skip to main content

The effect of intake channel length on water temperature at the intake point of the power plant at Muara Karang power plant

Research Center for Hydrodynamics Technology, National Research and Innovation Agency, Surabaya, Indonesia

Received: 25 Aug 2023; Revised: 16 Nov 2023; Accepted: 14 Dec 2023; Available online: 20 Dec 2023; Published: 1 Jan 2024.
Editor(s): Soulayman Soulayman
Open Access Copyright (c) 2024 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Muara Karang Power Plant (MKPP) is one of the main power plants on Java Island in Indonesia. Presently, the Jakarta provincial government has issued a reclamation project on Island G in the marine waters around MKPP. This reclamation effort is predicted to lead to a rise in the seawater temperature around the intake, which MKPP will address with the addition of intake channel of 250 - 957 m. Therefore, this study aimed to determine the effect of intake channel extension on the water temperature at the intake point using numerical modeling comprising hydrodynamics and dispersion advection modules. A total of 10 scenarios were modeled by varying intake channel length and season. The result showed that adding intake channel was less effective because the average water temperature was less than 0.24oC with an effectiveness below 0.78%. Based on the validation of the modeling results on the measurement data, the NRMSD values in west and east seasons were 9.13% and 12.63%, respectively. Under existing conditions, the average and maximum seawater temperatures were 31.40oC and 32.08oC. Meanwhile, by extending intake channel, the average and maximum water temperatures were 31.16oC and 31.60oC. These results showed that by extending intake channel, the temperature at the intake point was generally lower than the existing conditions. Intake channel length was more effective in reducing the temperature at the intake point during west monsoon than east monsoon. Vertically, the temperature at the bottom was relatively colder than near the surface. In west monsoon, the average temperature difference between the bottom and the surface ranged from 0.16-0.21oC, while in east, it was between 0.23 and 0.50oC. In conclusion, the addition of subsequent structures to increase effectiveness was necessary, specifically to hold hot water in east monsoon.

Fulltext View|Download
Keywords: Intake channel; power plant; thermal dispersion; cooling water; thermal pollution

Article Metrics:

  1. Abbaspour, M., Javid, A.H., Moghimi, P., & Kayhan, K. (2006).Modeling of Thermal Pollution in the Northern Coastal Area of the Persian Gulf and Its Economical and Environmental Assessment. WIT Transactions on Ecology and the Environment, 95, 445–453. https://doi.org/10.2495/WP060441
  2. Aji, T., Pranowo, W.S., Harsono, G., & Alam, T.M. (2017) Seasonal Variability of Thermocline, Sound Speed and Probable Shadow Zone in Sunda Strait, Indonesia. Omni-Akuatika, 13(2), 111–127. http://dx.doi.org/10.20884/1.oa.2017.13.2.253
  3. Aljohani, N.S., Kavil, N.K., Shanas, P.R., Al-Farawati, R.K., Shabbaj, H.I., Turki, A.J. & Salam, M.A. (2022) Environmental Impacts of Thermal and Brine Dispersion Using Hydrodynamic Modelling for Yanbu Desalination Plant, on the Eastern Coast of the Red Sea. Sustainability (Switzerland), 14(8). https://doi.org/10.3390/su14084389
  4. BAPPEDA Provinsi DKI Jakarta. (2021) Final Document of the Zoning Plan for Coastal Areas and Small Islands (RZWP3K) for DKI Jakarta Province (Dokumen Final Rencana Zonasi Wilayah Pesisir Dan Pulau Pulau Kecil (RZWP3K) Provinsi DKI Jakarta), 236 pages. Jakarta: BAPPEDA Provinsi DKI Jakarta. Available at: https://lingkunganhidup.jakarta.go.id/files/kajian/2019/KLHS-RZWP3K-2019/Dokumen-Final-RZWP3K-Provinsi-DKI-Jakarta-Desember-2021.pdf (Accessed: 18 December 2023)
  5. BTIPDP-PTRIM. (2016) Internal Report - Reklamasi Pantai Utara - Jakarta Simulasi Arus Dan Sebaran Panas Di Sekitar Pulau G Teluk Jakarta (Jakarta North Coast Reclamation - Simulation of Heat Flow and Distribution Around Island G of Jakarta Bay), 67 pages. Final Report. Yogyakarta
  6. Cahyana, C. (2011) Model of Heat Distribution of Water Cooling Channels Power Plant Installation to Sea Water Bodies (Model Sebaran Panas Air Kanal Pendingin Instalasi Pembangkit Listrik Ke Badan Air Laut). In Prosiding Seminar Nasional Teknologi Pengelolaan Limbah IX. Serang-Banten: Pusat Teknologi Limbah Radiaktif-BATAN, pp. 293–302. Available at: https://id.scribd.com/doc/126352722/Prosiding-SNTPLdadf-9-2011 (Accessed: 18 December 2023)
  7. Copernicus Climate Change Service. (2017) ERA5: Fifth Generation of ECMWF Atmospheric Reanalyses of the Global Climate . Copernicus Climate Change Service Climate Data Store (CDS). Available at: https://cds.climate.copernicus.eu/cdsapp#!/home (Accessed: 20 November 2019)
  8. Dallas, H. (2009) Report to the Water Research Commission: The Effect of Water Temperature on Aquatic Organisms: A Review of Knowledge and Methods for Assessing Biotic Responses to Temperature. Cape Town. 120 pages. Available at: https://www.wrc.org.za/wp-content/uploads/mdocs/KV%20213%20web.pdf (Accessed: 18 December 2023)
  9. Danish Hydraulic Insitute. (2017) Available at: www.mikepoweredbydhi.com (Accessed: 27 December 2022)
  10. Darmawan, N. and Yuwono, T. (2019) 'Effect of Increasing Sea Water Temperature on Performance of Steam Turbine of Muara Tawar Power Plant'. IPTEK The Journal for Technology and Science, 30(2), 60. https://doi.org/10.12962/j20882033.v30i2.4994
  11. Deabes, E.A.M. (2020) 'The Impact of Thermal Power Stations on Coastline and Benthic Fauna: Case Study of El-Burullus Power Plant in Egypt'. Results in Engineering, 7 (September 2020, 100128). pp. 1-14, https://doi.org/10.1016/j.rineng.2020.100128
  12. Dodds, W.K. and Whiles, M.R. (2010) 'Responses to Stress, Toxic Chemicals, and Other Pollutants in Aquatic Ecosystems'. Freshwater Ecology, pp. 399–436. https://doi.org/10.1016/B978-0-12-374724-2.00016-7
  13. Durán-Colmenares, A., Barrios-Piña, H. and Ramírez-León, H. (2016) ‘Numerical Modeling of Water Thermal Plumes Emitted by Thermal Power Plants’. Water (Switzerland), 8(11), 1–16. https://doi.org/10.3390/w8110482
