skip to main content

A systematic decision-making approach to optimizing microgrid energy sources in rural areas through diesel generator operation and techno-economic analysis: A case study of Baron Technopark in Indonesia

1Research Center for Energy Conversion and Conservation, National Research and Innovation Agency, Serpong, Indonesia

2Electrical Engineering Department, Faculty of Engineering, Universitas Indonesia, Depok, Indonesia

Received: 10 Nov 2023; Revised: 18 Jan 2024; Accepted: 22 Feb 2024; Available online: 25 Feb 2024; Published: 1 Mar 2024.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2024 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Microgrid systems are part of the most reliable energy supply technologies for rural communities that do not have access to electricity but the system is generally dominated by diesel generators (DG). The implementation of de-dieselization programs to ensure efficient diesel operations requires addressing several scenarios such as the replacement of diesel completely with 100% renewable energy sources at a significant cost. The design and selection of appropriate configuration, as well as operating patterns, need to be considered in adopting economical and reliable microgrid systems. Therefore, this study aimed to design an optimal configuration and operational pattern for microgrid systems for the frontier, outermost, and least developed (3T) regions using Baron Techno Park (BTP) in Indonesia as a case study. The optimization was conducted through HOMER software combined with benefit-cost analysis and the focus was on daily load variations, selection of control algorithms, reconfiguration of the power supply system, and setting of the diesel generator operating hours. The results showed that the optimum configuration was achieved using loads of resort, 24 kWp of PV, 288 kWh of BESS, load-following (LF) as dispatch controller, and 25 kVa of DG. Moreover, the proposed microgrid system produced 12% excess energy, 36% renewable fraction (RF), 13.25 tons reduction in CO2 emissions per year, $0.28 LCOE per kWh, $250,478 NPC, and a benefit-cost ratio (BCR) of 0.89. It also had a potential energy efficiency savings of 55.56% and a cost efficiency of 20.95% compared to existing system configurations. In conclusion, the study showed that the addition of DG to microgrid systems in 3T areas was more optimal than using only PV and batteries. An effective operating schedule for the DG was also necessary to improve RF and reduce expenses. Furthermore, other energy storage devices considered less expensive than batteries could be introduced to improve the economics of microgrid systems in the 3T region.

Fulltext View|Download
Keywords: benefit-cost ratio; cost efficiency; diesel generator operation; excess energy; microgrid optimization; renewable fraction

Article Metrics:

