skip to main content

Optimization of pyrolytic oil production from coconut shells by microwave-assisted pyrolysis using activated carbon as a microwave absorber

Department of Chemical Engineering, Institut Teknologi Sepuluh Nopember, Jl. Arief Rahman Hakim, Sukolilo, Surabaya 60111, Indonesia

Received: 10 Jul 2023; Revised: 27 Nov 2023; Accepted: 16 Dec 2023; Available online: 24 Dec 2023; Published: 1 Jan 2024.
Editor(s): Rock Keey Liew
Open Access Copyright (c) 2024 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
Coconut shell waste pollutes the environment and affects public health. Converting coconut shell waste to pyrolytic oil (liquid smoke) with antimicrobial properties using microwave-assisted pyrolysis and activated charcoal as an absorbent is a promising solution. The purpose of this study is to investigate the process factors involved in the manufacture of coconut shell pyrolytic oil (liquid smoke) using microwave-assisted pyrolysis, to identify the chemical components in coconut shell pyrolytic oil, and to optimize the process factors using a face-centered central composite design (FCCD). This study further used coconut shells of various sizes (1–3 mm) and employed microwave-assisted pyrolysis with different power levels (300–600 W) and pyrolysis times (5–30 min). The results revealed that the pyrolytic oil (liquid smoke) yield increased as the time and microwave power increased but decreased as the size of the materials decreased. The optimum yield obtained was 34.6% at the following conditions: power of 593.6 W, material size of 2.9 mm, and heating time of 28.5 min. The analysis of the components of the volatile compounds in the pyrolytic oil (liquid smoke) product obtained from gas chromatography-mass spectrometry (GC–MS) analysis identified a total of 14 chemical components in coconut shell pyrolytic oil (liquid smoke) at 300 W, 15 compounds at 450 W, and only 5 components at 600 W. Among these compounds, phenol, dimethoxy phenol, guaiacol, hydroxyanisole, and methoxyphenol were found to have the highest concentrations. The outcomes of this study offer valuable contributions to the development of pyrolytic oil (liquid smoke) products with enhanced quality, flavor, and potential applications in the food industry
Fulltext View|Download
Keywords: Liquid smoke; microwave-assisted pyrolysis; activated charcoal; microwave absorber; coconut shell

Article Metrics:

