skip to main content

Critical interpretation and analysis to correlate the canopy height to collector diameter ratio for optimized design of solar chimney power plants

1Mechanical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia

2Air Conditioning and Refrigeration Techniques Engineering Department, Hilla University College, Babylon, Iraq

3Electromechanical Engineering Department, University of Technology, Baghdad, Iraq

4 Mechanical Engineering Department, Al-Mustansiryah University, Baghdad, Malaysia

View all affiliations
Received: 25 Aug 2023; Revised: 6 Oct 2023; Accepted: 26 Nov 2023; Available online: 7 Dec 2023; Published: 1 Jan 2024.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2024 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:

The collector's periphery height determines the entrance size to the solar chimney power plant. There is inconsistency in the published experimental and numerical results on the optimum collector inlet height for different collector diameters. This paper aims to analyze the available data to identify the best collector inlet height-to-diameter ratio and to introduce a design guide for an optimized performance of solar chimney power plants. The experimental data reported in previous works have been clustered and manipulated to produce a comparative argument on the collector inlet height-to-diameter. In addition, a numerical model is developed to support the literature conclusions and to produce further data to decide the optimum collector inlet height-to-diameter ratio. For a 6.6-m collector diameter, four different inlets have been investigated, namely, 0.05, 0.1, 0.15, and 0.2 m. The best performance in terms of air velocity and temperature rise is obtained with the 0.05-m inlet height, where it shows an improvement of up to 35.35% compared to the larger inlet heights. The lower collector inlet height allows a more effective heat transfer from the ground and the collector to the air. It is concluded that the optimum collector inlet height-to-diameter design ratio for solar chimneys with collector diameters larger than 3 m is 0.0075±0.0005. For small-scale solar chimney models with less than 3 m collector diameter, the best collector inlet height-to-diameter ratio ranges between 0.015 and 0.03.

Fulltext View|Download
Keywords: solar chimney geometry; canopy height; inlet height-to-diameter ratio

Article Metrics:

  1. Al-Azawiey, Sundus S., Al-Kayiem, H. H., & Hassan, S. B. (2016). Investigation on the influnce of collector height on the performance of solar chimney power plant. ARPN Journal of Engineering and Applied Sciences, 11(20), 12197–12201.
  2. Al-Azawiey, Sundus S., Al-Kayiem, H. H., & Hassan, S. B. (2017). On the Influence of Collector Size on the Solar Chimneys Performance. MATEC Web of Conferences.
  3. Al-Azawiey, Sundus S., & Hassan, S. B. (2016). Heat Absorption Properties of Ground Material for Solar Chimney Power Plants. International Journal of Energy Production and Management.
  4. Al-Kayiem, H. H., & Aja, O. C. (2016). Historic and recent progress in solar chimney power plant enhancing technologies. Renewable and Sustainable Energy Reviews, 58, 1269–1292.
  5. Aliaga, D. M., Feick, R., Brooks, W. K., Mery, M., Gers, R., Levi, J. F., & Romero, C. P. (2021). Modified solar chimney configuration with a heat exchanger: Experiment and CFD simulation. Thermal Science and Engineering Progress, 22(January), 100850.
  6. Anbarasi, J., Rajamurugu, N., & Yaknesh, S. (2021). Optimizing the collector inlet height of a divergent solar tower using response surface methodology. Materials Today: Proceedings, 55, 404–413.
  7. ANSYS FLUENT User's Guide. (2013). Ansys Fluent Theory Guide. In ANSYS Inc., USA (Vol. 15317)
  8. Aurybi, M. A., Al-Kayiem, H. H., Gilani, S. I. U., & Ismaeel, A. A. (2017). Numerical assessment of solar updraft power plant integrated with external heat sources. WIT Transactions on Ecology and the Environment, 226(1), 657–666.
  9. Ayadi, A., Bouabidi, A., Driss, Z., & Abid, M. S. (2018). Experimental and numerical analysis of the collector roof height effect on the solar chimney performance. Renewable Energy, 115, 649–662.
  10. Ayadi, A., Nasraoui, H., Bouabidi, A., Driss, Z., Bsisa, M., & Abid, M. S. (2018). Effect of the turbulence model on the simulation of the air flow in a solar chimney. International Journal of Thermal Sciences, 130(May), 423–434.
  11. Buğutekin, A. (2012). An Experimental Investigation of the Effect of Periphery Height and Ground. Journal of Thermal Science and Technology, 32(1), 51–58.
  12. Chikere, A. O., Al-Kayiem, H. H., & Abdul Kari, Z. A. (2011). Review on the Enhancement Techniques and Introduction of an Alternate Enhancement Technique of Solar Chimney Power Plant. Journal of Applied Sciences, 11(11), 1877–1884.
  13. Das, P., & Velayudhan Parvathy, C. (2022). A critical review on solar chimney power plant technology: influence of environment and geometrical parameters, barriers for commercialization, opportunities, and carbon emission mitigation. Environmental Science and Pollution Research, 29(46), 69367–69387.
  14. dos Santos Bernardes, M. A., Backström, T. W. Von, & Kröger, D. G. (2009). Analysis of some available heat transfer coefficients applicable to solar chimney power plant collectors.
  15. Duffie, J. A., & Beckman, W. A. (2013). Solar Engineering of Thermal Processes, 4th Edition.
  16. Fasel, H. F., Meng, F., Shams, E. & Gross, A. (2013) Cfd Analysis for Solar Chimney Power Plants. Solar Energy, 98, Part A, 12-22.
  17. Ghalamchi, Mehran, Kasaeian, A., & Ghalamchi, M. (2015). Experimental study of geometrical and climate effects on the performance of a small solar chimney. Renewable and Sustainable Energy Reviews, 43, 425–431.
  18. Ghalamchi, Mehrdad, Kasaeian, A., Ghalamchi, M., & Mirzahosseini, A. H. (2016). An experimental study on the thermal performance of a solar chimney with different dimensional parameters. Renewable Energy, 91, 477–483.
  19. Guo, P., Li, T., Xu, B., Xu, X., & Li, J. (2019). Questions and current understanding about solar chimney power plant: A review. Energy Conversion and Management, 182(October 2018), 21–33.
  20. Guo, P., Wang, Y., Li, J., & Wang, Y. (2016). Thermodynamic analysis of a solar chimney power plant system with soil heat storage. Applied Thermal Engineering, 100, 1076–1084.
  21. Guo, P., Wang, Y., Meng, Q., & Li, J. (2016). Experimental study on an indoor scale solar chimney setup in an artificial environment simulation laboratory. Applied Thermal Engineering, 107, 818–826.
  22. Ismaeel, A. A., Al-Kayiem, H. H., Baheta, A. T., & Aurybi, M. A. (2016). Comparative critique of thermal energy storage technique in solar chimney power plants. International Energy Journal, 16(1), 11–24.
