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Abstract. This study introduces a comprehensive multi-criteria decision-making framework that integrates the Best–Worst Method (BWM), fuzzy 
DEMATEL, the Analytic Network Process (ANP), and TOPSIS to prioritize green port electrification and operational enhancements. The model 
reflects complex trade-offs that shape decarbonization plans by asking experts about 20 important techno-economic, environmental, and 
organizational factors. The most important results show that emission abatement, fuel savings, and pollution reduction had the highest BWM weights. 
This shows that environmental goals are the most important. Fuzzy DEMATEL research showed that lifecycle replacement risk and labor 
preparedness were the main factors that affected tariff exposure, operational dependability, and digital integration results. ANP adjusted the weights 
of the criteria to take into consideration interdependencies, making economic risk and human capital the most important factors in decision-making. 
The TOPSIS rating found that a hybrid phased deployment option was the best choice for meeting goals for cost, emissions reduction, and operational 
readiness. It did better than both electric and traditional methods. These results show that the framework may combine expert knowledge, causal 
structure, and network feedback to make green port techniques more important. The concept goes beyond linear weighing by using cause-and-effect 
maps and feedback loops. This gives decision-makers a better understanding and more confidence when it comes to allocating resources. The results 
encourage a balanced growth of capital investments, environmental protection, and the ability of the workforce. This flexible strategy is helpful in  
gradually combining the renewables, tariff dynamics, and operational data to create strong, low-carbon marine logistics centers. 

Keywords: Green port; Techno-economic analysis; Low-carbon marine logistics; Decarbonization plan; Multi-criteria decision-making framework; 
TOPSIS 

@The author(s). Published by CBIORE. This is an open access article under the CC BY-SA license 
 (http://creativecommons.org/licenses/by-sa/4.0/). 

Received: 15th Oct 2025; Revised:  18th Nov 2025; Accepted: 25th Nov 2025; Available online: 1st Dec 2025   

1. Introduction 

Worldwide trade volume has seen tremendous growth over 
recent decades, driving considerable development in seaport 
infrastructure and maritime shipping operations to ensure the 
continued global movement of products (Pham et al. 2023, 
2025). This expansion entails a surge in volumes of raw 
materials and finished goods transported through increasingly 
intricate marine corridors, which requires terminals to extend 
their capacities with additional berths, expanded storage 
facilities, and enhanced rail and road connections to meet faster 
and more demanding logistical requirements (Nguyen, Nguyen, 
and Nguyen 2022; Satta et al. 2025). The expansion of ports 
across Europe and Asia has generated beneficial effects on 
employment and local economies. However, it has 
simultaneously escalated fuel consumption by marine vessels 
and cargo handling equipment, contributing to increased 
emissions of carbon dioxide, nitrogen oxides, sulfur oxides, 
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particulate pollutants, noise disturbances, and contamination of 
surrounding waters (Lam and Notteboom 2014; Nguyen, Pham, 
and Bui 2022; Zhang et al. 2024). Among these, carbon dioxide 
remains a dominant greenhouse pollutant, which imposes 
stresses on marine and urban ecosystems as well as residents 
nearby (Hoang et al. 2022; Nguyen et al. 2021). 

The initiative to develop environmentally mindful ports has 
shifted from abstract ideals to concrete implementations aimed 
at making environmental protection an integral part of daily port 
operations, thereby curtailing the anticipated growth of 
pollution linked to maritime transport (Hua et al. 2020). A 
coordinated mix of actions targets reductions in greenhouse gas 
emissions within port boundaries, enhancements in energy use 
efficiency for each operational unit, improved handling of runoff 
and drainage systems, advances in waste treatment processes, 
and gradual replacement of conventional equipment and 
transport modes with cleaner alternatives on docks and 
connecting roadways (Lin et al. 2022). While shipping remains a 
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comparatively efficient mode for the bulk movement of goods, 
carrying large volumes of cargo per voyage reduces emissions 
per unit of transport when contrasted with many other 
modalities (Hoang et al. 2025; Shahrul Alfian, Zakaria, and Md. 
Arof 2025). Nevertheless, the heavy dependence on fossil fuels 
within the sector continually fuels significant atmospheric 
pollution and global temperature rise, heightening pressure to 
transition maritime fleets, port infrastructures, and energy 
systems towards cleaner energy sources sooner rather than 
later (Hoang et al. 2023; Ismail et al. 2024). 

