Department of Energy, Gas and Petroleum Engineering, Kenyatta University, Nairobi, Kenya
BibTex Citation Data :
@article{IJRED58098, author = {Isabel Matasyoh and Booker Osodo and Joseph Muguthu and Emmanuel Kombe}, title = {Characterization, performance evaluation and optimization of wheat straw – bagasse blended fuel pellets}, journal = {International Journal of Renewable Energy Development}, volume = {13}, number = {3}, year = {2024}, keywords = {wheat straw; sugarcane bagasse; ignition time; burning rate; specific fuel consumption}, abstract = { This study was carried out to assess the fuel pellets produced from wheat straw and sugarcane bagasse. The wheat straw and bagasse were blended into four ratios including; 10:90, 30:70, 70:30 and 90:10 (wheat straw: bagasse) and developed into fuel pellets. The fuel pellets were characterized to determine the moisture content, volatile matter, fixed carbon, ash content, calorific value, bulk density and mechanical durability. The ignition time, burning rate and specific fuel consumption of the wheat straw – bagasse blended fuel pellets were studied at varying blend ratios (10:90, 30:70, 70:30 and 90:10), moisture contents (9.1%, 10.6%, 12.6% and 14.7%) and raw material particle sizes (2 mm, 4 mm, 6 mm and 10 mm). Results indicated that the wheat straw: bagasse blend ratios containing more proportion of bagasse (30:70 and 10:90) recorded a shorter ignition time, higher burning rate and lower specific fuel consumption. Larger raw material particle sizes exhibited shorter ignition time, higher burning rate and specific fuel consumption. Moreso, the fuel pellets with low moisture contents also recorded shorter ignition time, higher burning rate and lower specific fuel consumption. It was concluded that fuel pellets with high quantity of bagasse, large particle sizes and low moisture content demonstrated favorable combustion characteristics. Response surface methodology was used in the optimization so as to determine the optimum combination of blending ratio, moisture content and raw material particle size that would result in the lowest ignition time, highest burning rate and lowest specific fuel consumption. Results indicated that an optimum combination of a wheat straw: bagasse blend ratio of 10:90, moisture content of 14.70% and a particle size of 10.00 mm resulted in the lowest ignition time, highest burning rate and lowest specific fuel consumption. }, pages = {457--465} doi = {10.61435/ijred.2024.58098}, url = {https://ijred.cbiore.id/index.php/ijred/article/view/58098} }
Refworks Citation Data :
This study was carried out to assess the fuel pellets produced from wheat straw and sugarcane bagasse. The wheat straw and bagasse were blended into four ratios including; 10:90, 30:70, 70:30 and 90:10 (wheat straw: bagasse) and developed into fuel pellets. The fuel pellets were characterized to determine the moisture content, volatile matter, fixed carbon, ash content, calorific value, bulk density and mechanical durability. The ignition time, burning rate and specific fuel consumption of the wheat straw – bagasse blended fuel pellets were studied at varying blend ratios (10:90, 30:70, 70:30 and 90:10), moisture contents (9.1%, 10.6%, 12.6% and 14.7%) and raw material particle sizes (2 mm, 4 mm, 6 mm and 10 mm). Results indicated that the wheat straw: bagasse blend ratios containing more proportion of bagasse (30:70 and 10:90) recorded a shorter ignition time, higher burning rate and lower specific fuel consumption. Larger raw material particle sizes exhibited shorter ignition time, higher burning rate and specific fuel consumption. Moreso, the fuel pellets with low moisture contents also recorded shorter ignition time, higher burning rate and lower specific fuel consumption. It was concluded that fuel pellets with high quantity of bagasse, large particle sizes and low moisture content demonstrated favorable combustion characteristics. Response surface methodology was used in the optimization so as to determine the optimum combination of blending ratio, moisture content and raw material particle size that would result in the lowest ignition time, highest burning rate and lowest specific fuel consumption. Results indicated that an optimum combination of a wheat straw: bagasse blend ratio of 10:90, moisture content of 14.70% and a particle size of 10.00 mm resulted in the lowest ignition time, highest burning rate and lowest specific fuel consumption.
Article Metrics:
Last update:
Last update: 2024-12-10 15:58:32
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Articles are freely available to both subscribers and the wider public with permitted reuse.
All articles published Open Access will be immediately and permanently free for everyone to read and download. We are continuously working with our author communities to select the best choice of license options: Creative Commons Attribution-ShareAlike (CC BY-SA). Authors and readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
International Journal of Renewable Energy Development (ISSN:2252-4940) published by CBIORE is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.