skip to main content

Comparison of lithium sources on the electrochemical performance of LiNi0.5Mn1.5O4 cathode materials for lithium-ion batteries

1Research Center for Advanced Materials, National Research and Innovation Agency, Banten 15314, Indonesia

2Department of Chemical Engineering, Universitas Pertamina, Jakarta 12220, Indonesia

3Department of Chemical Engineering, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia

4 Research Center for Conversion and Conservation Energy, National Research and Innovation Agency, Banten 15314, Indonesia

View all affiliations
Received: 14 Nov 2023; Revised: 18 Feb 2024; Accepted: 23 Mar 2024; Available online: 2 Apr 2024; Published: 1 May 2024.
Editor(s): Rock Keey Liew
Open Access Copyright (c) 2024 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

In order to fulfill the demand for high energy and capacity, an electrode with high-voltage capability, namely LiNi0.5Mn1.5O4 (LNMO) that has an operating potential of up to 4.7 V vs Li/Li+, is currently becoming popular in Li-ion battery chemistries. This research produced LNMO by using a solid-state method with only one-step synthesis route to compare its electrochemical performance with different lithium sources, including hydroxide (LNMO-LiOH), acetate (LNMO-LiAce), and carbonate (LNMO-LiCar) precursors. TGA/DSC was first performed for all three sample precursors to ensure the optimal calcination temperature, while XRD and SEM characterized the physical properties. The electrochemical measurements, including cyclic voltammetry and charge-discharge, were conducted in the half-cell configurations of LNMO//Li-metal using a standard 1 M LiPF6 electrolyte. LNMO-LiOH samples exhibited the highest purity and the smallest particle size, with values of 93.3% and 418 nm, respectively. In contrast, samples with higher impurities, such as LNMO-LiCar, mainly in the form of LixNi1-xO (LiNiO), displayed the largest particle size. The highest working voltage possessed by LNMO-LiOH samples was 4.735 V vs Li/Li+. The results showed that LNMO samples with LiNiO impurities would affect the reaction behavior that occurs at the cathode-electrolyte interface during the release of lithium-ions, resulting in high resistance at the battery operations and decreasing the specific capacity of the LNMO during discharging. The highest value, shown by LNMO-LiOH, was up to 92.75 mAh/g. On the other side, LNMO-LiCar only possessed a specific capacity of 44.57 mAh/g, indicating a significant impact of different lithium sources in the overall performances of LNMO cathode.

Fulltext View|Download
Keywords: Li-ion Battery; Cathode; LNMO; Precursor; Solid-State
Funding: LPDP; BRIN

Article Metrics:

