skip to main content

Effects of CaO addition into CuO/ZnO/Al2O3 catalyst on hydrogen production through water gas shift reaction

Research Center for Energy Conversion and Conservation, National Research and Innovation Agency (BRIN), South Tangerang, Indonesia

Received: 28 Oct 2023; Revised: 26 Apr 2024; Accepted: 15 May 2024; Available online: 23 May 2024; Published: 1 Jul 2024.
Editor(s): Rock Keey Liew
Open Access Copyright (c) 2024 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Hydrogen is a promising renewable energy carrier and eco-friendly alternative to fossil fuels. Water-gas-shift reaction (WGSR) is commonly used to generate hydrogen from renewable biomass feedstocks. Enriching hydrogen content in synthesis gas (syngas) production can be made possible by applying the WGSR after gasification. WGSR can achieve a maximal carbon monoxide (CO) conversion using a commercially patented CZA (Cu/ZnO/Al2O3) catalyst. This study proposed three in-lab self-synthesized CZA catalysts to be evaluated and compared with the patented catalyst performance-wise. The three catalysts were prepared with co-precipitation of different Cu:Zn:Al molar ratios: CZA-431 (4:3:1), CZA-531 (5:3:1) and CZA-631 (6:3:1). The catalysts characteristics were determined through X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) analysis and Scanning Electron Microscopy (SEM) techniques. CO gas was mixed with steam in a catalytic reactor with a 3:1 molar ratio, running continuously through the catalyst at 250 °C for 30 mins. All three catalysts, however, performed below expectations, where CZA-431 had a CO conversion of 77.44%, CZA-531 48.75%, and CZA-631 71.67%. CaO, as a co-catalyst, improved the performance by stabilizing the gas composition faster. The CO conversion of each catalyst also improved: CZA-431 improved its CO conversion to 97.39%, CZA-531 to 96.71%, and CZA-631 to 95.41%. The downward trend of the CO conversion was deemed to be caused by copper content found in CZA-531 and CZA-631 but not in CZA-431, which tended to form a Cu-Zn metal complex, weakening the catalyst's activity.

Fulltext View|Download
Keywords: syngas; hydrogen; water-gas-shift reaction; CO conversion; catalyst; Cu-Zn-Al2O3; CaO

Article Metrics:

  1. Acharya, B., Dutta, A., & Basu, P. (2010). An investigation into steam gasification of biomass for hydrogen enriched gas production in presence of CaO. International Journal of Hydrogen Energy, 35(4), 1582-1589; https://doi.org/10.1016/j.ijhydene.2009.11.109
  2. Agaton, C. B., Batac, K. I. T., & Reyes Jr, E. M. (2022). Prospects and challenges for green hydrogen production and utilization in the Philippines. International Journal of Hydrogen Energy, 47(41), 17859-17870; https://doi.org/10.1016/j.ijhydene.2022.04.101
  3. Ahn, S.-Y., Na, H.-S., Jeon, K.-W., Lee, Y.-L., Kim, K.-J., Shim, J.-O., & Roh, H.-S. (2020). Effect of Cu/CeO2 catalyst preparation methods on their characteristics for low temperature water−gas shift reaction: A detailed study. Catalysis Today, 352, 166-174; https://doi.org/10.1016/j.cattod.2019.11.017
