skip to main content

Optimization and Molecular Characterization of Syngas Fermenting Anaerobic Mixed Microbial Consortium TERI SA1

1TERI, Darbari Seth Block, India Habitat Centre, New Delhi 110 003, India

2TERI University, 10 Institutional Area, Vasant Kunj, New Delhi 110 070, India

3ONGC Energy Center, SCOPE Minar, Laxmi Nagar, New Delhi 110092, India

Published: 6 Nov 2017.
Editor(s): H Hadiyanto

Citation Format:

The present study focused on the optimization and molecular characterization of anaerobic mixed consortium TERI SA1 that can utilize synthesis gas as sole carbon source for volatile fatty acids production. Optimization study using Box- Behnken design and RSM methodology was carried out in order to investigate the effect of three medium factors on metabolite formation from synthesis gas bioconversion: (yeast extract (0.0–2.0 g/L), ammonium chloride (0.0–1.5 g/L) and corn steep liquor (0.0-10 g/L). Optimized parameters enhanced the production of volatile fatty acids upto 3.9 g/L, which indicated an increase of around 289 % from the non-optimized conditions. Furthermore, two approaches were used for isolation and phylogenetic identification of anaerobic consortium TERI SA1 involving 16S rRNA sequencing of culturable bacterial isolates as well as meta-genomic approach (by making a 16S rRNA gene library of total community DNA). Based on similarity search with NCBI database selected positive clones were most closely related with acetogenic microorganisms Clostridium scatalogenes, Clostridium carboxydivorans, Clostridium drakei and Uncultured Clostridium sp. and strains isolated by culturable method (ASH051 and ASH 052) with Clostridium scatalogenes, and Clostridium drakei. These strains have previously been reported for acetic acid production from syngas bioconversion.

Article History: Received July 16th 2017; Received in revised form September 13rd 2017; Accepted Sept 28th 2017; Available online

How to Cite This Article: Singla, A., Kumar, S., Lavania, M., Chhipa, H., Kapardar, R., Rastogi, S., Lal, B., and Sarma, P.M. (2017) Optimization and Molecular Characterization of Syngas Fermenting Anaerobic Mixed Microbial Consortium TERI SA1.International Journal of Renewable Energy Development, 6(3), 241-251.

Fulltext View|Download
Keywords: Synthesis gas; Consortium; Volatile fatty acids; Optimization; Characterization
Funding: Ministry of Science & Technology, Department of Biotechnology

Article Metrics:

  1. Abubackar, H.N., Veiga, M.C., Kennes, C. (2011). Biological conversion of carbon monoxide: rich syngas or waste gases to bioethanol. Biofuels Bioprod. Biorefin. 5, 93–114
  2. Bredwell, M.D., Srivastava, P., Worden, R.M. (1999). Reactor design issues for synthesis-gas fermentations. Biotechnol. Prog. 15, 834–844
  3. Bruant, G., Lévesque, M.J., Peter. C., Guiot, S.R., Masson, L. (2010). Genomic analysis of carbon monoxide utilization and butanol production by Clostridium carboxidivorans strain P7. PLoS One, 5, 1–12
  4. Cotter, J.L., Chinn, M.S., Grunden, A.M. (2009). Influence of process parameters on growth of Clostridium ljungdahlii and Clostridium autoethanogenum on synthesis gas. Enzyme Microb. Technol, 44(5), 281-88
  5. Dalal, J., Sarma, P.M., Mandal, A.K., Lal, B. (2013). Response surface optimization of poly (3-hydroxyalkanoic acid) production using oleic acid as an alternative carbon source by Pseudomonas aeruginosa. Biomass and Bioenrg, 54, 67-76
  6. Demain, A.L., Davies, J.E. (1999). Manual of ind. Microbiol. Biotechnol. 2nd edition. Washington DC: ASM press
  7. Frostl, J.M., Seifritz, C., Drake, H.L. (1996). Effect of nitrate on the autotrophic metabolism of the acetogens Clostridium thermoautotrophicum and Clostridium thermoaceticum. J. Bacteriol, 178(1), 4597-03
  8. Gaddy, J.L., Clausen, W.C. (1992). Clostridium ljungdahlii, an Anaerobic Ethanol and Acetate Producing Microorganism. U.S. Patent 5173429
  9. Gao, J., Atiyeh, H.K., Phillips, J.R., Wikins, M.R., Huhnke, R.L. (2013). Development of low cost medium for ethanol production from syngas by Clostridium ragsdalei. Bioresour. Technol, 147(1), 508–15
  10. Guo, Y., Xu, J., Zhang, Y., Xu, H., Yuan, Z., Li, D. (2010). Medium optimization for ethanol production with Clostridium autoethanogenum with carbon monoxide as sole carbon source. Bioresour. Technol, 101(22), 8784–89
  11. Hurst, K.M., Lewis, R.S. (2010). Carbon monoxide partial pressure effects on the metabolic process of syngas fermentation. Biochem. Eng. J. 48, 159–165
  12. Kennedy, M.J., Krouse, D. (1999). Strategies for improving fermentation medium performance: A Review. J. Ind. Microbial. Biotechnol, 23(6), 456-75
  13. Klasson, K.T., Ackerson, C.M.D., Clausen, E.C., Gaddy, J.L. (1992). Biological conversion of synthesis gas to fuels. Int. J. Hydrogen Energy, 7(4), 281-88
  14. Kundiyana, D.K., Huhnke, R.L., Maddipati, P.B., Atiyeh, H.K., Wilkins, M.R. (2010). Feasibility of incorporating cotton seed extract in Clostridium strain P11 fermentation medium during synthesis gas fermentation. Bioresour. Technol, 101(24), 9673–80
  15. Kundiyana, D.K., Wilkins, M.R., Maddipati, P.B., Huhnke, R.L. (2011). Effect of temperature, pH and buffer on syngas fermentation using Clostridium strain P11. Bioresour. Technol, doi: 10.1016/j.biortech.2011.02.232
  16. Kusel, K., Dorsch, T., Acker, G., Stackebrandt, E., Drake, H.L. (2000). Clostridium scatologenes strain SL1 isolated as an acetogenic bacterium from acidic sediments. Int. J. Syst. Evol. Microbial, 50, 537–546
  17. Liggett, R.W., Koffler, H. (1948). Corn steep liquor in microbiology. Microbiol. Molec. Biol. Rev, 12(4), 297–11
  18. Liou, J.S.C., Balkwill, D.L., Drake, G.R., Tanner, R.S. (2005). Clostridium carboxidivorans sp. nov., a solvent-producing clostridium isolated from an agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei sp. nov. Int. J. Syst. Evol. Microbial, 55, 2085–2091
  19. Liu, K., Atiyeh, H.K., Tanner, R.S., Wilkins, M.R., Huhnke, R.L. (2012). Fermentative production of ethanol from syngas using novel moderately alkaliphilic strains of Alkalibaculum bacchi. Bioresour. Technol. 104, 336–341
  20. Liu, K., Atiyeh, H.K., Stevenson, B.S., Tanner, R.S., Wilkins, M.R., Huhnke, R.L. (2013). Mixed culture syngas fermentation and conversion of carboxylic acids into alcohols. Bioresour. Technol. 152, 337–346
  21. Lundie, L.L., Drake, H.L. (1984). Development of a minimally defined medium for the acetogen Clostridium thermoaceticum. J. Bacteriol. 159, 700-03
  22. Maddipati, P., Atiyeh, H.K., Bellmer, D.D., Huhnke, R.L. (2011). Ethanol production from syngas by Clostridium strain P11 using corn steep liquor as a nutrient replacement to yeast extract. Bioresour. Technol. 102, 6494–6501
  23. Mohammadi, M., Younesi, H., Najafpour, G.D., Mohamed, A.R. (2012). Sustainable ethanol fermentation from synthesis gas by Clostridium ljungdahlii in a continuous stirred tank bioreactor. J. Chem. Technol. Biotechnol. 87, in press,
  24. Montgomery, D.C. (2003). Design and analysis of experiments, sixth ed. Wiley and Sons. New York
  25. Muller, V. (2003). Energy conservation in acetogenic bacteria. Appl. Environ. Microbial. 69, 6345–6353
  26. Murthy, M., Swaminathan, T., Rakshit, S.K., Kosugi, Y. (2000). Statistical optimization of lipase catalyzed hydrolysis of methyloleate by RSM. Bioproc. Biosys. Eng. 22, 35-9
  27. Savage, M.D., Drake, H.L. (1986). Adaptation of the acetogen Clostridium thermoautotrophicum to minimal medium. J. Bacteriol, 165(1), 315-8
  28. Saxena, J., Tanner, R.S. (2012). Optimization of a corn steep medium for production of ethanol from synthesis gas fermentation by Clostridium ragsdalei. World J. Microbial. Biotechnol. 28, 1553–1561
  29. Shenkman, R.M. (2014). C. Carboxidovorans culture advances and the effects of pH, temperature, and producer gas on key enzymes. [M.S. thesis], OkState
  30. Silveira, M.N., Wisbeck, E., Hoch, I., Jonas, R. (2001). Production of glucose-fructose oxidoreductase and ethanol by Zimomonas mobilis ATCC29191 in medium containing corn steep liquor as a source of vitamins. Appl. Microbiol. Biotechnol. 55, 442-45
  31. Singh, S., Sarma, P.M., Lal, B. (2014). Biohydrogen production by Thermoanaerobacterium thermosaccharolyticum TERI S7 from oil reservoir flow pipeline. Int. J. Hydrogen Energ. 39, 4206–4214
  32. Singla, A., Verma, D., Lal, B., and Sarma, P.M. (2014). Enrichment and optimization of anaerobic bacterial mixed culture for conversion of syngas to ethanol. Bioresour. Technol. 172, 41-49
  33. Ukpong, M.N., Atiyeh, H.K., De Lorme, M.J.M., Liu, K., Zhu X., Tanner R.S., Wilkins, M.R., Stevenson, B.S. (2012). Physiological response of Clostridium carboxidivorans during conversion of synthesis gas to solvents in a gas-fed bioreactor. Biotechnol. Bioeng. 109, 2720–2728
  34. Winnepenninckx, B., Backelgau, T., Wachter, D.R. (1993). Extractions of high molecular weight DNA from molluscs. Trends Genet. 9, 407
  35. Yang, H.C., Drake, H.L. (1990). Differential effects of sodium on hydrogen- and glucose-dependent growth of the acetogenic bacterium Acetogenium kivui. Appl. Environ. Microbiol. 56, 81-86