  1. Ahmad, J., Imran, M., Khalid, A., Iqbal, W., Ashraf, S. R., Adnan, M., Ali, S. F., & Khokhar, K. S. (2018). Techno economic analysis of a wind-photovoltaic-biomass hybrid renewable energy system for rural electrification: A case study of Kallar Kahar. Energy, 148, 208–234. https://doi.org/10.1016/j.energy.2018.01.133
  2. Amini, M., Nazari, M.H., Hosseinian, S. H. (2023). Optimal energy management of battery with high wind energy penetration-A comprehensive linear battery degradation cost model. Sustainable Cities and Society, 93. https://doi.org/10.1016/j.scs.2023.104492
  3. Anglani, N., Oriti, G., & Colombini, M. (2017). Optimized energy management system to reduce fuel consumption in remote military microgrids. IEEE Transactions on Industry Applications, 53(6), 5777–5785. https://doi.org/10.1109/TIA.2017.2734045
  4. Azahra, A., Syahindra, K. D., Aryani, D. R., Jufri, F. H., & Ardita, I. M. (2020). Optimized configuration of photovoltaic and battery energy storage system (BESS) in an isolated grid: A case study of Eastern Indonesia. IOP Conference Series: Earth and Environmental Science, 599(1). https://doi.org/10.1088/1755-1315/599/1/012017
  5. Beza, T. M., Wu, C. H., & Kuo, C. C. (2021). Optimal sizing and techno-economic analysis of minigrid hybrid renewable energy system for tourist destination islands of lake tana, ethiopia. Applied Sciences (Switzerland), 11(15). https://doi.org/10.3390/app11157085
  6. Bhamidi, L., & Sivasubramani, S. (2020). Optimal Planning and Operational Strategy of a Residential Microgrid with Demand Side Management. IEEE Systems Journal, 14(2), 2624–2632. https://doi.org/10.1109/JSYST.2019.2918410
  7. Çetinbaş, İ., Tamyürek, B., & Demirtaş, M. (2019). Design, analysis and optimization of a hybrid microgrid system using HOMER software: Eskişehir osmangazi university example. International Journal of Renewable Energy Development, 8(1), 65–79. https://doi.org/10.14710/ijred.8.1.65-79
  8. Chen, Q., Yuan, X., He, Y., Guo, L., Cai, Y., & Chen, Q. (2018). Investment and Optimization of Off-Grid Microgrid Projects Based on Life-Cycle Cost/Benefit Analysis With Open Investment Mode. Dianwang Jishu/Power System Technology, 42(8), 2448–2455. https://doi.org/10.13335/j.1000-3673.pst.2017.2832
  9. Chisale, S. W., Eliya, S., & Taulo, J. (2023). Optimization and design of hybrid power system using HOMER pro and integrated CRITIC-PROMETHEE II approaches. Green Technologies and Sustainability, 1(1), 100005. https://doi.org/10.1016/j.grets.2022.100005
  10. Dahiru, A. T., & Tan, C. W. (2020). Optimal sizing and techno-economic analysis of grid-connected nanogrid for tropical climates of the Savannah. Sustainable Cities and Society, 52. https://doi.org/10.1016/j.scs.2019.101824
  11. Dei, T., & Batjargal, N. (2022). Technical and Economical Evaluation of Micro-Solar PV/Diesel Hybrid Generation System for Small Demand. International Journal of Renewable Energy Development, 11(4), 1101–1112. https://doi.org/10.14710/ijred.2022.46747
  12. Díaz-Bello, D., Vargas-Salgado, C., Águila-León, J., & Lara-Vargas, F. (2023). Methodology to Estimate the Impact of the DC to AC Power Ratio, Azimuth, and Slope on Clipping Losses of Solar Photovoltaic Inverters: Application to a PV System Located in Valencia Spain. Sustainability (Switzerland), 15(3). https://doi.org/10.3390/su15032797
  13. Direktorat Jenderal Pajak. (2022). Undang-undang harmonisasi peraturan perpajakan. https://www.pajak.go.id/sites/default/files/2021-12/Paparan%20Sosialisasi%20%20UU%20HPP%202021_0.pdf
  14. Direktorat Jenderal Pengendalian Perubahan Iklim. (2017). STRATEGI IMPLEMENTASI NDC. https://ditjenppi.menlhk.go.id/reddplus/images/adminppi/dokumen/strategi_implementasi_ndc.pdf
  15. Dirjen Ketenagalistrikan ESDM. (2023). Capaian subsektor ketenagalistrikan tahun 2022 dan program kerja tahun 2023. https://gatrik.esdm.go.id/assets/uploads/download_index/files/3b91e-30012023r3-tayang-bahan-konfrensi-pers-gatrk.pdf
  16. Dwivedi, D., Babu, K. V. S. M., Yemula, P. K., Chakraborty, P., & Pal, M. (2022). Evaluation of Energy Resilience and Cost Benefit in Microgrid with Peer-to-Peer Energy Trading. http://arxiv.org/abs/2212.02318
  17. Emetere, M. E., & Akinyemi, M. L. (2015). Weather Effect on Photovoltaic Module Adaptation in Coastal Areas. International Journal of Renewable Energy Research, 5(3), 821–825. https://doi.org/10.20508/ijrer.v5i3.2418.g6645
  18. Emetere, M. E., Akinyemi, M. L., & Edeghe, E. B. (2016). A Simple Technique for Sustaining Solar Energy Production in Active Convective Coastal Regions. International Journal of Photoenergy, 2016, 1–11. https://doi.org/10.1155/2016/3567502
