

Let 𝑒𝑡 be the residuals of the WRF model and 𝜀𝑡 be the 
residuals of the hybrid WRF-SARIMA model. The comparison 
of both residuals, illustrated in Figure 16, indicates that the 

Fig 15. Comparison of 24-hour-ahead wind speed forecasts: mast measurements vs. WRF model vs. hybrid WRF-SARIMA model. 

Table 6 
Error comparisons among forecasting models 

Experiment Model Bias MAE MSE RMSE 

Experiment  WRF -2.22 2.32 6.97 2.64 
I WRF-SARIMA -0.69 1.34 3.53 1.88 
 WRF-SES 2.56 2.69 8.59 2.93 
 WRF-Holt 2.65 2.78 9.02 3.00 
 % 

Improvement 
70% 42% 49% 28% 

Experiment  WRF 1.99 2.16 7.75 2.78 
II WRF-SARIMA 0.60 1.53 4.11 2.03 
 WRF-SES 0.91 1.60 4.65 2.16 
 WRF-Holt 0.88 1.60 4.61 2.15 
 % 

Improvement 
70% 29% 47% 27% 

Experiment  WRF -1.57 1.59 3.54 1.88 
III WRF-SARIMA -0.48 1.02 2.13 1.46 
 WRF-SES 2.54 2.59 7.55 2.75 
 WRF-Holt 2.61 2.66 2.93 2.82 
 % 

Improvement 
69% 36% 40% 22% 

Experiment  WRF 2.46 2.51 9.14 3.02 
IV WRF-SARIMA 0.14 1.38 3.00 1.73 
 WRF-SES 0.55 1.39 3.42 1.85 
 WRF-Holt 0.51 1.40 3.41 1.85 
 % 

Improvement 
94% 45% 67% 43% 

% Improvement: WRF-SARIMA model over the WRF 
baseline. 

 

 

Fig 16. Forecast residual comparisons between the WRF and 
WRF-SARIMA models, demonstrating the improvement in 
accuracy. 
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residuals 𝜀𝑡 have a lower absolute magnitude than the residuals 
𝑒𝑡: 

|𝜀𝑡| ≤ |𝑒𝑡|     (22) 

The results show that the hybrid model reduces forecast error 
magnitude, improving wind speed forecast accuracy. 

4.5 Discussions 

The data presented significant challenges in developing 
this study. Due to high investment costs and the private nature 
of most wind power developments, obtaining accurate wind 
speed measurements above 10 meters is difficult. The data 
utilized in this study are derived from various government-
funded projects. The wind speed measurements from La 
Ventosa, recorded at heights of 17.5 meters and 40 meters, are 
both reliable and of high quality. Unfortunately, we could not 
access data from another location with the same quality. 
Consequently, the proposed hybrid model was tested 
exclusively at this one site. 

Regarding the WRF data, we are thankful for the 
opportunity to use the outputs of the forecast model developed 
by the IOA research group at ICAyCC-UNAM, which is 
continuously tested and improved. However, we could test the 
model for only two distinct one-month periods due to 
limitations in our storage capacity. We selected one month 
characterized by high wind speeds and another month with low 
wind speeds for the experiments. Given the relatively short 
dataset, there is a risk of overfitting. To avoid it, we used the 
principle of Parsimony, which favors simple models over 
complex ones; paid special attention to the correct identification 
of seasonal periods; included the condition that the predicted 
values lie within two standard deviations, and checked the 
residuals to verify that they were indeed white noise. This 
dataset was the minimal tested set for which the SARIMA model 
was able to identify seasonal patterns and trends to generate 
reliable forecasts. An extended time period would allow the 
model to identify patterns in the time series more clearly, 
leading to a better model selection. We acknowledge these 
limitations; however, we are confident that the robust 
methodology employed, along with the positive outcomes 
demonstrated during testing at La Ventosa, a site characterized 
by complex conditions, strongly indicates that the model can be 
effectively replicated in diverse regions and conditions. 