At the international level, regulatory bodies, led by the 
International Maritime Organization (IMO), have devised 
frameworks aiming to steer the shipping industry to achieve net-
zero emissions by the middle of the 21st century. These 
strategic plans incorporate progressively more stringent fuel 
efficiency standards and emissions caps, alongside economic 
sanctions on operators surpassing prescribed limits (IMO 2020, 
2021). Revenues generated through such enforcement efforts 
are dedicated to financing advancements in green vessel 
designs, port infrastructure improvements, and capacity-
building initiatives in economically developing regions. The 
largest ocean-going vessels, which contribute the majority of 
carbon dioxide released by maritime shipping, are subject to 
binding reduction commitments with enforcement deadlines set 
before 2030 (IMO 2023). Complementary regulations focusing 
on improving operational efficiencies and adopting carbon 
labeling provoke an environment conducive to broad adoption 
of cleaner fuel types and operational modifications. These 
collective efforts are anticipated to propagate through more 
widespread use of shore-supplied power, optimized vessel 
design and propulsion tactics, speed regulation in critical zones, 
and intensified transition towards sustainable fuel usage as 
supply chain processes mature and improve (Huynh and Tran 
2020; Kołodziej and Hoffmann 2024; Le et al. 2023; Nguyen et 
al. 2025). 

Technological progress in sensor technology, data 
aggregation, and computational decision-support 
implementations significantly aid emission and fuel 
consumption reductions across port and sea operations 
(Agarwala 2021; Alamoush and Ölçer 2025; Zhang et al. 2024). 
Refinement of berth scheduling, optimization of crane 
movements, careful balancing of yard work flows, and efficient 
management of port entry and exit gates collectively reduce 
fuel-wasting idle times without impairing throughput (Wang, 
Cheng, and Zhen 2023). At sea, employing navigational path 
optimization and speed controls could reduce fuel use while 
maintaining reliable freight arrivals, supported by real-time 
monitoring systems that highlight energy inefficiencies for 
immediate intervention, circumventing guesswork. 
Additionally, experimental adoption of alternative cleaner fuels 
and shore power systems, transitioning to electric or hybrid 
cargo handling machinery, and rigorous documentation of 
operational enhancements solidify sustained environmental and 
financial improvements. Despite these advancements, strategic 
decisions about capital expenditures, operational upgrades, 
energy sourcing, and adherence to evolving regulations remain 
challenging. Quantitative indices often fail to fully capture all 
relevant complexities, underscoring the necessity for holistic 
evaluation frameworks (Gonzalez Aregall, Bergqvist, and 
Monios 2018; Mansoursamaei et al. 2023). 

Ports aspiring to reduce their environmental footprints’ 
function amidst a context of growing cargo volumes, increasing 
regulatory constraints, rapid technological change, and complex 
logistical interdependencies (Duc and Nguyen 2025; Nguyen et 
al. 2023). Addressing this context requires comprehensive 
multi-faceted evaluation methodologies that fuse economic, 
environmental, technical, governance, and human resource 

perspectives. Multi-criteria decision-making (MCDM) 
frameworks offer a structured means to appraise options, 
enabling transparent comparative analysis, effective 
prioritization, and strategic resource deployment in situations 
with multifarious, conflicting objectives (Garg, Kashav, and 
Wang 2023; Perwira Mulia Tarigan et al. 2021; Taş and Çakır 
2024). MCDM combines economic, environmental, 
technological, policy, and workforce factors into one decision-
making platform. This makes it easier to compare, prioritize, 
and allocate resources when there are competing or conflicting 
goals (Emovon and Oghenenyerovwho 2020; Narwane et al. 
2021). Many MCDM methods can help in these kinds of 
situations. For example, AHP uses pairwise comparisons to 
build hierarchical preferences (Alghassab 2022), ANP uses the 
same logic to deal with mutually dependent criteria (Kar and 
Jha 2022), BWM uses best-worst scaling to find priorities 
(Rezaei 2015), and TOPSIS uses geometric similarity to ideal 
solutions to rank alternatives (Chakraborty 2022). Tools that use 
fuzzy logic can deal with ambiguities in expert opinion 
(Büyüközkan and Ifi 2012). Other tools, including MOORA 
(Dinçer, Yüksel, and Martínez 2019), PROMETHEE (Brans and 
De Smet 2016; Tang, Liu, and Wang 2025), VIKOR (Rani et al. 
2020), and ELECTRE (Govindan and Jepsen 2016), let 
researchers combine inputs in multiple ways to make rankings. 
Choosing among these strategies depends on how well they can 
handle the feedback, inconsistency, and ambiguity that come up 
in real-world port decision-making situations.  

Nonetheless, the associated scientific and applied literature 
reveals research gaps. Many analyses underappreciate 
interdependent criterion relationships and adopt simplistic 
linear weighting devoid of feedback or causality recognition. 
Most studies inadequately address uncertainty scope, and omit 
multifaceted impacts involving economic, regulatory, technical, 
societal, and ecological factors. Another important issue is 
frequent use of narrow criterion subsets or applying a singular 
MCDM tool, thereby compromising practical relevance and 
robustness imperatives. To resolve these shortcomings, the 
present investigation introduces an integrated MCDM schema 
synergistically combining Best–Worst Method, fuzzy 
DEMATEL, Analytic Network Process, and TOPSIS. This 
arrangement consolidates expert insights, delineates causal 
criterion relationships, incorporates interconnections, and 
applies context-aware normalization and ranking processes. 
The process produces reliable priority determination of green 
port modernization and electrification trajectories attuned to 
flexible situational parameters. The framework delivers 
transparent, reproducible, and adaptable decision guidance 
fostering informed investments, skill development of ports’ 
human capital, and durable operational evolution. Moreover, its 
extensibility permits assimilation of emergent technological 
trends, advancing regulatory frameworks, tariff volatility, and 
dynamic operational feedback, enabling continuous evolution 
towards environmentally sound, economically justifiable 
maritime logistics infrastructures in the long term. 