  14. Fatimah, F., Sudiarto, B., Setiabudy, R. & Nafik, M.A. (2019) 'Increasing Compressor Gas Turbine Efficiency Using Fogging System at Inlet Air Filter Study Case of PLTGU Block 2 Muara Karang'. In ICECOS 2019 - 3rd International Conference on Electrical Engineering and Computer Science, Proceeding. Batam: Institute of Electrical and Electronics Engineers (IEEE), 211–216. https://doi.org/10.1109/ICECOS47637.2019.8984463
  15. Fikri, M.Y., Atmadipoera, A.S. and Nurjaya, I.W. (2020) ‘Thermal Dispersion Model of Cooling Water Discharges from Industrial Activities of Steam Power Plants (PLTU) on the North Coast of Paiton, East Java’. In IOP Conference Series: Earth and Environmental Science. Institute of Physics Publishing, p. 012022. https://doi.org/10.1088/1755-1315/429/1/012022
  16. Fossati, M., Santoro, M., Urrestarazu. S. & Piedra-Cueva, I. (2011) Numerical Study of the Effect of A Power Plant Cooling Water Discharge in The Montevideo Bay. Journal of Applied Mathematics, Vol 2011, 23 pages. https://doi.org/10.1155/2011/970467
  17. Fudlailah, P., Mukhtasor. and Zikra, M. (2015) Pemodelan Penyebaran Limbah Panas di Wilayah Pesisir (Studi Kasus Outfall PLTU Paiton). Online Publication ITS Undergraduate Student - 2015 Available at: https://docplayer.info/46307621-Pemodelan-penyebaran-limbah-panas-di-wilayah-pesisir-studi-kasus-outfall-pltu-paiton.html (Accessed: 12 November 2021)
  18. Genbach, A., Beloev, H. and Bondartsev, D. (2021). Comparison of Cooling Systems in Power Plant Units. Energies, 14(19), 1–14. https://doi.org/10.3390/en14196365
  19. Geurdes, M. (2023) Understanding Marine Pollution and Its Impact on the Environment'. Journal of Pollution Effects & Control Thermal, 11(1000361), 1000361. https://doi.org/10.35248/2375-4397.23.11.361
  20. Gupta, A., Vijay, R., Kushwaha, V.K. & Wate, SR (2014) Identification of Inlet and Outlet Locations For Cool Seawater Discharges from an LNG Facility. International Journal of Environmental Research, 8(4), 953–960. https://doi.org/10.22059/ijer.2014.787
  21. Hananta, P.A. (2018) Analisis Dampak Reklamasi Pulau g Terhadap Thermal Dispersion Pltgu Muara Karang CCPP 400 – 500 MW, Jakarta. Thesis at Civil Engineering Department Atamajaya Yogyakarta University. Available at: http://e-journal.uajy.ac.id/16251/1/TS154790.pdf (Accessed: 18 December 2023)
  22. Hao, R., Qiao, L., Han, L. & Tian, C. (2020) Experimental Study on the Effect of Heat-Retaining and Diversion Facilities on Thermal Discharge from a Power Plant. Water (Switzerland), 12(8), 1–15. https://doi.org/10.3390/W12082267
  23. Harmon, R. (2021).Thermal Enrichment Effects on Water Pollution. J Aquat Pollut Toxicol, 5(2005), 20. https://doi.org/10.36648/2581-804X.5.4.20
  24. Hasita, F., Zikra, M. and Suntoyo. (2013) Analysis of Seawater Temperature and Salinity Variations in the Pacific Ocean Waters Due to the Influence of El Nino and La Nina (Analisa Variasi Temperatur Dan Salinitas Air Laut Di Perairan Samudra Pasifik Akibat Pengaruh El Nino Dan La Nina). Jurnal Teknik POMITS, 2(2), 181–185. https://doi.org/10.12962/j23373539.v2i2.4809
  25. Hutajulu, D.S., Yusuf, I.D.Y. and Yasin, T.R. (2020) Utilizing Biofilter & Activated Carbon Technology Process to Transform Wastewater into a New Source of Service Water in PT PJB UP Muara Karang’. In 2020 International Conference on Technology and Policy in Energy and Electric Power (ICT-PEP). IEEE, 60–65. https://doi.org/10.1109/ICT-PEP50916.2020.9249783
  26. Islami, A., Akhwady, R., & Mauludiyah (2020) Changes in the Distribution of Hot Water Waste at PT. PJB UP Muara Karang Due to Reclamation Masterplan. Jurnal Kelautan: Indonesian Journal of Marine Science and Technology, 13(3), pp. 228–238. https://doi.org/10.21107/jk.v13i3.7823
