skip to main content

Energy losses in crystalline silicon rooftop photovoltaic systems in selected site locations in Sub-Saharan Africa

Department of Mechanical Engineering, Institute for Systems Science, Durban University of Technology, Durban, South Africa

Received: 29 Aug 2023; Revised: 15 Mar 2024; Accepted: 16 Apr 2024; Available online: 19 Apr 2024; Published: 1 May 2024.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2024 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

This study systematically evaluates Phototovoltaic (PV) system energy losses and performance quality across selected locations in sub-Saharan African (SSA). Utilising a computational model for a hypothetical 10 kWp crystalline silicon (c-Si) PV system, the research categorises energy losses into irradiance (kWh/m²) and electricity production (kWh/kWp). Key contributors to irradiance losses include angular reflectivity, dirt, dust, and soiling, while inverter and radiation conversion, spectral correction, transformer and cabling, and mismatch are identified as main sources of PV system energy losses. Tilt and orientation impact the transformation of Global Horizontal Irradiance (GHI) into Global Tilted Irradiance (GTI), with the highest gain in Pretoria (215.4 kWh/m²) and the least in Kinshasa (3.6 kWh/m²). The study notes the highest PV system energy loss in Pretoria (346.2 kWh/kWp) and the least in Kinshasa (267.4 kWh/kWp). Despite variations in energy loss sources, the cumulative degradation rate is reported as 12.8% for all locations over a 25-year lifespan. The annual average performance ratio (PR) and capacity factor (CF) range from 77.4%/19.7% in Pretoria to 77.4%/15.6% in Kinshasa. Ambient conditions, including wind speed, relative humidity, precipitation, and temperature, are identified as key factors influencing solar irradiance and PV system losses. The study suggests preventive measures such as optimal system design, the use of bypass diodes, and high-quality PV panels.

Fulltext View|Download
Keywords: Photovoltaic systems; Crystalline silicon; Photovoltaic energy losses; PV panel degradation; Inverter loss

Article Metrics:

  1. Aboagye, B., Gyamfi, S., Ofosu, E. A., & Djordjevic, S. (2022). Characterisation of degradation of photovoltaic (PV) module technologies in different climatic zones in Ghana. Sustainable Energy Technologies and Assessments, 52, 102034. https://doi.org/10.1016/j.seta.2022.102034
  2. Al-Kouz, W., Al-Dahidi, S., Hammad, B., & Al-Abed, M. (2019). Modeling and Analysis Framework for Investigating the Impact of Dust and Temperature on PV Systems’ Performance and Optimum Cleaning Frequency. Applied Sciences, 9(7), 1397. Retrieved from https://www.mdpi.com/2076-3417/9/7/1397
  3. Allen, N. S., Edge, M., Mohammadian, M., & Jones, K. (1994). Physicochemical aspects of the environmental degradation of poly(ethylene terephthalate). Polymer Degradation and Stability, 43(2), 229-237. https://doi.org/10.1016/0141-3910(94)90074-4
  4. Ameur, A., Berrada, A., Bouaichi, A., & Loudiyi, K. (2022). Long-term performance and degradation analysis of different PV modules under temperate climate. Renewable Energy, 188, 37-51. https://doi.org/10.1016/j.renene.2022.02.025
  5. Ameur, A., Berrada, A., Loudiyi, K., & Aggour, M. (2020). Forecast modeling and performance assessment of solar PV systems. Journal of Cleaner Production, 267, 122167. https://doi.org/10.1016/j.jclepro.2020.122167
  6. Anang, N., Syd Nur Azman, S. N. A., Muda, W. M. W., Dagang, A. N., & Daud, M. Z. (2021). Performance analysis of a grid-connected rooftop solar PV system in Kuala Terengganu, Malaysia. Energy and Buildings, 248, 111182. https://doi.org/10.1016/j.enbuild.2021.111182
  7. Beck, H. E., McVicar, T. R., Vergopolan, N., Berg, A., Lutsko, N. J., Dufour, A., . . . Miralles, D. G. (2023). High-resolution (1 km) Köppen-Geiger maps for 1901–2099 based on constrained CMIP6 projections. Scientific Data, 10(1), 724. https://doi.org/10.1038/s41597-023-02549-6
  8. Boretti, A. (2018). Cost and production of solar thermal and solar photovoltaics power plants in the United States. Renewable Energy Focus, 26, 93-99. https://doi.org/10.1016/j.ref.2018.07.002
  9. Bouraiou, A., Hamouda, M., Chaker, A., Mostefaoui, M., Lachtar, S., Sadok, M., . . . Issam, A. (2015). Analysis and evaluation of the impact of climatic conditions on the photovoltaic modules performance in the desert environment. Energy Conversion and Management, 106, 1345-1355. https://doi.org/10.1016/j.enconman.2015.10.073
  10. Brecl, K., Bokalič, M., & Topič, M. (2021). Annual energy losses due to partial shading in PV modules with cut wafer-based Si solar cells. Renewable Energy, 168, 195-203. https://doi.org/10.1016/j.renene.2020.12.059
  11. Bruce, J. (2023). Solar PV System Losses - How To Calculate Solar Panel Efficiency. Retrieved from https://www.solarempower.com/blog/10-solar-pv-system-losses-their-impact-on-solar-panel-output/
  12. Bunda, N., Sunio, V., Palmero, S. S., Tabañag, I. D. F., Reyes, D. J., & Ligot, E. (2023). Stage model of the process of solar photovoltaic adoption by residential households in the Philippines. Cleaner and Responsible Consumption, 9, 100114. https://doi.org/10.1016/j.clrc.2023.100114
  13. Czanderna, A. W., & Pern, F. J. (1996). Encapsulation of PV modules using ethylene vinyl acetate copolymer as a pottant: A critical review. Solar Energy Materials and Solar Cells, 43(2), 101-181. https://doi.org/10.1016/0927-0248(95)00150-6
  14. Dawoud, S. M., Lin, X., & Okba, M. I. (2018). Hybrid renewable microgrid optimization techniques: A review. Renewable and Sustainable Energy Reviews, 82, 2039-2052. https://doi.org/10.1016/j.rser.2017.08.007
  15. Dhere, N. G., & Raravikar, N. R. (2001). Adhesional shear strength and surface analysis of a PV module deployed in harsh coastal climate. Solar Energy Materials and Solar Cells, 67(1), 363-367. https://doi.org/10.1016/S0927-0248(00)00304-4