  4. Al-Baghdadi, M. A. R. S., Ahmed, S. S., & Ghyadh, N. A. (2023). Three-dimensional CFD-solid mechanics analysis of the hydrogen internal combustion engine piston subjected to thermomechanical loads [Hydrogen fuel; Internal combustion engines; Piston; Thermomechanical loads; CFD]. International Journal of Renewable Energy Development, 12(3), 9; https://doi.org/10.14710/ijred.2023.52496
  5. Arregi, A., Amutio, M., Lopez, G., Bilbao, J., & Olazar, M. (2018). Evaluation of thermochemical routes for hydrogen production from biomass: A review. Energy Conversion and Management, 165, 696-719; https://doi.org/10.1016/j.enconman.2018.03.089
  6. Aziz, M., Darmawan, A., & Juangsa, F. B. (2021). Hydrogen production from biomasses and wastes: A technological review. International Journal of Hydrogen Energy, 46(68), 33756-33781; https://doi.org/10.1016/j.ijhydene.2021.07.189
  7. Baltes, C., Vukojević, S., & Schüth, F. (2008). Correlations between synthesis, precursor, and catalyst structure and activity of a large set of CuO/ZnO/Al2O3 catalysts for methanol synthesis. Journal of Catalysis, 258(2), 334-344; https://doi.org/10.1016/j.jcat.2008.07.004
  8. Baraj, E., Ciahotný, K., & Hlinčík, T. (2021). The water gas shift reaction: Catalysts and reaction mechanism. Fuel, 288, 119817; https://doi.org/10.1016/j.fuel.2020.119817
  9. Bernard, P., Stelmachowski, P., Broś, P., Makowski, W., & Kotarba, A. (2021). Demonstration of the Influence of Specific Surface Area on Reaction Rate in Heterogeneous Catalysis. Journal of Chemical Education, 98(3), 935-940; https://doi.org/10.1021/acs.jchemed.0c01101
  10. Chen, H.-B., Liao, D.-W., Yu, L.-J., Lin, Y.-J., Yi, J., Zhang, H.-B., & Tsai, K.-R. (1999). Influence of trivalent metal ions on the surface structure of a copper-based catalyst for methanol synthesis. Applied Surface Science, 147(1), 85-93; https://doi.org/10.1016/S0169-4332(99)00081-1
  11. Chen, W., Li, T., Ren, Y., Wang, J., Chen, H., & Wang, Q. (2023). Biological hydrogen with industrial potential: Improvement and prospection in biohydrogen production. Journal of Cleaner Production, 387, 135777; https://doi.org/10.1016/j.jclepro.2022.135777
  12. Damayanti, A., Sarto, S., & Sediawan, W. B. (2020). Biohydrogen Production by Reusing Immobilized Mixed Culture in Batch System [biohydrogen; reused beads; immobilization; mixed culture; batch]. 2020, 9(1), 6; https://doi.org/10.14710/ijred.9.1.37-42
  13. Dasireddy, V. D. B. C., Rubin, K., Pohar, A., & Likozar, B. (2020). Surface structure–activity relationships of Cu/ZnGaOX catalysts in low temperature water–gas shift (WGS) reaction for production of hydrogen fuel. Arabian Journal of Chemistry, 13(4), 5060-5074; https://doi.org/10.1016/j.arabjc.2020.02.005
  14. Dawood, F., Anda, M., & Shafiullah, G. M. (2020). Hydrogen production for energy: An overview. International Journal of Hydrogen Energy, 45(7), 3847-3869; https://doi.org/10.1016/j.ijhydene.2019.12.059
  15. Desgagnés, A., Alizadeh Sahraei, O., & Iliuta, M. C. (2023). Improvement strategies for Ni-based alcohol steam reforming catalysts. Journal of Energy Chemistry, 86, 447-479; https://doi.org/10.1016/j.jechem.2023.07.011
  16. Dou, B., Zhang, H., Song, Y., Zhao, L., Jiang, B., He, M., Ruan, C., Chen, H., & Xu, Y. (2019). Hydrogen production from the thermochemical conversion of biomass: issues and challenges [10.1039/C8SE00535D]. Sustainable Energy & Fuels, 3(2), 314-342; https://doi.org/10.1039/C8SE00535D