  19. Fatin Ishraque, M., Shezan, S. A., Ali, M. M., & Rashid, M. M. (2021). Optimization of load dispatch strategies for an islanded microgrid connected with renewable energy sources. Applied Energy, 292, 1–19. https://doi.org/10.1016/j.apenergy.2021.116879
  20. Frej, E. A., Ekel, P., & de Almeida, A. T. (2021). A benefit-to-cost ratio based approach for portfolio selection under multiple criteria with incomplete preference information. Information Sciences, 545, 487–498. https://doi.org/10.1016/j.ins.2020.08.119
  21. Greig, M., & Wang, J. (2017). Fuel Consumption Minimization of Variable-Speed Wound Rotor Diesel Generators. IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society. https://doi.org/10.1109/IECON.2017.8217506
  22. Gupta, M., Mary, S., Trivedi, J., Goyal, J., Maan, P., & Singh, M. (2021). Battery Lifetime Estimation Based on Usage Pattern (pp. 353–365). https://doi.org/10.1007/978-981-16-2709-5_27
  23. Hosen, M. S., Youssef, R., Kalogiannis, T., Van Mierlo, J., & Berecibar, M. (2021). Battery cycle life study through relaxation and forecasting the lifetime via machine learning. Journal of Energy Storage, 40, 102726. https://doi.org/10.1016/j.est.2021.102726
  24. Hou, J., Yu, W., Xu, Z., Ge, Q., Li, Z., & Meng, Y. (2023). Multi-time scale optimization scheduling of microgrid considering source and load uncertainty. Electric Power Systems Research, 216, 109037. https://doi.org/10.1016/J.EPSR.2022.109037
  25. Ibrahim, I. M., Abdelaziz, A. Y., Alhelou, H. H., & Omran, W. A. (2023). Sizing of Microgrid System Including Multi-Functional Battery Storage and Considering Uncertainties. IEEE Access, 11, 29521–29540. https://doi.org/10.1109/ACCESS.2023.3259459
  26. Intergovernmental Panel On Climate Change. (2006). V2_1_Ch1_Introduction 2006 IPCC Guidelines. Intergovernmental Panel On Climate Change, 2(Energy). https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_1_Ch1_Introduction.pdf
  27. Ishraque, M. F., Shezan, S. A., Rashid, M. M., Bhadra, A. B., Hossain, M. A., Chakrabortty, R. K., Ryan, M. J., Fahim, S. R., Sarker, S. K., & Das, S. K. (2021). Techno-Economic and Power System Optimization of a Renewable Rich Islanded Microgrid Considering Different Dispatch Strategies. IEEE Access, 9, 77325–77340. https://doi.org/10.1109/ACCESS.2021.3082538
  28. Jahangir, M. H., Abdi, A., & Fakouriyan, S. (2023). Energy demand supply of small-scale medical centers in epidemic conditions of Covid-19 with hybrid renewable resources. Energy Reports, 9, 5449–5457. https://doi.org/10.1016/J.EGYR.2023.04.362
  29. Jin, X. (2015). Analysis of microgrid comprehensive benefits and evaluation of its economy. IET Seminar Digest, 2015(8). https://doi.org/10.1049/ic.2015.0279
  30. Jmii, H., Abbes, M., Meddeb, A., & Chebbi, S. (2020). Centralized VSM control of an AC meshed microgrid for ancillary services provision. International Journal of Electrical Power & Energy Systems, 115, 105450. https://doi.org/10.1016/J.IJEPES.2019.105450
  31. Jufri, F. H., Aryani, D. R., Garniwa, I., & Sudiarto, B. (2021a). Optimal battery energy storage dispatch strategy for small‐scale isolated hybrid renewable energy system with different load profile patterns. Energies, 14(11). https://doi.org/10.3390/en14113139
  32. Jufri, F. H., Aryani, D. R., Garniwa, I., & Sudiarto, B. (2021b). Optimal battery energy storage dispatch strategy for small‐scale isolated hybrid renewable energy system with different load profile patterns. Energies, 14(11). https://doi.org/10.3390/en14113139
  33. Kementerian Sekretariat negara Republik Indonesia. (2020). Peraturan Presiden RI Nomor 63 Tahun 2O20. https://jdih.setkab.go.id/PUUdoc/176108/Perpres_Nomor_63_Tahun_2020.pdf
  34. Kemeterian Sekretariat Negara Republik Indonesia. (2020). Perpes No 63 Tahun 2020 Tentang Penetapan Daerah Tertinggal Tahun 2020-2024. https://peraturan.go.id/id/perpres-no-63-tahun-2020
  35. Khamharnphol, R., Kamdar, I., Waewsak, J., Chaichan, W., Khunpetch, S., Chiwamongkhonkarn, S., Kongruang, C., & Gagnon, Y. (2023). Microgrid Hybrid Solar/Wind/Diesel and Battery Energy Storage Power Generation System: Application to Koh Samui, Southern Thailand. International Journal of Renewable Energy Development, 12(2), 216–226. https://doi.org/10.14710/ijred.2023.47761
  36. Kwak, Y.-G., Lee, B.-H., & Kang, F.-S. (2022). Economic Efficiency Analysis Based on Benefit-Cost Ratio of Floating Photovoltaic Power Generation System. Transactions of the Korean Institute of Electrical Engineers, 71(8), 1117–1125. https://doi.org/10.5370/KIEE.2022.71.8.1117
  37. Lambert, M. and Hassani, R. (2023). Diesel genset optimization in remote microgrids. Applied Energy, 340. https://doi.org/10.1016/j.apenergy.2023.121036