2. Methods 

2.1 Best–Worst Method 

BWM elicits two short vectors of judgments instead of a full 
pairwise matrix. Following are main steps in BWM 
implementation (Rezaei 2015): 
• Experts select the best (most important) criterion B and 

the worst (least important) criterion W. 



H.D.Do et al  Int. J. Renew. Energy Dev 2026, 15(1), 42-52 

| 44 

 

ISSN: 2252-4940/© 2026. The Author(s). Published by CBIORE 

• Best-to-others preference vector 𝐴𝐵 = (𝑎𝐵1, … , 𝑎𝐵𝑛) 
where  𝑎𝐵𝑗 ∈ {1, … ,9} expresses how much B is preferred 

over j. 
• Others-to-worst preference vector 𝐴𝑊 = (𝑎1𝑊 , … , 𝑎𝑛𝑊) 

where 𝑎𝑗𝑊 ∈ {1, … ,9} expresses how much j is preferred 

over W. 
• Solve the minimax program for weights w and deviation ξ: 

Minimize  

Subject to, for all j∈C, F  

|  
𝑤𝐵

𝑤𝑗
− 𝑎𝐵𝑗  | ≤ 𝜉, |  

𝑤𝑗

𝑤𝑊
− 𝑎𝑗𝑊 | ≤ 𝜉,     (1) 

∑  𝑛
𝑗=1 𝑤𝑗 = 1, 𝑤𝑗 ≥ 0.    (2) 

A common linear form replaces ratios as 

| 𝑤𝐵 − 𝑎𝐵𝑗𝑤𝑗  | ≤ 𝜉, | 𝑤𝑗 −
1

𝑎𝑗𝑊
𝑤𝑊 | ≤ 𝜉,  (3) 

which is solved by linear programming. The optimal w gives 
stable, sparse-burden priorities. 

2.2 Fuzzy DEMATEL 

Purpose: discover directional influence among criteria and 
separate “cause” from “effect” groups under uncertainty. The 
following steps are followed (Akyuz and Celik 2015; Khatun et 
al. 2023): 

• Expert k provides a fuzzy direct-relation matrix 𝐷̃(𝑘) =

[𝑑̃𝑖𝑗
(𝑘)

]  where 𝑑̃𝑖𝑗
(𝑘)

= (𝑙, 𝑚, 𝑢) is a TFN rating of the 

influence of i on j. 

• Aggregate across K experts using fuzzy averaging: 

𝐷̃ =
1

𝐾
∑  𝐾

𝑘=1 𝐷̃(𝑘).     (4) 

• Normalize using the maximum upper-bound row/column 
sum: 

𝑠 = 𝑚𝑎𝑥{ 𝑚𝑎𝑥
𝑖

 ∑  𝑗 𝑢𝑖𝑗 ,    (5) 

• Defuzzify elementwise to obtain a crisp normalized matrix 
N=[n_ij], e.g., centroid: 

𝑛𝑖𝑗 =
𝑙𝑖𝑗+𝑚𝑖𝑗+𝑢𝑖𝑗

3
.     (6) 

• Computing the total-relation matrix 

𝑇 = 𝑁 (𝐼 − 𝑁)−1,     (7) 

Provided the spectral radius 𝜌(𝑁) < 1 (enforced by 
normalization; if needed, damp 𝑁 ← 𝑁/𝜌(𝑁)) 

• Prominence and relation indices: 

𝑟𝑖 = ∑  𝑗 𝑡𝑖𝑗  (influence given), 𝑐𝑖 = ∑  𝑗 𝑡𝑗𝑖  (influence received)

      (8) 

Prominence: 𝑝𝑖 = 𝑟𝑖 + 𝑐𝑖 , Relation: 𝑒𝑖 = 𝑟𝑖 − 𝑐𝑖 .  

Interpretation: 𝑒𝑖 > 0 implies cause group (drivers), 𝑒𝑖 < 0 
implies effect group (outcomes). 