  17. Duman, G., & Yanik, J. (2017). Two-step steam pyrolysis of biomass for hydrogen production. International Journal of Hydrogen Energy, 42(27), 17000-17008; https://doi.org/10.1016/j.ijhydene.2017.05.227
  18. El Bazi, W., Bideq, M., Abidi, A., Said, Y., & Bajil, O. (2022). Numerical Study of a Water Gas Shift Fixed Bed Reactor Operating at Low Pressures. Bulletin of Chemical Reaction Engineering and Catalysis, 17 (2), 304-321. https://doi.org/10.9767/bcrec.17.2.13510.304-321
  19. Ereña, J., Arandes, J. M., Garoña, R., Gayubo, A. G., & Bilbao, J. (2003). Study of the preparation and composition of the metallic function for the selective hydrogenation of CO2 to gasoline over bifunctional catalysts. Journal of Chemical Technology & Biotechnology, 78(2-3), 161-166; https://doi.org/10.1002/jctb.720
  20. Fajín, J. L. C., & Cordeiro, M. N. D. S. (2021). Insights into the catalytic activity of trimetallic Al/Zn/Cu surfaces for the water gas shift reaction. Applied Surface Science, 542, 148589; https://doi.org/10.1016/j.apsusc.2020.148589
  21. Figueiredo, R. T., Martı́nez-Arias, A., Granados, M. L., & Fierro, J. L. G. (1998). Spectroscopic Evidence of Cu–Al Interactions in Cu–Zn–Al Mixed Oxide Catalysts Used in CO Hydrogenation. Journal of Catalysis, 178(1), 146-152; https://doi.org/10.1006/jcat.1998.2106
  22. García-Moncada, N., Jurado, L., Martínez-Tejada, L. M., Romero-Sarria, F., & Odriozola, J. A. (2022). Boosting water activation determining-step in WGS reaction on structured catalyst by Mo-doping. Catalysis Today, 383, 193-204; https://doi.org/10.1016/j.cattod.2020.06.003
  23. Ghodke, P. K., Sharma, A. K., Jayaseelan, A., & Gopinath, K. P. (2023). Hydrogen-rich syngas production from the lignocellulosic biomass by catalytic gasification: A state of art review on advance technologies, economic challenges, and future prospectus. Fuel, 342, 127800; https://doi.org/10.1016/j.fuel.2023.127800
  24. Gogate, M. (2020). Water-Gas Shift Reaction: Advances and Industrial Applications. Progress in Petrochemical Science, 3; https://doi.org/10.31031/PPS.2020.03.000569
  25. Gradisher, L., Dutcher, B., & Fan, M. (2015). Catalytic hydrogen production from fossil fuels via the water gas shift reaction. Applied Energy, 139, 335-349; https://doi.org/10.1016/j.apenergy.2014.10.080
  26. Gunawardana, P. V. D. S., Lee, H. C., & Kim, D. H. (2009). Performance of copper–ceria catalysts for water gas shift reaction in medium temperature range. International Journal of Hydrogen Energy, 34(3), 1336-1341; https://doi.org/10.1016/j.ijhydene.2008.11.041
  27. Günter, M. M., Ressler, T., Bems, B., Büscher, C., Genger, T., Hinrichsen, O., Muhler, M., & Schlögl, R. (2001). Implication of the microstructure of binary Cu/ZnO catalysts for their catalytic activity in methanol synthesis. Catalysis Letters, 71(1), 37-44; https://doi.org/10.1023/A:1016696022840
  28. Hadiyanto, H., Lestari, S.P., Abdullah, A., Widayat, W., Sutanto, H. (2016). The development of fly ash-supported CaO derived from mollusk shell of Anadara granosa and Paphia undulata as heterogeneous CaO catalyst in biodiesel synthesis. Int J Energy Environ Eng 7, 297–305. https://doi.org/10.1007/s40095-016-0212-6
