skip to main content

Energy losses in crystalline silicon rooftop photovoltaic systems in selected site locations in Sub-Saharan Africa

Department of Mechanical Engineering, Institute for Systems Science, Durban University of Technology, Durban, South Africa

Received: 29 Aug 2023; Revised: 15 Mar 2024; Accepted: 16 Apr 2024; Available online: 19 Apr 2024; Published: 1 May 2024.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2024 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:

This study systematically evaluates Phototovoltaic (PV) system energy losses and performance quality across selected locations in sub-Saharan African (SSA). Utilising a computational model for a hypothetical 10 kWp crystalline silicon (c-Si) PV system, the research categorises energy losses into irradiance (kWh/m²) and electricity production (kWh/kWp). Key contributors to irradiance losses include angular reflectivity, dirt, dust, and soiling, while inverter and radiation conversion, spectral correction, transformer and cabling, and mismatch are identified as main sources of PV system energy losses. Tilt and orientation impact the transformation of Global Horizontal Irradiance (GHI) into Global Tilted Irradiance (GTI), with the highest gain in Pretoria (215.4 kWh/m²) and the least in Kinshasa (3.6 kWh/m²). The study notes the highest PV system energy loss in Pretoria (346.2 kWh/kWp) and the least in Kinshasa (267.4 kWh/kWp). Despite variations in energy loss sources, the cumulative degradation rate is reported as 12.8% for all locations over a 25-year lifespan. The annual average performance ratio (PR) and capacity factor (CF) range from 77.4%/19.7% in Pretoria to 77.4%/15.6% in Kinshasa. Ambient conditions, including wind speed, relative humidity, precipitation, and temperature, are identified as key factors influencing solar irradiance and PV system losses. The study suggests preventive measures such as optimal system design, the use of bypass diodes, and high-quality PV panels.

Fulltext View|Download
Keywords: Photovoltaic systems; Crystalline silicon; Photovoltaic energy losses; PV panel degradation; Inverter loss

Article Metrics:

  1. Aboagye, B., Gyamfi, S., Ofosu, E. A., & Djordjevic, S. (2022). Characterisation of degradation of photovoltaic (PV) module technologies in different climatic zones in Ghana. Sustainable Energy Technologies and Assessments, 52, 102034.
  2. Al-Kouz, W., Al-Dahidi, S., Hammad, B., & Al-Abed, M. (2019). Modeling and Analysis Framework for Investigating the Impact of Dust and Temperature on PV Systems’ Performance and Optimum Cleaning Frequency. Applied Sciences, 9(7), 1397. Retrieved from
  3. Allen, N. S., Edge, M., Mohammadian, M., & Jones, K. (1994). Physicochemical aspects of the environmental degradation of poly(ethylene terephthalate). Polymer Degradation and Stability, 43(2), 229-237.
  4. Ameur, A., Berrada, A., Bouaichi, A., & Loudiyi, K. (2022). Long-term performance and degradation analysis of different PV modules under temperate climate. Renewable Energy, 188, 37-51.
  5. Ameur, A., Berrada, A., Loudiyi, K., & Aggour, M. (2020). Forecast modeling and performance assessment of solar PV systems. Journal of Cleaner Production, 267, 122167.
  6. Anang, N., Syd Nur Azman, S. N. A., Muda, W. M. W., Dagang, A. N., & Daud, M. Z. (2021). Performance analysis of a grid-connected rooftop solar PV system in Kuala Terengganu, Malaysia. Energy and Buildings, 248, 111182.
  7. Beck, H. E., McVicar, T. R., Vergopolan, N., Berg, A., Lutsko, N. J., Dufour, A., . . . Miralles, D. G. (2023). High-resolution (1 km) Köppen-Geiger maps for 1901–2099 based on constrained CMIP6 projections. Scientific Data, 10(1), 724.
  8. Boretti, A. (2018). Cost and production of solar thermal and solar photovoltaics power plants in the United States. Renewable Energy Focus, 26, 93-99.
  9. Bouraiou, A., Hamouda, M., Chaker, A., Mostefaoui, M., Lachtar, S., Sadok, M., . . . Issam, A. (2015). Analysis and evaluation of the impact of climatic conditions on the photovoltaic modules performance in the desert environment. Energy Conversion and Management, 106, 1345-1355.
  10. Brecl, K., Bokalič, M., & Topič, M. (2021). Annual energy losses due to partial shading in PV modules with cut wafer-based Si solar cells. Renewable Energy, 168, 195-203.
  11. Bruce, J. (2023). Solar PV System Losses - How To Calculate Solar Panel Efficiency. Retrieved from
  12. Bunda, N., Sunio, V., Palmero, S. S., Tabañag, I. D. F., Reyes, D. J., & Ligot, E. (2023). Stage model of the process of solar photovoltaic adoption by residential households in the Philippines. Cleaner and Responsible Consumption, 9, 100114.
  13. Czanderna, A. W., & Pern, F. J. (1996). Encapsulation of PV modules using ethylene vinyl acetate copolymer as a pottant: A critical review. Solar Energy Materials and Solar Cells, 43(2), 101-181.
  14. Dawoud, S. M., Lin, X., & Okba, M. I. (2018). Hybrid renewable microgrid optimization techniques: A review. Renewable and Sustainable Energy Reviews, 82, 2039-2052.
  15. Dhere, N. G., & Raravikar, N. R. (2001). Adhesional shear strength and surface analysis of a PV module deployed in harsh coastal climate. Solar Energy Materials and Solar Cells, 67(1), 363-367.
  16. Dunlop, E. D., & Halton, D. (2006). The performance of crystalline silicon photovoltaic solar modules after 22 years of continuous outdoor exposure. Progress in Photovoltaics: Research and Applications, 14(1), 53-64.
  17. Ebhota, W. S., & Jen, T.-C. (2020). Fossil Fuels Environmental Challenges and the Role of Solar Photovoltaic Technology Advances in Fast Tracking Hybrid Renewable Energy System. International Journal of Precision Engineering and Manufacturing-Green Technology, 7(1), 97-117.
  18. Ebhota, W. S., & Tabakov, P. Y. (2022a). Assessment and performance analysis of roof-mounted crystalline stand-alone photovoltaic (SAPV) system at selected sites in South Africa. Bulletin of the National Research Centre, 46(1), 236.
  19. Ebhota, W. S., & Tabakov, P. Y. (2022b). Assessment of solar PV potential and performance of a household system in Durban North, Durban, South Africa. Clean Technologies and Environmental Policy, 24(4), 1241-1259.
  20. Ebhota, W. S., & Tabakov, P. Y. (2022). Evaluation of Critical Solar PV Meteorological and Performance Parameters of a Roof-Mounted Crystalline Solar PV System in Berea, Durban, South Africa. U.Porto Journal of Engineering, 8(:2), 20-36.