2.3 Analytic Network Process 

It will be used to propagate interdependencies into priorities 
via a supermatrix that preserves feedback. The following steps 
are involved (Chen et al. 2019; Kheybari, Rezaie, and 
Farazmand 2020):  

• From the (normalized) direct influence among criteria 
(often use 𝑁 from DEMATEL), form an unweighted 
supermatrix 𝑊un by column-normalizing the influence 
columns: 

𝑊𝑖𝑗
un =

𝑛𝑖𝑗

∑  𝑘  𝑛𝑘𝑗
 if ∑  𝑘 𝑛𝑘𝑗 > 0,    (9) 

This makes 𝑊un column stochastic. 

• For a single criteria cluster, the weighted supermatrix 
equals the unweighted one: 

𝑊we = 𝑊un.     (10) 

• Limit supermatrix (power method until convergence): 

𝑊(∞) = 𝑙𝑖𝑚
𝑘→∞

 (𝑊we)𝑘.    (11) 

If columns converge, any column of 𝑊(∞) yields the ANP 

priority vector 𝑤ANP (normalize to sum 1). 

2.4 TOPSIS (Technique for Order Preference by Similarity to Ideal 
Solution) 

TOPSIS is employed to rank alternatives by geometric 
closeness to an ideal (best) point and remoteness from a nadir 
(worst) point, given weights and polarity (Chakraborty 2022; 
Gündoǧdu and Kahraman 2018). 

• Decision matrix 𝑋 = [𝑥𝑖𝑗] (rows: alternatives; columns: 

criteria). 

• Vector normalization: 

𝑟𝑖𝑗 =
𝑥𝑖𝑗

√∑  𝑚
𝑖=1  𝑥𝑖𝑗

2
.     (12) 

• Weighted normalized matrix: 

𝑣𝑖𝑗 = 𝑤𝑗  𝑟𝑖𝑗 ,     (13) 

with 𝑤 taken from ANP (network-consistent) or BWM (if used 
directly). 

• Ideal positive and negative points: 

𝑣𝑗
+ = {

𝑚𝑎𝑥
𝑖

 𝑣𝑖𝑗 , 𝑗 ∈ 𝐵

𝑚𝑖𝑛
𝑖

 𝑣𝑖𝑗 , 𝑗 ∈ 𝐾
, 𝑣𝑗

− = {
𝑚𝑖𝑛

𝑖
 𝑣𝑖𝑗, 𝑗 ∈ 𝐵

𝑚𝑎𝑥
𝑖

 𝑣𝑖𝑗 , 𝑗 ∈ 𝐾
. (14) 

• Separation measures (Euclidean): 

𝑆𝑖
+ = √∑  𝑛

𝑗=1   (𝑣𝑖𝑗 − 𝑣𝑗
+)2, 𝑆𝑖

− = √∑  𝑛
𝑗=1   (𝑣𝑖𝑗 − 𝑣𝑗

−)2  (15) 

• Closeness, coefficient and ranking: 

CC𝑖 =
𝑆𝑖

−

𝑆𝑖
++𝑆𝑖

− , rank descending by CC𝑖 .  (16) 

A flow chart depicting integration of BWM–Fuzzy DEMATEL–
ANP–TOPSIS for green port is depicted in Figure 1.  

2.5 Expert selection and data collection 

For this study, a detailed expert survey was conducted 
involving ten professionals deeply engaged in green port 
technologies, policy, and operations. These specialists were 
chosen because they have a lot of expertise in port 
electrification, maritime logistics, environmental compliance, 
and techno-economic evaluation (Gazi et al. 2024). In order to 
show how important each factor was to green port decisions; 
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the experts gave their opinions on a carefully chosen set of 
techno-economic indicators. These included capital 
expenditures, operational costs, net present value, payback 
periods, tariff sensitivity, fuel savings, equipment reliability, 
workforce readiness, carbon abatement potential, and local 
pollutant reductions. The elicitation was guided by structured 
tools that were meant to cut down on confusion and 
inconsistency. These tools used fuzzy logic, including triangular 
fuzzy numbers, to deal with uncertainty in a strong way. This 
strategy made it possible to get both qualitative and quantitative 
information in a single way. The gathered data made it possible 
to do a thorough Best-Worst weighting analysis, which made 
sure that the most important criteria were highlighted while 
keeping the data consistent. The evaluations that were gathered 
also helped establish a fuzzy DEMATEL model that found causal 
links between criteria. This was an important step in building an 
interconnected analytic network process that showed real 
relationships. This whole data collection and processing 
pipeline gave the whole multi-criteria analysis a strong base by 
using real-world expert knowledge. This made it possible to 
come up with useful suggestions for green port investments. 