  1. Abidin. (2021). Designing Strategies and Green Business Models in the Coconut Oil Industry. Primanomics:Jurnal Ekonomi dan Bisnis, 19(2), 1–10. https://doi.org/10.31253/pe.v19i2.583
  2. Alouw, J. C., & Wulandari, S. (2020). Present status and outlook of coconut development in Indonesia. IOP Conference Series: Earth and Environmental Science, 1–10. Changchun, China.: IOP Publishing Ltd. https://doi.org/10.1088/1755-1315/418/1/012035
  3. Arnelli, Henrika Putri, U. H., Cholis, F. N., & Astuti, Y. (2019). Use of Microwave Radiation for Activating Carbon from Rice Husk Using ZnCl2 Activator. Journal of Scientific and Applied Chemistry, 22(6), 283–291. https://doi.org/10.14710/jksa.22.6.283-291
  4. Aziz, N. A. M., Yunus, R., Kania, D., & Hamid, H. A. (2021). Prospects and Challenges of Microwave-Combined Technology for Biodiesel and Biolubricant Production through a Transesterification: A Review. Molecules, 26(788), 1–21. https://doi.org/10.3390/molecules26040788
  5. Bheel, N., Mangi, S. A., & Meghwar, S. L. (2021). Coconut Shell Ash as Cementitious Material in Concrete: A Review. Jurnal Kejuruteraan, 33(1), 27–38. https://doi.org/10.17576/jkukm-2021-33(1)-03
  6. Borges, F. C., Du, Z., Xie, Q., Trierweiler, J. O., Cheng, Y., Wan, Y., … Ruan, R. (2014). Fast microwave assisted pyrolysis of biomass using microwave absorbent. Bioresource Technology, 156, 267–274. https://doi.org/10.1016/j.biortech.2014.01.038
  7. Dewi, F. C., Tuhuteru, S., Aladin, A., & Yani, S. (2021). Characteristics of Liquid Smoke of Red Fruit (Pandanus conoideus. L.) Waste with Pyrolysi Method and Potentially as Biopesticide. Journal of Environmental and Agricultural Studies, 81–87. https://doi.org/10.32996/jeas.2021.2.2.7
  8. Escalante, J., Chen, W.-H., Tabatabaei, M., Hoang, A. T., Kwon, E. E., Lin, K.-Y. A., & Saravanakumar, A. (2022). Pyrolysis of lignocellulosic, algal, plastic, and other biomass wastes for biofuel production and circular bioeconomy: A review of Thermogravimetric analysis (TGA) approach. Renewable and Sustainable Energy Reviews, 169(112914), 1–21. https://doi.org/10.1016/j.rser.2022.112914
  9. Ethaib, S., Omar, R., Kamal, S. M. M., Biak, D. R. A., & Zubaidi, S. L. (2020). Microwave-Assisted Pyrolysis of Biomass Waste: A Mini Review. Processes, 8(1190), 2–17. https://doi.org/10.3390/pr8091190
  10. Foong, S. Y., Chan, Y. H., Lock, S. S. M., Chin, B. L. F., Yiin, C. L., Cheah, K. W., … Lam, S. S. (2022). Microwave processing of oil palm wastes for bioenergy production and circular economy: Recent advancements, challenges, and future prospects. Bioresource Technology, 369(128478), 1–16. https://doi.org/10.1016/j.biortech.2022.128478
  11. Foong, S. Y., Liew, R. K., Yek, P. N. Y., Han, C. S., Phang, X. Y., Chen, X., … Lam, S. S. (2023). Microwave heating combined with activated carbon reaction bed: An energy-saving approach to convert seawater into freshwater. Energy, 272(127178), 1–7. https://doi.org/10.1016/j.energy.2023.127178
  12. Gunwant, D., & Vedrtnam, A. (2021). Microwave absorbing properties of carbon fiber based materials: A review and prospective. Journal of Alloys and Compounds, 881, 1–23. https://doi.org/10.1016/j.jallcom.2021.160572
  13. Gutema, E. M., Gopal, M., & Lemu, H. G. (2022). Temperature Optimization by Using Response Surface Methodology and Desirability Analysis of Aluminium 6061. Materials, 15(5892), 1–16. https://doi.org/10.3390/ma15175892
  14. Hasanah, U., Mulyati, A. H., & Heliawati, L. (2022). Micro-Scale Liquid Smoke Extraction as a By-Product from Coconut Shell Charcoal Production in Kotabatu Village. International Journal of Research in Community Service, 3(2), 82–87. Retrieved from https://journal.rescollacomm.com/index.php/ijrcs/article/view/269.
  15. Hidayati, B., Sipahutar, R., Bizzy, I., & Faizal, M. (2022). Increased Productivity Of Liquid Smoke Through Fast Thawing With Refrigeration Systems At Low Air Temperatures. Journal of Applied Engineering Science, 20(2022)1(906), 79–84. https://doi.org/10.5937/jaes0-30849
  16. Idris, R., Chong, W. W., Ali, A., Idris, S., Asik, J. ., Hasan, M. ., … Ani, F. . (2020). Effect of microwave susceptor design on the heating profile of co-pyrolysis between empty fruit bunches and waste truck tire. In P. D. W. Chin-Tsan & P. D. C. W. Tong (Eds.), International Conference on Sustainable Energy and Green Technology (pp. 1–7). Bangkok: IOP Publishing Ltd. https://doi.org/10.1088/1755-1315/463/1/012116