  21. Ebhota, W. S., & Tabakov, P. Y. (2022). Impact of Photovoltaic Panel Orientation and Elevation Operating Temperature on Solar Photovoltaic System Performance. International Journal of Renewable Energy Development, 11(2), 9.
  22. EIA. (2019a). International Energy Outlook 2019 with projections to 2050. Retrieved from U.S. Energy Information Administration (EIA), Washngiton DC:
  23. EIA. (2019b). Southwestern states have better solar resources and higher solar PV capacity factors. Retrieved from
  24. Gianfranco, R., Antonio, T. F., Maria, D. A. P., Matteo, M., Luca, B., Antonio, D. N., . . . Enrico, B. (2022). A prototype car converted to solar hybrid: project advances and road tests. IFAC-PapersOnLine, 55(24), 329-334.
  25. Han, X., Tu, L., & Sun, Y. (2021). A spectrally splitting concentrating PV/T system using combined absorption optical filter and linear Fresnel reflector concentrator. Solar Energy, 223, 168-181.
  26. Heesen, H. t., Herbort, V., & Rumpler, M. (2019). Performance of roof-top PV systems in Germany from 2012 to 2018. Solar Energy, 194, 128-135.
  27. Howarth, C., & Viner, D. (2022). Integrating adaptation practice in assessments of climate change science: The case of IPCC Working Group II reports. Environmental Science & Policy, 135, 1-5.
  28. IEA. (2018). Average annual capacity factors by technology. Retrieved from
  29. Jathar, L. D., Ganesan, S., Awasarmol, U., Nikam, K., Shahapurkar, K., Soudagar, M. E. M., . . . Rehan, M. (2023). Comprehensive review of environmental factors influencing the performance of photovoltaic panels: Concern over emissions at various phases throughout the lifecycle. Environmental Pollution, 326, 121474.
  30. Kasti, N. A. (2017). Ranges of applicability of a solar-battery car with single and double solar-trailers. Solar Energy, 144, 619-628.
  31. Khalid, H. M., Rafique, Z., Muyeen, S. M., Raqeeb, A., Said, Z., Saidur, R., & Sopian, K. (2023). Dust accumulation and aggregation on PV panels: An integrated survey on impacts, mathematical models, cleaning mechanisms, and possible sustainable solution. Solar Energy, 251, 261-285.
  32. Knausz, M., Oreski, G., Eder, G. C., Voronko, Y., Duscher, B., Koch, T., . . . Berger, K. A. (2015). Degradation of photovoltaic backsheets: Comparison of the aging induced changes on module and component level. Journal of Applied Polymer Science, 132(24)
  33. Köntges, M., Altmann, S., Heimberg, T., U. Jahn, & Berger, K. A. (2016). Mean degradation rates in PV systems for various kinds of PV module failures Paper presented at the 32nd European Photovoltaic Solar, Energy Conference and Exhibition, Munich
  34. Maghami, M. R., Hizam, H., Gomes, C., Radzi, M. A., Rezadad, M. I., & Hajighorbani, S. (2016). Power loss due to soiling on solar panel: A review. Renewable and Sustainable Energy Reviews, 59, 1307-1316.
  35. Mathijsen, D. (2021). The role of composites in getting the solar car to our driveways: Lightyear one. Reinforced Plastics, 65(4), 178-187.
  36. Meusel, M., Adelhelm, R., Dimroth, F., Bett, A. W., & Warta, W. (2002). Spectral mismatch correction and spectrometric characterization of monolithic III–V multi-junction solar cells. Progress in Photovoltaics: Research and Applications, 10(4), 243-255.
  37. NREL. (2022). Best Research-Cell Efficiency Chart. Retrieved from
  38. Oliveira, M. C. C. d., Diniz Cardoso, A. S. A., Viana, M. M., & Lins, V. d. F. C. (2018). The causes and effects of degradation of encapsulant ethylene vinyl acetate copolymer (EVA) in crystalline silicon photovoltaic modules: A review. Renewable and Sustainable Energy Reviews, 81, 2299-2317.
  39. Omar, M. A., & Mahmoud, M. M. (2018). Grid connected PV- home systems in Palestine: A review on technical performance, effects and economic feasibility. Renewable and Sustainable Energy Reviews, 82, 2490-2497.
  40. Omazic, A., Oreski, G., Halwachs, M., Eder, G. C., Hirschl, C., Neumaier, L., . . . Erceg, M. (2019). Relation between degradation of polymeric components in crystalline silicon PV module and climatic conditions: A literature review. Solar Energy Materials and Solar Cells, 192, 123-133.