  1. Ahsan, Z., Ding, B., Cai, Z., Wen, C., Yang, W., Ma, Y., Zhang, S., Song, G., & Javed, M. S. (2021). Recent Progress in Capacity Enhancement of LiFePO4 Cathode for Li-Ion Batteries. Journal of Electrochemical Energy Conversion and Storage, 18(1). https://doi.org/10.1115/1.4047222
  2. Cao, K., Shen, T., Wang, K., Chen, D., & Wang, W. (2017). Influence of different lithium sources on the morphology, structure and electrochemical performances of lithium-rich layered oxides. Ceramics International, 43(12), 8694–8702. https://doi.org/10.1016/j.ceramint.2017.03.203
  3. Chen, J., Huang, Z., Zeng, W., Cao, F., Ma, J., Tian, W., & Mu, S. (2021). Synthesis, Modification, and Lithium‐Storage Properties of Spinel LiNi0.5Mn1.5O4. ChemElectroChem, 8(4), 608–624. https://doi.org/10.1002/celc.202001414
  4. Chi, L. H., Dinh, N. N., Brutti, S., & Scrosati, B. (2010). Synthesis, characterization and electrochemical properties of 4.8V LiNi0.5Mn1.5O4 cathode material in lithium-ion batteries. Electrochimica Acta, 55(18), 5110–5116 . https://doi.org/10.1016/j.electacta.2010.04.003
  5. Choi, J. U., Voronina, N., Sun, Y., & Myung, S. (2020). Recent Progress and Perspective of Advanced High‐Energy Co‐Less Ni‐Rich Cathodes for Li‐Ion Batteries: Yesterday, Today, and Tomorrow. Advanced Energy Materials, 10(42). https://doi.org/10.1002/aenm.202002027
  6. Fakhrudin, M., Sudaryanto, & Purwamargapratala, Y. (2021). Preparation and characterization of yttrium-doped high voltage spinel LiNi0.5Mn1.5O4 for lithium-ion batteries. AIP Conference Proceedings, 2381, 020013. https://doi.org/10.1063/5.0066287
  7. Feng, X. Y., Shen, C., Fang, X., & Chen, C. H. (2011). Synthesis of LiNi0.5Mn1.5O4 by solid-state reaction with improved electrochemical performance. Journal of Alloys and Compounds, 509(8), 3623–3626. https://doi.org/10.1016/j.jallcom.2010.12.116
  8. Ghosh, S., charjee, U. B., Bhowmik, S., & Martha, S. K. (2021). A Review on High-Capacity and High-Voltage Cathodes for Next-Generation Lithium-ion Batteries. Journal of Energy and Power Technology, 4(1), 1–1. https://doi.org/10.21926/jept.2201002
  9. Guo, K., Qi, S., Wang, H., Huang, J., Wu, M., Yang, Y., Li, X., Ren, Y., & Ma, J. (2022). High‐Voltage Electrolyte Chemistry for Lithium Batteries. Small Science, 2(5). https://doi.org/10.1002/smsc.202100107
  10. Hu, Z. Q., Yang, D. X., Yin, K. J., Liu, J. X., Li, F., Gao, W. Y., Qin, Y., & Liu, H. (2013). The Effect of Lithium Source on the Electrochemical Performance of LiFePO4/C Cathode Materials Synthesized by Sol-Gel Method. Advanced Materials Research, 669, 311–315. https://doi.org/10.4028/www.scientific.net/AMR.669.311
  11. Ihalainen, M., Kortelainen, M., Mesceriakovas, A., Karhunen, T., Mesceriakove, S.-M., Lindberg, D., Leskinen, J. T. T., Kankaanpää, T., Jokiniemi, J., & Lähde, A. (2023). Synthesis of solid NMC622 particles by spray drying, post-annealing and lithiation. Advanced Powder Technology, 34(10), 104187. https://doi.org/10.1016/j.apt.2023.104187
  12. Kelly, J. C., Dai, Q., & Wang, M. (2020). Globally regional life cycle analysis of automotive lithium-ion nickel manganese cobalt batteries. Mitigation and Adaptation Strategies for Global Change, 25(3), 371–396. https://doi.org/10.1007/s11027-019-09869-2
  13. Kong, F., Zhang, G., Wu, D., Sun, F., Tao, S., Chu, S., Qian, B., Chu, W., & Song, L. (2023). Insight into the cation migration and surface structural evolution of spinel LiNi0.5Mn1.5O4 cathode material for lithium-ion batteries. Chemical Engineering Journal, 451, 138708. https://doi.org/10.1016/j.cej.2022.138708