The generalization of the proposed model to other sites 
relies on the generalization of both the WRF model and the 
SARIMA model. The WRF model has been applied and tested 
in different locations (Chen et al., 2019; Dzebre et al., 2020; 
Jacondino et al., 2021; Liu et al., 2023; Tsai et al., 2021; Xu et al., 
2021; Yang et al., 2023; Zhao et al., 2024), whether for wind 
speed forecasting or for wind power forecasting, proving to be 
a reliable tool for 24-hour forecasts. On the other hand, the 
replicability of SARIMA models, according to the proposed 
methodology, depends on the availability of wind speed 
measurements at the site of interest. We compared the 
proposed model's performance with that of other 24-hour wind 
speed forecasting models reported in the literature. The 
proposed WRF-SARIMA model showed improvements of 29% 
to 45% in MAE, and 22% to 43% in RMSE. Xu et al. (2021) 
reported improvements of 24% and 31% in MAE, and 27% and 
28% in RMSE, using a long short-term memory model to correct 
wind speed forecast errors generated with a WRF model. Zhao 
et al. (2024) reported improvements of 15% in MSE and 14% in 
RMSE by employing temporal convolutional networks and long 
short-term memory models to reduce forecast errors from a 
WRF model. Wang et al. (2019) reported improvements of 1.7% 
to 3.9% in RMSE by combining machine-learning models to 

correct wind speed forecast errors from an NWP model. The 
above shows that the improvement percentages of our model 
are within the same range as those reported using machine 
learning-based models. 

The power supplied by the wind turbine is calculated from 
wind speed data and the turbine's power curve; thus, accurate 
wind speed forecasts lead to accurate wind power generation 
forecasts. Improvements in wind speed accuracy are 
operationally very valuable to power system operators because 
they enable better estimates of available power, allow dispatch 
adjustments, and improve grid frequency stability. Also, reduce 
imbalance penalties in electricity markets when producers do 
not meet their scheduled commitments. It is also important to 
recognize that SARIMA models are linear and are, therefore, 
effective at identifying linear patterns in time series data. 
However, their performance may be limited when faced with 
more complex patterns. To address this limitation, future 
research could explore combining nonlinear and linear 
statistical models as an error-correction strategy rather than 
relying solely on SARIMA. Additionally, it is crucial to consider 
the computational costs associated with this approach. We have 
noticed that the immediately preceding values significantly 
affect the forecasts generated by the ARIMA models. As a result, 
the transition point from the training phase to the forecasting 
phase is crucial in shaping the forecast trend. For future work, it 
would be helpful to identify the optimal starting point for the 
forecast to improve the SARIMA model's performance. One 
potential approach is to identify change points in the mean, 
variance, and trend. Our findings align with existing research on 
the benefits of statistical techniques for improving NWP wind-
speed forecasts. The combination of the WRF and SARIMA 
models proves to be a viable and effective approach for 
improving the accuracy of the WRF wind speed forecast. 
Furthermore, we aim to ensure that the proposed methodology 
can be automated, facilitating its application in real-time 
scenarios. This leads to better integration of wind energy into 
power grids, reduced costs for wind farm operators, and 
minimized penalties for imbalances. 

5. Conclusions 

The study presents a hybrid 24-hour wind speed forecasting 
model that combines the Weather Research and Forecasting 
(WRF) model with the Seasonal Autoregressive Integrated 
Moving Average (SARIMA) model. The hybrid approach 
demonstrated consistent performance for both low and high 
wind speed periods at different heights above the terrain. The 
findings indicate that the WRF-SARIMA hybrid model 
outperforms the standalone WRF model. Error metrics showed 
notable reductions, with a 29% to 44% decrease in MAE, a 39% 
to 67% decline in MSE, and 22% to 42% improvement in RMSE. 
By analyzing and modeling the structure of forecast errors 
through the SARIMA technique, this methodology offers tools 
for identifying predictable patterns within these errors, thereby 
facilitating forecast corrections. Overall, this approach enhances 
the understanding of forecast errors and suggests more effective 
adjustments to improve forecast accuracy. The model 
represents a promising alternative for wind speed forecasting 
due to its automation potential and ease of implementation.  
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