3. Results and discussion 

3.1 Preparation of Aggregate Decision Matrix 

The aggregate decision matrix brings together expert 
opinions on twenty factors that affect investments in green 
ports. Each criterion, which is shown by its acronym, is put into 
one of five groups: economic, technical, environmental, policy, 
or organizational. It is also marked as a cost or benefit to show 
whether greater values are good or bad. For example, CAPEX 
(capital expenditure) and OPEX (operating expenditure) are 
economic expenses with scores of 6.8 and 7.1, respectively. 
These scores show that there are significant costs up front and 
over time. Indicators like NPV (7.5) and IRR (6.9) show 
predicted returns and profits over the medium to long term, 
which are examples of economic advantages. Technical 
parameters including throughput gain (TPG, 6.7), utilization 
factor (UF, 7.2), and availability/reliability (AVR, 7.8), show how 

suggested innovations are expected to make operations more 
efficient. Environmental factors, such as emission abatement 
(EAB, 8.3) and local pollutant reduction (LPR, 7.9), show how 
much greenhouse gases and dangerous air pollutants are 
predicted to go down. These are important for the health of the 
port region and the world. Policy and organizational indicators, 
such as certification points gain (CPG, 6.3) and workforce and 
training readiness (WTR, 6.6), show how important compliance 
and human capital are for effective technology adoption. The 
aggregation combines several expert opinions into a single, 
easy-to-understand scoring scale (1–9) that takes polarity into 
account: as the burden increases, the cost scores go up, and as 
the expected gains go up, the benefit scores go up. This matrix 
sets the stage for weighted and causal analyses, making sure 
that later assessments accurately show the real-world trade-offs 
that come up when electrifying ports and modernizing logistics, 
such as the strain on capital, the effect on operations, the 
benefits to the environment, and the ease of implementation. 

3.2 Results of Best Worst Method 

The BWM results reflect a weighted hierarchy of criteria 
symbolizing the experts’ consensus on the priorities that matter 
most in designing and implementing green port technologies. 
EAB had the largest weight, 0.0740, which shows that experts 
thought reducing CO2 and other greenhouse gases was the most 
important thing to do, perhaps because it directly affects climate 
objectives. FS came in second with a score of 0.0723, showing 
how important fuel-saving techniques are for lowering operating 
emissions. LPR (0.0705) and AVR (0.0696) also did well, 
showing that cutting down on local pollution and making 
equipment more reliable and available are important goals that 
balance environmental and operational advantages. NPV 
(0.0669) and UF (0.0642) show that economic advantages and 
how well resources are used are still important elements in 
making investment decisions. Metrics like IRR and DIL each 
had weights close to 0.0616, which shows that they have a 
moderate but nonetheless significant impact on whether an 
investment is feasible and whether new technology is adopted. 
Cost-related factors like CAPEX (0.0285) and OPEX (0.0259) 

 

Fig. 1 MCDM Implementation Flowchart 
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had less weight further down the scale. This shows that experts 
thought long-term profits and benefits were more important 
than only the initial costs. The low weight of TEI (0.0232) shows 
that tariff sensitivity was less at the time. These weights take 
into account complex trade-offs, such as prioritizing reducing 
emissions, improving fuel efficiency, and making the system 
available, while also considering costs and risks. This creates a 
balanced, multi-faceted appraisal that guides future modelling 
and final rankings. 

3.3 Results of Fuzzy DEMATEL method 

Figure 3 depicts the scatter plot illustrating the use of fuzzy 
DEMATEL on the criteria set. It maps each criterion to its 
computed prominence (total of provided and received 
influence, r+c) and relation (difference, r–c). The horizontal 
dashed line shows that points with positive connection scores, 
such LRR, WTR, IRR, CAPEX, UF, and EAB, are "cause" group 
factors. These characteristics tend to have a bigger effect on 
other people in the network, which is why they are the main 
factors that shape green port priority. For instance, high LRR 
and IRR figures show that lifetime and investment factors are 
important to think about when planning improvements. On the 
other hand, the criteria below the dashed line, TEI, CPG, GIF, 
AVR, DIL, SPB, DPB, and FS, are in the "effect" group. They are 
affected by others and usually show results or replies. TEI's 

position on the far right, with a negative relationship and the 
highest prominence, shows that tariff exposure is determined by 
numerous interacting factors instead of being the main one. 
Criteria that are close to zero on the relation axis, such as LPR, 
IMR, AC, TPG, NPV, and OPEX, operate as links between other 
criteria. They give feedback, but they don't clearly dominate or 

 
Fig. 2 Barplot of BWM weights 

 
Table 1  
Aggregate Decision Matrix 

Criterion Abbreviation Type Tag 
Aggregated Expert 

Score (1–9) 

