skip to main content

Boosting thermal regulation of phase change materials in photovoltaic-thermal systems through solid and porous fins

Department of Energy Engineering, University of Baghdad, Baghdad, Iraq

Received: 29 Oct 2023; Revised: 28 Dec 2023; Accepted: 2 Jan 2024; Available online: 5 Jan 2024; Published: 1 Mar 2024.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2024 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

This study explores the integration of porous fins with phase-change materials (PCM) to enhance the thermal regulation of photovoltaic-thermal (PVT) systems. Computational simulations are conducted to evaluate the impacts of different porous fin configurations on PCM melting dynamics, PV cell temperatures, and overall PVT system effectiveness. The results demonstrate that incorporating optimized porous fin arrays into the PCM region can significantly improve heat dissipation away from the PV cells, enabling more effective thermal control. Specifically, the optimized staggered porous fin design reduces the total PCM melting time and decreases peak cell temperatures by about 5°C . This is achieved by creating efficient heat transfer pathways that accelerate the onset of natural convection during the PCM melting process. Further comparisons with traditional solid metallic fins indicate that while solid fins enable 12.2% faster initial melting, they provide inferior long-term temperature regulation capabilities compared to the optimized porous fins. Additionally, inclining the PV module from 0° to 90° orientation can further decrease the total PCM melting time by 13 minutes by harnessing buoyancy-driven convection. Overall, the lightweight porous fin structures create highly efficient heat transfer pathways to passively regulate temperatures in PVT systems, leading to quantifiable improvements in thermal efficiency of 16% and electricity output of 2.9% over PVT systems without fins.

Fulltext View|Download
Keywords: PVT system; PCM; Thermal control; Porous fins; Solid fins; Melting

Article Metrics:

  1. Al-Aasama, A. B., Ibrahim, A., Syafiq, U., Sopian, K., Abdulsahib, B. M., & Dayer, M. (2023). Enhancing the performance of water-based PVT collectors with nano-PCM and twisted absorber tubes [PVT-PCM; Twisted absorber tube; Nano-PCM; Photovoltaic thermal efficiency; Primary Energy Saving efficiency]. International Journal of Renewable Energy Development, 12(5), 11. https://doi.org/https://doi.org/10.14710/ijred.2023.54345
  2. Al-Waeli, A. H., Kazem, H. A., Chaichan, M. T., & Sopian, K. (2019). Photovoltaic/thermal (PV/T) systems: principles, design, and applications. Springer Nature
  3. Al-Waeli, A. H., Sopian, K., Chaichan, M. T., Kazem, H. A., Ibrahim, A., Mat, S., & Ruslan, M. H. (2017). Evaluation of the nanofluid and nano-PCM based photovoltaic thermal (PVT) system: An experimental study. Energy conversion and management, 151, 693-708. https://doi.org/https://doi.org/10.1016/j.enconman.2017.09.032
  4. Al-Waeli, A. H., Sopian, K., Kazem, H. A., Yousif, J. H., Chaichan, M. T., Ibrahim, A., Mat, S., & Ruslan, M. H. (2018). Comparison of prediction methods of PV/T nanofluid and nano-PCM system using a measured dataset and artificial neural network. Solar Energy, 162, 378-396. https://doi.org/https://doi.org/10.1016/j.solener.2018.01.026
  5. Bergman, T. L., Bergman, T. L., Incropera, F. P., Dewitt, D. P., & Lavine, A. S. (2011). Fundamentals of heat and mass transfer. John Wiley & Sons
  6. Biwole, P. H., Eclache, P., & Kuznik, F. (2013). Phase-change materials to improve solar panel's performance. Energy and Buildings, 62, 59-67. https://doi.org/https://doi.org/10.1016/j.enbuild.2013.02.059
  7. Calmidi, V. V., & Mahajan, R. L. (2000). Forced convection in high porosity metal foams. J. Heat Transfer, 122(3), 557-565. https://doi.org/https://doi.org/10.1115/1.1287793
  8. Cheong Tan, W., Huat Saw, L., San Thiam, H., Yusof, F., Wang, C.-T., Chian Yew, M., & Kun Yew, M. (2019). Investigation of water cooled aluminium foam heat sink for concentrated photovoltaic solar cell. IOP Conference Series: Earth and Environmental Science,
  9. Duan, J. (2021). A novel heat sink for cooling concentrator photovoltaic system using PCM-porous system. Applied Thermal Engineering, 186, 116522. https://doi.org/https://doi.org/10.1016/j.applthermaleng.2020.116522
  10. GmbH., R. https://www.rubitherm.eu.
  11. Indartono, Y., Prakoso, S., Suwono, A., Zaini, I., & Fernaldi, B. (2015). Simulation and experimental study on effect of phase change material thickness to reduce temperature of photovoltaic panel. IOP Conference Series: Materials Science and Engineering, 88(1), 012049. https://doi.org/10.1088/1757-899X/88/1/012049
  12. Jamil, F., Ali, H. M., Nasir, M. A., Karahan, M., Janjua, M., Naseer, A., Ejaz, A., & Pasha, R. A. (2021). Evaluation of photovoltaic panels using different nano phase change material and a concise comparison: An experimental study. Renewable Energy, 169, 1265-1279. https://doi.org/10.1016/j.renene.2021.01.089
  13. Kant, K., Shukla, A., Sharma, A., & Biwole, P. H. (2016). Thermal response of poly-crystalline silicon photovoltaic panels: Numerical simulation and experimental study. Solar Energy, 134, 147-155. https://doi.org/https://doi.org/10.1016/j.solener.2016.05.002
  14. Kaplani, E., & Kaplanis, S. (2014). Thermal modelling and experimental assessment of the dependence of PV module temperature on wind velocity and direction, module orientation and inclination. Solar Energy, 107, 443-460. https://doi.org/https://doi.org/10.1016/j.solener.2014.05.037
  15. Khanna, S., Reddy, K., & Mallick, T. K. (2018a). Effect of climate on electrical performance of finned phase change material integrated solar photovoltaic. Solar Energy, 174, 593-605. https://doi.org/https://doi.org/10.1016/j.solener.2018.09.023
  16. Khanna, S., Reddy, K., & Mallick, T. K. (2018b). Optimization of finned solar photovoltaic phase change material (finned pv pcm) system. International Journal of Thermal Sciences, 130, 313-322. https://doi.org/https://doi.org/10.1016/j.ijthermalsci.2018.04.033
  17. Kılkış, B. (2020). Development of a composite PVT panel with PCM embodiment, TEG modules, flat-plate solar collector, and thermally pulsing heat pipes. Solar Energy, 200, 89-107. https://doi.org/https://doi.org/10.1016/j.solener.2019.10.075
  18. Li, J., Zhang, W., Xie, L., Li, Z., Wu, X., Zhao, O., Zhong, J., & Zeng, X. (2022). A hybrid photovoltaic and water/air based thermal (PVT) solar energy collector with integrated PCM for building application. Renewable Energy, 199, 662-671. https://doi.org/https://doi.org/10.1016/j.renene.2022.09.015
  19. Ma, T., Yang, H., Zhang, Y., Lu, L., & Wang, X. (2015). Using phase change materials in photovoltaic systems for thermal regulation and electrical efficiency improvement: A review and outlook. Renewable and Sustainable Energy Reviews, 43, 1273-1284. https://doi.org/https://doi.org/10.1016/j.rser.2014.12.003
  20. Ma, Z., Lin, W., & Sohel, M. I. (2016). Nano-enhanced phase change materials for improved building performance. Renewable and Sustainable Energy Reviews, 58, 1256-1268
