skip to main content

Characterization, performance evaluation and optimization of wheat straw – bagasse blended fuel pellets

Department of Energy, Gas and Petroleum Engineering, Kenyatta University, Nairobi, Kenya

Received: 11 Sep 2023; Revised: 6 Feb 2024; Accepted: 24 Mar 2024; Available online: 3 Apr 2024; Published: 1 May 2024.
Editor(s): Rock Keey Liew
Open Access Copyright (c) 2024 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

This study was carried out to assess the fuel pellets produced from wheat straw and sugarcane bagasse. The wheat straw and bagasse were blended into four ratios including; 10:90, 30:70, 70:30 and 90:10 (wheat straw: bagasse) and developed into fuel pellets. The fuel pellets were characterized to determine the moisture content, volatile matter, fixed carbon, ash content, calorific value, bulk density and mechanical durability. The ignition time, burning rate and specific fuel consumption of the wheat straw – bagasse blended fuel pellets were studied at varying blend ratios (10:90, 30:70, 70:30 and 90:10), moisture contents (9.1%, 10.6%, 12.6% and 14.7%) and raw material particle sizes (2 mm, 4 mm, 6 mm and 10 mm). Results indicated that the wheat straw: bagasse blend ratios containing more proportion of bagasse (30:70 and 10:90) recorded a shorter ignition time, higher burning rate and lower specific fuel consumption. Larger raw material particle sizes exhibited shorter ignition time, higher burning rate and specific fuel consumption. Moreso, the fuel pellets with low moisture contents also recorded shorter ignition time, higher burning rate and lower specific fuel consumption. It was concluded that fuel pellets with high quantity of bagasse, large particle sizes and low moisture content demonstrated favorable combustion characteristics. Response surface methodology was used in the optimization so as to determine the optimum combination of blending ratio, moisture content and raw material particle size that would result in the lowest ignition time, highest burning rate and lowest specific fuel consumption. Results indicated that an optimum combination of a wheat straw: bagasse blend ratio of 10:90, moisture content of 14.70% and a particle size of 10.00 mm resulted in the lowest ignition time, highest burning rate and lowest specific fuel consumption.

Fulltext View|Download
Keywords: wheat straw; sugarcane bagasse; ignition time; burning rate; specific fuel consumption

Article Metrics:

  1. Adeleke, A. A., Odusote, J. K., Ikubanni, P. P., Lasode, O. A., Malathi, M., & Paswan, D. (2020). The ignitability, fuel ratio and ash fusion temperatures of torrefied woody biomass. Heliyon, 6(3), e03582. https://doi.org/10.1016/j.heliyon.2020.e03582
  2. Ahmad, A., Yadav, A. K., Singh, A., & Singh, D. K. (2024). A comprehensive machine learning-coupled response surface methodology approach for predictive modeling and optimization of biogas potential in anaerobic Co-digestion of organic waste. Biomass and Bioenergy, 180, 106995. https://doi.org/10.1016/j.biombioe.2023.106995
  3. Anggraeni, S., Girsang, G. C. S., Nandiyanto, A. B. D., & Bilad, M. R. (2021). Effects of particle size and composition of sawdust/carbon from rice husk on the briquette performance. 16. Journal of Engineering Science and Technology, 16(3), 2298-2311. https://jestec.taylors.edu.my/Vol%2016%20issue%203%20June%202021/16_3_32.pdf
  4. Bergström, D., Israelsson, S., Öhman, M., Dahlqvist, S.-A., Gref, R., Boman, C., & Wästerlund, I. (2008). Effects of raw material particle size distribution on the characteristics of Scots pine sawdust fuel pellets. Fuel Processing Technology, 89(12), 1324–1329. https://doi.org/10.1016/j.fuproc.2008.06.001
  5. Chen, B., Gu, Z., Wu, M., Ma, Z., Lim, H. R., Khoo, K. S., & Show, P. L. (2022). Advancement pathway of biochar resources from macroalgae biomass: A review. Biomass and Bioenergy, 167, 106650. https://doi.org/10.1016/j.biombioe.2022.106650
  6. Cuiping, L., Chuangzhi, W., Yanyongjie, & Haitao, H. (2004). Chemical elemental characteristics of biomass fuels in China. Biomass and Bioenergy, 27(2), 119–130. https://doi.org/10.1016/j.biombioe.2004.01.002
  7. Dasappa, S. (2011). Potential of biomass energy for electricity generation in sub-Saharan Africa. Energy for Sustainable Development, 15(3), 203–213. https://doi.org/10.1016/j.esd.2011.07.006
  8. Davies, R. (2013). Ignition and Burning Rate of Water Hyacinth Briquettes. Journal of Scientific Research and Reports, 2(1), 111–120. https://doi.org/10.9734/JSRR/2013/1964
  9. Duguma, L., Kamwilu, E., Minang, P. A., Nzyoka, J., & Muthee, K. (2020). Ecosystem-Based Approaches to Bioenergy and the Need for Regenerative Supply Options for Africa. Sustainability, 12(20), 8588. https://doi.org/10.3390/su12208588
  10. García, R., Gil, M. V., Rubiera, F., & Pevida, C. (2019). Pelletization of wood and alternative residual biomass blends for producing industrial quality pellets. Fuel, 251, 739–753. https://doi.org/10.1016/j.fuel.2019.03.141
  11. Hadiyanto, H., Pratiwi, W.Z., Wahyono, Y., Fadlilah,M.N., Dianratri, I. (2023). Potential of biomass waste into briquette products in various types of binders as an alternative to renewable energy: A review. AIP Conf. Proc., 2683 (1), 020018. https://doi.org/10.1063/5.0125069
  12. Ikelle, I. I., Sunday, N. J., Sunday, N. F., John, J., Okechukwu, O. J., & Elom, N. I. (2020). Thermal Analyses of Briquette Fuels Produced from Coal Dust and Groundnut Husk. Acta Chemica Malaysia, 4(1), 24–27. https://doi.org/10.2478/acmy-2020-0004
  13. Jahromi, R., Rezaei, M., & Samadi, S. H. (2020). Sugarcane Bagasse Gasification in a Downdraft Fixed-Bed Gasifier: Optimization of Operation Conditions [Preprint]. Chemistry. https://doi.org/10.26434/chemrxiv.12361031.v1
  14. Jung, J., & Huxham, M. (2018). Firewood usage and indoor air pollution from traditional cooking fires in Gazi Bay, Kenya. Bioscience Horizons: The International Journal of Student Research, 11. https://doi.org/10.1093/biohorizons/hzy014
  15. Kabeyi, M. J. B. (2021). Performance analysis of a sugarcane bagasse cogeneration power plant in grid electricity generation. 11th Annual International Conference on Industrial Engineering and Operations Management, Singapore. https://index.ieomsociety.org/index.cfm/article/view/ID/704
  16. Karkania, V., Fanara, E., & Zabaniotou, A. (2012). Review of sustainable biomass pellets production – A study for agricultural residues pellets’ market in Greece. Renewable and Sustainable Energy Reviews, 16(3), 1426–1436. https://doi.org/10.1016/j.rser.2011.11.028
  17. Khandker, S. R., Barnes, D. F., & Samad, H. A. (2012). Are the energy poor also income poor? Evidence from India. Energy Policy, 47, 1–12. https://doi.org/10.1016/j.enpol.2012.02.028
  18. Kongprasert, N., Wangphanich, P., & Jutilarptavorn, A. (2019). Charcoal Briquettes from Madan Wood Waste as an Alternative Energy in Thailand. Procedia Manufacturing, 30, 128–135. https://doi.org/10.1016/j.promfg.2019.02.019
  19. Liu, H., & Lennartz, B. (2019). Hydraulic properties of peat soils along a bulk density gradient—A meta study. Hydrological Processes, 33(1), 101–114. https://doi.org/10.1002/hyp.13314
  20. Mawusi, S. K., Shrestha, P., Xue, C., & Liu, G. (2023). A comprehensive review of the production, adoption and sustained use of biomass pellets in Ghana. Heliyon, 9(6), e16416. https://doi.org/10.1016/j.heliyon.2023.e16416
  21. Njiru, C. W., & Letema, S. C. (2018). Energy Poverty and Its Implication on Standard of Living in Kirinyaga, Kenya. Journal of Energy, 2018, 1–12. https://doi.org/10.1155/2018/3196567