  38. Liang, H., Cheng, L., & Su, J. (2011). Cost benefit analysis for microgrid. Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 31(SUPPL. 1), 38–44
  39. Liu, X., & Liu, Y. (2019). Optimal planning of AC-DC hybrid transmission and distributed energy resource system: Review and prospects. CSEE Journal of Power and Energy Systems. https://doi.org/10.17775/CSEEJPES.2019.00540
  40. Manoj Kumar, N., Chopra, S. S., Chand, A. A., Elavarasan, R. M., & Shafiullah, G. M. (2020a). Hybrid renewable energy microgrid for a residential community: A techno-economic and environmental perspective in the context of the SDG7. Sustainability (Switzerland), 12(10), 1–30. https://doi.org/10.3390/SU12103944
  41. Martirano, L., Parise, G., Greco, G., Manganelli, M., Massarella, F., Cianfrini, M., Parise, L., Di Laura Frattura, P., & Habib, E. (2019). Aggregation of users in a residential/commercial building managed by a Building Energy Management System (BEMS). IEEE Transactions on Industry Applications, 55(1), 26–34. https://doi.org/10.1109/TIA.2018.2866155
  42. Meng, Z., Meng, L., Wang, L., Zhou, H., & Hu, X. (2022). Research on Equipment Configuration and Operation Optimization of Microgrid System. 2022 4th Asia Energy and Electrical Engineering Symposium (AEEES), 138–141. https://doi.org/10.1109/AEEES54426.2022.9759791
  43. Mudaheranwa, E., Ntagwirumugara, E., Masengo, G., & Cipcigan, L. (2023). Microgrid design for disadvantaged people living in remote areas as tool in speeding up electricity access in Rwanda. Energy Strategy Reviews, 46. https://doi.org/10.1016/j.esr.2023.101054
  44. Nejabatkhah, F. (2018). Optimal Design and Operation of a Remote Hybrid Microgrid. CPSS Transactions on Power Electronics and Applications, 3(1), 3–13. https://doi.org/10.24295/CPSSTPEA.2018.00001
  45. PLN. (2021). Renewable Energy Certificate (REC). https://layanan.pln.co.id/renewable-energy-certificate/informasi
  46. Prawitasari, A. (2022). Optimasi Sistem Operasi Pembangkit Hibrida Dengan Pemodelan Profil Beban Di Daerah 3T. https://doi.org/https://doi.org/10.36418/syntax-literate.v7i5.7074
  47. PT PLN. (2021). Rencana Usaha Penyediaan Tenaga Listrik (RUPTL) PT PLN Tahun 2021-2030. https://gatrik.esdm.go.id/assets/uploads/download_index/files/38622-ruptl-pln-2021-2030.pdf
  48. Roark, J., Weng, D., & Maitra, A. (2017). Measuring the value of microgrids: a benefit-cost framework. CIRED - Open Access Proceedings Journal, 2017(1), 1992–1994. https://doi.org/10.1049/oap-cired.2017.1324
  49. See, A. M. K., Mehranzamir, K., Rezania, S., Rahimi, N., Afrouzi, H. N., & Hassan, A. (2022). Techno-economic analysis of an off-grid hybrid system for a remote island in Malaysia: Malawali island, Sabah. Renewable and Sustainable Energy Transition, 2, 100040. https://doi.org/10.1016/j.rset.2022.100040
  50. Shezan, S. A., Hasan, K. N., Rahman, A., Datta, M., & Datta, U. (2021). Selection of appropriate dispatch strategies for effective planning and operation of a microgrid. Energies, 14(21), 1–19. https://doi.org/10.3390/en14217217
  51. Sulistyo, I. T., & Far, A. J. (2020). Design and analysis of a smart microgrid for a small island in Indonesia. International Journal of Smart Grid and Clean Energy, 967–974. https://doi.org/10.12720/sgce.9.6.967-974
  52. Thirugnanam, K., Kerk, S. K., Yuen, C., Liu, N., & Zhang, M. (2018). Energy Management for Renewable Microgrid in Reducing Diesel Generators Usage with Multiple Types of Battery. IEEE Transactions on Industrial Electronics, 65(8), 6772–6786. https://doi.org/10.1109/TIE.2018.2795585
  53. Upadhyay, S., & Sharma, M. P. (2016). Selection of a suitable energy management strategy for a hybrid energy system in a remote rural area of India. Energy, 94, 352–366. https://doi.org/10.1016/j.energy.2015.10.134
  54. Yaouba, Z., Falama, R., Ngangoum Welaji, F., Hamda Soulouknga, M., Kwefeu Mbakop, F., & Dadjé, A. (2022). Optimal Decision-Making on Hybrid Off-Grid Energy Systems for Rural and Remote Areas Electrification in the Northern Cameroon. Journal of Electrical and Computer Engineering, 2022. https://doi.org/10.1155/2022/5316520
  55. Yeo, S.-H., Lee, W.-H., Kim, C.-S., Park, S.-M., & Ko, J.-H. (2019). Economic analysis of industrial complex microgrid (MG)with six factories. International Journal of Advanced Science and Technology, 28(5), 111–120. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85080127757&partnerID=40&md5=4f21fc4cc13a05a02f574fe527151773
  56. Zhou, Z., & Howey, D. A. (2022). Bayesian hierarchical modelling for battery lifetime early prediction. IFAC-PapersOnLine. 56(2), 6117-6123. https://doi.org/10.1016/j.ifacol.2023.10.708

Last update:

No citation recorded.

Last update: 2025-02-07 16:46:42

No citation recorded.