Capital Expenditure CAPEX Economic Cost 6.8 
Operating Expenditure (annual) OPEX Economic Cost 7.1 
Net Present Value (10–25y) NPV Economic Benefit 7.5 
Internal Rate of Return IRR Economic Benefit 6.9 
Simple Payback SPB Economic Cost 5.8 
Discounted Payback DPB Economic Cost 6.2 
Tariff Exposure Index TEI Economic Cost 7.4 
Fuel Savings (annual) FS Economic Benefit 8.1 
Throughput/Productivity Gain TPG Econ/Tech Benefit 6.7 
Utilization Factor UF Tech Benefit 7.2 
Availability/Reliability AVR Tech Benefit 7.8 
Grid Interconnection Feasibility GIF Tech Cost 5.9 
Implementation Risk IMR Tech/Econ Cost 6.5 
Emission Abatement (tCO2e/yr) EAB Tech/Env Benefit 8.3 
Abatement Cost (USD/tCO2e) AC Econ/Env Cost 6.7 
Local Pollutant Reduction LPR Env/Tech Benefit 7.9 
Certification Points Gain CPG Policy Benefit 6.3 
Workforce & Training Readiness WTR Org/Tech Benefit 6.6 
Digital Integration Level DIL Tech Benefit 6.9 
Lifecycle Replacement Risk LRR Tech/Econ Cost 5.7 

 

 

Fig. 3 Scatter plot 
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respond. By demonstrating how the function of each criterion 
varies based on prominence and causation, the display helps 
decision makers find leverage areas for interventions and 
predict downstream effects. This helps in deciding which parts 
to focus on first during electrification or operational upgrades. 

 The r-values (given effects) from the fuzzy DEMATEL 
analysis, quantifying the influence exerted by each criterion 
within the green port evaluation network, are illustrated in 
Figure 4. The Lifecycle Replacement Risk (LRR) and Workforce 
& Training Readiness (WTR) scores are the highest, with 1.436 
and 1.399, respectively. This means that they are very important 
factors that impact many other criteria. The Tariff Exposure 
Index (TEI) and Operating Expenditure (OPEX) also have a big 
impact, which means that economic risks and costs play a big 
role in making decisions. Net Present Value (NPV), 
Implementation Risk (IMR), Local Pollutant Reduction (LPR), 
and Abatement Cost (AC) are all somewhat less important but 
still important. This shows that financial rewards, operational 
risks, environmental benefits, and costs are all important factors 
in driving change. Criteria with lower r-values, such 
Availability/Reliability (AVR), Capital Expenditure (CAPEX), 
Utilization Factor (UF), and Certification Points Gain (CPG), 
have a modest effect and typically respond to upstream causes. 
This distribution helps find leverage areas where putting more 
effort and resources into management can have a ripple effect 
throughout the network. Figure 4 is important for strategic 
prioritizing in green port electrification and sustainability 
planning because it helps decision-makers figure out which 
criteria spread influence. This lets policymakers and managers 

deal with the fundamental causes of problems instead of just the 
symptoms. 

Figure 5 displays the “c” scores from fuzzy DEMATEL, 
quantifying how much influence each criterion receives from all 
others within the green port evaluation framework. The Tariff 
Exposure Index (TEI) has the highest c-value at 1.439, followed 
closely by the Digital Integration Level (DIL, 1.406) and the 
Availability/Reliability (AVR, 1.378). This means that TEI is 
very sensitive to upstream causes and tends to take in or reflect 
the effects of many other decisions, notably those on costs, 
adopting new technology, or changing how things are done. A 
high c-value for DIL and AVR means that digitalization and 
reliable system operation are affected by changes in other parts 
of the decision network. Criteria such as Grid Interconnection 
Feasibility (GIF), Discounted Payback (DPB), and 
Throughput/Productivity Gain (TPG) also show a lot of 
receptiveness, taking in changes from basic drivers like capital 
investments, risk, or changes in regulations. Items like IRR, UF, 
and CAPEX have lower c-values, which means that changes in 
the economy have less of an effect on their profitability, use, and 
big costs. Instead, they work more independently or create 
requirements that other criteria must meet. These differences 
assist planners figure out which performance factors are the 
result of system-wide dynamics. 

Figure 6 ranks criteria based on prominence (the sum of 
influences given and received), making it possible to spot which 
attributes are deeply interactive within the network. It is 
observed that TEI is the highest with a score of 2.808, which 
means it has a lot of connections and is affected by many things 

 

Fig. 4 Fuzzy DEMATEL r value showing given effects 
 
 

 
Fig. 5 Fuzzy DEMATEL c value showing received effects 
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while simultaneously having a big effect on other criteria. Next 
are LRR (2.755), WTR (2.723), and DIL (2.706). Each of them is 
a big part of the overall picture of green port priority and a 
sensitive receiver. High values here indicate criteria that act as 
both agents of change and responsive nodes, frequently 
governing larger dynamics and reacting to changes throughout 
the system. OPEX, IMR, and TPG are examples of criteria that 
are in the middle of the table. They show balanced amounts of 
activity without taking over the network. CAPEX (2.532) and UF 
(2.539), on the other hand, are less important. They have a more 
peripheral role in cross-criterion interaction because they 
impact fewer outcomes and are less likely to cause systemic 
changes that are started by other factors. Planners may better 
understand where their efforts to improve performance are 
more likely to have an effect on the network by looking at this 
profile. This makes prominence a useful way to deal with the 
complexity of port transformation. 