  22. Njuguna, M., Macharia Mwangi, M., Kamundia, J., Koros, I., & Ngotho, G. (2016). Cultural management of russian wheat aphid infestation of bread wheat varieties in Kenya. African Crop Science Journal, 24(1), 101. https://doi.org/10.4314/acsj.v24i1.11S
  23. Ochieng, J., Kirimi, L., & Mathenge, M. (2016). Effects of climate variability and change on agricultural production: The case of small scale farmers in Kenya. NJAS: Wageningen Journal of Life Sciences, 77(1), 71–78. https://doi.org/10.1016/j.njas.2016.03.005
  24. Okafor, C. C., Nzekwe, C. A., Ajaero, C. C., Ibekwe, J. C., & Otunomo, F. A. (2022). Biomass utilization for energy production in Nigeria: A review. Cleaner Energy Systems, 3, 100043. https://doi.org/10.1016/j.cles.2022.100043
  25. Okoko, A., Reinhard, J., Von Dach, S. W., Zah, R., Kiteme, B., Owuor, S., & Ehrensperger, A. (2017). The carbon footprints of alternative value chains for biomass energy for cooking in Kenya and Tanzania. Sustainable Energy Technologies and Assessments, 22, 124–133. https://doi.org/10.1016/j.seta.2017.02.017
  26. Onochie, U., Obanor, A., Aliu, S., & Igbodaro, O. (2017). PROXIMATE AND ULTIMATE ANALYSIS OF FUEL PELLETS FROM OIL PALM RESIDUES. Nigerian Journal of Technology, 36(3), 987–990. https://doi.org/10.4314/njt.v36i3.44
  27. Onukak, I., Mohammed-Dabo, I., Ameh, A., Okoduwa, S., & Fasanya, O. (2017). Production and Characterization of Biomass Briquettes from Tannery Solid Waste. Recycling, 2(4), 17. https://doi.org/10.3390/recycling2040017
  28. Rimantho, D., Hidayah, N. Y., Pratomo, V. A., Saputra, A., Akbar, I., & Sundari, A. S. (2023). The strategy for developing wood pellets as sustainable renewable energy in Indonesia. Heliyon, 9(3), e14217. https://doi.org/10.1016/j.heliyon.2023.e14217
  29. Ruiz, H. A., Silva, D. P., Ruzene, D. S., Lima, L. F., Vicente, A. A., & Teixeira, J. A. (2012). Bioethanol production from hydrothermal pretreated wheat straw by a flocculating Saccharomyces cerevisiae strain – Effect of process conditions. Fuel, 95, 528–536. https://doi.org/10.1016/j.fuel.2011.10.060
  30. Saeed, A. A. H., Yub Harun, N., Bilad, M. R., Afzal, M. T., Parvez, A. M., Roslan, F. A. S., Abdul Rahim, S., Vinayagam, V. D., & Afolabi, H. K. (2021). Moisture Content Impact on Properties of Briquette Produced from Rice Husk Waste. Sustainability, 13(6), 3069. https://doi.org/10.3390/su13063069
  31. Shafiee, S., & Topal, E. (2009). When will fossil fuel reserves be diminished? Energy Policy, 37(1), 181–189. https://doi.org/10.1016/j.enpol.2008.08.016
  32. Shoddo, G. H. (2022). The contribution of Gudo forest conservation culture is key to biodiversity conservation the case of Sheka Zone, southwest Ethiopia. Land Use Policy, 113, 105872. https://doi.org/10.1016/j.landusepol.2021.105872
  33. Singh, J., Singh, S., & Mohapatra, S. K. (2020). Production of syngas from agricultural residue as a renewable fuel and its sustainable use in dual-fuel compression ignition engine to investigate performance, emission, and noise characteristics. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 42(1), 41–55. https://doi.org/10.1080/15567036.2019.1587053
  34. Suramaythangkoor, T., & Gheewala, S. H. (2008). Potential of practical implementation of rice straw-based power generation in Thailand. Energy Policy, 36(8), 3193–3197. https://doi.org/10.1016/j.enpol.2008.05.002
  35. T., O., & Olorunnisola, A. (2014). Experimental characterization of bagasse biomass material for energy production. International Journal of Engineering and Technology, 4(10), 582-589. https://www.researchgate.net/publication/331037049_Experimental_Characterisation_of_Bagasse_Biomass_Material_for_Energy_Production
  36. Takase, M., Kipkoech, R., & Essandoh, P. K. (2021). A comprehensive review of energy scenario and sustainable energy in Kenya. Fuel Communications, 7, 100015. https://doi.org/10.1016/j.jfueco.2021.100015
  37. Tamilvanan, A. (2013). Preparation of Biomass Briquettes using Various Agro- Residues and Waste Papers. Journal of Biofuels, 4(2), 47. https://doi.org/10.5958/j.0976-4763.4.2.006
  38. Theerarattananoon, K., Xu, F., Wilson, J., Ballard, R., Mckinney, L., Staggenborg, S., Vadlani, P., Pei, Z. J., & Wang, D. (2011). Physical properties of pellets made from sorghum stalk, corn stover, wheat straw, and big bluestem. Industrial Crops and Products, 33(2), 325–332. https://doi.org/10.1016/j.indcrop.2010.11.014
  39. Uzoejinwa, B. B., He, X., Wang, S., El-Fatah Abomohra, A., Hu, Y., & Wang, Q. (2018). Co-pyrolysis of biomass and waste plastics as a thermochemical conversion technology for high-grade biofuel production: Recent progress and future directions elsewhere worldwide. Energy Conversion and Management, 163, 468–492. https://doi.org/10.1016/j.enconman.2018.02.004
  40. Werther, J., Saenger, M., Hartge, E.-U., Ogada, T., & Siagi, Z. (2000). Combustion of agricultural residues. Progress in Energy and Combustion Science, 26(1), 1–27. https://doi.org/10.1016/S0360-1285(99)00005-2
  41. Zeng, T., Pollex, A., Weller, N., Lenz, V., & Nelles, M. (2018). Blended biomass pellets as fuel for small scale combustion appliances: Effect of blending on slag formation in the bottom ash and pre-evaluation options. Fuel, 212, 108–116. https://doi.org/10.1016/j.fuel.2017.10.036

Last update:

No citation recorded.

Last update: 2024-12-10 15:58:32

No citation recorded.