skip to main content

Starch – carrageenan based low-cost membrane permeability characteristic and its application for yeast microbial fuel cells

1Department of Chemistry, Diponegoro University, Jl. Prof. Sudharto, SH, Tembalang, Semarang 50275, Indonesia

2Master Program of Energy, School of Postgraduate Studies, Jl. Imam Bardjo, SH, Pleburan, Semarang 50241, Indonesia

3Department of Chemical Engineering, Institut Teknologi Indonesia, Jl. Raya Puspiptek Serpong, South Tangerang 15314, Indonesia

4 Research Center for Environmental and Clean Technology, National Research and Innovation Agency, KST BRIN Cisitu, Bandung 40135, Indonesia

5 Collaborative Researh Center for Zero Waste and Sustainability, Universitas Katolik Widya Mandala, Surabaya 60114, Indonesia

6 Center of Biomass and Renewable Energy (CBIORE), Chemical Engineering Department, Diponegoro University, Indonesia

View all affiliations
Received: 26 Oct 2023; Revised: 15 Jan 2024; Accepted: 17 Feb 2024; Available online: 25 Feb 2024; Published: 1 Mar 2024.
Editor(s): Rock Keey Liew
Open Access Copyright (c) 2024 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:

Microbial fuel cells (MFCs) are an innovative method that generates sustainable electricity by exploiting the metabolic processes of microorganisms. The membrane that divides the anode and cathode chambers is an important component of MFCs. Commercially available membranes, such as Nafion, are both costly, not sustainable, and harmful to the environment. In this study, a low-cost alternative membrane for MFCs based on a starch-carrageenan blend (SCB-LCM) was synthesized. The SCB-LCM membrane was created by combining starch and carrageenan and demonstrated a high dehydration rate of 98.87 % over six hours. SEM analysis revealed a smooth surface morphology with no pores on the membrane surface. The performance of SCB-LCM membrane-based MFCs was evaluated and compared to that of other membranes, including Nafion 117 and Nafion 212. All membranes tested over 25 hours lost significant weight, with SCB-LCM losing the least. The maximum power density (MPD) of the SCB-LCM MFCs was 15.77 ± 4.34 mW/m2, indicating comparable performance to commercial membranes. Moreover, the cost-to-power ratio for MFCs employing SCB-LCM was the lowest (0.03 USD.m2/mW) when compared to other membranes, indicating that SCB-LCM might be a viable and cost-effective alternative to Nafion in MFCs. These SCB-LCM findings lay the groundwork for future research into low-cost and sustainable membrane for MFC technologies.  

Fulltext View|Download
Keywords: Biomass; Bioenergy; Energy Production; Renewable Energy; Sustainable Energy

Article Metrics:

  1. Abdou, E. S., & Sorour, M. A. (2014). Preparation and characterization of starch/carrageenan edible films. International Food Research Journal, 21(1), 189–193.
  2. Ahmed, A., Niazi, M. B. K., Jahan, Z., Samin, G., Pervaiz, E., Hussain, A., & Mehran, M. T. (2020). Enhancing the thermal, mechanical and swelling properties of PVA/starch nanocomposite membranes incorporating gC 3 N 4. Journal of Polymers and the Environment, 28, 100-115.
  3. Ahmed, E. M. (2015). Hydrogel: Preparation, characterization, and applications: A review. Journal of Advanced Research, 6(2), 105–121.
  4. Arun, J., SundarRajan, P., Pavithra, K. G., Priyadharsini, P., Shyam, S., Goutham, R., ... & Pugazhendhi, A. (2024). New insights into microbial electrolysis cells (MEC) and microbial fuel cells (MFC) for simultaneous wastewater treatment and green fuel (hydrogen) generation. Fuel, 355, 129530.
  5. Ayyaru, S., & Dharmalingam, S. (2011). Development of MFC using sulphonated polyether ether ketone (SPEEK) membrane for electricity generation from waste water. Bioresource Technology, 102(24), 11167–11171.
  6. Boas, J. V., Oliveira, V. B., Simões, M., & Pinto, A. M. (2022). Review on microbial fuel cells applications, developments and costs. Journal of Environmental Management, 307, 114525.
  7. Castaño, J., Guadarrama-Lezama, A. Y., Hernández, J., Colín-Cruz, M., Muñoz, M., & Castillo, S. (2017). Preparation, characterization and antifungal properties of polysaccharide–polysaccharide and polysaccharide–protein films. Journal of Materials Science, 52(1), 353–366.
  8. Castaño, J., Rodríguez-Llamazares, S., Contreras, K., Carrasco, C., Pozo, C., Bouza, R., Franco, C. M. L., & Giraldo, D. (2014). Horse chestnut (Aesculus hippocastanum L.) starch: Basic physico-chemical characteristics and use as thermoplastic material. Carbohydrate Polymers, 112, 677–685.
  9. Chakraborty, I., Das, S., Dubey, B. K., & Ghangrekar, M. M. (2020). Novel low cost proton exchange membrane made from sulphonated biochar for application in microbial fuel cells. Materials Chemistry and Physics, 239, 122025.
  10. Cheng, S., Ye, Y., Ding, W., & Pan, B. (2014). Enhancing power generation of scale-up microbial fuel cells by optimizing the leading-out terminal of anode. Journal of Power Sources, 248, 931–938.
  11. Christwardana, M., Ismojo, I., & Marsudi, S. (2021). Physical, Thermal Stability, and Mechanical Characteristics of New Bioplastic Elastomer from Blends Cassava and Tannia Starches as Green Material. Molekul, 16(1), 46.
  12. Christwardana, M., Ismojo, I., & Marsudi, S. (2022). Biodegradation Kinetic Study of Cassava & Tannia Starch-Based Bioplastics as Green Material in Various Media. Molekul, 17(1), 19.
  13. Christwardana, M., Joelianingsih, J., Yoshi, L. A., & Hadiyanto, H. (2022). Binderless carbon nanotube/carbon felt anode to improve yeast microbial fuel cell performance. Current Research in Green and Sustainable Chemistry, 5, 100323.
  14. Cui, C., Ji, N., Wang, Y., Xiong, L., & Sun, Q. (2021). Bioactive and intelligent starch-based films: A review. Trends in Food Science & Technology, 116, 854–869.
  15. Diawara, B., Fatyeyeva, K., Ortiz, J., & Marais, S. (2021). Polycarbonate/mica extrusion using mixing elements: Improvement of transparency and thermal, mechanical and water and gas barrier properties. Polymer, 230, 124030.
  16. Do, M. H., Ngo, H. H., Guo, W. S., Liu, Y., Chang, S. W., Nguyen, D. D., Nghiem, L. D., & Ni, B. J. (2018). Challenges in the application of microbial fuel cells to wastewater treatment and energy production: A mini review. Science of The Total Environment, 639, 910–920.
  17. Galus, S., & Kadzińska, J. (2016). Whey protein edible films modified with almond and walnut oils. Food Hydrocolloids, 52, 78–86.