The relation (r–c) values for the green port criteria, 
categorizing each as either a root cause or an outcome within 
the impact network, are depicted in Figure 7. Criteria with 
positive r–c values, including LRR, IRR, WTR, CAPEX, EAB, 
and UF, serve as key drivers as these factors exert a greater 
outward effect than they receive. LRR attains the greatest 
causative status of 0.117, underscoring lifecycle concerns as the 
primary determinant influencing subsequent decisions. IRR and 
WTR indicate how financial appeal and workforce preparedness 
catalyze subsequent effects. Negative correlation scores, 

including those for DIL, CPG, AVR, TEI, and DPB, indicate 
effect criteria as these are predominantly influenced by external 
factors and are less significant as initiators themselves. DIL 
possesses the lowest score (–0.106), emphasizing that digital 
integration results reflect changes within the overarching 
system. Values proximate to zero, including IMR, LPR, AC, and 
SPB, indicate bidirectional roles characterized by balanced 
influence, frequently designating them as connectors or 
feedback mechanisms between drivers and outcomes. This 
figure elucidates the variables most suitable for intervention 
(those with the largest positive r–c), while others act as 
performance indicators or represent downstream outcomes of 
network modifications, informing resource distribution and 
prioritization in green port enhancements. 

3.4 Results of ANP-TOPSIS 

Figure 8 presents the allocation of ANP-derived criterion 
weights for the full set of performance indicators considered in 
this analysis. The analytic network method creates the 
weighting scheme by changing the relevance of each criterion 
to take into consideration how all the factors in the decision 
model are related and how they affect each other. With a weight 
of 0.054, Lifecycle Replacement Risk (LRR) is at the top of the 
list. This shows how important the timing and uncertainty of 
asset replacement are to the overall strategic goals of green port 
investments. Workforce & Training Readiness (WTR) comes 

 
Fig. 6 Fuzzy DEMATEL prominence (r + c) 

 

 
Fig. 7 Fuzzy DEMATEL prominence (r - c) 
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next with a weight of 0.053, and Tariff Exposure Index (TEI) is 
almost as important with a weight of 0.052. This shows that 
human capital and exposure to market-driven costs are key 
factors in system-wide decision trade-offs. OPEX, IMR, NPV, 
and LPR all have values close to 0.051, which means that regular 
spending, implementation weaknesses, net returns, and 
pollution control all have about the same effect on the system. 
The wide middle tier, which includes AC, GIF, TPG, IRR, DPB, 
SPB, EAB, DIL, FS, AVR, and CAPEX, has weights that are very 
close to 0.049–0.050. This close grouping shows that ANP 
spreads importance more evenly across the network by taking 
into account cross-influences, which lessens the value of 
isolated criterion. UF and Certification Points Gain (CPG) are at 
the bottom, with weights of 0.048 and 0.047, respectively. This 
means that their outcomes are more typically caused by 
upstream factors than by the primary levers themselves.  

The trend in Figure 8 supports the scientific idea that in 
linked, multi-criteria areas like port decarbonization, the most 
important aspects aren't always clear from a single evaluation. 
Instead, systemic risk factors (like LRR and WTR) and cost 
sensitivities (like TEI and OPEX) become more important 
because changes in these areas have a big impact on the whole 
network of economic, technological, and environmental 
priorities, which in turn affects how well modernization and 
electrification choices work. 

The ANP-TOPSIS findings (Table 2) offer a detailed 
depiction of criterion benchmarks, distinguishing between 
optimal positive and optimal negative reference values. These 
benchmarks make it possible to compare project options in a 
realistic way, considering a wide range of techno-economic and 
environmental factors. Cost-oriented indicators like CAPEX 
(ideal positive: 0.0239, ideal negative: 0.0319), OPEX (0.0295, 
0.0295), SPB (0.0266, 0.0319), DPB (0.0268, 0.0321), and TEI 
(0.0282, 0.0329) show that the best solution is to cut costs, 
improve payback metrics, and limit exposure to tariff changes. 
Their lower ideal positive values relative to ideal negatives show 
that a lesser cost is better. On the other hand, economic benefits 
have the opposite polarity, with NPV (0.0306, 0.0262), IRR 
(0.0300, 0.0257), FS (0.0333, 0.0208), TPG (0.0305, 0.0254), and 
UF (0.0280, 0.0280) displaying larger ideal positive values. FS, 
which stands for fuel savings, has the biggest difference 
between ideal positive and negative, which shows how 
important it is as a way to tell options apart. EAB (0.0283, 
0.0283) and LPR (0.0313, 0.0279) are examples of 
environmental standards that balance eastern hopes for lower 
emissions and better air quality. 