  29. Havilah, P. R., Sharma, A. K., Govindasamy, G., Matsakas, L., & Patel, A. (2022). Biomass Gasification in Downdraft Gasifiers: A Technical Review on Production, Up-Gradation and Application of Synthesis Gas. Energies, 15(11), 3938; https://www.mdpi.com/1996-1073/15/11/3938
  30. He, Y., Tu, J., Li, D., Lin, C., Mo, Z., Huang, S., Hu, C., Shen, D., & Wang, T. (2023). Investigation of hydrogen-rich syngas production from biomass gasification with CaO and steam based on real-time gas release behaviors. Journal of Analytical and Applied Pyrolysis, 169, 105851; https://doi.org/10.1016/j.jaap.2022.105851
  31. Heidenreich, S., & Foscolo, P. U. (2015). New concepts in biomass gasification. Progress in Energy and Combustion Science, 46, 72-95; https://doi.org/10.1016/j.pecs.2014.06.002
  32. Huber, G. W., Iborra, S., & Corma, A. (2006). Synthesis of Transportation Fuels from Biomass: Chemistry, Catalysts, and Engineering. Chemical Reviews, 106(9), 4044-4098; https://doi.org/10.1021/cr068360d
  33. Jang, W.-J., Shim, J.-O., Jeon, K.-W., Na, H.-S., Kim, H.-M., Lee, Y.-L., Roh, H.-S., & Jeong, D.-W. (2019). Design and scale-up of a Cr-free Fe-Al-Cu catalyst for hydrogen production from waste-derived synthesis gas. Applied Catalysis B: Environmental, 249, 72-81; https://doi.org/10.1016/j.apcatb.2019.02.036
  34. Kalinci, Y., Hepbasli, A., & Dincer, I. (2009). Biomass-based hydrogen production: A review and analysis. International Journal of Hydrogen Energy, 34(21), 8799-8817; https://doi.org/10.1016/j.ijhydene.2009.08.078
  35. Kowalik, P., Wiercioch, P., Bicki, R., Próchniak, W., Antoniak-Jurak, K., Michalska, K., & Słowik, G. (2019). Flash-Calcined CuZnAl-LDH as High-Activity LT-WGS Catalyst. European Journal of Inorganic Chemistry, 2019(13), 1792-1798; https://doi.org/10.1002/ejic.201801553
  36. Lanjekar, P. R., Panwar, N. L., & Agrawal, C. (2023). A comprehensive review on hydrogen production through thermochemical conversion of biomass for energy security. Bioresource Technology Reports, 21, 101293; https://doi.org/10.1016/j.biteb.2022.101293
  37. Lepage, T., Kammoun, M., Schmetz, Q., & Richel, A. (2021). Biomass-to-hydrogen: A review of main routes production, processes evaluation and techno-economical assessment. Biomass and Bioenergy, 144, 105920; https://doi.org/10.1016/j.biombioe.2020.105920
  38. Li, B., Wei, L., Yang, H., Wang, X., & Chen, H. (2014). The enhancing mechanism of calcium oxide on water gas shift reaction for hydrogen production. Energy, 68, 248-254; https://doi.org/10.1016/j.energy.2014.02.088
  39. Li, Z., Liu, Y., & Cai, N. (2012). Effect of CaO hydration and carbonation on the hydrogen production from sorption enhanced water gas shift reaction. International Journal of Hydrogen Energy, 37(15), 11227-11236; https://doi.org/10.1016/j.ijhydene.2012.04.160
  40. Lucarelli, C., Molinari, C., Faure, R., Fornasari, G., Gary, D., Schiaroli, N., & Vaccari, A. (2018). Novel Cu-Zn-Al catalysts obtained from hydrotalcite-type precursors for middle-temperature water-gas shift applications. Applied Clay Science, 155, 103-110; https://doi.org/10.1016/j.clay.2017.12.022