  18. Gao, L., Luo, H., Wang, Q., Hu, G., & Xiong, Y. (2021). Synergistic Effect of Hydrogen Bonds and Chemical Bonds to Construct a Starch-Based Water-Absorbing/Retaining Hydrogel Composite Reinforced with Cellulose and Poly(ethylene glycol). ACS Omega, 6(50), 35039–35049.
  19. Ghasemi, M., & Rezk, H. (2024). Performance improvement of microbial fuel cell using experimental investigation and fuzzy modelling. Energy, 286, 129486.
  20. Guo Kun, G. K., Hassett, D. J., & Gu, T. Y. (2012). Microbial fuel cells: electricity generation from organic wastes by microbes. In Microbial biotechnology: energy and environment (pp. 162–189). CABI.
  21. Guo, Z., Wei, Y., Zhang, Y., Xu, Y., Zheng, L., Zhu, B., & Yao, Z. (2022). Carrageenan oligosaccharides: A comprehensive review of preparation, isolation, purification, structure, biological activities and applications. Algal Research, 61, 102593.
  22. Hadiyanto, H., Christwardana, M., Pratiwi, W.Z., Purwanto, P., Sudarno, S., Haryani, K., Hoang,A.T. (2022).Response surface optimization of microalgae microbial fuel cell (MMFC) enhanced by yeast immobilization for bioelectricity production, Chemosphere, 287(3), 132275.
  23. Hadiyanto, H., Christwardana, M., da Costa, C. (2023) Electrogenic and biomass production capabilities of a Microalgae–Microbial fuel cell (MMFC) system using tapioca wastewater and Spirulina platensis for COD reduction. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 45:2, 3409-3420,
  24. He, L., Du, P., Chen, Y., Lu, H., Cheng, X., Chang, B., & Wang, Z. (2017). Advances in microbial fuel cells for wastewater treatment. Renewable and Sustainable Energy Reviews, 71, 388–403.
  25. Hernández-Fernández, F. J., Pérez de los Ríos, A., Mateo-Ramírez, F., Godínez, C., Lozano-Blanco, L. J., Moreno, J. I., & Tomás-Alonso, F. (2015). New application of supported ionic liquids membranes as proton exchange membranes in microbial fuel cell for waste water treatment. Chemical Engineering Journal, 279, 115–119.
  26. Hernández-Flores, G., Poggi-Varaldo, H. M., Solorza-Feria, O., Noyola, M. T. P., Romero-Castanón, T., & Rinderknecht-Seijas, N. (2015). Improvement of Microbial Fuel Cell Performance by Selection of Anodic Materials and Enrichment of Inoculum. Journal of New Materials for Electrochemical Systems, 18(3), 121–129.
  27. Hernández-Flores, G., Poggi-Varaldo, H. M., Solorza-Feria, O., Ponce-Noyola, M. T., Romero-Castañón, T., Rinderknecht-Seijas, N., & Galíndez-Mayer, J. (2015). Characteristics of a single chamber microbial fuel cell equipped with a low-cost membrane. International Journal of Hydrogen Energy, 40(48), 17380–17387.
  28. Idris, S. A., Esat, F. N., Abd Rahim, A. A., Zahin Rizzqi, W. A., Ruzlee, W., & Zyaid Razali, W. M. (2016). Electricity generation from the mud by using microbial fuel cell. MATEC Web of Conferences, 69, 02001.
  29. Jatoi, A. S., Akhter, F., Mazari, S. A., Sabzoi, N., Aziz, S., Soomro, S. A., Mubarak, N. M., Baloch, H., Memon, A. Q., & Ahmed, S. (2021). Advanced microbial fuel cell for waste water treatment—a review. Environmental Science and Pollution Research, 28(5), 5005–5019.
  30. Kim, J. R., Cheng, S., Oh, S.-E., & Logan, B. E. (2007). Power Generation Using Different Cation, Anion, and Ultrafiltration Membranes in Microbial Fuel Cells. Environmental Science & Technology, 41(3), 1004–1009.
  31. Kondaveeti, S., Lee, J., Kakarla, R., Kim, H. S., & Min, B. (2014). Low-cost separators for enhanced power production and field application of microbial fuel cells (MFCs). Electrochimica Acta, 132, 434–440.
  32. Kumar, R., Singh, L., Energy, A. Z.-R. and S., & 2016, undefined. (2016). Exoelectrogens: recent advances in molecular drivers involved in extracellular electron transfer and strategies used to improve it for microbial fuel cell applications. Elsevier.