  16. Dunlop, E. D., & Halton, D. (2006). The performance of crystalline silicon photovoltaic solar modules after 22 years of continuous outdoor exposure. Progress in Photovoltaics: Research and Applications, 14(1), 53-64. https://doi.org/10.1002/pip.627
  17. Ebhota, W. S., & Jen, T.-C. (2020). Fossil Fuels Environmental Challenges and the Role of Solar Photovoltaic Technology Advances in Fast Tracking Hybrid Renewable Energy System. International Journal of Precision Engineering and Manufacturing-Green Technology, 7(1), 97-117. https://doi.org/10.1007/s40684-019-00101-9
  18. Ebhota, W. S., & Tabakov, P. Y. (2022a). Assessment and performance analysis of roof-mounted crystalline stand-alone photovoltaic (SAPV) system at selected sites in South Africa. Bulletin of the National Research Centre, 46(1), 236. https://doi.org/10.1186/s42269-022-00929-3
  19. Ebhota, W. S., & Tabakov, P. Y. (2022b). Assessment of solar PV potential and performance of a household system in Durban North, Durban, South Africa. Clean Technologies and Environmental Policy, 24(4), 1241-1259. https://doi.org/10.1007/s10098-021-02241-6
  20. Ebhota, W. S., & Tabakov, P. Y. (2022). Evaluation of Critical Solar PV Meteorological and Performance Parameters of a Roof-Mounted Crystalline Solar PV System in Berea, Durban, South Africa. U.Porto Journal of Engineering, 8(:2), 20-36. https://doi.org/10.24840/2183-6493_008.002_0003
  21. Ebhota, W. S., & Tabakov, P. Y. (2022). Impact of Photovoltaic Panel Orientation and Elevation Operating Temperature on Solar Photovoltaic System Performance. International Journal of Renewable Energy Development, 11(2), 9. https://doi.org/10.14710/ijred.2022.43676
  22. EIA. (2019a). International Energy Outlook 2019 with projections to 2050. Retrieved from U.S. Energy Information Administration (EIA), Washngiton DC: https://www.eia.gov/outlooks/ieo/pdf/ieo2019.pdf
  23. EIA. (2019b). Southwestern states have better solar resources and higher solar PV capacity factors. Retrieved from https://www.eia.gov/todayinenergy/detail.php?id=39832
  24. Gianfranco, R., Antonio, T. F., Maria, D. A. P., Matteo, M., Luca, B., Antonio, D. N., . . . Enrico, B. (2022). A prototype car converted to solar hybrid: project advances and road tests. IFAC-PapersOnLine, 55(24), 329-334. https://doi.org/10.1016/j.ifacol.2022.10.305
  25. Han, X., Tu, L., & Sun, Y. (2021). A spectrally splitting concentrating PV/T system using combined absorption optical filter and linear Fresnel reflector concentrator. Solar Energy, 223, 168-181. https://doi.org/10.1016/j.solener.2021.05.039
  26. Heesen, H. t., Herbort, V., & Rumpler, M. (2019). Performance of roof-top PV systems in Germany from 2012 to 2018. Solar Energy, 194, 128-135. https://doi.org/10.1016/j.solener.2019.10.019
  27. Howarth, C., & Viner, D. (2022). Integrating adaptation practice in assessments of climate change science: The case of IPCC Working Group II reports. Environmental Science & Policy, 135, 1-5. https://doi.org/10.1016/j.envsci.2022.04.009
  28. IEA. (2018). Average annual capacity factors by technology. Retrieved from https://www.iea.org/data-and-statistics/charts/average-annual-capacity-factors-by-technology-2018
  29. Jathar, L. D., Ganesan, S., Awasarmol, U., Nikam, K., Shahapurkar, K., Soudagar, M. E. M., . . . Rehan, M. (2023). Comprehensive review of environmental factors influencing the performance of photovoltaic panels: Concern over emissions at various phases throughout the lifecycle. Environmental Pollution, 326, 121474. https://doi.org/10.1016/j.envpol.2023.121474
  30. Kasti, N. A. (2017). Ranges of applicability of a solar-battery car with single and double solar-trailers. Solar Energy, 144, 619-628. https://doi.org/10.1016/j.solener.2017.01.051