  41. Martínez, I., Callén, M. S., Grasa, G., López, J. M., & Murillo, R. (2022). Sorption-enhanced gasification (SEG) of agroforestry residues: Influence of feedstock and main operating variables on product gas quality. Fuel Processing Technology, 226, 107074; https://doi.org/10.1016/j.fuproc.2021.107074
  42. Martínez, I., Kulakova, V., Grasa, G., & Murillo, R. (2020). Experimental investigation on sorption enhanced gasification (SEG) of biomass in a fluidized bed reactor for producing a tailored syngas. Fuel, 259, 116252; https://doi.org/10.1016/j.fuel.2019.116252
  43. Meza Fuentes, E., Rodríguez Ruiz, J., Massin, L., Cadete Santos Aires, F. J., da Costa Faro, A., Assaf, J. M., & Rangel, M. d. C. (2021). Characterization and performance within the WGS reaction of Cu catalysts obtained from hydrotalcites. International Journal of Hydrogen Energy, 46(64), 32455-32470; https://doi.org/10.1016/j.ijhydene.2021.07.072
  44. Mo, W., Ma, F., Ma, Y., & Fan, X. (2019). The optimization of Ni–Al2O3 catalyst with the addition of La2O3 for CO2–CH4 reforming to produce syngas. International Journal of Hydrogen Energy, 44(45), 24510-24524; https://doi.org/10.1016/j.ijhydene.2019.07.204
  45. Muharto, B., Saputro, F. R., Prabowo, W., Anggoro, T., Adiprabowo, A. B., Masfuri, I., & Irawan, B. B. (2023). Pyrolysis process control: temperature control design and application for optimum process operation. International Journal of Electrical and Computer Engineering (IJECE), 14, 1473-1485; https://doi.org/10.11591/ijece.v14i2.pp1473-1485
  46. Na, H.-S., Ahn, S.-Y., Shim, J.-O., Jeon, K.-W., Kim, H.-M., Lee, Y.-L., Jang, W.-J., Jeon, B.-H., & Roh, H.-S. (2019). Effect of precipitation on physico-chemical and catalytic properties of Cu-Zn-Al catalyst for water-gas shift reaction. Korean Journal of Chemical Engineering, 36(8), 1243-1248; https://doi.org/10.1007/s11814-019-0309-8
  47. Nagar, R., Srivastava, S., Hudson, S. L., Amaya, S. L., Tanna, A., Sharma, M., Achayalingam, R., Sonkaria, S., Khare, V., & Srinivasan, S. S. (2023). Recent developments in state-of-the-art hydrogen energy technologies – Review of hydrogen storage materials. Solar Compass, 5, 100033; https://doi.org/10.1016/j.solcom.2023.100033
  48. Ostadi, M., Rytter, E., & Hillestad, M. (2019). Boosting carbon efficiency of the biomass to liquid process with hydrogen from power: The effect of H2/CO ratio to the Fischer-Tropsch reactors on the production and power consumption. Biomass and Bioenergy, 127, 105282; https://doi.org/10.1016/j.biombioe.2019.105282
  49. Pal, D. B., Chand, R., Upadhyay, S. N., & Mishra, P. K. (2018). Performance of water gas shift reaction catalysts: A review. Renewable and Sustainable Energy Reviews, 93, 549-565; https://doi.org/10.1016/j.rser.2018.05.003
  50. Pambudi, N. A., Firdaus, R. A., Rizkiana, R., Ulfa, D. K., Salsabila, M. S., Suharno, & Sukatiman. (2023). Renewable Energy in Indonesia: Current Status, Potential, and Future Development. Sustainability, 15(3), 2342; https://www.mdpi.com/2071-1050/15/3/2342