  33. Kumar, R., Singh, L., Wahid, Z. A., & Din, M. F. Md. (2015). Exoelectrogens in microbial fuel cells toward bioelectricity generation: a review. International Journal of Energy Research, 39(8), 1048–1067.
  34. Maddalwar, S., Nayak, K. K., Kumar, M., & Singh, L. (2021). Plant microbial fuel cell: opportunities, challenges, and prospects. Bioresource Technology, 341, 125772.
  35. Maity, J. P., Bundschuh, J., Chen, C.-Y., & Bhattacharya, P. (2014). Microalgae for third generation biofuel production, mitigation of greenhouse gas emissions and wastewater treatment: Present and future perspectives – A mini review. Energy, 78, 104–113.
  36. Moharir, P. V., & Tembhurkar, A. R. (2018). Comparative performance evaluation of novel polystyrene membrane with ultrex as Proton Exchange Membranes in Microbial Fuel Cell for bioelectricity production from food waste. Bioresource Technology, 266, 291–296.
  37. Mohr, S., Wang, J., Ward, J., & Giurco, D. (2021). Projecting the global impact of fossil fuel production from the Former Soviet Union. International Journal of Coal Science & Technology, 8(6), 1208-1226.
  38. Obileke, K., Onyeaka, H., Meyer, E. L., & Nwokolo, N. (2021). Microbial fuel cells, a renewable energy technology for bio-electricity generation: A mini-review. Electrochemistry Communications, 125, 107003.
  39. Oh, S.-E., & Logan, B. E. (2006). Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells. Applied Microbiology and Biotechnology, 70(2), 162–169.
  40. Pant, D., Singh, A., Van Bogaert, G., Irving Olsen, S., Singh Nigam, P., Diels, L., & Vanbroekhoven, K. (2012). Bioelectrochemical systems (BES) for sustainable energy production and product recovery from organic wastes and industrial wastewaters. RSC Adv., 2(4), 1248–1263.
  41. Paucar, N. E., & Sato, C. (2021). Microbial Fuel Cell for Energy Production, Nutrient Removal and Recovery from Wastewater: A Review. Processes, 9(8), 1318.
  42. Qureshi, D., Nayak, S. K., Maji, S., Kim, D., Banerjee, I., & Pal, K. (2019). Carrageenan: A Wonder Polymer from Marine Algae for Potential Drug Delivery Applications. Current Pharmaceutical Design, 25(11), 1172–1186.
  43. Rabaey, K., & Verstraete, W. (2005). Microbial fuel cells: novel biotechnology for energy generation. Trends in Biotechnology, 23(6), 291–298.
  44. Sandhu, K. S., Sharma, L., Kaur, M., & Kaur, R. (2020). Physical, structural and thermal properties of composite edible films prepared from pearl millet starch and carrageenan gum: Process optimization using response surface methodology. International Journal of Biological Macromolecules, 143, 704–713.
  45. Senthilkumar, K., Anappara, S., Krishnan, H., & Ramasamy, P. (2020). Simultaneous power generation and Congo red dye degradation in double chamber microbial fuel cell using spent carbon electrodes. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1–17.
  46. Shabani, M., Younesi, H., Pontié, M., Rahimpour, A., Rahimnejad, M., & Zinatizadeh, A. A. (2020). A critical review on recent proton exchange membranes applied in microbial fuel cells for renewable energy recovery. Journal of cleaner production, 264, 121446.
  47. Shrgawi, N., Shamsudin, I. J., Hanibah, H., Kasim, N., Noor, S. A. M., & Taufik, S. (2023). Green electrolyte host based on synthesized benzoyl kappa-carrageenan: Reduced hydrophilicity and improved conductivity. Arabian Journal of Chemistry, 16(5), 104687.
  48. Singla, M. K., Nijhawan, P., & Oberoi, A. S. (2021). Hydrogen fuel and fuel cell technology for cleaner future: a review. Environmental Science and Pollution Research, 28, 15607-15626.