  31. Khalid, H. M., Rafique, Z., Muyeen, S. M., Raqeeb, A., Said, Z., Saidur, R., & Sopian, K. (2023). Dust accumulation and aggregation on PV panels: An integrated survey on impacts, mathematical models, cleaning mechanisms, and possible sustainable solution. Solar Energy, 251, 261-285. https://doi.org/10.1016/j.solener.2023.01.010
  32. Knausz, M., Oreski, G., Eder, G. C., Voronko, Y., Duscher, B., Koch, T., . . . Berger, K. A. (2015). Degradation of photovoltaic backsheets: Comparison of the aging induced changes on module and component level. Journal of Applied Polymer Science, 132(24)
  33. Köntges, M., Altmann, S., Heimberg, T., U. Jahn, & Berger, K. A. (2016). Mean degradation rates in PV systems for various kinds of PV module failures Paper presented at the 32nd European Photovoltaic Solar, Energy Conference and Exhibition, Munich
  34. Maghami, M. R., Hizam, H., Gomes, C., Radzi, M. A., Rezadad, M. I., & Hajighorbani, S. (2016). Power loss due to soiling on solar panel: A review. Renewable and Sustainable Energy Reviews, 59, 1307-1316. https://doi.org/10.1016/j.rser.2016.01.044
  35. Mathijsen, D. (2021). The role of composites in getting the solar car to our driveways: Lightyear one. Reinforced Plastics, 65(4), 178-187. https://doi.org/10.1016/j.repl.2021.06.001
  36. Meusel, M., Adelhelm, R., Dimroth, F., Bett, A. W., & Warta, W. (2002). Spectral mismatch correction and spectrometric characterization of monolithic III–V multi-junction solar cells. Progress in Photovoltaics: Research and Applications, 10(4), 243-255. https://doi.org/10.1002/pip.407
  37. NREL. (2022). Best Research-Cell Efficiency Chart. Retrieved from https://www.nrel.gov/pv/cell-efficiency.html
  38. Oliveira, M. C. C. d., Diniz Cardoso, A. S. A., Viana, M. M., & Lins, V. d. F. C. (2018). The causes and effects of degradation of encapsulant ethylene vinyl acetate copolymer (EVA) in crystalline silicon photovoltaic modules: A review. Renewable and Sustainable Energy Reviews, 81, 2299-2317. https://doi.org/10.1016/j.rser.2017.06.039
  39. Omar, M. A., & Mahmoud, M. M. (2018). Grid connected PV- home systems in Palestine: A review on technical performance, effects and economic feasibility. Renewable and Sustainable Energy Reviews, 82, 2490-2497. https://doi.org/10.1016/j.rser.2017.09.008
  40. Omazic, A., Oreski, G., Halwachs, M., Eder, G. C., Hirschl, C., Neumaier, L., . . . Erceg, M. (2019). Relation between degradation of polymeric components in crystalline silicon PV module and climatic conditions: A literature review. Solar Energy Materials and Solar Cells, 192, 123-133. https://doi.org/10.1016/j.solmat.2018.12.027
  41. Osmani, K., Haddad, A., Lemenand, T., Castanier, B., & Ramadan, M. (2020). A review on maintenance strategies for PV systems. Science of The Total Environment, 746, 141753. https://doi.org/10.1016/j.scitotenv.2020.141753
  42. Ottersböck, B., Oreski, G., & Pinter, G. (2016). Correlation study of damp heat and pressure cooker testing on backsheets. Journal of Applied Polymer Science, 133(47). https://doi.org/10.1002/app.44230
  43. Palutikof, J. P., Boulter, S. L., Field, C. B., Mach, K. J., Manning, M. R., Mastrandrea, M. D., . . . Swart, R. (2023). Enhancing the review process in global environmental assessments: The case of the IPCC. Environmental Science & Policy, 139, 118-129. https://doi.org/10.1016/j.envsci.2022.10.012
  44. Pandey, S., Kumar, R., & Panwar, K. (2019). Calculation of inverter power clipping loss due to PV array oversizing. International Journal of Electrical Engineering & Technology (IJEET), 10(4), 43-46. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3553894
  45. Polo, J., Alonso-Abella, M., Martín-Chivelet, N., Alonso-Montesinos, J., López, G., Marzo, A., . . . Vela-Barrionuevo, N. (2020). Typical Meteorological Year methodologies applied to solar spectral irradiance for PV applications. Energy, 190, 116453. https://doi.org/10.1016/j.energy.2019.116453