AVR (0.0294, 0.0257), WTR (0.0318, 0.0272), and DIL 
(0.0308, 0.0270) are all examples of technical and organizational 

elements that show how important operational dependability, 
workforce preparation, and digital integration are for long-term 
sustainability. GIF (0.0239, 0.0335) and LRR (0.0274, 0.0329) 
show a different pattern: their ideal negative values are higher 
than their ideal positive values, showing that for the best 
solutions, researchers need to reduce the risks of grid 
interconnection problems and lifetime replacement. These 
benchmark values let TOPSIS look at costs, benefits, risks, and 
operational aspects all at once. This lets it figure out the 
geometric distances that show how close each option is to the 
ideal. This analytical methodology respects the complicated 
relationships between competing criteria and leads to more 
balanced, useful rankings. It gives decision-makers the tools 
they need to make the best choices for moving forward with 
green port electrification and modernization that balance 
economic viability, environmental stewardship, and 
technological feasibility. 

Figure 9 shows the final alternative rankings that the TOPSIS 
algorithm came up with. It also shows the closeness coefficients 
for each scenario that was looked at: AltC, AltB, and AltA. In 
TOPSIS, closeness shows how close an option is to the best 
circumstances across all weighted criteria. Higher values mean 
better overall performance and a better balance between 
techno-economic and environmental factors. AltC is the most 
popular choice, with a close score of 0.739. This indicates that 

 
Fig. 8 ANP-derived criterion weights 

 

Table 2 
TOPSIS ideal points 

Criterion Ideal Positive Ideal Negative 

CAPEX 0.0239 0.0319 
OPEX 0.0295 0.0295 
NPV 0.0306 0.0262 
IRR 0.0300 0.0257 
SPB 0.0266 0.0319 
DPB 0.0268 0.0321 
TEI 0.0282 0.0329 
FS 0.0333 0.0208 

TPG 0.0305 0.0254 
UF 0.0280 0.0280 

AVR 0.0294 0.0257 
GIF 0.0239 0.0335 
IMR 0.0257 0.0308 
EAB 0.0283 0.0283 
AC 0.0290 0.0290 
LPR 0.0313 0.0279 
CPG 0.0284 0.0243 
WTR 0.0318 0.0272 
DIL 0.0308 0.0270 
LRR 0.0274 0.0329 
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it constantly gets scores close to the optimum reference points 
for the combined set of criteria. This makes it the best-balanced 
choice among the green port configurations. AltB follows with a 
rating of 0.661, suggesting that while it nearly approaches the 
targeted results and displays competitiveness, it falls short of 
AltC, presumably due to trade-offs in one or more areas where 
AltC shines (such as integrated environmental and operational 
qualities). AltA is far behind, with a closeness of 0.184, which 
shows that it is far from the best mix of benefits and hazards. 
This big difference shows that one or more problems, maybe 
more expenses, less emission reduction, or operational 
weaknesses keep AltA from fulfilling the planned portfolio of 
goals.  

The ranking is the result of rigorous integration across BWM, 
DEMATEL, ANP, and TOPSIS, with each technique aligning 
weights, causality, network feedback, and distance measures. 
The results give clear, useful advice: strategies and investments 
mapped onto AltC are the best overall fit with the multi-criteria 
goals set by experts and stakeholders. AltA, on the other hand, 
can't make up for its larger overall weaknesses compared to the 
ideal. This rating enables open planning and resource allocation 
in the goal of green port modernization. 

4. Conclusion 

This study developed and applied an integrated decision-
support scheme blending expert judgment, causal analysis, 
network weighting, and multi-criteria ranking to prioritize green 
port establishment with emphasis on techno-economic criteria.  
The results show that experts care most about reducing 
emissions, conserving fuel, and making operations more 
reliable. Lifecycle replacement risk and labor preparedness, on 
the other hand, are the main factors that affect tariff risk and 
technology adoption. Network-consistent weights adjusted for 
the criterion balance, showing that systemic risk and human 
capital are the most important levers. The hybrid phased 
electrification option came out on top, showing that a staged 
investment strategy is superior at balancing costs, 
environmental effects, operational productivity, and 
technological readiness than plans that focus on one thing at a 
time. This shows how important it is to use complex sequencing 
and balance conflicting goals instead of just relying on simple 
cost or environmental measures. The framework's modular 
structure, which includes different areas of knowledge, 
uncertainty modelling, and feedback loops, makes it a clear, 
repeatable, and flexible way to make decisions in complicated 
sustainability situations. It goes beyond simple linear weighing 
and scoring by showing how things are related and how they 
depend on each other. This gives policymakers and 

stakeholders who have to deal with financial limits, regulatory 
uncertainty, and workforce preparedness at the same time a 
better understanding of the situation. Future endeavours may 
enhance the model by integrating real-time operational data, 
tariff variations, and dynamic renewable integration scenarios, 
therefore increasing its relevance and responsiveness. Overall, 
the findings support careful, expert-informed, and multi-
dimensional planning for initiatives to change ports to be more 
environmentally friendly while still protecting their long-term 
economic and operational sustainability.  
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