  14. Kosova, N. V., Bobrikov, I. A., Podgornova, O. A., Balagurov, A. M., & Gutakovskii, A. K. (2016). Peculiarities of structure, morphology, and electrochemistry of the doped 5-V spinel cathode materials LiNi0.5-xMn1.5-yMx+yO4 (M = Co, Cr, Ti; x+y = 0.05) prepared by mechanochemical way. Journal of Solid State Electrochemistry, 20(1), 235–246. https://doi.org/10.1007/s10008-015-3015-4
  15. Ku, D. J., Lee, J. H., Lee, S. J., Koo, M., & Lee, B. J. (2019). Effects of carbon coating on LiNi0.5Mn1.5O4 cathode material for lithium ion batteries using an atmospheric microwave plasma torch. Surface and Coatings Technology, 376, 25–30. https://doi.org/10.1016/j.surfcoat.2018.09.082
  16. Lang, Y., Sun, X., Xue, G., Duan, X., Wang, L., & Liang, G. (2022). Synthesis and enhanced electrochemical performance of LiNi0.5Mn1.5O4 cathode materials under the assistance of polyvinylpyrrolidone. Ionics, 28(11), 5025–5038. https://doi.org/10.1007/s11581-022-04744-8
  17. Li, J., Du, Z., Ruther, R. E., AN, S. J., David, L. A., Hays, K., Wood, M., Phillip, N. D., Sheng, Y., Mao, C., Kalnaus, S., Daniel, C., & Wood, D. L. (2017). Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries. JOM, 69(9), 1484–1496. https://doi.org/10.1007/s11837-017-2404-9
  18. Li, Y., Li, Z., Chen, C., Yang, K., Cao, B., Xu, S., Yang, N., Zhao, W., Chen, H., Zhang, M., & Pan, F. (2021). Recent progress in Li and Mn rich layered oxide cathodes for Li-ion batteries. Journal of Energy Chemistry, 61, 368–385. https://doi.org/10.1016/j.jechem.2021.01.034
  19. Lin, Y., Välikangas, J., Sliz, R., Molaiyan, P., Hu, T., & Lassi, U. (2023). Optimized Morphology and Tuning the Mn3+ Content of LiNi0.5Mn1.5O4 Cathode Material for Li-Ion Batteries. Materials, 16(8), 3116. https://doi.org/10.3390/ma16083116
  20. Liu, Y.-H., Lin, H.-H., & Tai, Y.-J. (2018). Binder-free carbon fiber-based lithium-nickel-manganese-oxide composite cathode with improved electrochemical stability against high voltage: Effects of composition on electrode performance. Journal of Alloys and Compounds, 735, 580–587. https://doi.org/10.1016/j.jallcom.2017.11.056
  21. Luo, Y., Cui, Z., Wu, C., Sa, B., Wen, C., Li, H., Huang, J., Xu, C., & Xu, Z. (2023). Enhanced Electrochemical Performance of a Ti–Cr-Doped LiMn1.5Ni0.5O4 Cathode Material for Lithium-Ion Batteries. ACS Omega, 8(25), 22721–22731. https://doi.org/10.1021/acsomega.3c01524
  22. Ma, C., Wang, L., Yang, H., & Liu, H. (2018). A Comparative Study of Synthesis Processes for LiNi0.5Mn1.5O4 Cathode Material. International Journal of Electrochemical Science, 13(8), 8170–8178. https://doi.org/10.20964/2018.08.53
  23. Marceau, E., Che, M., Čejka, J., & Zukal, A. (2010). Nickel(II) Nitrate vs. Acetate: Influence of the Precursor on the Structure and Reducibility of Ni/MCM‐41 and Ni/Al‐MCM‐41 Catalysts. ChemCatChem, 2(4), 413–422. https://doi.org/10.1002/cctc.200900289
  24. Mohamed, N., & Allam, N. K. (2020). Recent advances in the design of cathode materials for Li-ion batteries. RSC Advances, 10(37), 21662–21685. https://doi.org/10.1039/D0RA03314F
  25. Mohamedi, M., Makino, M., Dokko, K., Itoh, T., & Uchida, I. (2002). Electrochemical investigation of LiNi0.5Mn1.5O4 thin film intercalation electrodes. Electrochimica Acta, 48(1), 79–84. https://doi.org/10.1016/S0013-4686(02)00554-6