  46. Raillani, B., Chaatouf, D., Salhi, M., Amraqui, S., & Mezrhab, A. (2022). Effect of wind barrier height on the dust deposition rate of a ground-mounted photovoltaic panel. Sustainable Energy Technologies and Assessments, 52, 102035. https://doi.org/10.1016/j.seta.2022.102035
  47. Raillani, B., Chaatouf, D., Salhi, M., Bria, A., Amraqui, S., & Mezrhab, A. (2022). The effectiveness of the wind barrier in mitigating soiling of a ground-mounted photovoltaic panel at different angles and particle injection heights. Results in Engineering, 16, 100774. https://doi.org/10.1016/j.rineng.2022.100774
  48. Rengma, N. S., Yadav, M., & Kishor, N. (2023). Solar photovoltaic water pumping system: A software tool development-based optimal configuration investigation for system installation location, sizing and deployment. Renewable Energy Focus, 46, 236-255. https://doi.org/10.1016/j.ref.2023.07.001
  49. Salamah, T., Ramahi, A., Alamara, K., Juaidi, A., Abdallah, R., Abdelkareem, M. A., . . . Olabi, A. G. (2022). Effect of dust and methods of cleaning on the performance of solar PV module for different climate regions: Comprehensive review. Science of The Total Environment, 827, 154050. https://doi.org/10.1016/j.scitotenv.2022.154050
  50. Seedahmed, M. M. A., Ramli, M. A. M., Bouchekara, H. R. E. H., Shahriar, M. S., Milyani, A. H., & Rawa, M. (2022). A techno-economic analysis of a hybrid energy system for the electrification of a remote cluster in western Saudi Arabia. Alexandria Engineering Journal, 61(7), 5183-5202. https://doi.org/10.1016/j.aej.2021.10.041
  51. Solargis. (2023). Documentation - Methodology: Meteorological models and post-processing. Retrieved from https://solargis.com/docs/methodology/meteo-data
  52. Trenberth, K. E. (2015). CLIMATE AND CLIMATE CHANGE | Intergovernmental Panel on Climate Change. In G. R. North, J. Pyle, & F. Zhang (Eds.), Encyclopedia of Atmospheric Sciences (Second Edition) (pp. 90-94). Oxford: Academic Press
  53. Urrejola, E., Antonanzas, J., Ayala, P., Salgado, M., Ramírez-Sagner, G., Cortés, C., . . . Escobar, R. (2016). Effect of soiling and sunlight exposure on the performance ratio of photovoltaic technologies in Santiago, Chile. Energy Conversion and Management, 114, 338-347. https://doi.org/10.1016/j.enconman.2016.02.016
  54. Vaziri Rad, M. A., Kasaeian, A., Niu, X., Zhang, K., & Mahian, O. (2023). Excess electricity problem in off-grid hybrid renewable energy systems: A comprehensive review from challenges to prevalent solutions. Renewable Energy, 212, 538-560. https://doi.org/10.1016/j.renene.2023.05.073
  55. Whatnextnow. (2023). What is capacity factor and how do solar and wind energy compare? Retrieved from https://www.whatnextnow.com/home/solar/what-is-capacity-factor-and-how-does-solar-energy-compare
  56. Winck, A. L., da Fonseca, J. E. F., Gasparin, F. P., & Krenzinger, A. (2020). Assessment of spectral effects on outdoor characterization of PV modules using silicon reference cells with spectral filters. Solar Energy, 211, 767-778. https://doi.org/10.1016/j.solener.2020.10.004
  57. Xia, X., Cao, X., Li, N., Yu, B., Liu, H., & Jie, j. (2023). Study on a spectral splitting photovoltaic/thermal system based on CNT/Ag mixed nanofluids. Energy, 271, 127093. https://doi.org/10.1016/j.energy.2023.127093
  58. Zhang, C., Shen, C., Zhang, Y., Sun, C., Chwieduk, D., & Kalogirou, S. A. (2021). Optimization of the electricity/heat production of a PV/T system based on spectral splitting with Ag nanofluid. Renewable Energy, 180, 30-39. https://doi.org/10.1016/j.renene.2021.08.020

Last update:

No citation recorded.

Last update: 2024-05-17 14:53:33

No citation recorded.