  27. Khoirunnisa, H., Wibowo, M., Gumbira, G., Hendriyono, W., & Karima, S. (2021) Numerical Modeling of the Effects of Reclamation and Proposed Infrastructures on Thermal Dispersion of Power Plant Wastewater at PLTGU Muara Karang , Jakarta Bay. In Nayono, S. et al. (eds.) IOP Conf. Series: Earth and Environmental Science 832 (2021) - 3rd International Conference on Sustainable Infrastructure. Yogyakarta: IOP Publishing Ltd, 11. https://doi.org/10.1088/1755-1315/832/1/012043
  28. Laguna-Zarate, L, Barrios-Pina, H., Ramirez-Leon, H., Garcia-Diaz, R. & Bacerril-Pina, R. (2021) Analysis of Thermal Plume Dispersion into the Sea by Remote Sensing and Numerical Modeling. Journal of Marine Science and Engineering, 9(12). https://doi.org/10.3390/jmse9121437
  29. Makky, M. and Kalash, H. (2015) Potential Risks of Climate Change on Thermal Power Plants. Available at: https://www.researchgate.net/publication/236174007_Potential_Risks_of_Climate_Change_on_Thermal_Power_Plants (Accessed: 17 January 2022)
  30. Miara, A., Vorosmarty, C.J., Macknick, J.E., Tidwell, V.C., Fekete, B., Corsi, F. & Nwmark, R. (2018) Thermal Pollution Impacts on Rivers and Power Supply in the Mississippi River Watershed. Environmental Research Letters, 13(3). https://doi.org/10.1088/1748-9326/aaac85
  31. Mihardja, D.K., Fitriyanto, M.S. and Putri, M.R. (1999) Modelling of the Heated Water Spreading in Muara Karang Coastal Waters, Jakarta Bay. Journal of Mathematical and Fundamental Sciences, 31(1), 5–18
  32. Mirza, I.A., Akram, M.S., Shah, N.A., Imtiaz, W. & Chung, J.D. (2021) Analytical Solutions to the Advection-Diffusion Equation with Atangana-Baleanu Time-Fractional Derivative and a Concentrated Loading. Alexandria Engineering Journal, 60(1), 1199–1208. DOI: https://doi.org/10.1016/J.AEJ.2020.10.043
  33. Nurdini, J.A. (2017) Study of Discharge Quality Standards of Hot Water into Marine Environment (Studi Baku Mutu Buangan Air Panas Ke Lingkungan Laut). Thesis. Institut Teknologi Sepuluh Nopember. Available at: http://repository.its.ac.id/49188/
  34. Nybakken, J. W. (1992) Biologi Laut; Suatu Pendekatan Ekologis. PT Gramedia Pustaka Utama. Jakarta
  35. Padman, L. and Erofeeva, L. (2005) Tide Model Driver (TMD) Manual. 12 pages Available at: https://svn.oss.deltares.nl/repos/openearthtools/trunk/matlab/applications/DelftDashBoard/utils/tmd/Documentation/README_TMD_vs1.2.pdf (Accessed: 18 December 2023)
  36. Panigrahi, J.K. and Tripathy, JK (2011) Numerical Simulation of Advection-Dispersion for Monitoring Thermal Plume Recirculation in a Shallow Coastal Environment. Applied Ecology and Environmental Research, 9(4), 341–354. https://doi.org/10.15666/AEER/0904_341354
  37. Petrakopoulou, F., Robinson, A. and Olmeda-Delgado, M. (2020) Impact of Climate Change on Fossil Fuel Power-Plant Efficiency and Water Use'. Journal of Cleaner Production, 273, 122816. https://doi.org/10.1016/J.JCLEPRO.2020.122816
  38. PJB UP Muara Karang. (2020) PJB UP Muara Karang Cooling Water Data for Numerical Study and Modeling of the Impact of the Construction of the NCICD Sea Wall (Data Air Pendingin PJB UP Muara Karang Untuk Kajian Dan Pemodelan Numerik Dampak Pembangunan Tanggul Laut NCICD). Jakarta: PJB UP Muara Karang
  39. Pranowo, W.S., Arifin, T. and Heriati, A. (2014) Circulation of Jakarta Bay Waters Pre and Post-Construction Jakarta Giant Sea Wall (Sirkulasi Arus Perairan Teluk Jakarta Pra Dan Pasca-Konstruksi Jakarta Giant Sea Wall). In Poernomo, A. et al. (eds.) Jakarta Bay Dynamics: Impact Prediction Analysis of the Construction of the Jakarta Sea Wall (Dinamika Teluk Jakarta: Analisis Prediksi Dampak Pembangunan Tanggul Laut Jakarta). Jakarta: IPB Press, pp. 57–68