  26. Mossali, E., Picone, N., Gentilini, L., Rodrìguez, O., Pérez, J. M., & Colledani, M. (2020). Lithium-ion batteries towards circular economy: A literature review of opportunities and issues of recycling treatments. Journal of Environmental Management, 264, 110500. https://doi.org/10.1016/j.jenvman.2020.110500
  27. Murdock, B. E., Toghill, K. E., & Tapia‐Ruiz, N. (2021). A Perspective on the Sustainability of Cathode Materials used in Lithium‐Ion Batteries. Advanced Energy Materials, 11(39). https://doi.org/10.1002/aenm.202102028
  28. Nguyen, V. T., Deferm, C., Caytan, W., Riaño, S., Jones, P. T., & Binnemans, K. (2023). Conversion of Lithium Chloride into Lithium Hydroxide by Solvent Extraction. Journal of Sustainable Metallurgy, 9(1), 107–122. https://doi.org/10.1007/s40831-022-00629-2
  29. Palaniyandy, N., Reddy, M. V., Zaghib, K., Kebede, M. A., Raju, K., Modibedi, R. M., Mathe, M. K., Abhilash, K. P., & Balamuralikrishnan, S. (2022). High rate and stable capacity performance of 2D LiMn1.5Ni0.5O4 nanoplates cathode with ultra-long cycle stability. Journal of Alloys and Compounds, 903, 163869. https://doi.org/10.1016/j.jallcom.2022.163869
  30. Qin, X., Gong, J., Guo, J., Zong, B., Zhou, M., Wang, L., & Liang, G. (2019). Synthesis and performance of LiNi0.5Mn1.5O4 cathode materials with different particle morphologies and sizes for lithium-ion battery. Journal of Alloys and Compounds, 786, 240–249. https://doi.org/10.1016/j.jallcom.2019.01.307
  31. Ronduda, H., Zybert, M., Szczęsna-Chrzan, A., Trzeciak, T., Ostrowski, A., Szymański, D., Wieczorek, W., Raróg-Pilecka, W., & Marcinek, M. (2020). On the Sensitivity of the Ni-rich Layered Cathode Materials for Li-ion Batteries to the Different Calcination Conditions. Nanomaterials, 10(10), 2018. https://doi.org/10.3390/nano10102018
  32. Shen, Y., Ju, X., Zhang, J., Xie, T., Zong, F., Xue, D., Lin, X., Zhang, J., & Li, Q. (2020). A convenient co-precipitation method to prepare high performance LiNi0.5Mn1.5O4 cathode for lithium ion batteries. Materials Chemistry and Physics, 240, 122137. https://doi.org/10.1016/j.matchemphys.2019.122137
  33. Sivakumar, P., Nayak, P. K., Markovsky, B., Aurbach, D., & Gedanken, A. (2015). Sonochemical synthesis of LiNi0.5Mn1.5O4 and its electrochemical performance as a cathode material for 5 V Li-ion batteries. Ultrasonics Sonochemistry, 26, 332–339. https://doi.org/10.1016/j.ultsonch.2015.02.007
  34. Sudaryanto, Fakhrudin, M., Purwamargapratala, Y., Yulianti, E., Deswita, & Wahyudianingsih. (2021). Synthesis of rare Earth element doped LiMn1.5Ni0.5O4 as a lithium-ion battery cathode material using sonochemical method. AIP Conference Proceedings, 2381, 020084. https://doi.org/10.1063/5.0066454
  35. Tian, Y., Zeng, G., Rutt, A., Shi, T., Kim, H., Wang, J., Koettgen, J., Sun, Y., Ouyang, B., Chen, T., Lun, Z., Rong, Z., Persson, K., & Ceder, G. (2021). Promises and Challenges of Next-Generation “Beyond Li-ion” Batteries for Electric Vehicles and Grid Decarbonization. Chemical Reviews, 121(3), 1623–1669. https://doi.org/10.1021/acs.chemrev.0c00767
  36. Ulu Okudur, F., Mylavarapu, S. K., Safari, M., De Sloovere, D., D’Haen, J., Joos, B., Kaliyappan, P., Kelchtermans, A.-S., Samyn, P., Van Bael, M. K., & Hardy, A. (2022). LiNi0.5Mn1.5O4-δ (LNMO) as Co-free cathode for lithium ion batteries via solution-gel synthesis: Particle size and morphology investigation. Journal of Alloys and Compounds, 892, 162175. https://doi.org/10.1016/j.jallcom.2021.162175
