1Nelson Mandela African Institution of Science and Technology (NM-AIST), School of Materials, Energy, Water and Environmental Sciences (MEWES), Tanzania, United Republic of
2Sokoine University of Agriculture, Department of Forest Engineering and Wood Sciences, Tanzania, United Republic of
BibTex Citation Data :
@article{IJRED58972, author = {Christopher Warburg and Tatiana Pogrebnaya and Thomas Kivevele}, title = {Electrical power output potential of different solar photovoltaic systems in Tanzania}, journal = {International Journal of Renewable Energy Development}, volume = {13}, number = {4}, year = {2024}, keywords = {Solar PV; system configuration; energy output; energy cost; Tanzania}, abstract = { This study examines the photovoltaic (PV) energy output and levelized cost of energy (LCOE) in seven regions of Tanzania across five different tilt adjustments of 1 MW PV systems. The one-diode model equations and the PVsyst 7.2 software were used in the simulation. The results reveal variations in energy output and LCOE among the regions and tilt adjustments indicating a strong correlation between PV energy output and solar irradiance incident on the PV panel. For horizontal mounting, the annual energy output ranges from 1229 MWh/year in Kilimanjaro to 1977 MWh/year in Iringa. Among the three optimal tilt adjustments, annually, monthly and seasonal, the last two are predicted to yield larger energy outputs, whereas the two axis tracking configuration consistently provides the maximal energy output in all regions, ranging from 1533 MWh/year in Kilimanjaro to 2762 MWh/year in Iringa. The LCOE analysis demonstrates the cost-effectiveness of solar PV systems compared to grid-connected and isolated mini-grid tariffs. The LCOE values across the regions and tilt adjustments range from \$0.07/kWh to \$0.16/kWh. In comparison, the tariff for grid-connected solar PV is \$0.165/kWh, while for isolated mini-grids; it is \$0.181/kWh. The monthly optimal tilt configuration proves to be the most cost-effective option for energy generation in multiple regions, as it consistently exhibits the lowest energy cost compared to the other four configurations. The results provide valuable insights into the performance and economic feasibility of various system setups. Through meticulous simulation and data analysis, we have gained a comprehensive understanding of the factors influencing energy generation and costs in the context of solar photovoltaic systems. }, pages = {673--682} doi = {10.61435/ijred.2024.58972}, url = {https://ijred.cbiore.id/index.php/ijred/article/view/58972} }
Refworks Citation Data :
This study examines the photovoltaic (PV) energy output and levelized cost of energy (LCOE) in seven regions of Tanzania across five different tilt adjustments of 1 MW PV systems. The one-diode model equations and the PVsyst 7.2 software were used in the simulation. The results reveal variations in energy output and LCOE among the regions and tilt adjustments indicating a strong correlation between PV energy output and solar irradiance incident on the PV panel. For horizontal mounting, the annual energy output ranges from 1229 MWh/year in Kilimanjaro to 1977 MWh/year in Iringa. Among the three optimal tilt adjustments, annually, monthly and seasonal, the last two are predicted to yield larger energy outputs, whereas the two axis tracking configuration consistently provides the maximal energy output in all regions, ranging from 1533 MWh/year in Kilimanjaro to 2762 MWh/year in Iringa. The LCOE analysis demonstrates the cost-effectiveness of solar PV systems compared to grid-connected and isolated mini-grid tariffs. The LCOE values across the regions and tilt adjustments range from $0.07/kWh to $0.16/kWh. In comparison, the tariff for grid-connected solar PV is $0.165/kWh, while for isolated mini-grids; it is $0.181/kWh. The monthly optimal tilt configuration proves to be the most cost-effective option for energy generation in multiple regions, as it consistently exhibits the lowest energy cost compared to the other four configurations. The results provide valuable insights into the performance and economic feasibility of various system setups. Through meticulous simulation and data analysis, we have gained a comprehensive understanding of the factors influencing energy generation and costs in the context of solar photovoltaic systems.
Article Metrics:
Last update:
Last update: 2024-11-04 23:43:49
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Articles are freely available to both subscribers and the wider public with permitted reuse.
All articles published Open Access will be immediately and permanently free for everyone to read and download. We are continuously working with our author communities to select the best choice of license options: Creative Commons Attribution-ShareAlike (CC BY-SA). Authors and readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
International Journal of Renewable Energy Development (ISSN:2252-4940) published by CBIORE is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.