  17. Jamilatun, S., Budhijanto, Rochmadi, Yuliestyan, A., Hadiyanto, H., & Budiman, A. (2019). Comparative Analysis Between Pyrolysis Products of Spirulina platensis Biomass and Its Residues. Int. Journal of Renewable Energy Development (IJRED), 8(2), 133–140. https://doi.org/10.14710/ijred.8.2.133-140
  18. Khelfa, A., Rodrigues, F. A., Koubaa, M., & Vorobiev, E. (2020). Microwave-Assisted Pyrolysis of Pine Wood Sawdust Mixed with Activated Carbon for Bio-Oil and Bio-Char Production. Processes, 8(1437), 1–12. https://doi.org/10.3390/pr8111437
  19. Kumar, A., & Jena, H. M. (2016). Preparation and characterization of high surface area activated carbon from Fox nut (Euryale ferox) shell by chemical activation with H3PO4. Results in Physics, 6, 651–658. https://doi.org/10.1016/j.rinp.2016.09.012
  20. Li, S., Li, C., & Shao, Z. (2022). Microwave pyrolysis of sludge. Sustainable Environment Research, 32(23), 1–14. https://doi.org/10.1186/s42834-022-00132-z
  21. Lin, J., Sun, S., Xu, D., Cui, C., Ma, R., Luo, J., … Li, H. (2022). Microwave directional pyrolysis and heat transfer mechanisms based on multiphysics field stimulation: Design porous biochar structure via controlling hotspots formation. Chemical Engineering Journal, 429, 1–17. https://doi.org/10.1016/j.cej.2021.132195
  22. Lyu, G., Wu, S., & Zhang, H. (2015). Estestimation and comparison of bio-oil components from different pyrolysis conditionsimation and comparison of bio-oil components from different pyrolysis conditions. Fronlters in Energy Research, 3(28), 1–11. https://doi.org/10.3389/fenrg.2015.00028
  23. Maulina, S., Amalia, R., & Kamny, E. R. (2020). Effect of pyrolisis temperature and time on liquid smoke characteristics. In A. S. Setiyawan, H. D. Ariesyady, A. Nastiti, D. Roosmini, & S. Abfertiawan (Eds.), The 6th Environmental Technology and Management Conference (ETMC) in conjunction with The 12th AUN/SEED-Net Regional Conference on Environmental Engineering (RC EnvE) 2019 (pp. 11–13). Bali, Indonesia: EDP Sciences. https://doi.org/10.1051/e3sconf/202014802007
  24. Muhammad Faisal, & Gani, A. (2018). The Effectiveness of Liquid Smoke Produced from Palm Kernel Shells Pyrolysis as a Natural Preservative in Fish Balls. International Journal of GEOMATE, 15(47), 145–150. https://doi.org/10.21660/2018.47.06109
  25. Mumtaz, S., Rana, J. N., Choi, E. H., & Han, I. (2022). Microwave Radiation and the Brain: Mechanisms, Current Status, and Future Prospects. International Journal of Molecular Sciences, 23(9288), 1–26. https://doi.org/10.3390/ijms23169288
  26. Mushtaq, F., Abdullah, T. A. T., Mat, R., & Ani, F. N. (2015). Optimization and characterization of bio-oil produced by microwave assisted pyrolysis of oil palm shell waste biomass with microwave absorber. Bioresource Technology, 15, 1–18. https://doi.org/10.1016/j.biortech.2015.02.055
  27. Nunes, L. A., Silva, M. L. S., Gerber, J. Z., & Kalid, R. de A. (2020). Waste green coconut shells: Diagnosis of the disposal and applications for use in other products. Journal of Cleaner Production, 255, 1–12. https://doi.org/10.1016/j.jclepro.2020.120169
  28. Nuryana, D., Alim, M. F. R., Yahayu, M., Zaini, M. A. A., Raja, R. S., Sulong, … Kusumaningtyas. (2020). Methylene Blue Removal Using Coconut Shell Biochar Synthesized through Microwave Microwave-Assisted Pyrolysis. Jurnal Teknologi, 82(5), 31–41. https://doi.org/10.11113/jt.v82.14359
  29. Ohra-aho, T., Lindfors, C., Lehtonen, J., Tamminen, T., & Siipola, V. (2020). Activated Carbons from Fast Pyrolysis Biochar as Novel Catalysts for the Post-Treatment of Pyrolysis Vapors, Studied by Analytical Pyrolysis. Journal of Carbon Research, 6(0065), 1–14. https://doi.org/10.3390/c6040065
  30. Oramahi, H. A., Kustiati, & Wardoyo, E. R. P. (2022). Optimization of Liquid Smoke from Shorea pachyphylla using Response Surface Methodology and its Characterization. Science and Technology Indonesia, 7(2), 257–262. https://doi.org/10.26554/sti.2022.7.2.257-262
  31. Paunescu, L., Axinte, S. M., Dragoescu, M. F., & Cosmulescu, F. (2020). Experimental Use of Microwaves in the High Temperature Foaming Process of Glass Waste to Manufacture Heat Insulating Materials in Building Construction. Journal La Multiapp, 1(3), 17–26. https://doi.org/10.37899/journallamultiapp.v1i3.190
  32. Pemanasari, A. R., Ulfa, A. M., Suciati, R. N., Nurcahyo, Keryanti, Sihombing, R. P., Yulistiani, F., Wibisono, W. (2020). The Pyrolysis Reactor Design and The Effect of Liquid Smoke fromCoconut Shell on Microbial Contamination of Tofu. International Journal of Applied Technology Research, 1(2), 133–14. https://doi.org/10.35313/ijatr.v1i2.28