  49. Sirajudeen, A. A. O., Annuar, M. S. M., Ishak, K. A., Yusuf, H., & Subramaniam, R. (2021). Innovative application of biopolymer composite as proton exchange membrane in microbial fuel cell utilizing real wastewater for electricity generation. Journal of Cleaner Production, 278, 123449.
  50. Sonawane, J. M., Pant, D., Ghosh, P. C., & Adeloju, S. B. (2019). Fabrication of a Carbon Paper/Polyaniline-Copper Hybrid and Its Utilization as an Air Cathode for Microbial Fuel Cells. ACS Applied Energy Materials, 2(3), 1891–1902.
  51. Tebaldi, C., Ranasinghe, R., Vousdoukas, M., Rasmussen, D. J., Vega-Westhoff, B., Kirezci, E., ... & Mentaschi, L. (2021). Extreme sea levels at different global warming levels. Nature Climate Change, 11, 746-751.
  52. Tse, T. J., Wiens, D. J., & Reaney, M. J. (2021). Production of bioethanol—A review of factors affecting ethanol yield. Fermentation, 7(4), 268.
  53. Vishwanathan, A. S. (2021). Microbial fuel cells: a comprehensive review for beginners. 3 Biotech, 11(5), 248.
  54. Wang, Y., Li, B., Cui, D., Xiang, X., & Li, W. (2014). Nano-molybdenum carbide/carbon nanotubes composite as bifunctional anode catalyst for high-performance Escherichia coli-based microbial fuel cell. Biosensors and Bioelectronics, 51, 349–355.
  55. Winfield, J., Gajda, I., Greenman, J., & Ieropoulos, I. (2016). A review into the use of ceramics in microbial fuel cells. Bioresource Technology, 215, 296–303.
  56. Wu, J. Y., Lay, C. H., Chia, S. R., Chew, K. W., Show, P. L., Hsieh, P. H., & Chen, C. C. (2021). Economic potential of bioremediation using immobilized microalgae-based microbial fuel cells. Clean Technologies and Environmental Policy, 23, 2251-2264.
  57. Xia, X., Tokash, J. C., Zhang, F., Liang, P., Huang, X., & Logan, B. E. (2013). Oxygen-Reducing Biocathodes Operating with Passive Oxygen Transfer in Microbial Fuel Cells. Environmental Science & Technology, 47(4), 2085–2091.
  58. Xu, X., Zhao, Q., Wu, M., Ding, J., & Zhang, W. (2017). Biodegradation of organic matter and anodic microbial communities analysis in sediment microbial fuel cells with/without Fe(III) oxide addition. Bioresource Technology, 225, 402–408.
  59. Yadav, S., Ibrar, I., Altaee, A., Samal, A. K., & Zhou, J. (2022). Surface modification of nanofiltration membrane with kappa-carrageenan/graphene oxide for leachate wastewater treatment. Journal of Membrane Science, 659, 120776.
  60. Yang, Z., Pei, H., Hou, Q., Jiang, L., Zhang, L., & Nie, C. (2018). Algal biofilm-assisted microbial fuel cell to enhance domestic wastewater treatment: Nutrient, organics removal and bioenergy production. Chemical Engineering Journal, 332, 277–285.
  61. Yu, Y.-Y., Guo, C. X., Yong, Y.-C., Li, C. M., & Song, H. (2015). Nitrogen doped carbon nanoparticles enhanced extracellular electron transfer for high-performance microbial fuel cells anode. Chemosphere, 140, 26–33.
  62. Zhang, L., Wang, J., Fu, G., & Zhang, Z. (2020). Simultaneous electricity generation and nitrogen and carbon removal in single-chamber microbial fuel cell for high-salinity wastewater treatment. Journal of Cleaner Production, 276, 123203.
  63. Zhang, Y., Liu, M., Zhou, M., Yang, H., … L. L., & 2019, undefined. (2019). Microbial fuel cell hybrid systems for wastewater treatment and bioenergy production: synergistic effects, mechanisms and challenges. Elsevier, 103, 13–29.
  64. Zhong, Y., Godwin, P., Jin, Y., & Xiao, H. (2020). Biodegradable polymers and green-based antimicrobial packaging materials: A mini-review. Advanced Industrial and Engineering Polymer Research, 3(1), 27–35.
  65. Zhuang, L., Zhou, S., Wang, Y., Liu, C., & Geng, S. (2009). Membrane-less cloth cathode assembly (CCA) for scalable microbial fuel cells. Biosensors and Bioelectronics, 24(12), 3652–3656.

Last update:

No citation recorded.

Last update: 2024-04-13 15:33:37

No citation recorded.