  37. Wang, P.-B., Luo, M.-Z., Zheng, J.-C., He, Z.-J., Tong, H., & Yu, W. (2018). Comparative Investigation of 0.5Li2MnO3·0.5LiNi0.5Co0.2Mn0.3O2 Cathode Materials Synthesized by Using Different Lithium Sources. Frontiers in Chemistry, 6, 159. https://doi.org/10.3389/fchem.2018.00159
  38. Wang, Y., Hietaniemi, M., Välikangas, J., Hu, T., Tynjälä, P., & Lassi, U. (2023). Effects of Lithium Source and Content on the Properties of Li-Rich Layered Oxide Cathode Materials. ChemEngineering, 7(1), 15. https://doi.org/10.3390/chemengineering7010015
  39. Whittingham, M. S. (2004). Lithium Batteries and Cathode Materials. Chemical Reviews, 104(10), 4271–4302. https://doi.org/10.1021/cr020731c
  40. Wu, C., Qiu, L., Wang, D., Chen, T., Li, J., Wu, Z., Song, Y., & Guo, X. (2022). New Insight into High-Rate Performance Lithium-Rich Cathode Synthesis through Controlling the Reaction Pathways by Low-Temperature Intermediates. Industrial & Engineering Chemistry Research, 61(1), 453–463. https://doi.org/10.1021/acs.iecr.1c04464
  41. Wu, T., Ma, X., Liu, X., Zeng, G., & Xiao, W. (2015). Effect of calcination temperature on electrochemical performances of LiFePO4/C cathode material. Materials Technology, 30(sup2), A70–A74. https://doi.org/10.1179/17535557A15Y.000000011
  42. Wu, W., Zuo, S., Zhang, X., & Feng, X. (2023). Two-Step Solid State Synthesis of Medium Entropy LiNi0.5Mn1.5O4 Cathode with Enhanced Electrochemical Performance. Batteries, 9(2), 91. https://doi.org/10.3390/batteries9020091
  43. Xu, X., Deng, S., Wang, H., Liu, J., & Yan, H. (2017). Research Progress in Improving the Cycling Stability of High-Voltage LiNi0.5Mn1.5O4 Cathode in Lithium-Ion Battery. Nano-Micro Letters, 9(2), 22. https://doi.org/10.1007/s40820-016-0123-3
  44. Yi, T.-F., Li, C.-Y., Zhu, Y.-R., Shu, J., & Zhu, R.-S. (2009). Comparison of structure and electrochemical properties for 5 V LiNi0.5Mn1.5O4 and LiNi0.4Cr0.2Mn1.4O4 cathode materials. Journal of Solid State Electrochemistry, 13(6), 913–919. https://doi.org/10.1007/s10008-008-0628-x
  45. Yi, T.-F., Li, Y.-M., Li, X.-Y., Pan, J.-J., Zhang, Q., & Zhu, Y.-R. (2017). Enhanced electrochemical property of FePO4-coated LiNi0.5Mn1.5O4 as cathode materials for Li-ion battery. Science Bulletin, 62(14), 1004–1010. https://doi.org/10.1016/j.scib.2017.07.003
  46. Yi, T.-F., Mei, J., & Zhu, Y.-R. (2016). Key strategies for enhancing the cycling stability and rate capacity of LiNi0.5Mn1.5O4 as high-voltage cathode materials for high power lithium-ion batteries. Journal of Power Sources, 316, 85–105. https://doi.org/10.1016/j.jpowsour.2016.03.070
  47. Zeng, F., Zhang, Y., Shao, Z., Li, Z., & Dai, S. (2021). The influence of different calcination temperatures and times on the chemical performance of LiNi0.5Mn1.5O4 cathode materials. Ionics, 27(9), 3739–3748. https://doi.org/10.1007/s11581-021-04167-x
  48. Zhang, B., Ou, X., Zheng, J., shen, C., Ming, L., Han, Y., Wang, J., & Qin, S. (2014). Electrochemical properties of Li2FeP2O7 cathode material synthesized by using different lithium sources. Electrochimica Acta, 133, 1–7. https://doi.org/10.1016/j.electacta.2014.03.188
  49. Zybert, M., Ronduda, H., Szczęsna, A., Trzeciak, T., Ostrowski, A., Żero, E., Wieczorek, W., Raróg-Pilecka, W., & Marcinek, M. (2020). Different strategies of introduction of lithium ions into nickel manganese cobalt carbonate resulting in LiNi0.6Mn0.2Co0.2O2 (NMC622) cathode material for Li-ion batteries. Solid State Ionics, 348, 115273. https://doi.org/10.1016/j.ssi.2020.115273

Last update:

No citation recorded.

Last update: 2024-05-16 23:24:25

No citation recorded.