  23. Kalash, S., Naimeh, W., & Ajib, S. (2014). Experimental Investigation of a Pilot Sloped Solar Updraft Power Plant Prototype Performance Throughout a Year. Energy Procedia, 50, 627–633.
  24. Kasaeian, A. B., Heidari, E., & Vatan, S. N. (2011). Experimental investigation of climatic effects on the efficiency of a solar chimney pilot power plant. Renewable and Sustainable Energy Reviews, 15(9), 5202–5206.
  25. Khidhir, D. K., & Atrooshi, S. A. (2020). Investigation of thermal concentration effect in a modified solar chimney. Solar Energy, 206(September 2019), 799–815.
  26. Krumar Mandal, D., Pradhan, S., Chakraborty, R., Barman, A., & Biswas, N. (2022). Experimental investigation of a solar chimney power plant and its numerical verification of thermo-physical flow parameters for performance enhancement. Sustainable Energy Technologies and Assessments, 50(August 2021), 101786.
  27. Mullett, L. B. (2011). The solar chimney--overall efficiency, design and performance. International Journal of Ambient Energy, 35-40.
  28. Lal, S., Kaushik, S. C., & Hans, R. (2016). Experimental investigation and CFD simulation studies of a laboratory scale solar chimney for power generation. Sustainable Energy Technologies and Assessments, 13, 13–22.
  29. Larbi, S., Bouhdjar, A., & Chergui, T. (2010). Performance analysis of a solar chimney power plant in the southwestern region of Algeria. Renewable and Sustainable Energy Reviews, 14(1), 470–477.
  30. Méndez, C., & Bicer, Y. (2021). Comparison of the influence of solid and phase change materials as a thermal storage medium on the performance of a solar chimney. Energy Science and Engineering, 9(8), 1274–1288.
  31. Ming, T., Meng, F., Liu, W., Pan, Y., & Kiesgen de Richter, R. (2013). Analysis of output power smoothing method of the solar chimney power generating system. International Journal of Energy Research, 37(13), 1657–1668.
  32. Ming, T., Wu, Y., De_Richter, R. K., Liu, W., & Sherif, S. A. (2017). Solar updraft power plant system: A brief review and a case study on a new system with radial partition walls in its collector. Renewable and Sustainable Energy Reviews, 69, 472–487.
  33. Muhammed, H. A., & Atrooshi, S. A. (2019). Modeling solar chimney for geometry optimization. Renewable Energy, 138, 212–223.
  34. Niroomand, N., & Amidpour, M. (2013). New combination of solar chimney for power generation and seawater desalination. Desalination and Water Treatment, 51(40–42), 7401–7411.
  35. Pandey, M., Padhi, B. N., & Mishra, I. (2021). Performance analysis of a waste heat recovery solar chimney for nocturnal use. Engineering Science and Technology, an International Journal, 24(1), 1–10.
  36. Pastohr, H., Kornadt, O., & Gürlebeck, K. (2004). Numerical and analytical calculations of the temperature and flow field in the upwind power plant. International Journal of Energy Research, 28(6), 495–510.
  37. Pasumarthi, N., & Sherif, S. A. (1998). Experimental and theoretical performance of a demonstration solar chimney model—Part II: experimental and theoretical results and economic analysis. International Journal of Energy Research, 22(5), 443–461.<443::AID-ER381>3.0.CO;2-V
  38. Pretorius, J. P. (2004). Solar Tower Power Plant Performance Characteristics. Thesis at the University of Stellenbosch.
  39. Rahimi Larki, M., Abardeh, R. H., Rahimzadeh, H., & Sarlak, H. (2021). Performance analysis of a laboratory-scale tilted solar chimney system exposed to ambient crosswind. Renewable Energy, 164, 1156–1170.
  40. Sangi, R., Amidpour, M., & Hosseinizadeh, B. (2011). Modeling and numerical simulation of solar chimney power plants. Solar Energy.
  41. Shyaa, A. K. (2002). Parametric Study of Solar Chimney Performance. Al-Mustansiriya University
  42. Too, J. H. Y., & Azwadi, C. S. N. (2016). A Brief Review on Solar Updraft Power Plant. Journal of Advanced Review on Scientific Research, 18(1), 1–25.
  43. Yapıcı, E. Ö., Ayli, E., & Nsaif, O. (2020). Numerical investigation on the performance of a small scale solar chimney power plant for different geometrical parameters. Journal of Cleaner Production, 276.
  44. Zhou, X., Yang, J., Xiao, B., & Hou, G. (2007). Experimental study of temperature field in a solar chimney power setup. Applied Thermal Engineering, 27(11–12), 2044–2050.

Last update:

No citation recorded.

Last update: 2024-03-04 01:48:53

No citation recorded.