  51. Peng, W. X., Wang, L. S., Mirzaee, M., Ahmadi, H., Esfahani, M. J., & Fremaux, S. (2017). Hydrogen and syngas production by catalytic biomass gasification. Energy Conversion and Management, 135, 270-273; https://doi.org/10.1016/j.enconman.2016.12.056
  52. Plyasova, L. M., Yur’eva, T. M., Kriger, T. A., Makarova, O. V., Zaikovskii, V. I., Solov'eva, L. P., & Smhakov, A. N. (1995). Formation of a catalyst for methanol synthesis. Kinetics and Catalysis, 36, 425-433;
  53. Poggio-Fraccari, E., Abele, A., Zitta, N., Francesconi, J., & Mariño, F. (2022). CO removal for hydrogen purification via Water Gas Shift and COPROX reactions with monolithic catalysts. Fuel, 310, 122419; https://doi.org/10.1016/j.fuel.2021.122419
  54. Qin, R., Liu, P., Fu, G., & Zheng, N. (2018). Strategies for Stabilizing Atomically Dispersed Metal Catalysts. Small Methods, 2(1), 1700286; https://doi.org/10.1002/smtd.201700286
  55. Ratnawati, R., Slamet, S., Toya, F. D., & Kuntolaksono, S. (2022). Enhancing Hydrogen Generation using CdS-modified TiO2 Nanotube Arrays in 2,4,6-Trichlorophenol as a Hole Scavenger [2,4,6-Trichlorophenol; Hole Scavenger; Hydrogen Evolution; Titania Nanotube Arrays; TNTA-CdS]. International Journal of Renewable Energy Development, 11(4), 9; https://doi.org/10.14710/ijred.2022.45139
  56. Reddy, G. K., & Smirniotis, P. G. (2015) Water Gas Shift Reaction: Chapter 3 - Low-Temperature WGS Reaction, pp. 47-100. Elsevier. https://doi.org/10.1016/B978-0-12-420154-5.00003-6
  57. Peraturan Pemerintah Republik Indonesia Nomor 79 Tahun 2014 Tentang Kebijakan Energi Nasional, (2014)
  58. Saeidi, S., Fazlollahi, F., Najari, S., Iranshahi, D., Klemeš, J. J., & Baxter, L. L. (2017). Hydrogen production: Perspectives, separation with special emphasis on kinetics of WGS reaction: A state-of-the-art review. Journal of Industrial and Engineering Chemistry, 49, 1-25; https://doi.org/10.1016/j.jiec.2016.12.003
  59. Sahrin, N. T., Shiong Khoo, K., Wei Lim, J., Shamsuddin, R., Musa Ardo, F., Rawindran, H., Hassan, M., Kiatkittipong, W., Alaaeldin Abdelfattah, E., Da Oh, W., & Kui Cheng, C. (2022). Current perspectives, future challenges and key technologies of biohydrogen production for building a carbon–neutral future: A review. Bioresource Technology, 364, 128088; https://doi.org/10.1016/j.biortech.2022.128088
  60. Sansaniwal, S. K., Pal, K., Rosen, M. A., & Tyagi, S. K. (2017). Recent advances in the development of biomass gasification technology: A comprehensive review. Renewable and Sustainable Energy Reviews, 72, 363-384; https://doi.org/10.1016/j.rser.2017.01.038
  61. Sengupta, S., & Deo, G. (2015). Modifying alumina with CaO or MgO in supported Ni and Ni–Co catalysts and its effect on dry reforming of CH4. Journal of CO2 Utilization, 10, 67-77; https://doi.org/10.1016/j.jcou.2015.04.003
  62. Shen, X., Li, Z., Xu, J., Li, W., Tao, Y., Ran, J., Yang, Z., Sun, K., Yao, S., Wu, Z., Rac, V., Rakic, V., & Du, X. (2023). Upgrading the low temperature water gas shift reaction by integrating plasma with a CuOx/CeO2 catalyst. Journal of Catalysis, 421, 324-331; https://doi.org/10.1016/j.jcat.2023.03.033