  21. Maatallah, T., Zachariah, R., & Al-Amri, F. G. (2019). Exergo-economic analysis of a serpentine flow type water based photovoltaic thermal system with phase change material (PVT-PCM/water). Solar Energy, 193, 195-204. https://doi.org/https://doi.org/10.1016/j.solener.2019.09.063
  22. Mahdi, J. M., Lohrasbi, S., Ganji, D. D., & Nsofor, E. C. (2018). Accelerated melting of PCM in energy storage systems via novel configuration of fins in the triplex-tube heat exchanger. International Journal of Heat and Mass Transfer, 124, 663-676. https://doi.org/https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.095
  23. Mahdi, J. M., Mohammed, H. I., & Talebizadehsardari, P. (2021). A new approach for employing multiple PCMs in the passive thermal management of photovoltaic modules. Solar Energy, 222, 160-174. https://doi.org/https://doi.org/10.1016/j.solener.2021.04.044
  24. Mahdi, J. M., & Nsofor, E. C. (2018). Multiple-segment metal foam application in the shell-and-tube PCM thermal energy storage system. Journal of Energy Storage, 20, 529-541. https://doi.org/https://doi.org/10.1016/j.est.2018.09.021
  25. Mahdi, J. M., Singh, R. P., Al-Najjar, H. M. T., Singh, S., & Nsofor, E. C. (2021). Efficient thermal management of the photovoltaic/phase change material system with innovative exterior metal-foam layer. Solar Energy, 216, 411-427. https://doi.org/https://doi.org/10.1016/j.solener.2021.01.008
  26. Nada, S., El-Nagar, D., & Hussein, H. (2018). Improving the thermal regulation and efficiency enhancement of PCM-Integrated PV modules using nano particles. Energy conversion and management, 166, 735-743. https://doi.org/https://doi.org/10.1016/j.enconman.2018.04.035
  27. Nižetić, S., Jurčević, M., Arıcı, M., Arasu, A. V., & Xie, G. (2020). Nano-enhanced phase change materials and fluids in energy applications: A review. Renewable and Sustainable Energy Reviews, 129, 109931
  28. Ren, Q., Xu, H., & Luo, Z. (2019). PCM charging process accelerated with combination of optimized triangle fins and nanoparticles. International Journal of Thermal Sciences, 140, 466-479. https://doi.org/https://doi.org/10.1016/j.enconman.2018.04.035
  29. Shakibi, H., Afzal, S., Shokri, A., & Sobhani, B. (2022). Utilization of a phase change material with metal foam for the performance improvement of the photovoltaic cells. Journal of Energy Storage, 51, 104466. https://doi.org/https://doi.org/10.1016/j.est.2022.104466
  30. Sharaf, M., Huzayyin, A., & Yousef, M. S. (2022). Performance enhancement of photovoltaic cells using phase change material (PCM) in winter. Alexandria Engineering Journal, 61(6), 4229-4239. https://doi.org/https://doi.org/10.1016/j.aej.2021.09.044
  31. Sharma, S., Micheli, L., Chang, W., Tahir, A., Reddy, K., & Mallick, T. (2017). Nano-enhanced Phase Change Material for thermal management of BICPV. Applied Energy, 208, 719-733. https://doi.org/10.1016/j.apenergy.2017.09.076
  32. Skoplaki, E., & Palyvos, J. A. (2009). Operating temperature of photovoltaic modules: A survey of pertinent correlations. Renewable Energy, 34(1), 23-29. https://doi.org/https://doi.org/10.1016/j.renene.2008.04.009
  33. Tan, L., Date, A., Fernandes, G., Singh, B., & Ganguly, S. (2017). Efficiency gains of photovoltaic system using latent heat thermal energy storage. Energy Procedia, 110, 83-88
  34. Thaib, R., Rizal, S., Mahlia, T., & Pambudi, N. A. (2018). Experimental analysis of using beeswax as phase change materials for limiting temperature rise in building integrated photovoltaics. Case Studies in Thermal Engineering, 12, 223-227. https://doi.org/https://doi.org/10.1016/j.csite.2017.12.005
  35. Tian, Y., & Zhao, C.-Y. (2011). A numerical investigation of heat transfer in phase change materials (PCMs) embedded in porous metals. Energy, 36(9), 5539-5546. https://doi.org/https://doi.org/10.1016/j.csite.2023.103825
  36. Waqas, A., & Ji, J. (2017). Thermal management of conventional PV panel using PCM with movable shutters–A numerical study. Solar Energy, 158, 797-807. https://doi.org/https://doi.org/10.1016/j.solener.2017.10.050
  37. Waqas, A., Ji, J., Xu, L., Ali, M., & Alvi, J. (2018). Thermal and electrical management of photovoltaic panels using phase change materials–A review. Renewable and Sustainable Energy Reviews, 92, 254-271. https://doi.org/https://doi.org/10.1016/j.rser.2018.04.091
  38. Waqas, A., Jie, J., & Xu, L. (2017). Thermal behavior of a PV panel integrated with PCM-filled metallic tubes: An experimental study. Journal of Renewable and Sustainable Energy, 9(5), 053504. https://doi.org/https://doi.org/10.1016/j.solener.2017.10.050
  39. Xu, Y., Ren, Q., Zheng, Z.-J., & He, Y.-L. (2017). Evaluation and optimization of melting performance for a latent heat thermal energy storage unit partially filled with porous media. applied energy, 193, 84-95. https://doi.org/https://doi.org/10.1016/j.apenergy.2017.02.019
  40. Zhang, C., Wang, N., Xu, H., Fang, Y., Yang, Q., & Talkhoncheh, F. K. (2023). Thermal management optimization of the photovoltaic cell by the phase change material combined with metal fins. Energy, 263, 125669. https://doi.org/https://doi.org/10.1016/j.energy.2022.125669

Last update:

No citation recorded.

Last update: 2024-04-12 15:59:13

No citation recorded.