Research Center for Hydrodynamics Technology, National Research and Innovation Agency, Surabaya, Indonesia
BibTex Citation Data :
@article{IJRED57680, author = {Mardi Wibowo and Hanah Khoirunnisa and Dinar Istiyanto and Aloysius Widagdo and Khusnul Wardani}, title = {The effect of intake channel length on water temperature at the intake point of the power plant at Muara Karang power plant}, journal = {International Journal of Renewable Energy Development}, volume = {13}, number = {1}, year = {2024}, keywords = {Intake channel; power plant; thermal dispersion; cooling water; thermal pollution}, abstract = { Muara Karang Power Plant (MKPP) is one of the main power plants on Java Island in Indonesia. Presently, the Jakarta provincial government has issued a reclamation project on Island G in the marine waters around MKPP. This reclamation effort is predicted to lead to a rise in the seawater temperature around the intake, which MKPP will address with the addition of intake channel of 250 - 957 m. Therefore, this study aimed to determine the effect of intake channel extension on the water temperature at the intake point using numerical modeling comprising hydrodynamics and dispersion advection modules. A total of 10 scenarios were modeled by varying intake channel length and season. The result showed that adding intake channel was less effective because the average water temperature was less than 0.24 o C with an effectiveness below 0.78%. Based on the validation of the modeling results on the measurement data, the NRMSD values in west and east seasons were 9.13% and 12.63%, respectively. Under existing conditions, the average and maximum seawater temperatures were 31.40 o C and 32.08 o C. Meanwhile, by extending intake channel, the average and maximum water temperatures were 31.16 o C and 31.60 o C. These results showed that by extending intake channel, the temperature at the intake point was generally lower than the existing conditions. Intake channel length was more effective in reducing the temperature at the intake point during west monsoon than east monsoon. Vertically, the temperature at the bottom was relatively colder than near the surface. In west monsoon, the average temperature difference between the bottom and the surface ranged from 0.16-0.21 o C, while in east, it was between 0.23 and 0.50 o C. In conclusion, the addition of subsequent structures to increase effectiveness was necessary, specifically to hold hot water in east monsoon. }, pages = {132--144} doi = {10.14710/ijred.2024.57680}, url = {https://ijred.cbiore.id/index.php/ijred/article/view/57680} }
Refworks Citation Data :
Muara Karang Power Plant (MKPP) is one of the main power plants on Java Island in Indonesia. Presently, the Jakarta provincial government has issued a reclamation project on Island G in the marine waters around MKPP. This reclamation effort is predicted to lead to a rise in the seawater temperature around the intake, which MKPP will address with the addition of intake channel of 250 - 957 m. Therefore, this study aimed to determine the effect of intake channel extension on the water temperature at the intake point using numerical modeling comprising hydrodynamics and dispersion advection modules. A total of 10 scenarios were modeled by varying intake channel length and season. The result showed that adding intake channel was less effective because the average water temperature was less than 0.24oC with an effectiveness below 0.78%. Based on the validation of the modeling results on the measurement data, the NRMSD values in west and east seasons were 9.13% and 12.63%, respectively. Under existing conditions, the average and maximum seawater temperatures were 31.40oC and 32.08oC. Meanwhile, by extending intake channel, the average and maximum water temperatures were 31.16oC and 31.60oC. These results showed that by extending intake channel, the temperature at the intake point was generally lower than the existing conditions. Intake channel length was more effective in reducing the temperature at the intake point during west monsoon than east monsoon. Vertically, the temperature at the bottom was relatively colder than near the surface. In west monsoon, the average temperature difference between the bottom and the surface ranged from 0.16-0.21oC, while in east, it was between 0.23 and 0.50oC. In conclusion, the addition of subsequent structures to increase effectiveness was necessary, specifically to hold hot water in east monsoon.
Article Metrics:
Last update:
Last update: 2025-02-17 05:32:02
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Articles are freely available to both subscribers and the wider public with permitted reuse.
All articles published Open Access will be immediately and permanently free for everyone to read and download. We are continuously working with our author communities to select the best choice of license options: Creative Commons Attribution-ShareAlike (CC BY-SA). Authors and readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
International Journal of Renewable Energy Development (ISSN:2252-4940) published by CBIORE is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.