  63. Shim, J.-O., Na, H.-S., Jha, A., Jang, W.-J., Jeong, D.-W., Nah, I. W., Jeon, B.-H., & Roh, H.-S. (2016). Effect of preparation method on the oxygen vacancy concentration of CeO2-promoted Cu/γ-Al2O3 catalysts for HTS reactions. Chemical Engineering Journal, 306, 908-915; https://doi.org/10.1016/j.cej.2016.08.030
  64. Shuai, C., Hu, S., He, L., Xiang, J., Su, S., Sun, L., Jiang, L., Wang, Y., Chen, Q., Liu, C., & Chi, H. (2015). Performance of CaO for phenol steam reforming and water–gas shift reaction impacted by carbonation process. International Journal of Hydrogen Energy, 40(39), 13314-13322; https://doi.org/10.1016/j.ijhydene.2015.07.167
  65. Smith. J.B.R., Loganathan, M., & Shantha, M. S. (2010). A Review of the Water Gas Shift Reaction Kinetics. International Journal of Chemical Reactor Engineering, 8(1); https://doi.org/10.2202/1542-6580.2238
  66. Song, J. H., Han, S. J., Yoo, J., Park, S., Kim, D. H., & Song, I. K. (2016). Hydrogen production by steam reforming of ethanol over Ni–X/Al2O3–ZrO2 (X=Mg, Ca, Sr, and Ba) xerogel catalysts: Effect of alkaline earth metal addition. Journal of Molecular Catalysis A: Chemical, 415, 151-159; https://doi.org/10.1016/j.molcata.2016.02.010
  67. Speight, J. G. (2019) Heavy Oil Recovery and Upgrading: Chapter 15 - Hydrogen Production, pp. 657-697. Gulf Professional Publishing. https://doi.org/10.1016/B978-0-12-813025-4.00015-5
  68. Stiegel, G. J., & Ramezan, M. (2006). Hydrogen from coal gasification: An economical pathway to a sustainable energy future. International Journal of Coal Geology, 65(3), 173-190; https://doi.org/10.1016/j.coal.2005.05.002
  69. Taniya, K., Horie, Y., Fujita, R., Ichihashi, Y., & Nishiyama, S. (2023). Mechanistic study of water–gas shift reaction over copper/zinc-oxide/alumina catalyst in a reformed gas atmosphere: Influence of hydrogen on reaction rate. Applied Catalysis B: Environmental, 330, 122568; https://doi.org/10.1016/j.apcatb.2023.122568
  70. Tian, Z., Lu, Y., Wang, J., Shu, R., Wang, C., & Chen, Y. (2024). Advances in hydrogen production by aqueous phase reforming of biomass oxygenated derivatives. Fuel, 357, 129691; https://doi.org/10.1016/j.fuel.2023.129691
  71. Tleubergenova, A., Han, B.-C., & Meng, X.-Z. (2024). Assessment of biomass-based green hydrogen production potential in Kazakhstan. International Journal of Hydrogen Energy, 49, 349-355; https://doi.org/10.1016/j.ijhydene.2023.08.197
  72. Veziroğlu, T. N., & Şahi˙n, S. (2008). 21st Century’s energy: Hydrogen energy system. Energy Conversion and Management, 49(7), 1820-1831; https://doi.org/10.1016/j.enconman.2007.08.015
  73. Wang, K., Khoo, K. S., Chew, K. W., Selvarajoo, A., Chen, W.-H., Chang, J.-S., & Show, P. L. (2021). Microalgae: The Future Supply House of Biohydrogen and Biogas [Mini Review]. Frontiers in Energy Research, 9; https://doi.org/10.3389/fenrg.2021.660399
  74. Watanabe, M. D. B., Cherubini, F., Tisserant, A., & Cavalett, O. (2022). Drop-in and hydrogen-based biofuels for maritime transport: Country-based assessment of climate change impacts in Europe up to 2050. Energy Conversion and Management, 273, 116403; https://doi.org/10.1016/j.enconman.2022.116403
  75. Watson, J., Zhang, Y., Si, B., Chen, W.-T., & de Souza, R. (2018). Gasification of biowaste: A critical review and outlooks. Renewable and Sustainable Energy Reviews, 83, 1-17; https://doi.org/10.1016/j.rser.2017.10.003