  33. Pestaño, L. D. B., & Jose, W. I. (2016). Production of Solid Fuel by Torrefaction Using Coconut Leaves as Renewable Biomass. Int. Journal of Renewable Energy Development (IJRED), 5(3), 187–197. https://doi.org/10.14710/ijred.5.3.187-197
  34. Qadariyah, L., Aswie, V., Widjaya, H. V, Aditya, K. H., & Mahfud, M. (2021). Microwave-assisted Pyrolysis of Microalgae in Producing Biooil using CaO catalyst and Charcoal as heat Absorber. IOP Conf. Series: Earth and Environmental Science, 1–7. Arau, Perlis, Malaysia: IOP Publishing Ltd. https://doi.org/10.1088/1755-1315/765/1/012095
  35. Ratnani, R. D., Hadiyanto, Widiyanto, & Adhi, M. A. (2022). Characterization Of Liquid Smoke From Dried Water Hyacinth Using Gcms (Gass Chromatography-Mass Spectrophotometry) To Utilize Weeds As Food Preservative. Jurnal Pendidikan IPA Indonesia, 11(2), 208–218. https://doi.org/10.15294/jpii.v11i2.34501
  36. Reddy, B. R., Shravani, B., Das, B., Dash, P. S., & R.Vinu. (2019). Microwave-Assisted and Analytical Pyrolysis of Coking and Non-coking Coals: Comparison of Tar and Char Compositions. Journal of Analytical and Applied Pyrolysis, 1–38. https://doi.org/10.1016/j.jaap.2019.05.003
  37. Ridhuan, K., Irawan, D., & Setiawan, R. (2020). Comparison of Types and Size of Biomass on Pirolysis Combustion Toward The Results of BioCharcoal and Liquid Smoke. Journal of Engineering and Scientific Research, 2(1), 10–15. https://doi.org/10.23960/jesr.v2i1.37
  38. Rizal, W. A., Suryani, R., Maryana, R., Prasetyo, D. J., Pratiwi, D., Ratnawati, Y. A., Ariani, D., Suwanto, A. (2022). Coconut Shell Waste Treatment Technology for A Sustainable Waste Utilization: A Case Study of the SMEs in Bohol Village, Indonesia. ASEAN Journal of Community Engagement, 6(2), 278–293. https://doi.org/10.7454/ajce.v6i2.1182
  39. Shi, C., Shi, H., Li, H., Liu, H., Mostafa, E., Zhao, W., & Zhang, Y. (2023). Efficient Heating of Activated Carbon in Microwave Field. Journal of Carbon Research, 9(48), 1–14. https://doi.org/10.3390/c9020048
  40. Silaban, R., Lubis, I., Siregar, R. E., Sinaga, F. I. S., & N.P, A. (2022). Production of Liquid Smoke From the Combination of Coconut Shell and Empty Fruit Bunch through Pyrolysis Process. In B. Baharuddin, H. Fibriasari, & J. Rajagukguk (Eds.), Education and Science in time of uncertainty: Recovering for the Future (pp. 1–10). Medan: European Alliance for Innovation (EAI). https://doi.org/10.4108/eai.11-10-2022.2325589
  41. Stefanidisa, S. D., Kalogiannis, K. G., Iliopoulou, E. F., Michailof, C. M., Pilavachi, P. A., & Lappasa, A. A. (2014). A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin. J. Anal. Appl. Pyrolysis, 105, 143–150. https://doi.org/10.1016/j.jaap.2013.10.013
  42. Tangsathitkulchai, C., Junpirom, S., & Katesa, J. (2016). Carbon Dioxide Adsorption in Nanopores of Coconut Shell Chars for Pore Characterization and the Analysis of Adsorption Kinetics. Journal of Nanomaterials, 2016, 1–10. https://doi.org/10.1155/2016/4292316
  43. Torres-Moya, I., Harbuzaru, A., Donoso, B., Prieto, P., Ortiz, R. P., & Díaz-Ortiz, Á. (2022). Microwave Irradiation as a Powerful Tool for the Preparation of n-Type Benzotriazole Semiconductors with Applications in Organic Field-Effect Transistors. Molecules, 27(4340), 1–12. https://doi.org/10.3390/molecules27144340
  44. Ugwu, E., Sen Gupta, B., Adeloye, A., & Martínez-Villegas. (2022). Application of response surface methodology for optimizing process parameters for the removal of Pb and Cu by Acacia Concinna from contaminated soil. Research Journal of Chemistry and Environment, 26(7), 127–139. https://doi.org/10.25303/2607rjce127139
  45. Wibisono, G., Skripsa, T. H., Prabowo, Y. B., & Boedi, R. M. (2022). Liquid Smoke (Wood Vinegar) Potential As An Antiseptics Agent In Dentistry: A Systematic Review. Jurnal Ilmu Dan Teknologi Kesehatan, 10(1), 75–82. https://doi.org/10.32668/jitek.v10i1.917
  46. Ximenes, I. do R., Nurmalina, R., & Rifin, A. (2021). Demand Analysis of Indonesia’s Coconut Crude Oil in Germany. Review of Economics and Finance, 19, 281–285. https://doi.org/10.55365/1923.x2021.19.39
  47. Xin, X., Dell, K., Udugama, I. A., Young, B. R., & Baroutian, S. (2021). Transforming biomass pyrolysis technologies to produce liquid smoke food flavouring. Journal of Cleaner Production, 1–12. https://doi.org/10.1016/j.jclepro.2020.125368
  48. Zhang, X., Lei, H., Chen, S., & Wu, J. (2016). Catalytic co-pyrolysis of lignocellulosic biomass with polymers: a critical review. Green Chemistry, 1(3), 1–25. https://doi.org/10.1039/C6GC00911E

Last update:

No citation recorded.

Last update: 2024-03-03 17:15:45

No citation recorded.