  40. Rosen, M.A., Bulucea, C.A., Mastorakis, N.E., Jeles, A.C. & Brindusa, C.C. (2015) Evaluating the Thermal Pollution Caused by Wastewaters Discharged from a Chain of Coal-Fired Power Plants along a River. Sustainability (Switzerland), 7(5), 5920–5943. https://doi.org/10.3390/su7055920
  41. Roy, P., Rao, I.N., Martha, T.P. & Kumar, K.V. (2022) Discharge Water Temperature Assessment of Thermal Power Plant Using Remote Sensing Techniques'. Energy Geoscience, 3(2), 172–181. https://doi.org/10.1016/j.engeos.2021.06.006
  42. Shawky, Y.M., Ezzat, M.B. and Abdellatif, M.M. (2015) Power Plant Intakes Performance in Low Flow Water Bodies'. Water Science, 29(1), 54–67. https://doi.org/10.1016/J.WSJ.2015.01.001
  43. Suntoyo., Muslim, T.W., Wicaksana, F.T., Rahmawati, S. & Silvianita (2021) An Experimental Study on Hydraulic Model of Water Intake Canal at Steam and Gas Power Plants. IOP Conference Series: Earth and Environmental Science, 698(1). https://doi.org/10.1088/1755-1315/698/1/012029
  44. Suranto., Istiyanto, D.C., Subarkah, A., Widagdo, A.B., Murtiaji, C., Hamid, A., Aziz, S.A. & Cholishoh, E. (2021) Study on the Economic Feasibility of an Underwater-Sill (UWS) Development for Sediment Countermeasure at Patimban Port's Navigation Channel'. In Narono, S. et al. (eds.) IOP Conference Series: Earth and Environmental Science-3rd International Conference on Sustainable Infrastructure. Yogyakarta: IOP Publishing Ltd, pp. 0–10. https://doi.org/10.1088/1755-1315/832/1/012048
  45. Surya, M.Y., He, Z., Xia, Y. & Li, L.(2019) Impacts of Sea Level Rise and River Discharge on the Hydrodynamics Characteristics of Jakarta Bay (Indonesia)'. Water (Switzerland), 11(7), 1–18. https://doi.org/10.3390/W11071384
  46. Tasnim, G. (2020) Thermal Power Plants: Produced Effluents and Solid Wastes & Management + Disposal through Effluent Treatment Plants & Other Methods. Technical Report. Aligarh Muslim University, https://doi.org/10.13140/RG.2.2.33187.27681
  47. Wibowo, M. and Asvaliantina, V. (2018) Study of Thermal Dispersion Due to Wastewater from the Power Plant of Kuala Tungkal Development Plan - Jambi Province(Kajian Dispersi Panas Akibat Air Limbah Rencana Pembangunan PLTU Kuala Tungkal - Provinsi Jambi)'. Jurnal Teknologi Lingkungan, 19(1), 1. https://doi.org/10.29122/JTL.V19I1.1736
  48. World Bank Group. (2021) Climate Change Knowledge Portal. Climate Change Knowledge Portal for Development Practitioners and Policy Markers. Available at: https://climateknowledgeportal.worldbank.org/country/indonesia/climate-data-historical#:~:text=Humidity in Jakarta varies between,May through October typically dry. (Accessed: 24 October 2023)
  49. Wulandari, D.A., Widyastuti, E., Wirawati, I & Subandi, R. (2021) 'Community Structure and Diversity of Macrobenthos in Jakarta Bay'. Al-Kauniyah: Jurnal Biologi,14(1), 115-126. http://dx.doi.org/10.15408/kauniyah.v14i1.16277
  50. Yesaya, A., Laksmi, A.A & Mangopo, M. (2023) Analysis of Hydrodynamics and Thermal Dispersion Numerical Modelling in Sele Strait , West Papua. In E3S Web of Conferences 429, 02007 (2023) ICCIM. 8. https://doi.org/10.1051/e3sconf/202342902007
  51. Yustiani, Y.M., Wahyuni, S. and Wahyuni, N.A. (2015) 'Mathematical Modeling of Liquid Thermal Waste Distribution from the Cooling Process of PLTU 2 Banten Labuan (Pemodelan Matematis Sebaran Buangan Panas Cair Dari Proses Pendinganan PLTU 2 Banten Labuan). Infomatek, 17(1) 15–24. https://123dok.com/document/yrdoo4jq-pemodelan-matematis-sebaran-buangan-proses-pendinginan-pembangit-listrik.html (Accessed: 12 November 2021)

Last update:

No citation recorded.

Last update: 2024-03-02 07:01:10

No citation recorded.