  76. Xiang, Y., He, J., Sun, N., Fan, Y., Yang, L., Fang, C., & Kuai, L. (2020). Hollow mesoporous CeO2 microspheres for efficient loading of Au single-atoms to catalyze the water-gas shift reaction. Microporous and Mesoporous Materials, 308, 110507; https://doi.org/10.1016/j.micromeso.2020.110507
  77. Yan, X., Li, Y., Zhang, C., Wang, Y., Zhao, J., & Wang, Z. (2021). Understanding the enhancement of CaO on water gas shift reaction for H2 production by density functional theory. Fuel, 303, 121257; https://doi.org/10.1016/j.fuel.2021.121257
  78. Yana, S., Nizar, M., Irhamni, & Mulyati, D. (2022). Biomass waste as a renewable energy in developing bio-based economies in Indonesia: A review. Renewable and Sustainable Energy Reviews, 160, 112268; https://doi.org/10.1016/j.rser.2022.112268
  79. Yao, S., Zhang, X., Zhou, W., Gao, R., Xu, W., Ye, Y., Lin, L., Wen, X., Liu, P., Chen, B., Crumlin, E., Guo, J., Zuo, Z., Li, W., Xie, J., Lu, L., Kiely, C. J., Gu, L., Shi, C., . . . Ma, D. (2017). Atomic-layered Au clusters on α-MoC as catalysts for the low-temperature water-gas shift reaction. Science, 357(6349), 389-393; https://doi.org/doi: 10.1126/science.aah4321
  80. Ye, J., Song, S., Cui, Z., Wu, P., Zhang, Y., Luo, W., Ding, T., Tian, Y., & Li, X. (2023). Facile Synthesis of Efficient and Robust Cu–Zn–Al Catalysts by the Sol–Gel Method for the Water–Gas Shift Reaction. Industrial & Engineering Chemistry Research, 62(38), 15386-15394; https://doi.org/10.1021/acs.iecr.3c01333
  81. Younas, M., Shafique, S., Hafeez, A., Javed, F., & Rehman, F. (2022). An Overview of Hydrogen Production: Current Status, Potential, and Challenges. Fuel, 316, 123317; https://doi.org/10.1016/j.fuel.2022.123317
  82. Zhang, F., Liu, Y., Xu, X., Yang, P., Miao, P., Zhang, Y., & Sun, Q. (2018). Effect of Al-containing precursors on Cu/ZnO/Al2O3 catalyst for methanol production. Fuel Processing Technology, 178, 148-155; https://doi.org/10.1016/j.fuproc.2018.04.021
  83. Zhou, L., Liu, Y., Liu, S., Zhang, H., Wu, X., Shen, R., Liu, T., Gao, J., Sun, K., Li, B., & Jiang, J. (2023). For more and purer hydrogen-the progress and challenges in water gas shift reaction. Journal of Energy Chemistry, 83, 363-396; https://doi.org/10.1016/j.jechem.2023.03.055
  84. Zhu, M., Tian, P., Kurtz, R., Lunkenbein, T., Xu, J., Schlögl, R., Wachs, I. E., & Han, Y.-F. (2019). Strong Metal–Support Interactions between Copper and Iron Oxide during the High-Temperature Water-Gas Shift Reaction. Angewandte Chemie International Edition, 58(27), 9083-9087; https://doi.org/10.1002/anie.201903298
  85. Zhu, M., & Wachs, I. E. (2016). Iron-Based Catalysts for the High-Temperature Water–Gas Shift (HT-WGS) Reaction: A Review. ACS Catalysis, 6(2), 722-732; https://doi.org/10.1021/acscatal.5b02594
  86. Živković, L. A., Pohar, A., Likozar, B., & Nikačević, N. M. (2016). Kinetics and reactor modeling for CaO sorption-enhanced high-temperature water–gas shift (SE–WGS) reaction for hydrogen production. Applied Energy, 178, 844-855; https://doi.org/10.1016/j.apenergy.2016.06.071

Last update:

No citation recorded.

Last update: 2024-09-12 04:21:12

No citation recorded.