Last update:

  1. Optimizing biohydrogen production yields by employing locally isolated thermophilic bacteria from hot springs

    İlayda Akaçin, Şeymanur Ersoy, Tuğba Keskin, Haris Nalakath Abubackar, Mine Güngörmüşler. International Journal of Hydrogen Energy, 2023. doi: 10.1016/j.ijhydene.2023.07.243
  2. Enhanced Oil Recovery Using Indigenous Microbiome of High Temperature Oil Reservoirs

    Neha Sharma, Meeta Lavania, Vipin Kukreti, Dolly Pal Rana, Banwari Lal. Current Microbiology, 80 (5), 2023. doi: 10.1007/s00284-023-03272-6
  3. Enrichment of syngas-converting mixed microbial consortia for ethanol production and thermodynamics-based design of enrichment strategies

    Antonio Grimalt-Alemany, Mateusz Łężyk, Lene Lange, Ioannis V. Skiadas, Hariklia N. Gavala. Biotechnology for Biofuels, 11 (1), 2018. doi: 10.1186/s13068-018-1189-6

Last update: 2024-05-16 08:29:24

  1. Enrichment of syngas-converting mixed microbial consortia for ethanol production and thermodynamics-based design of enrichment strategies

    Antonio Grimalt-Alemany, Mateusz Łężyk, Lene Lange, Ioannis V. Skiadas, Hariklia N. Gavala. Biotechnology for Biofuels, 11 (1), 2018. doi: 10.1186/s13068-018-1189-6