  41. Osmani, K., Haddad, A., Lemenand, T., Castanier, B., & Ramadan, M. (2020). A review on maintenance strategies for PV systems. Science of The Total Environment, 746, 141753.
  42. Ottersböck, B., Oreski, G., & Pinter, G. (2016). Correlation study of damp heat and pressure cooker testing on backsheets. Journal of Applied Polymer Science, 133(47).
  43. Palutikof, J. P., Boulter, S. L., Field, C. B., Mach, K. J., Manning, M. R., Mastrandrea, M. D., . . . Swart, R. (2023). Enhancing the review process in global environmental assessments: The case of the IPCC. Environmental Science & Policy, 139, 118-129.
  44. Pandey, S., Kumar, R., & Panwar, K. (2019). Calculation of inverter power clipping loss due to PV array oversizing. International Journal of Electrical Engineering & Technology (IJEET), 10(4), 43-46.
  45. Polo, J., Alonso-Abella, M., Martín-Chivelet, N., Alonso-Montesinos, J., López, G., Marzo, A., . . . Vela-Barrionuevo, N. (2020). Typical Meteorological Year methodologies applied to solar spectral irradiance for PV applications. Energy, 190, 116453.
  46. Raillani, B., Chaatouf, D., Salhi, M., Amraqui, S., & Mezrhab, A. (2022). Effect of wind barrier height on the dust deposition rate of a ground-mounted photovoltaic panel. Sustainable Energy Technologies and Assessments, 52, 102035.
  47. Raillani, B., Chaatouf, D., Salhi, M., Bria, A., Amraqui, S., & Mezrhab, A. (2022). The effectiveness of the wind barrier in mitigating soiling of a ground-mounted photovoltaic panel at different angles and particle injection heights. Results in Engineering, 16, 100774.
  48. Rengma, N. S., Yadav, M., & Kishor, N. (2023). Solar photovoltaic water pumping system: A software tool development-based optimal configuration investigation for system installation location, sizing and deployment. Renewable Energy Focus, 46, 236-255.
  49. Salamah, T., Ramahi, A., Alamara, K., Juaidi, A., Abdallah, R., Abdelkareem, M. A., . . . Olabi, A. G. (2022). Effect of dust and methods of cleaning on the performance of solar PV module for different climate regions: Comprehensive review. Science of The Total Environment, 827, 154050.
  50. Seedahmed, M. M. A., Ramli, M. A. M., Bouchekara, H. R. E. H., Shahriar, M. S., Milyani, A. H., & Rawa, M. (2022). A techno-economic analysis of a hybrid energy system for the electrification of a remote cluster in western Saudi Arabia. Alexandria Engineering Journal, 61(7), 5183-5202.
  51. Solargis. (2023). Documentation - Methodology: Meteorological models and post-processing. Retrieved from
  52. Trenberth, K. E. (2015). CLIMATE AND CLIMATE CHANGE | Intergovernmental Panel on Climate Change. In G. R. North, J. Pyle, & F. Zhang (Eds.), Encyclopedia of Atmospheric Sciences (Second Edition) (pp. 90-94). Oxford: Academic Press
  53. Urrejola, E., Antonanzas, J., Ayala, P., Salgado, M., Ramírez-Sagner, G., Cortés, C., . . . Escobar, R. (2016). Effect of soiling and sunlight exposure on the performance ratio of photovoltaic technologies in Santiago, Chile. Energy Conversion and Management, 114, 338-347.
  54. Vaziri Rad, M. A., Kasaeian, A., Niu, X., Zhang, K., & Mahian, O. (2023). Excess electricity problem in off-grid hybrid renewable energy systems: A comprehensive review from challenges to prevalent solutions. Renewable Energy, 212, 538-560.
  55. Whatnextnow. (2023). What is capacity factor and how do solar and wind energy compare? Retrieved from
  56. Winck, A. L., da Fonseca, J. E. F., Gasparin, F. P., & Krenzinger, A. (2020). Assessment of spectral effects on outdoor characterization of PV modules using silicon reference cells with spectral filters. Solar Energy, 211, 767-778.
  57. Xia, X., Cao, X., Li, N., Yu, B., Liu, H., & Jie, j. (2023). Study on a spectral splitting photovoltaic/thermal system based on CNT/Ag mixed nanofluids. Energy, 271, 127093.
  58. Zhang, C., Shen, C., Zhang, Y., Sun, C., Chwieduk, D., & Kalogirou, S. A. (2021). Optimization of the electricity/heat production of a PV/T system based on spectral splitting with Ag nanofluid. Renewable Energy, 180, 30-39.

Last update:

No citation recorded.

Last update: 2024-05-17 14:53:33

No citation recorded.